Energy Independent Residential Development for Dhaka City, Bangladesh

Rehnuma Parveen

Thesis submitted to The University of Adelaide in fulfilment

of the requirements for the degree of

Doctor of Philosophy

School of Architecture and Built Environment

November 2016

Abstract

Dhaka, the capital of Bangladesh, has been predicted to be the 6th largest megacity in the world by 2030 with about 10 million additional people compared with the current population. This rapid urbanization is accompanied by a fast growing energy demand. On the contrary, the country is far behind in energy sufficiency thus the new developments are unlikely to be supported with adequate energy supply. Moreover, in the face of increasing greenhouse emission and resource depletion, traditional fossil fuel based energy is no longer an option. This research, therefore, is aimed at exploring the possibilities for energy independent residential developments in Dhaka in order to respond to these many challenges.

The research has been conducted by adopting a multimethod approach, which include different quantitative research strategies and techniques supported with a limited qualitative approach. The final outcomes of this research are based on experiments conducted through building performance simulations; however, the simulations are grounded on rigorous monitored data, which included different urban, building, microclimatic and household parameters that influence household energy consumption. To investigate the urban and building contexts, 70 typical apartment buildings and 93 apartment unit plans were studied. Interviews have also been conducted with representatives from relevant professionals: real estate developers, practicing architects and academicians to understand the background to apartment developments. Microclimatic conditions were investigated including by using air temperature data loggers. Household contexts were investigated through a questionnaire survey of around 400 residents. The information obtained from the existing situations studied were then analysed and used for the simulations to test various scenarios in order to derive the final outcomes of this research. The research has identified several existing urban, building and household practices, alterations of which will result in substantial household energy consumption reduction. Best practice modifications of present ways are proposed and the findings indicate that applying these best practices can reduce the current energy consumption by at least thirty-nine percent. It is possible for residential developments in Dhaka to achieve energy independence, after reducing the consumption, by the installation of roof mounted solar photovoltaic systems and battery storage for each household; however, shifting to energy efficient appliances is vital in achieving this. Furthermore, the results indicated that not only the future buildings but also the existing buildings with minor retrofitting and utilizing energy efficient appliances and equipment can achieve energy independence.

The results of this research are expected to have an important impact on the future residential developments of Dhaka as the energy consequences of the current urban and building practices are now known. This will help the professionals to take more informed decisions towards building energy efficient developments in Dhaka. The results also provide a basis for the policy makers to update the existing building construction regulations as well as to develop energy policies to promote energy independent developments.

Although focusing on Dhaka, results from the research will also be useful for other cities in Bangladesh and elsewhere in the world facing similar socio-economic challenges.

Table of Contents

List of Figures	ix
List of Tables	xvii
List of Acronyms and Abbreviations	xix
Publications	xxi
Declaration	xxii
Acknowledgement	xxiii

1. Introduction

1.1	Problem Statement	1
1.2	Research Background	3
	1.2.1 Introduction	3
	1.2.2 The Growing Energy Demand and Developing Countries	3
	1.2.3 Alternative Energy	5
	1.2.4 Research Need	7
1.3	Research Aim and Focus	8
1.4	Research Questions and Objectives	9
1.5	Significance	12
1.6	Scope of the Research	13
1.7	Methodology	14
	1.7.1 Phase-01: Theoretical Studies	14
	1.7.2 Phase-02: Field Studies	14
	1.7.3 Phase-03: Simulation Studies	15
1.8	Thesis Structure	16

PART I: Theoretical Studies

2.	The	Research Contexts-Dhaka, Bangladesh	
	2.1	Introduction	19
	2.2	Urban Development Contexts	20
		2.2.1 Urban Development in Bangladesh: Overall Scenario	20

	2.2.2 General Contexts of Dhaka	21
	2.2.3 The Growth of Dhaka	24
	2.2.4 Development Types and Patterns in Dhaka	27
	2.2.5 Development Plans and Regulations	35
	2.2.6 Energy Impact of Dhaka's Urban Development	44
2.3	Energy (Electricity) Contexts	48
	2.3.1 Energy (Electricity) in Bangladesh: Overall Scenario	48
	2.3.2 Energy (Electricity) Contexts of Dhaka	55
2.4	Conclusion	58

3. Literature Review

3.1	Introduction	61
3.2	The Global Contexts	61
	3.2.1 Energy Challenges	61
	3.2.2 Energy and Buildings	64
	3.2.3 Energy and Buildings in Developing Countries	70
3.3	Parameters that Affect the Energy Consumption of Buildings	70
	3.3.1 Urban-level Parameters	71
	3.3.2 Building-level Parameters	78
	3.3.3 Occupancy-level Parameters	89
	3.3.4 Summary	93
3.4	Conclusion	94

4. Research Design, Methodology and Methods

4.1	Intro	duction	97
4.2	Resea	rch Approach	97
4.3	Resea	rch Design and Methodology	99
4.4	Meth	ods	101
	4.4.1	Step 2: Urban and Building Contexts Study	101
	4.4.2	Step 3: Microclimatic Contexts Study	107
	4.4.3	Step 4: Household Contexts Study	112
	4.4.4	Steps 57: Simulation Studies	117

PART II: Field Studies

5. Urban and Building Contexts

5.1	Introduction	121
5.2	Urban Contexts	121
	5.2.1 Plot Layout	121
	5.2.2 Plot Shape, Size and Dimension	124
	5.2.3 Plot Orientation	126
	5.2.4 Road Layout and Width	129
	5.2.5 Vegetation and Materials	130
5.3	Building Contexts	132
	5.3.1 Building Footprint-Plot Ratio	132
	5.3.2 Building Orientation	132
	5.3.3 Setback Rules and Canyon Ratio	133
	5.3.4 Dwelling-unit Density	137
	5.3.5 Floor Plan	137
	5.3.6 Apartment Size	140
	5.3.7 Apartment Layout	140
	5.3.8 Room Type and Size	144
	5.3.9 Glazing Type and Size	146
	5.3.10 Shading Devices	148
	5.3.11 Construction Practices and Materials	150
5.4	Summary Findings and Discussion	152
	5.4.1 Summary Findings: Urban Contexts	152
	5.4.2 Summary Findings: Building Contexts:	152
	5.4.3 Discussion	155
5.5	Conclusion	159

6. Microclimatic Contexts

6.1	Introduction	161
6.2	Methods	161

(5.3	Resul	lts	166
		6.3.1	Temperature Variation vs Different Orientations and Locations	166
		6.3.2	Temperature Variation vs Heights	176
		6.3.3	Outdoor vs Indoor Temperature	177
		6.3.4	Urban Heat Island Investigation	191
(5.4	Sumr	nary Findings and Discussion	199
		6.4.1	Summary Findings: Temperature Variation vs Different	
			Orientations and Locations	201
		6.4.2	Summary Findings: Temperature Variation vs Different Height	201
		6.4.3	Summary Findings: Outdoor vs Indoor Temperature	202
		6.4.4	Summary Findings: UHI Investigation	203
		6.4.5	Discussion	204
6	5.5	Conc	lusion	207

7. Household Contexts

7.1	Intro	duction	209
7.2	Meth	ods	209
7.3	Resul	ts	210
7.4	Existi	ng Contexts	210
	7.4.1	Indirect Parameters: Household Characteristics	210
	7.4.2	Indirect Parameters: Building Design	212
	7.4.3	Indirect Parameters: Doors and Windows Operation	215
	7.4.4	Direct Parameters: Cooling and Heating Appliances	217
	7.4.5	Direct Parameters: Artificial Lights	225
	7.4.6	Direct Parameters: Domestic Appliances	229
7.5	Energ	gy Consumption Pattern and Intensity	237
7.6	Hous	ehold Parameters vs Energy Consumption	242
	7.6.1	Relationship between the Indirect Parameters and	
		Energy Consumption	242
	7.6.2	Relationship between the Direct Parameters and	
		Energy Consumption	249
	7.6.3	Dominant Parameters	252

7.7	Summary Findings and Discussion	260
	7.7.1 Summary Findings: Existing Contexts	260
	7.7.2 Summary Findings: Household Parameters vs Energy Consumption	261
	7.7.3 Discussion	264
7.8	Conclusion	265

PART III: Results and Conclusion

8. Results: Exploring Possibilities for Energy Independence

8.1	Introduction	267
8.2	Methods	267
	8.2.1 Selection of the Case Study Apartment	268
	8.2.2 Reproduction of the Case Study Apartment	270
	8.2.3 Calibration of the Model	273
	8.2.4 Data Generation and Analyses	276
8.3	Results	277
	8.3.1. Ways to Reduce Existing Energy Consumption	277
	8.3.2 Extent of Reduction in Energy Consumption	312
	8.3.3 Energy Independence	320
8.4	Summary Findings and Discussion	325
	8.4.1 Summary Findings: Ways to Reduce Existing Energy Consumption	325
	8.4.2 Summary Findings: Extent of Reduction in Energy Consumption	328
	8.4.3 Summary Findings: Energy Independence	328
	8.4.4 Discussion	329
8.6	Conclusion	333

9. Conclusion and Recommendations

9.1	Introduction	335
9.2	Key Findings	335
9.3	Contribution to Knowledge	340
9.4	Limitations of the Research	340
9.5	Challenges to Overcome	341
9.6	Further Research Recommendations	341

References

Appendices

Appendix	A:	Papers Published out of this Research	
	A.1:	Paper 1	A: 1
	A.2:	Paper 2	A: 9
Appendix	B :	Ethics Approval and Application	
	B.1:	Ethics Approval Letters	A: 16
	B.2:	Ethics Application Form	A: 18
Appendix	C:	Urban and Building Contexts Study	
	C.1:	Master Plans of DOHS Baridhara, Uttara & Purbachal	In CD
	C.2:	Building Floor & Apartment Unit Plans	In CD
Appendix	D:	Micro-climatic Contexts Study	
	D.1:	Indoor vs Outdoor Temperature at 9m & 15m Level	A: 27
	D.2:	Temperature Plots on Two Clearer Days	A: 30
Appendix	E:	Household Contexts Study	
	E.1:	Participants' Information Sheet	A: 31
	E.2:	Questionnaire Survey Form	A: 33
Appendix	F:	Simulation Studies	
	F.1:	CV (RMSE) Calculations in Excel: Temperature and kWh Calibration	In CD
	F.2:	CV (RMSE) Calculation for kWh Calibration	A: 43
	F.3:	Input Data (External Wall, Glazing, Window Operation) - BaU and	
		Best Practice Scenario	A: 43
	F.4:	IESVE File: Calibrated Base Cases	In CD
	F.5:	IESVE File: BaU, Best Practices and Energy Independence	In CD

List of Figures

Figure 1.1:	Thesis Structure	18
Figure 2.1:	Location of Bangladesh in South Asia	20
Figure 2.2:	Location of Dhaka city (DMA)	22
Figure 2.3:	Dhaka City Boundaries	24
Figure 2.4:	Growth of Dhaka city	27
Figure 2.5:	Example of Spontaneous Developments	29
Figure 2.6:	Example of Typical Plot-based Land Development	31
Figure 2.7:	Examples of Walk-up, Mid-rise & High-rise Apartment Buildings	34
Figure 2.8:	Block Based High-rise Housing	35
Figure 3.1:	UHI Effect	73
Figure 4.1:	The Location of the Case Study Areas in Dhaka	103
Figure 4.2:	Examples of Owner-built Buildings	105
Figure 4.3:	Examples of Developer-built Buildings	106
Figure 4.4:	Examples of Loggers used: HOBO U23-001 & HOBO U12-013	109
Figure 4.5:	Shielded Loggers	110
Figure 4.6:	Loggers at the Side Setback Area and at the South	111
Figure 4.7:	Loggers at Various Locations	112
Figure 4.8:	Indirect and Direct Household Parameters Diagram	114
Figure 4.9:	Research Diagram with Research Steps, Methodologies & Methods	119
Figure 5.1:	Typical Plot Layout Pattern	123
Figure 5.2:	Example of Plot Layout at Uttara 3rd Phase, Sector 15	123
Figure 5.3:	Rectangular and Non-rectangular Plot Examples	124
Figure 5.4:	Total Number (in Thousands) and Land Coverage (in Acre) by	
	Different-sized Plots	126
Figure 5.5:	Plot Orientation With Respect to the Access Road	127
Figure 5.6:	The Frequency of Differently Oriented Plots	128
Figure 5.7:	Example of a Secondary Road with Vegetation in Uttara	131

ix

Figure 5.8:	Example of a Secondary Road in DOHS	131
Figure 5.9:	Examples of Access Roads in Uttara (1) & DOHS (2)	131
Figure 5.10:	Setback Areas Surrounding a Building	134
Figure 5.11:	Distance Between Buildings at the Side	134
Figure 5.12:	Distance Between Buildings at the Back	135
Figure 5.13:	Canyon with an Access Road in Between (CR: 1.63)	136
Figure 5.14:	Canyon Due to the Rear Setback Distance (CR: 5.42)	136
Figure 5.15:	Canyon Due to the Side Setback Distance (CR: 8.13)	136
Figure 5.16:	Typical Floor Plans for Single-unit Apartments	138
Figure 5.17:	Typical Floor Plans with Double-unit Apartment (Type A)	139
Figure 5.18:	Typical Floor Plans with Double-unit Apartment (Type B)	139
Figure 5.19:	Floor Plans with Unequal Double-unit Apartments	139
Figure 5.20:	Examples of Single-unit Apartment Layout	141
Figure 5.21:	Examples of Double-unit Apartment Layout	142
Figure 5.22:	Example of a Single-unit Apartment Layout	143
Figure 5.23:	Example of a Double-unit Apartment Layout (Type A)	143
Figure 5.24:	Example of a Double-unit Apartment Layout (Type B)	144
Figure 5.25:	Examples of Floor-to-ceiling Glass on the Front Façade	147
Figure 5.26:	Examples of Horizontal Shading & Recessed Windows	149
Figure 5.27:	An Under-construction Building, Showing the Common Construction Materials	
	and Practices	151
Figure 6.1:	Plan showing the Physical Contexts Surrounding a Building and the Location	
	of the Loggers	163
Figure 6.2:	Section A-A: Loggers Installed on the Front Façade & at Rear Setback Area	163
Figure 6.3:	Section B-B: Loggers at the Side Setback Area	163
Figure 6.4:	Loggers' Location and Orientation with ID at DOHS Baridhara and Uttara	165
Figure 6.5:	Daily Average Temperature for all Locations at 3 m (1 Sept-10 Oct. 2013)	167
Figure 6.6:	Daily Average Temperature for all Locations at 9 m (1 Sept–10 Oct. 2013)	167
Figure 6.7:	Daily Average Temperature for all Locations at 15 m (1 Sept–10 Oct. 2013)	168
Figure 6.8:	Average Air Temperature at 3 m (1 Sept–10 Oct. 2013)	169
Figure 6.9:	Average Air Temperature at 9 m (1 Sept–10 Oct. 2013)	170

Figure 6.10:	Average Air Temperature at 15 m (1 Sept–10 Oct. 2013)	170
Figure 6.11:	Average Temperature Difference between the South and Other Locations	172
Figure 6.12:	Average Daytime and Night-time Temperature at 3 m	174
Figure 6.13:	Average Daytime and Night-time Temperature at 9 m	175
Figure 6.14:	Average Daytime and Night-time Temperature at 15 m	175
Figure 6.15:	Average Air Temperature Variation at Different Heights	177
Figure 6.16:	Average Outdoor and Indoor Temperature at 3 m during the Study Period	178
Figure 6.17:	Average Outdoor and Indoor Temperature at 9 m during the Study Period	178
Figure 6.18:	Average Outdoor and Indoor Temperature at 15 m during the Study Period	179
Figure 6.19:	Example-1: Half-hourly Outdoor and Indoor Temperature for North-1 at 3 m	180
Figure 6.20:	Example-2: Half-hourly Outdoor and Indoor Temperature for East-2 at 3 m	180
Figure 6.21:	Example-3: Half-hourly Outdoor and Indoor Temperature for South at 3 m	180
Figure 6.22:	Example-4: Half-hourly Outdoor and Indoor Temperature for West at 3 m	181
Figure 6.23:	Half-hourly Indoor & Outdoor Temperature on the Hottest Day:	
	North at 3 m	182
Figure 6.24:	Half-hourly Indoor & Outdoor Temperature on the Hottest Day:	
	East at 3 m	183
Figure 6.25:	Half-hourly Indoor & Outdoor Temperature on the Hottest Day:	
	South at 3 m	184
Figure 6.26:	Half-hourly Indoor & Outdoor Temperature on the Hottest Day:	
	West at 3 m	185
Figure 6.27:	Half-hourly Indoor & Outdoor Temperature on the Coolest Day:	
	North at 3 m	186
Figure 6.28:	Half-hourly Indoor & Outdoor Temperature on the Coolest Day:	
	East at 3 m	186
Figure 6.29:	Half-hourly Indoor & Outdoor Temperature on the Coolest Day:	
	South at 3 m	186
Figure 6.30:	Half-hourly Indoor & Outdoor Temperature on the Coolest Day:	
	West at 3 m	187
Figure 6.31:	Average Daytime and Night-time Temperature for all the Loggers at 3 m	
	(1 Sept–10 Oct 2013)	189

Energy Independent Residential Development for Dhaka City, Bangladesh

xi

<i>Figure 6.32:</i>	Average Daytime and Night-time Temperature for all the Loggers at 9 m	
	(1 Sept–10 Oct 2013)	189
Figure 6.33:	Average Daytime and Night-time Temperature for all the Loggers at 15 m	
	(1 Sept–10 Oct 2013)	190
Figure 6.34:	Average Daytime Temperature Differences: Outdoor vs Indoor	
	(1 Sept–10 Oct 2013)	190
Figure 6.35:	Average Night-time Temperature Differences: Outdoor vs Indoor	
	(1 Sept–10 Oct 2013)	191
Figure 6.36:	Locations of Uttara, DOHS & BMD in Dhaka and the Meteorological	
	Instruments inside BMD	192
Figure 6.37:	Daily Average Air Temperature of the Meteorological Station and	
	Loggers at 3 m	193
Figure 6.38:	Average UHI Intensity for Different Days and Locations During the	
	Study Period	194
Figure 6.39:	Average Daytime and Night-time UHI Intensity at Different Locations	195
Figure 6.40:	Three-hourly Temperature Plot for 24 Hours: 13 Sept. 2013	197
Figure 6.41:	Three-hourly Temperature Plot for 24 Hours: 2 Oct. 2013	197
Figure 6.42:	UHI Intensity at all Locations on 24 Sept. 2013	198
Figure 6.43:	UHI Intensity of all Locations on 2 Oct. 2013	199
Figure 6.44:	Maximum UHI Intensity During the Study Period for Different Locations	199
Figure 7.1:	Average Occupancy Pattern on Working Days	212
Figure 7.2:	Average Occupancy Pattern on Weekends or Holidays	212
Figure 7.3:	Average Apartment Size and Unit Area/Person of the Studied Households	213
Figure 7.4:	Examples of Aluminium Sliding and Shutter-type Windows	214
Figure 7.5:	Types of Windows in Different Spaces of the Studied Households	215
Figure 7.6:	Frequency of Bedrooms and Common-space Window Opening	216
Figure 7.7:	Reasons for not Opening the Windows more Frequently	216
Figure 7.8:	Frequency of Opening Curtains in Bedrooms and Common Spaces	217
Figure 7.9:	Average Number of Fans in the Studied Households	218
Figure 7.10:	Frequency of Total Number of Fans per Household	219

Figure 7.11:	Frequency of Total Number of Fans in the Bedrooms and	
	Common Spaces of the Households	220
Figure 7.12:	Average Number of Fans in Single-unit and Double-unit Apartments	221
Figure 7.13:	Average Use of a Fan in Different Rooms of the Studied Households	222
Figure 7.14:	Frequency of Total Number of ACs per Household	223
Figure 7.15:	Average Use of an AC in Different Spaces	225
Figure 7.16:	Frequency of Different Types of Lights	227
Figure 7.17:	Frequency of Total Types of Lights per Household	227
Figure 7.18:	Preferences for Different Types of Lights in Different Areas	228
Figure 7.19:	Average Number of Lights (Lamps) in the Studied Households	229
Figure 7.20:	Age Frequency of the Refrigerators in the Studied Households	230
Figure 7.21:	Ownership and Total Number of Freezers per Household	230
Figure 7.22:	Age Frequency of Freezers in the Studied Households	231
Figure 7.23:	Ownership of Different Wet Appliances	232
Figure 7.24:	Ownership of Different Cooking Appliances	233
Figure 7.25:	Total Number of TVs per Household	234
Figure 7.26:	Frequency of Different Types of TV	234
Figure 7.27:	Ownership of Different Brown Goods	235
Figure 7.28:	Ownership of Different Miscellaneous Appliances	236
Figure 7.29:	Frequency of Total Number of Rechargeable Items per Household	236
Figure 7.30:	Annual Electricity Use (kWh) Range of the Studied Households	238
Figure 7.31:	Annual Electricity Use (kWh) of all Households, Households	
	without and with AC	239
Figure 7.32:	Average Daily Electricity Consumption (kWh) in Different Months	240
Figure 7.33:	Average Daily Electricity Consumption (kWh) in Different Seasons	241
Figure 7.34:	Regression Analyses-1: Normal P-P Plot of Regression Standardised Residual	254
Figure 7.35:	Regression Analyses-1: Scatterplot	255
Figure 7.36:	Regression Analyses-2: Normal P-P Plot of Regression Standardised Residual	257
Figure 7.37:	Regression Analyses-2: Scatterplot	258
Figure 8.1:	Ground Floor Plan and Unit-plan of the Case Study Apartment	269
Figure 8.2:	The Case Study Apartment and the Outdoor Logger	269

xiii

Figure 8.3:	The Simulated and the Actual Building	270
Figure 8.4:	The Case Study Building with the Surroundings in Simulation	271
Figure 8.5:	Hourly Measured and Simulated Indoor Air Temperature	
	(1 Sept.–10 Oct. 2013)	275
Figure 8.6:	Hourly Outdoor and Measured and Simulated Indoor Air Temperature	
	(1 Sept.–10 Oct. 2013)	276
Figure 8.7:	Monthly Electricity Consumption for 2013	
	(Actual Consumption and Simulated)	276
Figure 8.8:	Surrounding Built-environment of the Case-study Apartment for	
	Orientation Studies	279
Figure 8.9:	Impact of Orientation at 1st-floor Level	281
Figure 8.10:	Impact of Orientation at 2nd-floor Level	281
Figure 8.11:	Impact of Orientation at 3rd-floor Level	281
Figure 8.12:	Impact of Orientation at 4th-floor Level	282
Figure 8.13:	Impact of Orientation at 5th-floor Level	282
Figure 8.14:	Impact of Orientation: Average of all Floors	282
Figure 8.15:	Percentage Increase of Energy Consumption with North	283
Figure 8.16:	Energy Consumption at Different Floor Levels for all Orientations	283
Figure 8.17:	Impact of Effective CR at North Orientation	285
Figure 8.18:	Impact of Effective CR at East Orientation	285
Figure 8.19:	Impact of Effective CR at South Orientation	286
Figure 8.20:	Impact of Effective CR at West Orientation	286
Figure 8.21:	Impact of Effective CR at North-east Orientation	286
Figure 8.22:	Impact of Effective CR at South-east Orientation	287
Figure 8.23:	Impact of Effective CR at South-west Orientation	287
Figure 8.24:	Impact of Effective CR at North-west Orientation	287
Figure 8.25:	Impact of Different Brick Wall Constructions	290
Figure 8.26:	Impact of Different Concrete Wall Constructions	290
Figure 8.27:	Additional Consumption due to Other Brick Walls Instead of	
	Brick Cavity Wall (250x250)	291

Figure 8.28:	Additional Consumption due to Other Concrete Walls Instead of	
	Cavity Wall (240x107)	291
Figure 8.29:	Impact of Different Window Glass Types: Single Glazed	293
Figure 8.30:	Impact of Single- and Double-glazed Windows with Clear Float Glass	294
Figure 8.31:	Impact of Single- and Double-glazed Windows with Tinted Glass	294
Figure 8.32:	Impact of Single- and Double-glazed Windows with Reflective Glass	294
Figure 8.33:	Consumption Reduction due to Double Glazing Instead of Single Glazing	295
Figure 8.34:	Impact of Different Double-glazings with Varying Airgap Thickness	
	(4 mm Outerpane)	296
Figure 8.35:	Impact of Different Double-glazings with Varying Glass Thickness	
	(6 mm Airgap)	296
Figure 8.36:	Shading Device Ratio: A/B; A = Device Depth, B = Window Height or Width	298
Figure 8.37:	Impact of Shading Device at North Orientation	299
Figure 8.38:	Impact of Shading Device at East Orientation	299
Figure 8.39:	Impact of Shading Device at South Orientation	299
Figure 8.40:	Impact of Shading Device at West Orientation	300
Figure 8.41:	Impact of Shading Device at North-east Orientation	300
Figure 8.42:	Impact of Shading Device at South-east Orientation	300
Figure 8.43:	Impact of Shading Device at South-west Orientation	301
Figure 8.44:	Impact of Shading Device at North-west Orientation	301
Figure 8.45:	Consumption Reduction due to Egg-crate Shading Device Compared to	
	No Shading	301
Figure 8.46:	Impact of WWR	303
Figure 8.47:	Additional Consumption due to Glass Surface with 0.5 and 1.0 ratio	
	instead of 0.2 ratio	303
Figure 8.48:	Impact of Different Window Operation: North Orientation	305
Figure 8.49:	Impact of Different Window Operation: East Orientation	306
Figure 8.50:	Impact of Different Window Operation: South Orientation	306
Figure 8.51:	Impact of Different Window Operation: West Orientation	306
Figure 8.52:	Impact of Different Window Operation: North-east Orientation	307
Figure 8.53:	Impact of Different Window Operation: South-east Orientation	307

xv

Figure 8.54:	Impact of Different Window Operation: South-west Orientation	307
Figure 8.55:	Impact of Different Window Operation: North-west Orientation	308
Figure 8.56:	Additional Consumption in the case of Windows Being Open During the Day	
	but Closed at Night, Compared to Closed During the Day but Open at Night	308
Figure 8.57:	Impact of Energy-efficient Ceiling Fans	310
Figure 8.58:	Impact of Energy-efficient AC	310
Figure 8.59:	Consumption Reduction Percentage due to Energy-efficient Appliances	312
Figure 8.60:	Average Consumption of a Typical Household at Different Floors in the	
	BaU Scenario	316
Figure 8.61:	Average Consumption of a Household in BaU and Reduced Scenarios	319
Figure 8.62:	Consumption Reduction after Applying Best Practices for	
	Different Parameters	319
Figure 8.63:	Monthly Gap between Simulated PV Generation and Whole-building	
	Electricity Demand for North- and South-Oriented Buildings with	
	Monocrystalline (15%) and Polycrystalline (14%) PV	322
Figure 8.64:	Monthly Gap between Simulated PV Generation and Whole-building	
	Electricity Demand with Maximum Efficient Monocrystalline (20%) and	
	Polycrystalline (16%) PV	323
Figure 8.65:	Hourly Gap between Simulated PV Generation and Whole-building	
	Electricity Demand	324

List of Tables

Table 1.1:	Summary Chart: RQs, Associated Objectives and Topics Addressed	11
Table 2.1:	Maximum FAR and Ground Coverage Allowed for Different-sized Plots	
	in the 2008 Rules	41
Table 3.1:	Summary of the Parameters that Affect the Energy Consumption of Buildings	
	and the Ways they Influence this Consumption	93
Table 4.1:	List of Loggers used for the Data Collection	108
Table 4.2:	Major Indirect Parameters for Household Contexts Study	114
Table 4.3:	List of Major Direct Parameters for Household Contexts Study	115
Table 5.1:	Different Plot Sizes in the Case Study Areas	124
Table 5.2:	Plot Size & Dimension	126
Table 5.3:	Minimum, Maximum and Average Size of the Single- and Double-unit	
	Apartments	140
Table 5.4:	Size of Different Rooms in Single- and Double-unit Apartments	145
Table 5.5:	Summary Chart with Key Findings: Urban Parameters & Practices	157
Table 5.6:	Summary Chart with Key Findings: Building Parameters & Practices	157
Table 6.1:	The Loggers' Orientations and Locations with Associated ID	164
Table 6.2:	Summary Chart with Key Findings: Microclimatic Contexts	205
Table 7.1:	Average Use of a Fan in Different Spaces of the Studied Households (in Hours)	221
Table 7.2:	Indirect Parameters (Household Characteristics-related) vs Total	
	Energy Consumption	245
Table 7.3:	Indirect Parameters (Building Related) vs Total Energy Consumption	247
Table 7.4:	Indirect Parameters (Operation of Windows and Doors) vs Total	
	Energy Consumption	248
Table 7.5:	Direct Parameters (Fan, AC and Heater) vs Energy Consumption	250
Table 7.6:	Significant Direct Parameters (Artificial Lights) vs Energy Consumption	250
Table 7.7:	Direct Parameters (Household Appliances) vs Energy Consumption	251

Energy Independent Residential Development for Dhaka City, Bangladesh

xvii

Table 7.8:	Regression Analyses-1: Indirect Parameters vs Energy Consumption_	
	Model Summary	254
Table 7.9:	Beta value of the Significant Independent Variables (Indirect Parameters)	255
Table 7.10:	Regression Analyses-2: Direct Parameters vs Energy consumption_	
	Model Summary	257
Table 7.11:	Beta Value of the Significant Independent Variables (Direct Parameters)	258
Table 7.12:	Summary Chart with Key Findings: Existing Contexts of the	
	Household Parameters	260
Table 8.1:	Basic Input Data for the Reproduction of the Case Study Apartment	271
Table 8.2:	Input Data for the BaU Scenario and the Best-practices Scenario	314
Table 8.3:	Summary Chart with Key Findings: Simulation Studies	331

List of Acronyms and Abbreviations

BBS	Bangladesh Bureau of Statistics
BPDB	Bangladesh Power Development Board
BPS	Building performance simulations
BNBC	Bangladesh National Building Code
CR	Canyon ratio
CIA	Central Intelligence Agency
DCC	Dhaka City Corporation
DMA	Dhaka Metropolitan Area
DMDP	Dhaka Metropolitan Development Plan
DESCO	Dhaka Electric Supply Company Limited
DOHS	Defence Officer Housing Society
DPDC	Dhaka Power Development Company Limited
EEA	European Environment Agency
EIA	Energy Information Administration
EPA	US Environmental Protection Agency
FAR	Floor area ratio
GOB	Bangladesh Government
GDP	Gross domestic production
HDI	Human Development Index
GHG	Greenhouse gas
IDCOL	Infrastructural Development Company Limited
IEA	International Energy Agency
IMF	International Monetary Fund
IPCC	Intergovernmental Panel on Climate Change
IPHA	International Passive House Association
IPS	Instant Power Supply

LC-ZEB	Life cycle zero-energy building
MPEMR	Ministry of Power, Energy and Mineral Resources
ZEB	Zero-energy building
PSMP	Power System Master Plan
PV	Solar Photovoltaic
PWD	Public Works Department
RAJUK	Rajdhani Unnayan Kartripakkha
REHAB	Real Estate & Housing Association of Bangladesh
RH	Relative Humidity
SHGC	Solar Heat Gain Coefficient
SHS	Solar Home Systems
SVF	Sky View Factor
SREDA	Sustainable and Renewable Energy Development Authority
TMY	Typical Meteorological Year
UHI	Urban Heat Island
UN	United Nations
UNB	United News of Bangladesh
UNEP	United Nations Environment Programme
UNDP	United Nations Development Programme
WB	The World Bank
WWR	Window to wall ratio

Publications

Publications arising from this research are listed below.

- Parveen, R., Soebarto, V. & Williamson, T. (2015, September). Investigating Urban Heat Island to derive alternative options for energy efficient residential developments, case study: Dhaka, Bangladesh. Paper presented at the Architecture in (R)Evolution: 31st Passive and Low Energy Architecture (PLEA) Conference, Bologna, Italy.
- Parveen, R. (2012, November). Potentiality of energy-plus urban developments in developing countries. Case study: Dhaka, Bangladesh. Paper presented at the 46th Architectural Science Association (ASA) Conference, Gold Coast, Australia. Available at http://anzasca.net/wpcontent/uploads/2014/02/p60.pdf

Declaration

I, Rehnuma Parveen, certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the jointaward of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Rehnuma Parveen Date: 1 November 2016

xxii

Acknowledgement

This research is indebted to many people. First and foremost, my sincere thanks go to my principal supervisor Associate Professor Veronica Soebarto, who constantly and patiently guided me through this ambitious Ph.D. project. I sincerely acknowledge her enthusiasm, immense knowledge, selfless time and genuine care. Without her, I could not have undertaken this research. I also express my deep gratitude to my co-supervisor Associate Professor Terence Williamson whose critical comments immensely helped to enrich this research as well as his technical expertise has been invaluable for this research. I, with gratitude, also remember the advices of my supervisors that helped me to navigate through the hardest times of my PhD due to acute anxiety and depression. I acknowledge the contribution of my former co-supervisor Dr. David Ness, who directed this research towards investigating energy independent residential development with buildings instead of a single energy independent building.

I would like to acknowledge the Australian Federal Government for granting me the Endeavour Post Graduate Award 2012 without which, it would have been impossible to study and live in Australia. I am grateful to The University of Adelaide for providing me the Research Abroad Scholarship that enabled me to conduct the field studies in Dhaka. I am also grateful to the School of Architecture and Built Environment at The University of Adelaide for providing the annual post-graduate allowance that enabled me to attend two leading conferences in my field. I express my deepest gratitude to Kathleen Lumley College (KLC) for offering subsidised rental as well as for granting Cowan Bursaries in 2015 and 2016 without which, it would have been impossible to stay at that wonderful residential college. I also thankfully acknowledge Bangladesh University of Engineering and Technology for granting me the study leave to pursue this Ph.D.

This research has involved a large number of people along the way, too many to mention here. However, I would like to especially thank Professor Dr. Roxana Hafiz, Professor Dr. Mohammad Tamim, Dr. K. Z. Hossain Taufique, Ar. Kazi Nasir, Ar. Mamnoon Morshed Chowdhury, Ar. Atiqur Rahman, Ar. Mahmudul Anwar Riyaad, Ar. Ruhul Amin and Ar. Abdus Salam who gave their time for deeper discussion around their expertise and experiences on urban,

Energy Independent Residential Development for Dhaka City, Bangladesh

xxiii

building and energy contexts of Dhaka. I am grateful to my father Md. Rafiqul Huq who helped me immensely to install the data loggers. I also sincerely thank the building owners and households who allowed me to install data loggers as well as the research participants who gave their time to fill up the questionnaire survey form. A special thanks goes to Air Commodore Zahidunnabi and Mrs Shahnaj, who provided me detail plans of the case study apartment and input data for the simulation studies. I also acknowledge Fahmid Ahmed, Ashraful Azad, Shamim Azad, Reza Shahbazi, Mohammad Joarder and Ali Parvez for helping me at various stages of this research such as in data entry process for the household contexts study and supplying related information from Dhaka.

A very special thanks goes to my dear friend Dr. Sakrapee Paisitkriangkrai who patiently explained me different statistical procedures for hours. I thankfully acknowledge my thesis editors, which was edited by Elite Editing, and editorial intervention was restricted to Standards D and E of the *Australian Standards for Editing Practice*.

Many thanks to Dr. Katharine Bartsch, postgraduate coordinator and the staff of the School of Architecture and Built Environment, who provided all the supports to my research needs: Stella Ho, Alison Bosnakis, Ian Florance, Melissa Wilson and Velice Wennan. My colleagues and friends at the University, particularly Kinda Tabba, Jessica Huang, Dr. Lyrian Daniel, Dr. Tahmina Ahsan, Carolyn Wigg, Pragathi Sridhar, Gillian Armstrong, Jade Ridell and Ruidong Chang and my friends at KLC: Barbara, Sayeeda, Sharon, Sanjaya, Ryan, Anisha, Angus and Srikar as well as my dear Bangladeshi friends in Adelaide, particularly Nuzhat, Dewan, Tania, Faria and Dr. Mizanur provided amazing mental support.

Last but not the least, I would like to express my deepest appreciation and love for my family and a very dear friend, to whom this thesis is dedicated: my parents Md. Rafiqul Huq and Shahida Akhter, my brother Md. Shariful Huq, my grandmothers Suraiya Akhter and late Gulbahar, my friend Shamim Azad and my dear husband Fahmid Ahmed for their sacrifices, patience, tolerance, concern and moral support. Particularly, I would like to thank my husband for lovingly enduring my Ph.D. stress and depression. Thanks, I love you all a lot. Finally, it is over.

In the Far East, there is a tree called the Chinese bamboo tree. This remarkable tree is different from most trees in that it doesn't grow in the usual fashion. While most trees grow steadily over a period of years, the Chinese bamboo tree doesn't break through the ground for the first four years. Then, in the fifth year, an amazing thing happens – the tree begins to grow at an astonishing rate. In fact, in a period of just five weeks, a Chinese bamboo tree can grow to a height of 90 feet. It's almost as if you can actually see the tree growing before your very eyes.

... pursuing your dream is a sure thing if you just don't give up. So long as you keep watering and fertilizing your dream, it will come to fruition. It may take weeks. It may take months. It may even take years, but eventually, the roots will take hold and your tree will grow. And when it does, it will grow in remarkable ways. **- Eric Aronson**, Para-1 and 7, 2009.

A special thanks to Eric Aronson, who I do not know personally but his words kept me going on during the difficult periods of Ph.D., especially at times when it seemed nothing is progressing.