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“As a matter of fact, capitalist economy is not and cannot be stationary. Nor is it merely

expanding in a steady manner. It is incessantly being revolutionized from within by new

enterprise, i.e., by the intrusion of new commodities or new methods of production or new

commercial opportunities into the industrial structure as it exists at any moment.” - Schum-

peter, 1942

“A smart innovation agenda, in short, would be quite different from the one that most rich

governments seem to favour. It would be more about freeing markets and less about picking

winners; more about creating the right conditions for bright ideas to emerge and less about

promises of things like green jobs. But pursuing that kind of policy requires courage and

vision and most of the rich economies are not displaying enough of either.” - The Economist,

2010

3



Contents

1 Introduction 8

2 Literature Review 11

2.1 Early approaches and theories of innovation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Knowledge and Spatial Spillovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Regional linkages and the role of the university . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Related empirical literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Exploratory Spatial Data Analysis

Spatial Diagnostics 15

3.1 Spatial Weights Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Spatial Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Theoretical Model of Knowledge Production 22

5 Model Specification and Estimation

Confirmatory Spatial Data Analysis 24

5.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Selection Between Spatial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.2 Model Comparison and Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Fixed Effects Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Issues: Bias Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Data Description 28

6.1 (Spatial) Unit of Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Dependent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2.1 Innovation (Patents, Designs, and Plant Breeders Rights): (Innov) . . . . . . . . . 29

6.3 Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3.1 Business Research and Development Expenditure: (BRD) . . . . . . . . . . . . . . 30

6.3.2 Number of university campuses: (Unis) . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3.3 University Research Funding per Region in $millions: (Ufunding) . . . . . . . . . . 31

6.3.4 Access to Business and Technical Services: (busserv and techserv) . . . . . . . . . 32

6.3.5 Primary Industry Dummy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.6 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Results and Discussion 33

7.1 SDM Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2 Spatial Spillovers: Direct and Indirect Effects . . . . . . . . . . . . . . . . . . . . . . . . . 36

4



7.2.1 Direct Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.2 Indirect Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Conclusion 39

A Summary Statistics 45

B Primary Industries by Year 45

C Industry Counts 46

D Correlations 46

E Unit of Observation 47

F Moran’s I Scatter (Innovation log-transformed) 48

G LISA Map (Australia) 50

H LISA Significance Map (Australia) 51

I LISA Map (Melbourne and Sydney) 52

J Moran’s I (not logged) 53

K Moran’s I scatter (not logged) 54

L Spatial Panel Model Specifications 56

L.1 SAR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

L.2 SEM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

L.3 SAC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

M Results form SAR, SEM, and SAC Fixed Effects Estimation 57

N Results from non-spatial panel model (FE and RE) 58

O Results for Primary Industry differences 59

P Spatial Panel Random Effects Results 60

List of Figures

1 Neighbour Connectivity Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Moran’s I Scatter: Mean (log) Innovation (2009-2015) . . . . . . . . . . . . . . . . . . . . 20

3 Local Indicators of Spatial Autocorrelation Map (Australia) . . . . . . . . . . . . . . . . . 21

4 Local Indicators of Spatial Autocorrelation Map (Eastern States) . . . . . . . . . . . . . . 21

5



5 Modified regional production function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Australian (logged) Innovation (Natural Breaks/Jenks) Map . . . . . . . . . . . . . . . . . 30

7 Statistical Area 3: Australian Regional Division . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Moran’s I Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Moran’s I Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10 Moran’s I Scatter Plots (no log transformation) . . . . . . . . . . . . . . . . . . . . . . . . 54

List of Tables

1 Spatial Weights Matrix Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Tests for Spatial Dependence (Autocorrelation): (log) Innovation . . . . . . . . . . . . . . 19

3 Quadrant Relationships in Moran’s I Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . 19

4 Spatial Panel Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Summary of Results from General Model (i) Estimation . . . . . . . . . . . . . . . . . . . 33

6 Spatial Durbin Model (Fixed Effects) Results . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Direct and spillover effects of different model specifications (Source: Elhorst (2010)) . . . 36

8 Direct and Indirect Effects (SDM (i)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Spatial Panel Fixed Effects Results (without Lee and Yu (2010) Transformation) . . . . . 40

10 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11 Count of Primary Industries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Summary of Industries within a region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

13 Correlation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

14 Tests for Spatial Dependence/Autocorrelation (for innovation not log-transformed) . . . . 53

15 Spatial Panel Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

16 Results from non-spatial Fixed and Random Effects Panel Model . . . . . . . . . . . . . . 58

17 Summary of Industry Differences (all spatial models) . . . . . . . . . . . . . . . . . . . . . 59

18 Spatial Panel Results: Random Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6



Location, location, innovation:
The impact of local environmental factors on regional innovation in Australia

Maverick P. De Leon∗

November 4, 2016

Abstract

This paper investigates the determinants of innovation among Australian regions, focussing on the

spatial dimension of innovation and innovative-related activities in creating spillover effects. Through

‘exploratory’ and ‘confirmatory’ spatial data analysis we find evidence that innovation activity is

spatially dependent, and that there is evidence of spatial clustering of highly innovative regions.

Applying spatial econometric techniques, we estimate a Spatial (panel) Durbin Model to control for

spatial autocorrelation to analyse the driving forces of innovation throughout regions. We find that

the number of university campuses within a region along with university research has a significant

and positive effect on local levels of innovation. In terms of spillover effects, we find that population

density creates a negative indirect effect; where neighbouring region’s population density adversely

impacts innovation levels.

∗The University of Adelaide
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1 Introduction

In an intensely knowledge-driven world, innovation has been widely considered a decisive driver of eco-

nomic growth and development. The study of knowledge and innovation has been a key area of research,

pioneered by the seminal work of Schumpeter (1934, 1942) in what is popularly known as ‘creative de-

struction’. At its simplest, Schumpeter conceptualised how ‘innovation’ of new methods, products or

markets force older ones to become antiquated, requiring the market and competitors to adjust and

learn, or face failure. Creative destruction is relevant today more than ever, with anecdotal evidence of

disruptive innovation leading to the demise of older business models, markets, and products.1 From an

economic standpoint, in the decades following Schumpeter a wide array of literature has been devoted to

understanding the role of innovation. In macroeconomics, the ground-breaking work of Solow (1956) in

formalising exogenous growth theory highlighted the role of technological change and progress in driv-

ing output growth (an unexplained residual in the model). Following the works of Schumpeter, Romer

(1986) and Krugman (1991) develop endogenous growth theory ‘endogenising’ the Solow residual, a con-

cept built on increasing returns to scale production driving growth2 rather than exogenous technological

change. These theories have been accompanied by a plethora of empirical literature particularly focussed

on measuring and understanding the determinants of innovation and technological change.

Innovation in of itself is a concept difficult to pin down and define. In many ways the concept

of innovation has been hijacked by the discussion in economic growth circles, commonly considered to

simply relate to technological advancement and invention. In actuality innovation encapsulates a vast

array of concepts. Schumpeter (1934) defines innovation as the introduction or inception of new products,

methods of production, and markets. It also encapsulates the development of new sources of supply for

materials or inputs, and the creation of new market structures within industries. This serves as basis for

the contemporary definition of innovation, as highlighted in the Oslo Manual (2005) article 1463:

“An innovation is the implementation of a new or significantly improved product (good or

service), or process, a new marketing method, or a new organisational method in business

practices, workplace organisation or external relations.”

The important aspect of this definition is that of ‘implementation’ and ‘novelty’, meaning an innovation

is something that is practically utilised and is either new, or sufficiently different to older innovations.

The importance of innovative activity has recently gained greater attention with the studies of ‘spillover

effects’, or rather externalities from innovation. Arrow (1962) characterised innovation and knowledge

a public good, particularly with how knowledge diffusion is non-rivalrous and non-exclusive (yielding

positive externalities). This concept of spillovers and externalities is a concept that we are interested

in investigating at the regional Australia level. The basis for such a study is grounded in some of the

anecdotal evidence we see related to economic geography. This relationship between innovative activity

and geography is self-evident in examples like the Silicon Valley (and the wider San Francisco Bay

1A key example of this is Uber and the way the company has drastically disrupted traditional taxi industries worldwide.
2Romer (1986) suggests growth occurs through knowledge spilling over across economic agents.
3The Oslo Manual, produced by the Organisation for Economic Co-operation and Development (OECD), serves the purpose

of standardising and providing a framework in approaches to understanding and measuring innovation.
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Area) or Route 128 (Boston Area) commonly recognised as high-technological and innovative regions.

These are modern examples of geographical innovation, a phenomenon where infrastructure (physical

and intellectual) through established firms, new start-ups, universities, and research institutes migrate

and congregate towards another regionally, with similar regions again clustering near each other. For

instance, Silicon Valley is one region part of a wider subset of regions constituting the San Francisco Bay

Area.4 Regions like Silicon Valley by their very construction attract some of the most successful start

ups as firms look to take advantage of the knowledge spillovers nurtured by the region. From a policy

perspective, policy makers and economists have quickly sought to identify how and why these regions are

so effective at incubating successful innovations and innovative firms where being a ‘unicorn’ is the norm.

The Oslo Manual (2005, article 116) highlights:

“identifying the main characteristics and factors that promote innovation activity and the

development of specific sectors at regional level can help in understanding innovation processes

and be valuable for elaboration of policy.”

Accordingly, new interest has been garnered in quantifying and understanding innovation and its

determinants at a regional level in order to replicate the successes of places like Silicon Valley. Applying

the broad definition of innovation in the context of ‘regions’, we look to assess innovative success by the

collective performance of the actors within. Such quantification has been addressed in literature regarding

‘regional innovation systems’. Based on the concept of ‘national systems of innovation’ (See: Lundvall

(1992); Freeman (1995)), the ‘regional innovation system’ analyses innovation activity at a sub-national

and sub-state level. Cooke et al. (1997) highlight the key role innovation-conducive infrastructure plays;

through financial and educational institutions, as well as the development of institutionalised learning

and entrepreneurial culture. These system analyses look at firms, knowledge institutions, and the ‘state’

as “embedded in a system at sectoral, regional and national levels” (Mazzucato, 2013). Importantly, liter-

ature in this area has increasingly emphasised universities playing a far greater role in innovation systems

(See Etzkowitz and Leydesdorff (2000); Van Looy (2009)). Developing an increasingly entrepreneurial

role, universities’ strength are characterised in their ability to conduct early stage research, how they

are embedded within a system that promotes and facilitates efficient research, and are unconstrained to

external shareholders and profit pressures. Audretsch and Stephan (1996) find empirical evidence that

firms are attracted to areas with external knowledge sources such as universities. Given this interest in

the role of universities, we take a particular interest in how university infrastructure as well as government

facilitation of university driven research impacts innovation levels.

With these perspectives in mind, we seek to create a link between regional and national innovation

frameworks with empirical work to determine what drives innovation in Australian regions. This for-

mulates the basis of this paper’s research questions in investigating what characteristics, conditions, and

environmental factors facilitate innovation. With the example of the San Francisco Bay Area in mind

we ask, to what extent does location and your neighbours impact on innovation? More specifically we

investigate what are the key determinants of innovation in Australia, particularly looking at the role of

4Silicon Valley has incubated and attracted the likes of Intel, Apple, and Uber, with institutions such as Stanford University

and University of California Berkley situated nearby.
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universities. Moreover, we look for evidence of spatial spillovers occurring. In conducting this analysis

we utilise spatial econometric tools and techniques, to account for the geographical focus. Tobler (1970)

wrote:

“Everything is related to everything else, but near things are more related than distant things.”

Although a geographer rather than economist, Tobler’s popular “First Law of Geography” inadvertently

formalised the idea of spatial dependence (or autocorrelation5). There has been increasing popularity in

spatial econometrics as greater interest has been in understanding and accounting for the interaction of

economic agents where ‘social norms’, ‘neighbourhood effects’ and ‘other peer group effects’ might have

an intrinsic impact (Anselin, 2003). LeSage’s (2008) review of empirical literature highlights that it is

common for regions in space to not be ‘independent’, rather exhibit qualities of ‘spatial dependence’.

Papers exploiting spatial econometric tools motivate this study.

The focus of our analysis will be Australian innovation data among SA3 regions (See Appendix E for

a diagram of SA3 regions) between 2009 and 2015. Motivated by the concepts of regional innovation, eco-

nomic geography, and spatial spillovers, we investigate the determining factors of innovation in Australia.

Our analysis is divided into two major sections: exploratory spatial data analysis (ESDA), and confirma-

tory spatial data analysis (CSDA). Through ESDA we test to what extent a region’s neighbours impact

on local innovation. Controlling for this effect, we then further utilise non-traditional spatial econometric

techniques through spatial panel models to investigate the determinants of innovation in Australian re-

gions, particularly emphasising the presence of universities. Through our analysis we are able to conclude

that the innovation in neighbouring regions significantly impacts local innovation. There is also evidence

that similar innovative-level regions tend to cluster with each other, and that location indeed matters. In

accounting for these dependencies, through our spatial regression analysis we conclude that the number

of university campuses within a region along with the funding made available to those universities has

a significant and positive impact on innovation. We also have the interesting finding of negative spatial

spillover effects resulting from population density. Innovation in Australia is particularly relevant today

given the National Innovation and Science Agenda. With initiatives such as “business research and in-

novation”, and “new research funding arrangements for universities” (National Science Agenda) at the

forefront of the agenda, it is important to understand what facilitates innovation in Australia to allow

for accurate policy implementation.

The remainder of this paper is as follows: Section 2 will explore the previous innovation literature in

greater detail. Section 3 details the methodology and results of exploratory spatial data analysis. Section

4 presents a theoretical model of knowledge production which forms the foundation of our empirical

model. Section 5 highlights our model specification in conducting confirmatory spatial data analysis,

with Section 6 detailing the data utilised for estimation. Finally, Section 7 presents the results and

discussion, with concluding remarks made in Section 8.

5Spatial dependence and spatial autocorrelation are used interchangeably throughout this paper.
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2 Literature Review

2.1 Early approaches and theories of innovation

Schumpeter (1934, 1942) developed innovation theory, providing the conceptual foundation of how the

area is studied. Creative destruction is the key concept developed, where economic development is driven

by industrial mutation replacing previous methods and products, a concept driven by the formation of

temporary monopolies. Creation of such short-term monopolies motivates industrial mutation for firms

to remain competitive and survive. Schumpeter’s sentiments were echoed by Arrow (1962) who similarly

identified the value of knowledge in promoting growth, emphasising spillover externalities occurring from

sharing of knowledge.6 These seminal works gave rise to the field of ‘evolutionary economics’, pioneered

by Nelson and Winter (1982 [2005]). Re-applying Schumpeter’s theories in a modern context, Nelson and

Winter (1982) conceptualised the idea that selection, continual adaptation, and organisational routines

are fundamental to economic growth. In many ways these evolutionary concepts are strongly influenced by

evolutionary biology and Universal Darwinism (Witt, 2006). In discussing evolutionary theory, Mazzucato

(2013) boils it down to ‘adapt or die’/‘survival of the fittest’ mentality, where firms must co-evolve and

innovate in order to not only profit, but survive (Mazzucato, 2013).

2.2 Knowledge and Spatial Spillovers

The combined sentiments of Marshall (1890[2009]), Arrow (1962), and Romer (1986) were formalised

by Glaeser et al. (1991) in developing the theory of MAR spillovers or externalities. In our specific

context, this relates to how innovation tends to spillover where economic agents are clustered in close

proximity. Glaeser and co-authors take some of the key elements from each influential contribution, each

of which detail the role of spillovers.7 Taking into account these formative theories, Glaeser et al. (1991)

find that local proximity to similar industries allows for knowledge to spillover. These spillovers are

facilitated by employee turnover and transfers to different firms, a “cross-fertilisation” where new ideas

are introduced to firms. More generally, the MAR spillover formalises how these knowledge externalities

are more conducive to areas where firms are closer in proximity geographically (where cross-fertilisation

is better suited). These theories were supported by Krugman (1991) and Feldman (1994) posing similar

findings that geography and spatial context are underlying dimensions that need to be accounted in

measuring the determinants of innovation. Krugman (1991) develops this idea in more of trade context,

however, Feldman (1994) finds empirical evidence that innovative activity is greater in clustered areas.

Simply, spillover theories suggest that such agglomeration and clustering allows for spatial diffusion

of knowledge, making geography a key consideration. In the context of Silicon Valley, Carlino (2001)

identifies how these MAR spillovers have attracted semiconductor firms who seek to take advantage of

spatial externalities. Carlino (2001) also highlights how these spillovers can also be informal in nature,

6The pair deviated in opinion primarily in which market structure promoted greater growth. Arrow, an advocate for perfect

competition driving growth, diverged from Schumpeter’s views on the creation of temporary monopolies.
7Marshall being the original contributor of knowledge spillover theory; Arrow studying endogenous growth and knowledge;

with Romer model similarly specifying knowledge spillover as a mechanism for endogenous growth.
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detailing anecdotal accounts of after-work ‘bars’ facilitating cross-fertilisation through the mingling of

employees from different firms.

2.3 Regional linkages and the role of the university

The relationship between innovation and geography is one that is investigated at a variety of levels.

Literature regarding “national/regional innovation systems” seeks to understand the characteristics that

encourage innovative activity, and unpack the role of state and non-state actors. Established by Lundvall

(1992) and Freeman (1995), the concept of systems of national innovation formalise the interrelation-

ships and process driving innovative change at a national level. Lundvall and Freeman’s ‘system driven

approach’ focused particularly on how the division of labour plays a key role in the innovative process,

emphasising identifying the contributions of each actor in producing knowledge (Fritsch 2002, pg. 87).

An expansion of this national system theory was made by Cooke et al. (1997), formalising a similar

relationship at a regional level. Cooke and co-authors take an interest in the various dimensions of re-

gional innovation, particularly institutions facilitating autonomous innovation, and the development of

systematic entrepreneurial cultures. Both sets of literature highlight the major groups of actors driving

innovative activity, namely; private firms, public research institutions (universities), supportive services,

and the regional workforce (Fritsch 2002, pg. 87). Rather than supporting the role of individualistic

firms, the literature emphasises how innovation is driven by an integrated and broad network of firms

within a spatial area (Mazzucato, 2013).

More recent literature focussing on innovation systems have shifted attention towards the role of

universities. Seminal work on innovation systems, although not neglecting the role of universities, under-

emphasise the importance of universities within a regional or national network. Etzkowitz and Leydesdorff

(2000) develop the concept of the “Triple Helix Model” of university-industry-government, departing from

“Mode 2” which distinctly focused on the government-industry relationship (where innovation activity

and facilitation was primarily the responsibility of government and firms). These papers highlight that

universities play a central entrepreneurial role as a “quasi firm” (Etzkowitz, 2003), serving a far greater

purpose than merely education hubs. Research institutions and universities are identified as effective tools

for knowledge and technological transfer, and diffusion. Sampat and Mowery (2004, pg. 210) outline how

now “governments seek to use universities as instruments for knowledge-based economic development

and change.” Van Looy (2009) highlights the continuing shifting role of universities towards one more

entrepreneurial. Universities are seen to be capable of a dynamic role, given their ability to conduct

both basic and applied research. Moreover, university agendas permit long-term research goals rather

than immediate deadlines commanded by private enterprise, and research is publicly disseminated rather

than made secret. This is bolstered by potential university-industry collaboration, as well as university

research projects leading to commercialisation or spin-off firms. Given the recent focus in the literature

focus, we take a particular interest in the role that universities play in inducing innovation in Australian

regions.

12



2.4 Related empirical literature

Investigation of innovation in an empirical context has been largely framed by the ‘Griliches-Jaffe’ knowl-

edge production function. First developed by Griliches (1979), and subsequently built upon by Jaffe

(1989), the knowledge production function looks at knowledge or innovation as a function of knowledge-

inputs, often applied with a Cobb-Douglas functional form. The bulk of literature use this framework

to estimate the determinants of innovation. Griliches’ (1979) major contribution was highlighting how

industrial research and development (R&D), along with human capital inputs are drivers of technological

change at the firm level. Looking at states and industries rather than firms, Jaffe (1989) finds evidence

that knowledge spills over via university funding, controlling for geographic coincidence. Importantly,

Jaffe also highlights the key role of university R&D impacting on innovation. Feldman and Florida

(1994) also find a strong relationship between industrial R&D, university research, industry presence,

and business services at the state level in the United States. More recent papers apply the knowledge

production function to a regional system context, with Fritsch (2002) estimating the effects of inputs

on patents in European regions utilising a Negbin estimation. This paper confirms the importance of

regional R&D. A similar result is in Fritsch and Franke (2004) where R&D expenditure is found to have

a positive and significant relationship with innovation. The major differences among papers are largely

in the geographical location they measure, level of geographic aggregation (countries, states, counties),

and the combination of inputs used to capture knowledge output. These papers primarily focus on the

direct and local determinants of innovation rather than accounting for neighbours as we do. Moreover,

the models estimated are generally cross-sectional in nature.

In attempting to quantify spillover effects from innovation and innovative inputs, Anselin et al. (1997)

examine metropolitan statistical areas (MSA) and states in the US. This is one of the earliest papers

incorporating geographical aspects in a meaningful way under the knowledge production function model.

The model includes spatial lag variables by incorporating geographical coincidence indices, capturing the

effect of industrial R&D and university funding to regions at different distance bands. The authors find

that there is strong evidence of spatial externalities at the state level, along with evidence that university

research spills over a 50 mile radius from MSAs (the regional level). Anselin et al. (1997) captures the

type of analysis we seek to conduct in this paper, however, we incorporate modern spatial econometric

techniques to quantify spillovers.

Recently, the use of geocoded data and geographic information systems (GIS) has gained traction in

studying economic relationships (Anselin 2003). This has lead to the popularity of spatial economet-

ric methods. These models focus attention on ‘specifying, estimating, and testing’ spatial interactions,

and essentially control the extent spatial relationships impact on particular economic outcomes (Anselin

2001). Importantly these techniques provide a way to determine whether neighbours effect innovation

levels, as well as a precise method to determine and measure spatial spillovers. Ó hUallacháin and Leslie

(2007) explore spatial relationships using ESDA techniques to identify spatial dependence, however, do

not go further in utilising spatial regression models. They find evidence consistent with earlier papers

that industrial R&D has a positive and significant effect on innovation, however, fail to find such a posi-

tive relationship with university R&D. Although not using spatial techniques, Ó hUallacháin and Leslie’s
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(2007) is particularly interesting in their ‘rethinking’ of the knowledge production function, focusing on

regional structures as opposed to solely expenditure measures. They employ variables such as industry

employment concentration and urbanisation levels to capture regional composition. The most relevant

and recent paper synonymous to the type of analysis we conduct is Wang et al. (2015). The authors

investigate the space-time dynamics of innovation at the provincial level in China, utilising spatial tech-

niques through ESDA and CSDA. Using the knowledge production framework they utilise a spatial panel

model (Spatial Durbin Model; the model we utilise in our analysis) to study the determinants of inno-

vation accounting for spatial relationships. Their analysis finds spatial dependence to exist significantly

in coastal regions, and more importantly that R&D expenditure, personnel employed in R&D roles, and

GDP per capita to have significant and positive relationships on innovation (proxied by patents). More

interestingly, calculating direct and indirect effects they are able to conclude that spatial spillovers exist

in the form of R&D expenditure having a significant effect on neighbouring regions. Moreno et al. (2005)

conduct a similar analysis utilising data from European regions. They too identify spatial dependence

through ESDA, and in their regression analysis find a postive relationship between internal R&D, eco-

nomic performance indicators, and national institutions, consistent with results in previous literature.

Moreover, they determine the presence of spatial spillovers among European countries. Critically, of the

empirical literature, studies into Australian regional innovation are absent.
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3 Exploratory Spatial Data Analysis
Spatial Diagnostics

A key hypothesis of this paper is that Australian regions8 exhibit spatial dependence, where neighbouring

regions effect local innovation levels. For clarification, we use the term ‘local’ in the sense of comparing

two entities: focusing on region ‘A’ (who has neighbours ‘B’ and ‘C’) – the (neighbour(ing)) effect ‘B’ and

‘C’ has on ‘A’ is referred to as the effect neighbours have ‘locally’. In order to determine whether such

‘spatial autocorrelation’ exists, exploratory spatial data analysis (ESDA)9 is utilised to quantitatively

analyse this phenomenon through ‘geographic information systems’ (GIS). Anselin (1994) defines ESDA

as:

“the collection of techniques to describe and visualise spatial distributions, identify atypical

locations (spatial outliers), discover patterns of spatial association (spatial clusters), and sug-

gest different spatial regimes and other forms of spatial instability or spatial non-stationarity.”

Through ESDA we aim to be able to create the link between space and knowledge/innovation, expecting

to see some level of spatial association between regions.

3.1 Spatial Weights Matrix

The first step in spatial analysis is the development of a spatial weights matrix. The spatial weights ma-

trix, W , is an n×n non-negative non-stochastic matrix that describes how units of a sample are spatially

configured or arranged (Elhorst 2014, pg. 10). In our context, the matrix specifies the relationship and

connection between Australian regions over space, where we will have a 326× 326 matrix capturing the

relationship between SA3 regions. A variety of spatial relationships are commonly used: contiguity (a

relationship is defined if regions share a border)10, inverse distance (where a relationship is specified over

distance ‘with’ or ‘without’ cut-off), or kth order nearest neighbour (where the number of neighbours for

each observation is specified). Generally speaking these matrices are assumed to be symmetric (Elhorst

2014, pg. 10). Formally, the sum of all individual elements or relationships (between i and j) forms the

matrix W̃ :
n∑
j

w̃ij = W̃ (1)

Here w̃ij represents the relationship between the ith and jth observation, or in our case region. Suppose

we have a 5× 5 matrix, defined on a contiguity relationship where units (regions) are spatially related if

their borders touch, denoted by:

w̃ij =

1, if contiguous

0, otherwise

8Details as to how innovation is measured and the nature of the Australian region unit of observation is discussed in depth

below in the data description Section 6.1 and 6.2.
9Analysis is conducted with ArcGIS and GeoDa, popular GIS programs.
10For example, as South Australia and Western Australia share a border, a contiguity relationship would be defined between

them.
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Accordingly,

W̃ =



0 1 1 0 0

1 0 1 1 1

1 1 0 0 0

0 1 0 0 1

0 1 0 1 0


→W =



0 0.5 0.5 0 0

0.25 0 0.25 0.25 0.25

0.5 0.5 0 0 0

0 0.5 0 0 0.5

0 0.5 0 0.5 0


(2)

Here each row corresponds with a region; so the first row represents the relationship region ‘one’ has with

the other regions, while the second row represents the relationship region ‘two’ has with other regions,

and so on. From (2) we can extract that region ‘one’ is neighbours with ‘two’ and ‘three’, while region

‘two’ is neighbours with every other region, or that region ‘four’ is neighbours only with ‘two’ and ‘five’.

Through this matrix a simple contiguous relationship is representable. It is worth noting that all diagonal

elements are zero, preventing an observation from being defined as a neighbour of itself (LeSage 2008, pg

19). As is standard practice, matrix W̃ is row-normalised such that row elements sum to one by dividing

each row-element by the number of neighbours of that observation (LeSage 2008, pg. 22), giving us our

spatial weights matrix (W̃ →W ). Explicitly:

wij =
w̃ij∑
j w̃ij

=⇒ W =

n∑
j

wij (3)

This is done to ensure all weights are equal to or between 0 and 1, effectively allowing for the matrix to

act as a weighted average operation, averaging the elements of a given region’s neighbours (Elhorst 2014,

pg. 12).

Selecting the type of spatial relationship for the available data is not a “mechanical” process, it is

largely dependent on the context, namely by looking at the structure and nature of the data and observable

unit (Viton 2010, pg. 5). Such selection is also incumbent on ensuring each observation has a neighbour

relationship with another observation, but more importantly satisfies at least one of two conditions: (i)

that the sum of rows and columns of W , (In − ρW )−1, and (In − λW )−1 “before W is row-normalised

should be uniformly bounded in absolute value as n goes to infinity” (Kelejian and Prucha; 1998, 1999

[Elhorst 2014, pg. 11]), or (ii) the sum of rows and columns of W prior to row-normalisation should not

diverge to infinity at a rate equal to or faster than the rate of the observable unit sample size n (Lee,

2004).1112 In deciding the appropriateness of a spatial relationship, the unique composition of the SA3

division and that of Australia poses a challenge. As seen in Figure 6 of Appendix E, rural regions are

quite large (in terms of area), while city regions are far smaller but have higher population densities.

Using an inverse distance relationship becomes infeasible as the required threshold distance to ensure

all regions have a neighbour is in excess of 700km. To put this into perspective, the distance between

Adelaide and Melbourne is 726.5km, which is a spatial relationship we do not want to capture. Moreover,

given we have no theoretical basis in defining how many neighbours a region should have, kth nearest

neighbour principle is unsuitable. As such a contiguity relationship is most appropriate to define regional

relationships.

11This ρ and λ are spatial autoregressive and autocorrelation coefficients respectively. These are defined in greater detail

in Section 5.
12Assumption (i) relates more to stationarity conditions of spatial coefficients in spatial regressions.
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The spatial relationship utilised for this analysis is characterised as a ‘contiguity of p-order 1’. This is

to say a relationship is defined if regions share the same border, where only direct neighbouring relation-

ships are captured (not neighbours of neighbours). Overall, the specified relationships are reasonable,

where for the most part regions are neighboured quite tightly, particularly in major towns and cities.

First order contiguity spatial weights matrices also satisfy both condition (i) and (ii) (Elhorst 2014, pg.

11) such that we do not need to be concerned. The following Figure 1 displays a connectivity histogram

outlining the frequency of number of neighbours, with summary statistics listed below it in Table 1. We

do not observe any concerning jumps in the data or issues where region have no neighbours.

Figure 1: Neighbour Connectivity Histogram

Table 1: Spatial Weights Matrix Summary Statistics

Min Max Median Mean Std. Deviation n

1 12 5 4.810 1.958 326

3.2 Spatial Autocorrelation

Having defined a spatial weights matrix, we study whether our regions and data exhibit spatial de-

pendence/autocorrelation. As touched upon above, spatial autocorrelation follows the idea regions who

neighbour each other depend on and impact each other.13 In the innovation context, this would mean

innovation levels in neighbouring regions have effects on each other. Spatial autocorrelation is formally

13This diverges from the traditional temporal autocorrelation where the error terms are correlated between years.
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defined by Anselin (2003, pg. 312):

cov(yi, yj) = E(yiyj)− E(yi)− E(yi) · E(yj) 6= 0, for i 6= j (4)

Simply, spatial autocorrelation arises where innovation between region i and j are correlated, and co-move.

Given the spatial structure of the spatial weights matrix, this spatial covariance becomes meaningful in

modelling the idea of innovation spilling over to other regions (Anselin 2003, pg. 312).

The standard specification test for spatial autocorrelation is the Moran’s I test statistic developed

by Moran (1948). In contrast to non-spatial econometrics, the Moran’s I is comparable to the Durbin-

Watson test for serial correlation, which Anselin (2003) notes has a distinct similarity to Moran (1948).

Moran’s I is relied upon to determine spatial dependence, out performing alternative tests (Anselin and

Florax, 1995). The test statistic is defined as:

I =
n∑

i

∑
j wij

∑
i

∑
j wij(xi − x̄)(xj − x̄)

(xi − x̄)2
(5)

where
∑
i

∑
j wij = S0 is a “standardisation factor that corresponds to the sum of the weights for the

nonzero cross-products” (Anselin 2003, pg. 323), or simply the aggregate of spatial weights. Here, n is

the number of observable units (regions), wij being the spatial weight between the ith and jth element, xi

and xj the observation for the variable of interest for i and j (in our case innovation level in the various

regions), and x̄ the mean of x (mean innovation of the sample). We know that (xi − x̄) and (xj − x̄)

denote deviations from the mean. Equation (5) can be re-written in matrix notation:

I =
n

S0
· e
′We

e′e
(6)

The null hypothesis (H0) of the Moran’s I is of ‘no spatial autocorrelation’, with expected value:

E(I) =
−1

n− 1
=

−1

326− 1
= −0.0031 (7)

Values of the test statistic fall between−1 and 1, with 0 test statistics suggesting no spatial autocorrelation

(random pattern) meaning no systematic relationship between neighbouring regions, with values > 0

suggesting positive spatial autocorrelation, and values < 0 suggesting negative spatial autocorrelation.

One of the primary issues faced in conducting the Moran’s I is the lack of methodology in dealing

with panel data. There appears no apparent and widespread method of dealing with both cross section,

and temporal elements. Discussion on specification and tests for spatial dependence is noticeably absent

in notable spatial panel guides (See: LeSage and Pace 2009; Elhorst 2014). As such a similar approach

to Wang et al. (2015) is used, whereby the Moran’s I is taken for each observable year (2009-2015). In

addition we include statistics by taking the ‘within’ average of each region over the seven year period

in which data was collected. The test statistic is calculated using GIS program GeoDa, with p-values

obtained running Monte Carlo simulations. The results are presented in Table 2. We find conclusive

evidence of spatial autocorrelation in each year at the 1% level of significance, with regional within mean

also highly significant. The Moran’s I in conjunction with the low p-values suggest there is significant

and positive spatial dependence, implying that neighbouring regions’ innovation levels have a positive

relationship locally. This is to say on average, regions characterised with high levels of innovation are also
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Table 2: Tests for Spatial Dependence (Autocorrelation): (log) Innovation

2009 2010 2011 2012 2013 2014 2015 Within Avg.

Moran’s I 0.6025 0.5608 0.5917 0.5814 0.5885 0.5856 0.5913 0.6181

p-value 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

Permutations 999 999 999 999 999 999 999 999
∗∗∗ 1%, ∗∗ 5%, ∗ 10%. Note that p-values reported are pseudo p-values.

neighboured by high regions, while low innovative regions are neighboured by similarly low innovation

regions.

A graphic representation of the relationship between innovation and innovation in neighbouring regions

(spatially weighted) are presented in a Moran’s scatter plot. This scatter plot provides a visualisation of

the relationship of the level of innovation in a given region in contrast to the weighted average innovation

of its neighbours (lagged innovation). This relationship is specified with the x-axis being innovation, and

y-axis lagged14 innovation. Figure 2 displays the scatter plot using the within averages of each region’s

innovation levels logged.15 The scatter plot is augmented to generate a linear regression (represented by

the line) denoting the Moran’s I slope as well as indicating degree of fit (Anselin, 2003). We note that the

plot is divided into four quadrants (LeSage and Pace, 2009), with each specifying a specific relationship

as noted in Table 3. There is quite a strong positive linear relationship, as observed by the positive trend

Table 3: Quadrant Relationships in Moran’s I Scatter Plot

Quadrant I:
Denotes a high-high relationship where regions exhibit above mean level

innovation, and the average of neighbouring regions is also above the mean level.

Quadrant II:
Denotes low-high relationships where regions have below average innovation,

while its neighbours are above average.

Quadrant III:
Denotes low-low relationships where both regions and its neighbours are below

average in innovative output.

Quadrant IV:
Denotes a high-low relationship, where regions are above average in innovation,

while neighbours are below average.

line. Prima facie, we notice that most observations cluster within high-high and low-low areas, with

very little spilling over to either high-low or low-high. This supports the narrative of positive spatial

dependence. The scatter suggests that regions with low innovative activity tend to be neighboured by

other low innovative regions, while regions characterised with high levels of innovation were neighboured

also by highly innovative regions. Anselin’s (1995) local indicators of spatial autocorrelation (LISA)

map displays this relationship more profoundly. The LISA cluster and significance map decomposes the

14Not lag in the traditional sense. Spatially lagged refers to weighted average of a region’s neighbours.
15Given the similarity in I-statistic and significance, mean is only presented. See Figure 7 in Appendix F for Moran scatter

plots for each year.
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Figure 2: Moran’s I Scatter: Mean (log) Innovation (2009-2015)

Moran’s I test (Anselin, 1995), allowing for a visualisation of regions with significant spatial dependent

clustering, as well as displaying the nature of such clustering. A LISA map displaying all of Australia is

presented in Figure 3, with Appendix H displaying the level of significance of each region. We observe

a distinct pattern where major cities are typified by significant high-high relationships, while remote

regions share a low-low relationship (significance at p < 0.05).

Figure 4 zooms in to the Eastern states (VIC, NSW, and ACT), to get a better view of the types

of relationships. Quite clearly we see high innovative region clustering in the capital cities of Melbourne

and Sydney16 in stark contrast to the low-low relationships in the outer rural areas. Interestingly we

have a number of high-low relationships in the outer Canberra regions, as well as low-high relationships

on what appears to be the outskirts of Melbourne inner city.

Intuitively what is observed is somewhat expected, supporting the notion that over space, regions

tend to cluster around similar innovative regions. This relationship is one that can be explained by rural

and urban (major city and remote) differences. Nevertheless, such ESDA is the first step in the story,

confirming the idea that regions are spatially dependent.17 As apparent as the result might appear, this

justifies and warrants the use of spatial models to control for spatial autocorrelation.

16Appendix I shows a zoomed in image of the Melbourne and Metropolitan regions.
17Moran’s I statistics are also reported for non-log specification on innovation in Appendix I and K. We see persistent

significant and positive spatial autocorrelation when innovation is not log-transformed.
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Figure 3: Local Indicators of Spatial Autocorrelation Map (Australia)

Figure 4: Local Indicators of Spatial Autocorrelation Map (Eastern States)
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4 Theoretical Model of Knowledge Production

The “most prevalent model” which serves as a traditional starting point in innovation literature is the

‘Griliches-Jaffe knowledge production function’ (KPF). The KPF motivates how we think about innova-

tion and modelling it’s determinants. The general principle of the KPF is that “the output of innovation

is a function of the innovative inputs in that location” (Audretsch and Feldman 2003). Griliches (1979) is

widely cited as the principal author in modelling how knowledge is generated by simply treating knowl-

edge as an outcome, or rather ‘output’, of ‘innovative inputs’. At its most basic, Griliches knowledge

production boils down to:

Ki = f(RDi, HKi, εi)

Ki = αRDβ
i ·HK

γ
i · εi

(8)

Knowledge output is represented by K, with inputs RD and HK being research and development and

human capital respectively; the determinants of innovation. Here, ε represents unmeasured innovation

determinants not captured in the model (Griliches 1979). Importantly, subscript i denotes firm, the unit

of observation/anlysis for Griliches.

Griliches work was expanded upon by Jaffe (1989) who tailored the knowledge production function to

the context of also capturing spatial and knowledge spillovers. Jaffe refined the production function as:

Isi = αiIRD
β1

si · UR
β2

si · (URsi ·GC
β3

si ) · εsi (9)

As in Griliches (1979), I represents innovative or knowledge outputs, with IRD (private R&D expendi-

ture) and UR (university R&D spending), being the primary inputs. Additionally Jaffe introduces GC,

a ‘geographic coincidence’ variable, measuring spatial interaction of universities and private business

driven research. Here, subscript s denotes US states, and i denotes de-aggregated industry. Notably, a

Cobb-Douglas functional form is specified throughout the literature. The benefit of the Cobb-Douglas

specification is in the interpretation. Through a log-log transformation, coefficient parameters of the pro-

duction function are able to be interpreted as ‘elasticities’.18 Moreover, the KPF provides the freedom

to allow for a variety of units of observation, from individual firms and states as in Griliches (1979) and

Jaffe (1989), to as small as counties or postcodes. Subsequent instances utilising the knowledge produc-

tion function framework differ primarily in the combinations of inputs, level of regional aggregation and

observable unit, focus on industry, and perhaps most usefully, the varieties of measures for innovation

and its determinants (See Feldman and Florida (1994), Audretsch and Feldman (1996), Anselin et al

(1997)). The suitability and robustness of the knowledge production function as a model for measuring

innovation at a geographical level was confirmed by Feldman (1994).

Ó hUallacháin and Leslie (2007) develop a modified “regional production function” which helps us

frame our understanding, visually represented in Figure 5. Here, R&D spending and regional structures

(along with unobserved factors) lead to the accumulation of knowledge which is quantified by patents as

an indicator of innovation. This framework serves as the backbone of our analysis, particularly in finding

measures that capture funding and structural elements. Previous literature provides guidance by lending

18Griliches (1979) production function becomes: lnKi = α+ β lnRDi + γ lnHKi + εi.
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suggestions for useful output and input measures, however, our final model is limited to the availability

of data.

Figure 5: Modified regional production function
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5 Model Specification and Estimation
Confirmatory Spatial Data Analysis

Confirmatory spatial data analysis (CSDA) is the natural next step having been provided a greater con-

textual understanding through ESDA. Simply, CSDA is the process of modelling innovation determinants

and outcomes through spatial regression analysis19, and is confirmatory in the sense of confirming the ex-

tent to which spatial autocorrelation and spatial spillovers effect innovation (Wang et al. 2015, pg. 116).

Accordingly, we model and estimate the determinants of innovation in a Australian regions, controlling

for spatial dependence/autocorrelation. The general specification of our model is a spatial panel fixed

effects model. The general nesting of spatial panel models is as follows:

yit = τyit−1 + ρ

n∑
j=1

wijyjt + xitβ +

n∑
j=1

wijxjtθ + µi + γt + uit

uit = λ

n∑
j=1

mijuit + εit, i=1,...,n i 6= j t=1,...,T

(10)

From this general nesting in (10), a variety of potential calibrations are able to be made determining

which spatial interactions are included. We identify four spatial models: the spatial Durbin model (SDM),

spatial autoregressive (lag) model (SAR), spatial error model (SEM), and the SAC (or Kelejian-Prucha

(1998) model). Table 4 provides a brief specification of each model, with Appendix L detailing SAR,

SEM and SAC models in greater depth. The model that we are most interested in is the spatial Durbin

Table 4: Spatial Panel Specifications

Model Nesting Specification

SDM λ = 0 yit = ρ
∑n
j=1 wijyjt +

∑K
k=1 xitkβk +

∑K
k=1

∑n
j=1 wijxjtkθk + µi + γt + εit

SAR λ, θ = 0 yit = ρ
∑n
j=1 wijyjt +

∑K
k=1 xitkβk + µi + γt + εit

SEM ρ, θ = 0 yit =
∑K
k=1 xitkβk + µi + γt + λ

∑n
j=1 wijuit + εit

SAC θ = 0 yit = ρ
∑n
j=1 wijyjt +

∑K
k=1 xitkβk + µi + γt + λ

∑n
j=1 wijuit + εit

We utilise a static specification such that τ = 0

model, which we specify more explicitly as:

ln innovit = ρ

n∑
j=1

wij ln innovjt + β1 lnBRDit + β2Unisit + β3Ufundingit + β4 ln lforceit+

β5 ln popdensityit + β6 ln busservit + β7 ln techservit + θ1

n∑
j=1

wij lnBRDit + θ2

n∑
j=1

wijUnisit

+ θ3

n∑
j=1

wijUfundingit + θ4

n∑
j=1

wij ln lforceit + θ5

n∑
j=1

wij ln popdensityit + θ6

n∑
j=1

wij ln busservit+

θ7

n∑
j=1

wij ln techservit + µi + γt + εit (11)

We note from the general nesting that λ = 0, such that we specify two spatial interactions: the spatial

effects of neighbouring regions’ innovation outcomes (spatially lagged dependent variable, similar to the

19Models are estimated using STATA package -xsmle- by Belotti, Hughes, and Piano Mortari (2013).

24



SAR model), as well as the spatial effects of neighbouring regions’ inputs/determinants (spatially lagged

independent variable). Unlike the SEM the SDM does not spatially interact with the error structure

through the composite error term. Our specification is largely inspired by the knowledge production

function, as highlighted in Section 4. Much like the general KPF, we use an input-output type model,

where our output, is a function of the inputs. This general KPF specification is altered to incorporate

spatial elements. Here, the dependent variable we are interested in is innovation, denoted by ‘innovit’,

with subscripts i and t denoting the unit of observation (Australian regions), and time period/year. This

is measured by a proxy comprising of patent, plant breeders rights, and design applications (forms of

intellectual property). Our explanatory variables constitute the innovative inputs within a region. The

variables selected are largely dictated by previous knowledge production function literature and the avail-

ability of data.20 ‘BRDit’ captures the average business R&D expenditure in each region, a key driver of

innovation from the previous literature. ‘Unisit’ captures the number of university campuses in a given

region with ‘Ufundingit’ the amount of research funding available to universities within the region (in

millions), used as a proxy for university R&D expenditure. These two variables capture two elements: the

structural/infrastructure element of regional knowledge production, as well as the expenditure/funding

element. Variables ‘busservit’ and ‘techservit’ capture local regional infrastructure in terms of support

services for innovation; namely access to business services (these might include financial or administra-

tive support services), and access to technical services (these might include training or scientific services)

respectively. We also utilise ‘popdensityit’, population density, to control for level of urbanisation, and

‘lforceit’, labour force, to control for sheer population size and human capital availability. The obvious

deviation from traditional models is the prevalence of spatial interaction terms which capture neighbour

effects. Recalling from our ESDA, the spatial weights matrix
∑n
j=1 wij

21, allows for spatial relationships

to be captured. As such
∑n
j=1 wijinnovjt captures the weighted average innovation of neighbouring re-

gions, with coefficient ρ capturing the effect neighbouring innovation has locally. Similarly,
∑n
j=1 wijxjt

(where xjt is the same vector of explanatory variables listed above but of a region’s neighbours) captures

the weighted average of neighbouring inputs, with θ capturing the effect neighbouring innovative-input

levels impact on local innovation. We choose to spatially lag all independent variables as there is no

reason to suggest that the lagged inputs of neighbouring regions would not have an effect on local lev-

els. For instance we might expect that the level of university research funding in a neighbouring region

might have a positive effect on local innovation through a spillover mechanism. Where appropriate a

log-transformation is specified in order for coefficients to be interpreted as elasticities. However, for in-

stance the number of university campuses remains as a level as interpretation by elasticities is not useful

given the nature of the variable (it is not suitable to interpret ‘percentage changes’ in university campuses).

The specification in equation (11) serves as the basis for our analysis. We compare three models: (i)

20Greater discussion of variable selection, particularly with respect to previous literature is in the next section, data

description.
21Recall

∑n
j=1 wij = W is a 326× 326 non-negative matrix which is row standardised, capturing the spatial relationship of

regions via queen contiguity of order 1. Spatial weights matrix W while produced in GeoDa was imported into STATA

using package -spwmatrix- by Jeanty (2014).
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a general SDM excluding busserv and techserv (β6 = θ6 = β7 = θ7 = 0), (ii) SDM including business

and technical services variables, and (iii) SDM with primary industry dummies. To test whether certain

industries tend to facilitate higher levels of regional innovation, we include ‘primary industry dummies’

in the model. The primary industry is defined as the industry which has the highest count of businesses

within a region. A list of primary industries is listed in Appendix B. Specifying these different models

serves as a form of robustness check.

5.1 Model Selection

5.1.1 Selection Between Spatial Models

Generally speaking selection of an appropriate model is made on a priori intuition or theory as to the

nature of spatial interactions. As mentioned, we infer the SDM is most appropriate as it captures both

neighbouring innovation effects, and neighbouring determinant effects, allowing to capture spillover effects

(LeSage and Pace 2009). Selecting the correct model is important in ensuring that bias or inconsistency

is avoided due to misspecification. Elhorst (2010) specifies a set of formal tests to determine the correct

model, taking advantage of the nested nature of spatial models. These tests specify the SDM as the

full/unrestricted model, which is compared with restricted models, SAR and SEM, to see if it can be

potentially simplified. By testing H0: θ = 0, if the null fails to be rejected the SDM can be simplified

to a SAR model. Similarly by testing H0: θ + ρβ = 0, if the null fails to be rejected the full SDM can

be simplified to a SEM. These hypotheses are tested using a Wald test, with results reported along with

regression results. Elhorst (2010) suggests caution in relying solely in these tests as such specification

tests have yet to receive extensive attention in the literature. As such, irrespective of the results of the

test results all the above spatial panel model specifications are presented for comparison. Additionally,

a non-spatial static panel fixed effects model is also estimated and presented for a baseline comparison.

These panel models follow a similar specification as our spatial models,

yit = α+ xitβ + µi + γt + εit (12)

where α is the constant (intercept), xit is the same vector of local explanatory variables, µi is time

invariant fixed effects, γt are time dummies capturing year specific effects, and εit is the error term.

5.1.2 Model Comparison and Quality

In confirming the validity of the SDM as the appropriate model through relevant testing as seen above, we

test the performance of models (i), (ii), and (iii) using the Akaike Information Criterion (AIC) (Akaike,

1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978). AIC (with BIC following a similar

process) measures the information loss from a specific model specification. Importantly, AIC and BIC

provides a ‘relative’ comparison as to which model fits the data best, however, does not provide an overall

measure of fit like the R2. The model which yields the lowest AIC/BIC is preferred.
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5.2 Fixed Effects Specification

From our specification equation (11), we include µi and γt to capture unobserved heterogeneity and

specific year effects. The general rationale here follows the usual justification of traditional fixed effect

specifications, where we assume or expect that there is an inherent time-invariant effect within observa-

tions, as well as period effects. It is reasonable to assume that there might be inherent characteristics

within regions that might be correlated with the error term. Examples might encompass state or remote-

ness effects of regions, an inherent innovative or entrepreneurial culture, and generally any underlying

feature or composition of a region that might make it more innovative. Moreover, we can control for any

period shocks by including time/year dummies.22 By controlling for such effects, along with controlling

for spatial dependencies, we are able to assess the impact of our innovation-determining inputs effectively.

We conduct a Hausman test to determine the appropriateness of the fixed effect specification. The results

for the Hausman test are listed in each of the estimated model’s output table.

5.3 Issues: Bias Correction

An issue identified by Lee and Yu (2010) is the need for bias correction in estimating spatial fixed effects

models. Lee and Yu (2010) outline the standard estimation approach in controlling fixed effects fails

to estimate parameters consistently. They identify that in models with both individual and time fixed

effects that estimates are not properly centred, requiring bias correction. Accordingly, the pair suggest a

model transformation using the ‘deviation from the time mean operator’. The resulting procedure reduces

the number of observation to n(T − 1), reducing our number of total observations to 1956 rather than

2282 (nT ) (Elhorst 2014, pg. 48). We utilise this “LeeYu transformation approach” to obtain consistent

estimates.

5.4 Robustness Checks

We conduct robustness checks to ensure the correct specification of standard errors. Given the nature

of our data we expect to observe a level of heteroskedasticity. We would presume that the variance

between observations for innovation is not constant, where high-innovative regions will have a higher

variance than regions characterised by lower levels of innovation. Similarly as our analysis looks at

regions overtime, we expect the potential presence of autocorrelation, as well as the potential effect of

within clustering/correlation. Testing for serial autocorrelation23 we reject the null hypothesis at the 1%

level of no autocorrelation, suggesting panel-level serial correlation exists. Testing for heteroskedasticity,

however, becomes somewhat difficult given the spatial transformation we conduct, where we are unable

to predict the residuals. As such we rely on our inference of the nature of non-constant variance and

the results of testing heteroskedasticity in our non-spatial fixed effects model. We test for groupwise

heteroskedasticity24 for an ordinary panel fixed effects model, with the modified Wald test statistic

22Control for time effects is in-built into the STATA package used such that no time dummies are reported in the output.
23Using STATA command −xtserial−.
24Using STATA command −xttest3−.
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reported in Table 16 of Appendix N. Here we reject the null hypothesis of constant variance, suggesting

heteroskedasticity needs to be corrected for.

Given the presence of serial correlation and inferred/expected heteroskedasticity, we correct using

clustered standard errors (clustering by region). Clustered standard errors are robust to heteroskedasticity

and autocorrelation (Hoechle et al. 2007, pg. 4). The use of clustered errors is ideal as it provides this

robustness, and supports the natural clustering of our data. As we are looking at observations of regions

over time, we expect that these same regions tend to be correlated having inherent similar qualities

(within correlation). Therefore we rely on clustered standard errors in our regression analysis.

5.5 Estimation Method

Including spatial terms in a model gives rise to issues of consistency of estimates. For models with a

spatial dependence coefficient ‘ρ’ (in SDM, SAR, and SAC) least squares estimates for local explanatory

variables are biased and inconsistent, while models with spatial correlation coefficients interacting with

the error ‘λ’ (in SEM and SAC) are consistent, however are inefficient (LeSage and Pace, 2009). As

such to avoid bias and inconsistency, maximum likelihood estimation (MLE) is implemented. LeSage and

Pace (2009) discuss how the MLE process works for spatial models, where the concentrated log-likelihood

function (concentrated with respect to β, σ2, and ε (Elhorst, 2014)) is maximised with respect to spatial

autoregressive coefficient ‘ρ’.

6 Data Description

The core data utilised for empirical analysis is sourced from the Department of Industry, Innovation

and Science’s (DIIS) “SA3 Region Innovation data 2009-2015” dataset. The data tracks innovation

data points across n=330 Australian regions from the period of 2009 to 2015 (T=7) for a total 2310

observation (N=2310). This dataset is quite unique in that it is collected at a micro-level with direct

variable measures, which in the past have been measured by proxies in KPFs. One issue posed is the

specificity of data, making it challenging to collect additional data. Supplementary data is collected

from IP Australia (design and plant breeders rights variables), along with research income data sourced

from the “2016-17 Science, Research and Innovation (SRI) Budget Tables” from the DIIS. IP data was

matched by converting SA2 codes to SA3 codes, with SRI budget data being matched through a process

of converting postcodes to SA3 codes. Descriptive/summary statistics can be found in Appendix A, B,

and C.

Observations for Barkly, Blue Mountain - South, Lord Howe Island, and Illawara Catchment, are

removed due to data not being collected in these regions. This reduces the number of observable units

to n=326, reducing total observations to N=2282.
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6.1 (Spatial) Unit of Observation

The unit of observation for analysis are the Australian Statistical Area 3 (SA3) regions as defined by

the ABS.25 SA3 captures the ‘major’ regions as identified by the ABS, with populations within regions

ranging from 30,000 and 130,000 (ABS, 2010). Appropriate selection of the observable unit has been

of particular emphasis in the literature. There is a general consensus in studying national and regional

innovation systems that ‘states’ are inappropriately large as units of observation (Feldman and Florida,

1994; Varga, 1998), with sub-state units the preferred size, particularly given studies relating to regional

innovation systems. Here the SA3 region provides a suitable unit for analysis. Appendix E displays the

division of Australia under the SA3 regional profile. Omitted regions are denoted by uncoloured (white)

areas.

6.2 Dependent Variable

6.2.1 Innovation (Patents, Designs, and Plant Breeders Rights): (Innov)

Measuring innovation in of itself becomes quite a delicate task given the broad reach of concepts it

encompasses. Generally there is no ‘hard and fast rule’ as to how innovation and in fact knowledge is

measured within a region, and unhelpfully nor is there a consensus as to the most effective proxy. In

the absence of a ‘direct’ measure, a variety of approaches have been conducted with patent applications

being commonly used. Patents are a form of intellectual property that gives the applicant sole rights of a

particular invention, but is published publicly to allow for wider social use (Oslo Manual 2005, article 60).

In many ways patents are a contentious proxy for innovation, as some patents never precipitate into a final

product, nor are all products first patented (Feldman and Florida 1994, pg. 213; Oslo Manual 2005, article

60). This arises as some patents might never come to fruition as they were never practical or unrealistic,

while conversely, some inventions might be retained as a trade secret to avoid replication by competitors.

Despite controversy, patents are widely employed in literature (More recently: Wang et al., 2015; Ó

hUallacháin and Leslie, 2007) as a quantifiable measure. Acs et al. (2002) investigate the suitability of

patents as a measure for innovation, which they find to be a “not perfect”, but a “fairly reliable measure

of innovative activity” (Acs et al. 2002, pg. 1080). As such, patent applications serve as the primary

source of innovation measure in our analysis. In addition to patents, this paper also utilises designs

and plant breeders rights as measures for innovation (other forms of IP rights). Designs encompass the

unique appearance of products (shape, configuration, pattern, ornamentation) (IP Australia, 2016). Plant

breeders rights (PBRs) provide commercial exclusivity to newly developed plant varieties (IP Australia,

2016). Together, we combine patents, designs, and PBRs to form a composite measure of innovation.26

25The ABS’s development of Australian Statistical Geography Standard provides a framework for geographical analy-

sis, providing a “coherent set of standard regions” capturing the entirety of Australia. For more information see:

http://www.abs.gov.au/ausstats/abs@.nsf/mf/1270.0.55.001.
26Given the log-transformation of our dependent variable, it is important to note the implications of zero values (given these

become missing values). Zero values represent 2.6% of observations. Retaining such a log-transformation is important

for not just interpretation, but normalising. Estimating with missing values is not possible given the requirement for

strongly balanced panels using −xsmle−. As these zero values are ‘true zeroes’, we allow/transform these variables to

true zeroes after log-transformation. With this we are able to retain relative rank. Feldman and Florida (1994) conduct
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It is important to make the distinction that data we utilise is for intellectual property applications in the

Australian jurisdiction. This is to say we do not capture applications to other international jurisdictions,

where designs and PBRs might overlap with Australia IP classifications. Regardless, we assume that

any Australian intellectual property that can be protected is done so in all jurisdictions as to ensure

widespread protection.

Figure 6 displays a map of the average (log) innovation of each region over the observable time period.

Data is divided in five distinct Jenks (natural breaks determined by the underlying data), and provides

us a useful guide as to innovation concentrations outside of ESDA.

Figure 6: Australian (logged) Innovation (Natural Breaks/Jenks) Map

6.3 Independent Variables

6.3.1 Business Research and Development Expenditure: (BRD)

Research and development conducted by private firms is widely considered one of the primary sources of

economic knowledge generation (Griliches, 1979; Feldman and Florida, 1994; Moreno et al., 2005). The

Frascati Manual (2015) defines research and experimental development as any expenditure devoted to

a transformation in their analysis.
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increasing the stock of knowledge, with any such activities contributing towards innovation. The relation-

ship between innovative outputs such as patents and R&D is commonly highlighted in the literature (See

Griliches (1979), Jaffe (1989), Feldman and Florida (1994), Anselin et al (1997), Wang et al (2016)). The

measure available through the DIIS dataset is ‘average business research and development expenditure’,

so a direct monetary measure. Ideally this data would be de-aggregated to specify amounts dedicated to

each process (research or development), or even what portion was allocated to university-driven research

to measure industry-university collaboration. We note that data for 2015 had yet to be collected at

the time of analysis, and as such was linearly extrapolated.27 Acknowledging the previous literature we

expect business R&D to have a positive relationship with innovation.28

6.3.2 Number of university campuses: (Unis)

The number of university campuses in the region is one factor relating to knowledge infrastructure referred

to by Ó hUallacháin and Leslie (2007) that we consider. Although not featuring heavily in previous

literature, university campus counts measure regional access to knowledge resources, and potential for

industry-university collaboration. As previously mentioned, Audretsch and Stephan (1996) highlight

empirical evidence that firms are attracted to external knowledge sources, with universities attracting

innovative firms. In many ways the ‘innovation effect’ of universities is twofold: they generate innovation

themselves, as well as attract other innovative entities. It can also be argued that universities are a source

of human capital development. In this sense, universities are quite a dynamic source of innovation, and

as such we expect the count of university campuses in a region to have a positive effect.

6.3.3 University Research Funding per Region in $millions: (Ufunding)

University R&D has been a key input in previous literature (See: Ó hUallacháin and Leslie, 2007; Anselin

et al 1997; Feldman and Florida, 1994), and was a key feature of the Jaffe (1989) knowledge production

function. Feldman and Flordia (1994) highlight how university R&D enhances the stock of knowledge

and stimulates technological change, however by no means always guarantees innovation and technology

spin-offs. Here we do not have data on the expenditure of R&D by universities, and as such use a proxy

in research income received. The specific income measure we use is ‘Research Block Grants’ (RBGs).29

RBGs are not the entirety of research funds received by universities, but are a key source of income

27Linear extrapolation is suitable given the linear trend and growth over the observed time period.
28A similar ‘true zero’ treatment for 2.7% of observations is used here, as done with the dependent variable.
29RBG data is aggregated by university institution, rather than by specific campus or by region. This poses an issue given

the amount of research conducted in each region is not necessarily the same. Assigning values proved to be difficult, with

potential solutions suggested being weighting by campus size, by enrolments, or by number of research staff employed

at each campus. However, these methods required data which was not readily available. The resulting data assigned to

each region is total RBG funding received by the universities in that region. This value might seem inflated, however,

we propose that universities are highly co-integrated such that campuses do not need to necessarily be assigned varying

amounts. Another way of framing the variable is by the amount of research funding readily available to universities within

a region. Ideally we would have liked to have data on funding expenditures of the campuses of each region, or be able to

deflate values in a non-arbitrary way. However, given the importance of university R&D, we retain the measure in our

analysis.

31



provided by the Australian government. It is reasonable to assume a close one-to-one relationship with

research income and expenditure, meaning that research income received in a given year is expected to be

expended for research purposes in the same year (given funds are allocated yearly). Unlike the ‘number

of universities’ variable, research captures an expenditure type measure as opposed to physical structure

within the region. We expect university R&D to have a positive relationship with regional innovation

levels.

6.3.4 Access to Business and Technical Services: (busserv and techserv)

Access to business services is a variable that features in Feldman and Florida (1994). Access to support

services is important in facilitating innovative activity; for instance access to financial services nearby

might be key to acquiring capital in the innovative process. Similarly, access to technical and scientific

services might play significant roles in developing new inventions (for instance 3D printing/fabrication

services for firm developing delicate components). The DIIS dataset features business counts for certain

industries which we use to create these variables. We construct the ‘business services’ variable by

summing the number of ‘administrative and support services’ and ‘financial and insurance services’.

Similarly, the technical services variable is constructed summing the number of ‘education and training

services’ with ‘professional, scientific and technical services’ within a region. These variables seek to

capture the types of regional infrastructure supporting innovation activity, pursuant to Cooke et al.

(1997) and Ó hUallacháin and Leslie (2007) who emphasise complementary regional structures. Appendix

C provides summary statistics of business counts throughout regions from 2009-2015.

6.3.5 Primary Industry Dummy

In determining whether certain industries tend to be more innovative then others we include the primary

industry within a region. The primary industry within a region is determined by the industry with the

highest count of businesses. A list of industries is listed in Appendix B with the number of regions in

which each industry is ‘primary’ for each year.

6.3.6 Control Variables

Population (Density): (popdensity)

Population density within each region is used to control for population size, a region’s physical size,

and level of urbanisation. Regions with higher population density are expected to be more innovative,

indicative of greater urbanisation. Similar to Ó hUallacháin and Leslie (2007) we look to control for

metropolitan variation. The density measure we use is estimated population per square kilometre.

Labour Force: (lforce)

Although we already have population density, we also want to control for whether the sheer size of a pop-

ulation has significant effect on innovation. Rather than using estimated population, we use labour force

to control for population size (given the strong correlation with estimated population, see correlations

in Appendix D), but also as a measure of access to human capital. Evidently, the labour force statistic

does not account for the type of labour (such as labour for innovative roles), however, provides a crude
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measure for the pool of human capital in a region that is at the disposal of innovative firms.

Random Effect Controls: (State, and Remoteness Dummies)

These variables are included to control for any time invariant effects that might effect innovation. We

note that in any fixed effects estimation, as a time-invariant variable this dummy will be dropped for

collinearity. As such state controls are reserved for random effects estimations. State/territory dummies

are included to control any state or statewide characteristics. Similarly, remoteness dummies control for

underlying differences between urban and remote areas. Remoteness is classified by the ABS in different

groups: major cities, inner regional, outer regional, remote, and very remote.

7 Results and Discussion

Table 5: Summary of Results from General Model (i) Estimation

Models

SDM SAR SEM SAC Non-spatial Panel

Main

(log) Business R&D ◦ ◦ ◦ ◦ ◦

University campuses (count) + + + + +
University funding (millions) + ◦ ◦ ◦ +
(log) Population density ◦ ◦ ◦ – ◦

(log) Labour force ◦ ◦ ◦ ◦ ◦

[Wx] (log) Business R&D ◦ na na na na
[Wx] Number of universities ◦ na na na na
[Wx] University funding (millions) ◦ na na na na
[Wx] (log) Population density – na na na na
[Wx] (log) Labour force ◦ na na na na

Spatial

ρ + + na + na
λ na na + – na

Variance

σ2 + + + + na

+ = positive and significant; – = negative and significant; ◦ = not significant; na = not applicable to model
Notes: Clustered Std. Errors – Lee and Yu (2010) transformation – Significance at 10% level

As a first pass, we present the estimation results of our general specification for all spatial panel

models in Table 5 above. Immediately we see a consistent pattern of results where the spatial coefficients

are significant in all spatial models. In models with a spatial autoregressive term ρ, the coefficient on

lagged innovation is both significant and positive. This significance justifies our use of spatial econometric

models and specifications, evidence that traditional non-spatial panel models are not suitable. Moreover,

we also observe that the number of university campuses within a region is consistently both significant and

positive, with business R&D, and labour force contrastingly consistently insignificant across all models.

There are, however, noticeable differences across all models.

Looking at Table 6, we see the Wald test statistics in testing for whether our spatial Durbin spec-

ification can be simplified to either a SAR or SEM for different SDM specifications. From these test
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statistics we fail to reject the null hypotheses that the SDM can be simplified to a SAR or SEM under all

specifications. Similarly, conducting the Hausman test we reject the null hypothesis that random effects

is efficient, justifying the use of our fixed effects specification as consistent. The results of our model

selection tests might explain the divergence in results between the different spatial models. The SDM is

the only model outside of static panel where university funding is significant. This might simply come

down to model misspecification, where omitting lagged independent variables leads to biased estimates.

Additionally, in the SAR and SAC models, population density is seen to be significant and negative. This

is quite interesting given the result that the SDM finds neighbours population density to be significant

and negative. These models tell quite substantially different tales.

7.1 SDM Comparisons

Recalling the three SDMs that we specify for comparison,30 Table 6 presents the results for each specifica-

tion. Immediately we notice that the autoregressive coefficient, ρ, is consistently significant and positive

across all model. This suggests that in all instances the innovation in neighbouring regions has a positive

effect on local innovation levels. This confirms the finding in ESDA that Australian regions exhibit spatial

dependence, but is not evidence of spatial spillovers. A positive and significant ρ provides evidence that

there is a tendency for high-innovative regions to be clustered with other high-innovative regions, and

low-innovative regions to similarly be clustered with other low-innovative regions. We recall the LISA

maps in Appendices F to H where we see this type of clustering. Additionally, we find the number of

university campuses within a region appears to have a positive and significant effect on local innovation.

A similar positive relationship is seen with university funding. When including access to business and

technical services in model (ii), we note that university funding no longer is significant. Looking at model

(iii) with primary industry dummies, we see that university funding still remains positive and signifi-

cant, however, lagged population density is no longer significant. Analysing the coefficients on industry

dummies, we find that on average that having agriculture as the primary industry has a negative impact

on innovation. Although agricultural innovation exists (captured by plant breeders rights), this type of

result is somewhat expected; regions focused on agriculture will tend to be in more rural or outer regional

areas where innovative activity is not as persistent. For reference we include a summary results for the

primary industry for the other models (Appendix ) Table 17 ), similarly observing persistent negative

relationships with agriculture, along with negative effects by construction industry in SAR, SEM, and

non-spatial models.

In evaluating and assessing each model specification, AIC and BIC values are listed at the bottom of

the Table 6 output. To reiterate the comments made earlier, these values measure relative goodness of fit

and are not an overall measure of how ‘accurate’ the model is. The result of these information criterion

tests find that model (i), the general specification without business and technical services variables or

primary industry dummies, has the lowest AIC and BIC score31 suggesting it is the most appropriate

30(i) General SDM (without services or industry variables); (ii) including access to business and technical services variables;

and (iii) including primary industry dummies
31Model (i) < (ii) < (iii).
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Table 6: Spatial Durbin Model (Fixed Effects) Results

Models

SDM (i) SDM (ii) SDM (iii)

Main

ln BRD
-0.010
(0.009)

-0.010
(0.009)

-0.009
(0.010)

unis
0.567***
(0.032)

0.577***
(0.037)

0.527***
(0.072)

Ufunding
0.003*
(0.002)

0.003
(0.002)

0.003*
(0.002)

ln popdensity
-0.569
0.414

-0.587
(0.420)

-0.584
(0.368)

ln lforce
0.189
(0.345)

0.184
(0.342)

0.277
(0.332)

ln busservices –
-0.004
(0.017)

–

ln techservices –
-0.005
(0.016)

–

[Wx]: Lagged Independents

[Wx] ln BRD
-0.022
(0.016)

-0.020
(0.017)

-0.010
(0.017)

[Wx] unis
-0.427
(0.624)

-0.430
(0.622)

-0.448
(0.622)

[Wx] Ufunding
-0.002
(0.002)

-0.002
(0.003)

-0.002
(0.002)

[Wx] ln popdensity
-1.010*
(0.584)

-1.040*
(0.596)

-0.798
(0.550)

[Wx] ln lforce
-0.330
(0.525)

-0.323
(0.523)

-0.339
(0.498)

[Wx] ln busservices –
0.003
(0.031)

–

[Wx] ln techservices –
0.023
(0.030)

–

Significant Primary Industry Dummies

Agriculture – –
-0.205**
(0.087)

Spatial

ρ
0.118***
(0.026)

0.117***
(0.027)

0.084***
(0.026)

Variance

σ2 0.179***
(0.012)

0.179***
(0.012)

0.175***
(0.011)

Test for SAR 19.80*** 18.85*** 13.22**
Test for SEM 22.55*** 21.21*** 13.95**
Hausman 122.04*** 148.00*** 151.49***
AIC 1.226 9.226 35.226
BIC 62.591 92.906 191.428

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10
(.) Clustered Std. Errors – Lee and Yu (2010) Transformed
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model.

7.2 Spatial Spillovers: Direct and Indirect Effects

Prior to this point we have failed to provide any formal interpretation of the estimated parameters. Due

to the “complicated dependence structure” (LeSage and Pace 2009, pg. 33) exploited by spatial models,

greater consideration must be given to interpreting parameter estimates. For instance, it is insufficient

to rely on the significance of spatial coefficients ρ and θ to make conclusions on whether spatial spillovers

exist (Elhorst 2010). LeSage and Pace (2009, pg. 33) highlight that changes “in a single observation

(region) associated with any given explanatory variable will affect the region itself (a direct impact) and

potentially affect all other regions indirectly (an indirect impact).” The authors suggest if any meaningful

interpretation is to be conducted, direct and indirect effects must be calculated (with indirect effects used

as a means for evaluating spillover effects). Direct effects are the effect of a change in the explanatory

variable in a given region affecting the region itself, with indirect effect being “the impact of changing a

particular element of an exogenous variable on the dependent variable of all other units” (Elhorst 2010,

pg. 24). Table 7 presents how direct and indirect effects are calculated for each specification. For the

Table 7: Direct and spillover effects of different model specifications (Source: Elhorst (2010))

Direct Effect Indirect Effect

OLS/SEM βk 0

SAR/SAC Diagonal elements of Off diagonal elements of

(I − ρW )−1βk (I − ρW )−1βk

SDM Diagonal elements of Off diagonal elements of

(I − ρW )−1(βk +Wθk) (I − ρW )−1(βk +Wθk)

SDM, it becomes apparent that we cannot merely interpret the local (βk) and lagged (θk) coefficients to

determine how explanatory variables impact on innovation. We see that the direct effects are not only

determined by coefficients on local explanatory variables, but rather lagged explanatory variables as well,

and vice versa. Even if βk and/or θk, are significant, this does not mean that the indirect effect of the

kth explanatory variable is also significant, or vice versa. The direct and indirect effects are presented in

Table 8.32

7.2.1 Direct Effects

Firstly, looking at direct effects we find that the number of university campuses and university funding

received are significant and positive at the 1% and 10% level respectively. More explicitly, these results

suggest that an increase in the number of universities within a region by one campus, will on average lead

to approximately a 0.6% increase in innovation. In more palatable terms, if the number of universities

32STATA package -xsmle- computes marginal effect standard errors to calculate effects using a Monte Carlo simulation

method.
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in a region were increased in a region by five, on average, the level of innovation would increase by

3%. Although the magnitude is quite small, importantly we see a positive relationship with the number

of universities within a region and innovation. This supports the idea that knowledge infrastructure

facilitates greater levels of innovation. Whether this relationship is born from universities themselves

being innovative and patenting more, or these institutions attracting innovative firms as suggested by

Audretsch and Stephan (1996), is beyond the scope of our analysis. The low magnitude for these variables

might be explained by how multiple campuses within a region from the same university has a redundant

effect. For instance if there already existed a campus for University X in a region, and another campus

were built, it would be difficult to imagine the additional campus having a significant effect on increasing

innovation. This also comes down to the nature of the campus. If the additional campus were a research

campus devoted to science, technology, engineering, and mathematics (STEM), this might lead to a more

meaningful increase in innovation.

Interpreting the positive significance of university funding (aware of the log-level specification), our

result suggests that a one million dollar increase in research funding allocated to a region leads to a 0.3%

increase in innovation on average. In more manageable terms, an increase in funding by $10 million will

on average lead to a 3% increase in innovation. Similar to the university campus variable, the important

result here is not the interpretation of the coefficient, rather the positive and significant relationship with

innovation. Thinking about the magnitude qualitatively, this result seems quite reasonable. In reality this

might even be understating the effects given the aggregation of the type of research funding. This is to say

that not all research funding is allocated to research that is patentable and encompassed by our measure

of innovation. For example, university research funding is allocated to economics departments, where

useful research might indeed be conducted, but ultimately these will not be quantified into innovation

by our metric (patents and other IP). Consequentially, some university research particularly those which

are basic, might make a significant contribution (such as a ground-breaking physics theory, or economic

model motivating policy), but might only be recognised with citations and publications, rather then

patents, designs or plant breeders rights. Perhaps if we utilised research funding dedicated or allocated

to STEM research, that might better capture the type of funding that might be directly associated to IP

that can be protected. This might be an area of future research and consideration.

7.2.2 Indirect Effects

Population density is the only variable that has a significant indirect effect. Although a control vari-

able, it might be interesting to analyse why such significance arises. At the 10% level of significance,

population density on average has an indirect negative impact on innovation. This result suggests that

a 1% increase in a regions population density, ceteris paribus, on average leads to a 1.2% decrease in

innovation in neighbouring regions. Alternatively this can be interpreted as: if for a given region, the

average population density of neighbouring regions increases, local innovation in the region will on av-

erage decrease. Such a result is surprising. Putting an interpretation to this result is admittedly quite

difficult. Given population density is quite static, any increase in population density is made responsible

from an increase in population. One way of looking at this might be that as neighbouring regions become
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Table 8: Direct and Indirect Effects (SDM (i))

Coefficient (Std. Error)

Direct Effects

ln BRD -0.010 (0.009)

Unis 0.558∗∗∗ (0.034)

Ufunding 0.003∗ (0.002)

ln popdensity -0.613 (0.406)

ln lforce 0.198 (0.322)

Indirect Effects

ln BRD -0.025 (0.018)

Unis -0.374 (0.676)

Ufunding -0.002 (0.002)

ln popdensity -1.173∗ (0.612)

ln lforce -0.349 (0.542)

Total Effects

ln BRD -0.036 (0.024)

Unis 0.183 (0.688)

Ufunding 0.001 (0.002)

ln popdensity -1.785∗∗∗ (0.565)

ln lforce -0.151 (0.462)

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10

(.) Clustered (marginal effects) Std. errors – Lee and Yu (2010) Transformed

more densely populated, this might be associated with greater urbanisation where resources are being

re-allocated to the more densely regions. Perhaps, if a region’s population density is increasing this might

be an indicator that people are migrating away from neighbouring regions. Another interpretation might

be localisation effects caused by government policy. Governments tend to develop innovation incubators

in more densely populated regions, which might lead to localisation effects by firms and individuals grav-

itating towards them. These claims are evidently not supported by any kind of evidence, and are at best

speculative interpretation, outside the scope of our analysis. Nevertheless, this quite an intriguing result,

ultimately indicating that population density causes negative spillover effects. This might be an area of

future research and consideration.

7.3 Additional Remarks

In summation, the major results of our CSDA is that neighbouring regions’ level of innovation has a

significant impact on local innovation levels, confirming our ESDA results. In addition, we find that the

number of university campuses and university funding available to a region has a significant and positive

direct effect on innovation. We also find that population density has a significant and negative indirect

effect. Perhaps the most interesting non-result is the non-significance of business R&D expenditure

persistent throughout all fixed effects models. Given the plethora of literature supporting the importance
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of business expenditures on R&D (Recall: Griliches (1979), Florida and Feldman (1994); Moreno et al.,

2005; Wang et al., 2015), we expected to find a significant and positive relationship with innovation.

Here this is simply not the case, and one can only speculate the reason for this. In the Australian

context business R&D does not appear to be a significant determinant of innovation. From a policy

perspective this proves an interesting result, suggesting that private industrial R&D is not a significant

driver of innovation. It would be erroneous to imply that business R&D expenditure is an unnecessary

factor in innovation with such an assertion beyond the scope of our analysis. Intuitively we propose

potential reasons explaining why this is the case. As previously mentioned, the very nature of measuring

innovation with proxies using patents and other intellectual property variables is not truly reflecting

of all innovations, particularly given some innovations and ideas are not necessarily formally patented.

Australian firms may potentially be averse to acquiring intellectual property right protection, opting

to retain ideas internally under a veil of secrecy to avoid potential replication. Notwithstanding, our

results would indicate policy agendas be focused towards supporting university construction and research

funding.

It is also worth mentioning the impact of the Lee and Yu (2010) fixed effects transformation; recalling

that we implement the transformation to avoid biased and inconsistent estimates. From Table 9 we see

the results of estimation without Lee and Yu’s transformation. Strikingly spatial coefficients are no longer

significant in the SDM, SAR, and SEM, but remain in SAC. We also observe persistent significant and

positive relationships with university campus counts and university funding. Testing for SAR and SEM

using a Wald test, we fail to reject the null hypotheses that the SDM can be simplified to a SAR as well

as a SEM; suggesting that the SAC model is most appropriate. This shows that there is quite a major

discrepancy between results employing the Lee and Yu (2010) transformation.

8 Conclusion

We conduct a dual analysis in analysing and measuring innovation in Australian regions through ex-

ploratory spatial data analysis, and confirmatory spatial data analysis. From ESDA we find that spatial

autocorrelation or dependence exists among Australian regions, suggesting that regional innovation is

correlated and influenced by neighbouring regions’ innovation. In investigating further, a local indicators

of spatial autocorrelation map shows high-high innovative and low-low innovative relationships, with per-

sistent high-high clustering in major cities and surrounding areas. Although not surprising, this result

justifies the use of spatial econometric techniques in controlling for such effect in effectively identifying

the determinants of innovation in these regions. In our CSDA we test a variety of spatial models, ulti-

mately focussing on a general spatial Durbin model for analysis. We find that local innovation is effected

by neighbouring regions’ innovation, confirming the results from ESDA. In terms of direct effects, the

number of universities and university funding has on average a significant and positive effect on local

innovation levels (suggesting policy should support universities). Interestingly, business R&D expendi-

ture is insignificant, contrary to past empirical studies. Moreover, in terms of measuring the extent of

spatial spillovers, calculating indirect effects we find that only population density causes spillover effects,
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suggesting that on average if a region’s population density increases, neighbouring regions’ innovation

are negatively effected; an inauspicious spillover effect.

Extensions for this research might include analysis with a dynamic specification, where a temporal

and spatially lagged variable are included. Dynamic specifications present issues of endogeneity requir-

ing calculated approaches such as system GMM (Arellano-Bond), which is not yet available for spatial

models. Further, research might be to define a set of spatial weights matrices capturing ‘organisational

contiguity’ rather than just spatial relationships, given the increasing role technology is breaking down

spatial barriers. Furthermore, we would ideally like to have access to greater de-aggregated data, for

instance funding to specific campuses, or research funding or expenditure specifically in STEM research

areas. It might also be interesting to incorporate the relationship of citations and publications as a

measure of academic contributions. Seeing our indirect effects result, it might also be an interesting case

study investigating as to why population density has such an adverse effect.

Table 9: Spatial Panel Fixed Effects Results (without Lee and Yu (2010) Transformation)

SDM SAR SEM SAC

Main

ln BRD -0.00412 -0.00376 -0.00370 -0.00378
(0.00972) (0.00963) (0.00965) (0.00966)

Unis 0.709*** 0.686*** 0.688*** 0.684***
(0.0375) (0.0329) (0.0331) (0.0653)

Ufunding 0.00420** 0.00495*** 0.00498*** 0.00470***
(0.00176) (0.00157) (0.00157) (0.00142)

ln popdensity 0.00486 -0.0340 -0.0314 0.0319
(0.265) (0.253) (0.253) (0.251)

ln lforce 0.231 0.317 0.318 0.284
(0.309) (0.258) (0.257) (0.217)

Wx: lagged independents

ln BRD -0.0000189 – – –
(0.0170)

Unis 0.471 – – –
(0.609)

Ufuding 0.00399* – – –
(0.00243)

ln popdensity 0.283 – – –
(0.496)

ln lforce 0.276 – – –
(0.480)

Spatial

ρ -0.0180 -0.00662 – 0.341***
(0.0257) (0.0259) (0.0862)

λ – – -0.0136 -0.391***
(0.0258) (0.104)

Variance

σ2 0.144*** 0.145*** 0.145*** 0.159***
(0.00946) (0.00945) (0.00945) (0.0101)

Test for SAR 6.98 – – –
Test for SEM 6.73 – – –
Observations 2282 2282 2282 2282

* p < 0.1, ** p < 0.05, *** p < 0.01
(.) Clustered Std. Errors
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2008.

[39] James P LeSage and R Kelley Pace. Introduction to Spatial Econometrics (Statistics, textbooks and

monographs). CRC Press, 2009.

[40] Bengt-Ake Lundvall. National systems of innovation: An analytical framework. London: Pinter,

1992.

[41] Alfred Marshall. Principles of economics: unabridged eighth edition. Cosimo, Inc., 1890[2009].

[42] Mariana Mazzucato. The entrepreneurial state: Debunking public vs. private sector myths. Anthem

Press, 2013.

[43] Patrick AP Moran. The interpretation of statistical maps. Journal of the Royal Statistical Society.

Series B (Methodological), 10(2):243–251, 1948.

[44] Rosina Moreno, Raffaele Paci, and Stefano Usai. Spatial spillovers and innovation activity in euro-

pean regions. Environment and Planning A, 37(10):1793–1812, 2005.

[45] Richard R Nelson and Sidney G Winter. The schumpeterian tradeoff revisited. The American

Economic Review, 72(1):114–132, 1982.

[46] Richard R Nelson and Sidney G Winter. An evolutionary theory of economic change. Cambridge,

MA: Harvard University Press, 1982[2005].
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A Summary Statistics

Table 10: Summary Statistics

Variable Mean Std. Dev. Min. Max.

Innovations 36.399 58.569 0 912
Patent applications 28.639 44.775 0 728
Plant Breeder Rights applications 0.574 2.446 0 36
Design applications 7.186 19.154 0 453
Private Business R&D Expenditure 559.663 2618.74 0 32064.332
University Campuses 0.688 1.317 0 13
University Research Funding (millions) 22.308 52.526 0 473.526
New Business Entries 903.447 842.053 6 11778
Business Services 729.316 1036.15 1 14937
Science/Technical Services 771.846 1037.136 1 14021
Population 69709.087 42767.634 467 216248
Population Density 894.872 1256.113 0.032 8424.353
Labour Force 36699.306 23146.329 297 140345

B Primary Industries by Year

Table 11: Count of Primary Industries

Industries 2009 2010 2011 2012 2013 2014 2015 Total

Accommodation and Food 18 16 1 0 0 0 0 35
Administrative and Support 19 19 0 1 0 0 0 39
Agriculture, Forestry, and Fishing 19 19 90 88 91 91 91 489
Arts and Recreation 14 14 0 0 0 0 0 28
Construction 13 13 172 173 171 168 171 881
Education and Training 13 13 0 0 0 0 0 26
Utilities 20 21 0 0 0 0 0 41
Financial and Insurance 21 21 3 2 2 2 2 53
Health Care and Social Assistance 11 11 0 0 0 0 0 22
Information Media and Telecomms 22 21 0 0 0 0 0 43
Manufacturing 13 13 0 0 0 0 0 26
Mining 24 26 0 0 0 0 0 50
Professional, Scientific, Technical 12 13 48 51 48 47 48 267
Public Admin and Safety 20 22 0 0 0 0 0 42
Rental, Hiring, and Real Estate 14 12 10 9 12 15 13 85
Retail Trade 18 19 1 1 0 0 0 39
Transport, Postal, and Warehousing 35 35 1 1 2 3 1 78
Wholesale Trade 20 18 0 0 0 0 0 38
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C Industry Counts

Table 12: Summary of Industries within a region

Variable Mean Std. Dev. Min. Max.

Accommodation 266.53 347.346 0 6081
Administrative 269.364 350.959 0 4573
Agriculture 482.862 680.534 0 4110
Arts 141.858 231.452 0 2433
Construction 828.109 749.398 0 4014
Education 133.496 260.438 0 3855
Utilities 102.053 295.449 0 3691
Financial 459.952 818.015 0 11683
Health 303.522 336.601 0 2593
Information Media 130.648 305.509 0 3816
Manufacturing 248.336 249.907 0 2964
Mining 115.397 364.675 0 6327
Professional 638.349 958.341 0 13112
Public Admin 112.308 349.538 0 5636
Real estate 572.287 692.899 0 9171
Retail 379.759 358.405 0 3742
Transport 415.556 656.515 0 11721
Wholesale 260.731 321.488 0 3823

N=2282

D Correlations

Table 13: Correlation Table

Variables innov BRD Unis lUfund lbusserv ltechserv lpopdens llforce lpop

innov 1.000
BRD 0.620 1.000
Unis 0.229 0.206 1.000
lUfund 0.304 0.194 0.720 1.000
lbusserv 0.581 0.430 0.193 0.226 1.000
ltechserv 0.585 0.414 0.184 0.229 0.645 1.000
lpopdens 0.704 0.501 0.070 0.166 0.483 0.511 1.000
llforce 0.721 0.538 0.177 0.185 0.580 0.559 0.563 1.000
lpop 0.688 0.525 0.153 0.159 0.557 0.524 0.524 0.988 1.000
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E Unit of Observation

Figure 7: Statistical Area 3: Australian Regional Division
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F Moran’s I Scatter (Innovation log-transformed)

Figure 8: Moran’s I Scatter Plots

(i) 2009 (ii) 2010

(iii) 2011 (iv) 2012
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(v) 2013 (vi) 2014

(vii) 2015
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G LISA Map (Australia)
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H LISA Significance Map (Australia)
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I LISA Map (Melbourne and Sydney)

Figure 9: Moran’s I Scatter Plots

(Top: Melbourne)

(Bottom: Sydney)
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J Moran’s I (not logged)

Table 14: Tests for Spatial Dependence/Autocorrelation (for innovation not log-transformed)

2009 2010 2011 2012 2013 2014 2015 Within Mean

Moran’s I 0.3596 0.3128 0.3699 0.3777 0.3502 0.2809 0.1948 0.3400
p-value 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

Permutations 999 999 999 999 999 999 999 999
∗∗∗ 1%, ∗∗ 5%, ∗ 10%. Note that p-values reported are pseudo p-values.
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K Moran’s I scatter (not logged)

Figure 10: Moran’s I Scatter Plots (no log transformation)

(i) Within Average (ii) 2009

(iii) 2010 (iv) 2011

[!]
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(v) 2012 (vi) 2013

(vii) 2014 (viii) 2015
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L Spatial Panel Model Specifications

L.1 SAR Model

Specifications for the spatial autoregressive, or lag, model from the general nesting are where λ and θ = 0.

More explicitly we specify the model as:

ln innovit = ρ

N∑
j=1

wij ln innovjt + β1 lnBRDit + β2Unisit + β3Ufundingit + β4 ln lforceit+

β5 ln popdensityit + µi + γt + εit (13)

The spatial lag model proposes that the dependent variable (innovation), depends upon the dependent

of neighbouring observations (regions), and is common throughout the literature (Anselin et al. 2006,

p. 6). In our context, the SAR model suggests that innovation within a region is expected to be partly

determined or correlated by innovation in neighbouring regions (suggested in ESDA). Year dummies are

not included as estimation allows for both fixed effects to be automatically controlled.

L.2 SEM Model

The spatial error model is specified where ρ and θ = 0:

ln innovit = β1 lnBRDit + β2Unisit + β3Ufundingit + β4 ln lforceit + β5 ln popdensityit+

µi + γt + λ

N∑
j=1

wijuit + εit (14)

Unlike the SAR or SDM models, spatially lagged dependent and explanatory variables are not included,

with local inputs being the primary determinant of innovation. Here the spatial interaction occurs in the

composite error term. SEM models have no requirement on formal theory or intuition, and are appropriate

where omitted variables entered into the error component follow some spatial pattern (Elhorst, 2010).

L.3 SAC Model

The SAC model combines both the SAR and SEM to have spatial coefficients on both the dependent

variable and error term (θ = 0):

ln innovit = ρ

N∑
j=1

wij ln innovjt + β1 lnBRDit + β2Unisit + β3Ufundingit + β4 ln lforceit+

β5 ln popdensityit + µi + γt + λ

N∑
j=1

wijuit + εit (15)

The SAC model is the closest to a full/general nested model combining three spatial interactions. Intu-

itively it might be tempting to include all types of spatial interactions, however, Elhorst (2010) that one

interaction effect needs to be omitted in order for the model to be identified.
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M Results form SAR, SEM, and SAC Fixed Effects Estimation

Table 15: Spatial Panel Estimation Results

SAR SEM SAC

Main

ln BRD -0.0130 -0.0121 -0.0116
(0.00958) (0.00942) (0.00878)

Unis 0.604*** 0.615*** 0.483***
(0.0383) (0.0490) (0.133)

Ufunding 0.000299 0.000303 0.000790
(0.00169) (0.00171) (0.00124)

ln popdensity -0.846 -0.804 -0.657*
(0.566) (0.586) (0.337)

ln lforce 0.0122 0.0194 0.0510
(0.291) (0.308) (0.197)

Spatial

ρ 0.154*** – 0.610***
(0.0275) (0.0420)

λ – 0.141*** -0.631***
(0.0340) (0.0627)

Variance

σ2 0.182*** 0.182*** 0.148***
(0.0117) (0.0117) (0.0109)

Hausman 238.82*** −† −+

Observations 1956 1956 1956

* p < 0.1, ** p < 0.05, *** p < 0.01

(.) Clustered Std. Errors – Lee and Yu (2010) Transformed
† Hessian not negative semidefinite; + SAC only used with FE
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N Results from non-spatial panel model (FE and RE)

Table 16: Results from non-spatial Fixed and Random Effects Panel Model

Fixed Effects Random Effects

ln BRD -0.00382 0.0170*
(0.0104) (0.00888)

Unis 0.685*** 0.0572
(0.0355) (0.0418)

Ufunding 0.00494*** 0.00309***
(0.00170) (0.000874)

ln popdensity -0.0336 0.126***
(0.274) (0.0225)

ln lforce 0.315 0.629***
(0.279) (0.0761)

d09 0.408*** 0.443***
(0.0412) (0.0337)

d10 0.361*** 0.395***
(0.0415) (0.0359)

d11 0.282*** 0.309***
(0.0388) (0.0347)

d12 0.298*** 0.322***
(0.0411) (0.0368)

d13 0.220*** 0.236***
(0.0346) (0.0314)

d14 0.0389 0.0489
(0.0333) (0.0309)

Constant -0.957 -5.423***
(2.113) (0.727)

Modified Wald Test 33471.8*** –
Observations 2282 2282

* p < 0.1, ** p < 0.05, *** p < 0.01

(.) Clustered Std. Errors

NOTE: Random effects (time-invariant) controls are omitted from output.
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O Results for Primary Industry differences

Table 17: Summary of Industry Differences (all spatial models)

Models

SDM SAR SEM SAC Static Panel

Main

(log) Business R&D ◦ ◦ ◦ ◦ ◦

University campuses (count) + + + + +
University funding (millions) + ◦ ◦ ◦ ◦

(log) Labour force ◦ ◦ ◦ ◦ ◦

(log) Population density ◦ ◦ ◦ ◦ ◦

Primary Industries

Information and Media ◦ ◦ ◦ ◦ ◦

Accommodation Services ◦ ◦ ◦ ◦ ◦

Admin and Support Services ◦ ◦ ◦ ◦ ◦

Agriculture – – – – –
Arts ◦ ◦ ◦ ◦ ◦

Construction ◦ – – ◦ –
Education and Training ◦ ◦ ◦ ◦ ◦

Utilities ◦ ◦ ◦ ◦ ◦

Financial Services ◦ ◦ ◦ ◦ ◦

Health ◦ ◦ ◦ ◦ ◦

Manufacturing ◦ ◦ ◦ ◦ ◦

Mining ◦ ◦ ◦ ◦ ◦

Professional and Scientific Services ◦ ◦ ◦ ◦ ◦

Public Admin and Safety Services ◦ ◦ ◦ ◦ ◦

Real Estate ◦ ◦ ◦ ◦ ◦

Retail ◦ ◦ ◦ ◦ ◦

Transport ◦ ◦ ◦ ◦ ◦

Spatial

ρ + + na + na
λ na na + – na

Variance

σ2 + + + + na

+ = positive and significant; – = negative and significant; ◦ = not significant
(Significance at 10% level)
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Table 18: Spatial Panel Results: Random Effects

SDM SAR

Main

ln BRD 0.0152* 0.0152*
(0.00901) (0.00896)

Unis 0.0704 0.0593
(0.0447) (0.0419)

Ufunding 0.00239** 0.00300***
(0.000939) (0.000869)

ln popdensity 0.00363 0.115***
(0.0326) (0.0228)

Constant -6.301*** -5.576***
(1.036) (0.713)

Wx: lagged independents

ln BRD 0.0118 –
(0.0151)

Unis -0.00746 –
(0.0509)

Ufunding 0.00149 –
(0.00118)

ln popdensity 0.164*** –
(0.0386)

ln lforce -0.0632 –
(0.107)

Spatial

ρ 0.0232 0.0642***
(0.0231) (0.0236)

Variance

σ2 0.171*** 0.171***
(0.0111) (0.0112)

Observations 2282 2282

* p < 0.1, ** p < 0.05, *** p < 0.01

(.) Clustered Std. Errors – Lee and Yu (2010) Transformed

Notes: (i) Time dummies and time invariant controls are omitted from the output

(ii) RE results for SEM are not listed as estimation does not produce negative semidefinite Hessian.

(iii) SAC is not listed as only appropriate for FE specifications.
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