Lobbying and Income Inequality

Experimental Evidence

David O'Callaghan (B.Ec(Advanced))

Supervisor: Dr Ralph Bayer

School of Economics
University of Adelaide
November 4, 2016

Thesis submitted in partial completion of the requirements for the degree of Bachelor of Economics (Honours)

Abstract

In this paper we develop a simple two-stage model of lobbying with income inequality and examine our predictions in the laboratory. We found a treatment effect contradicting the theoretical predictions: Low wage subjects paired with high wage subjects over exert in a real effort task, beyond individual rationality, producing for the group at the expense of individual welfare. Neither inequality aversion nor competitive preferences explains the off-equilibrium behaviour. In the second stage, in contrast to much of the literature, subjects tended to exert effort in the contest quite close to SPNE. Delving deeper, we found those that contributed more tax revenue in the first stage exerted more effort in the contest in the second stage, despite it being a strictly dominated strategy. Inversely, those that contributed less exerted less. The effect was observed across treatments. Over-exertion of effort displayed by the higher contributors can potentially be explained by an entitlement effect within the preferences of players, which expresses as a dislike for equal splits of pots, which were not created equally.

Declaration

I declare that except where app	ropriately acknowledged this thesis is					
my own work, has been expressed in	my own words and has not previously					
been submitted for assessment.						
	· -					
Signature	Date					

word count: 11,063

Acknowledgements

Firstly, I would like to thank my supervisor Professor Ralph-Christopher Bayer, without whose guidance, generosity of time and knowledge this thesis would not have been possible. I would also like to thank my partner Tamzin, for her continued support during my honours year. Lastly, I would like to thank my friends in the honours room for making the journey all the more enriching.

Contents

1	Intr	oduction	7
2	The	Model	14
	2.1	Timeline	16
	2.2	Equilibrium	18
	2.3	Some discussions on e^*	19
	2.4	The production decision	21
	2.5	Some welfare analysis	22
		2.5.1 The social Planner's Problem	22
		2.5.2 The Social Dilemma	23
		2.5.3 Some observations on the SPNE production decision	25
		2.5.4 Wasted efforts	25
	2.6	What effect does inequality in wages have?	26
3	Exp	erimental design and hypotheses	28
	3.1	Hypothesis specification	33
		3.1.1 Hypothesis 1	34
		3.1.2 Hypothesis 2	41
	3.2	Econometric model specification and tests	42
4	Res	ults	44
	4.1	Non-parametric tests	44
	4.2	Regression analysis	48
	4.3	Results: Hypothesis 1	50
	4.4	Results: Hypothesis 2	56
	4.5	A closer look at lobbying efforts	56

	4.6	Discussion	60
5	Cor	nclusion	62
6	App	pendix	65
	6.1	Non parametric tests	65
	6.2	Some observations on the tax and institutional quality	70
	6.3	Econometric models	74
\mathbf{L}_{i}	\mathbf{ist}	of Figures	
	1	Best response functions for players i and $-i$	20
	2	Average $time_cost$ by treatment condition and period	45
	3	Average q by treatment condition	46
	4	Average q box and whisker (by treatment condition)	47
	5	Average $time_cost$ box and whisker by treatment condition .	47
	6	Histogram of $time_cost$ with hypotheses(low wage)	55
	7	Histogram of $time_cost$ with hypotheses(high wage)	55
	8	Observed efforts vs. SPNE efforts by treatment condition	57
	9	Average observed efforts vs. SPNE efforts by treatment con-	
		dition	57
	10	Optmal production decision for given t and r	72
	11	Optmal Lobbying effort for given t and r	73

List of Tables

1	Predicted $time_costs$ by treatment condition	40
2	Regressions for q (questions answered)	49
3	Regressions for $time_cost$ (last question)	51
4	Results from two sided t-test by hypothesis and treatment	
	condition	52
5	Estimation results: mixed	59
6	Ranksum $time_costlow_low = low_high$ Overall	66
7	Ranksum $time_costlow_low = low_high$ period 1	66
8	Ranksum $time_costlow_low = low_high$ period 2	66
9	Ranksum $time_costlow_low = low_high$ period 3	67
10	Ranksum $qlow_low = low_high$ Overall	67
11	Ranksum $qlow_low = low_high$ period 1	68
12	Ranksum $qlow_low = low_high$ period 2	68
13	Ranksum $qlow_low = low_high$ period 3	69
14	Wald test q (mixed regression coeff)	69
15	Wald test $time_cost$ (mixed regression coeff)	70
16	Parameters for Figure 10 & 11	71