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Identifying Marginal Returns to Education

Through Social Networks

Timothy Hersey

Abstract

This thesis explores the role of peers in influencing the decision of individuals to

attend college and the resulting labour market outcomes. It proposes a model, com-

bining the econometric methods of networks and treatment effects, to estimate the

marginal treatment effect of education when peers have influence on the wage out-

come and probability of treatment for an individual. Using Monte Carlo simulations,

the effect of networks on the treatment effects model is investigated. We further ex-

plore the model by varying the network structure and conducting sensitivity analyses,

considering the impact of networks on policy. Our results suggest that networks ini-

tially have a significant positive impact on the returns to education and the effects

of policy. However, this effect is reduced once homophily in characteristics is intro-

duced.
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1 Introduction

People live and relate in an increasingly interconnected world. The social networks

in which we associate are ever expanding with the advent of globalisation and social

media. Behaviours are generally not isolated to an individual, but are spread across

networks and influenced by peers. Although the economic literature has begun to

recognize the effects of social ties on the decisions and outcomes of an individual, the

integration of peer effects into existing frameworks remain seldom. This is due to

the complex interaction of the components defining peer effects and its subsequent

implication for identification strategies.

In this thesis, we aim at estimating the returns to education in terms of in-

creased future wage, recognising the fundamental role of peer effects in both educa-

tion decisions and employment outcomes. Our work draws on the network model of

Bramoullé, Djebbari & Fortin (2009) and the treatment effects model of Carneiro,

Heckman & Vytlacil (2011). More precisely, we investigate the influence of high

school student networks on both the college decision and future wages of individuals.

We use Monte-Carlo simulations to analyse the incorporation of the network

model in the estimation of marginal returns, exploring the flexibility of networks

and the role of each individual driver of peer influence on the returns to education.

We then consider the effect of a change in policy on a system involving networks,

determining if the influence of peers allows more effective policy. We find that while

networks initially have a significant positive effect on the returns to education, the

addition of homophily (the tendency of individuals to interact with similar peers)

reduces this positive impact; polarising the college decision and reducing policy in-

fluence.

Naive estimation of the average returns to education does not capture heterogene-

ity in returns and can often be misleading when considering the effect of policy. As

a consequence, the returns to college for individuals targeted by policy are likely to

be lower than the returns for those already attending college. To account for these

biases, we consider the model of Carneiro, Heckman & Vytlacil (2011). In their
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model, Carneiro et al. estimate the returns to education by considering education as

the treatment in the standard treatment effects model. The structure of the econo-

metric treatment effects model allows for the heterogeneity that should be expected

in the returns to education, facilitating the analysis of variables influencing both the

inclusion of an individual into the treatment group and the resulting outcomes. As

such, it is natural to consider this model in the light of peer influence.

It has been shown that peers have a considerable impact on whether an individual

chooses to commence tertiary education (Bifulco, Fletcher & Ross 2011, Fletcher

2013, Fletcher 2012, Wu 2015) and where they are finally employed (Kramarz &

Skans 2014, Black, Devereux & Salvanes 2013, Bifulco et al. 2014). Given the

eminent effect of peers in these processes, we would also expect these networks to

influence the returns an individual receives from attending college, particularly if

they are the defining influence in the college decision. Bramoullé, Djebbari & Fortin

(2009) exploit the structure of networks in order to identify each mode of the network

peer effect. To analyse the integral role of peers in the returns to education, we

utilise the methods of Bramoullé et al. in identifying the components of peer effect,

incorporated into the treatment model.

More precisely, we consider the response of the marginal treatment effect (MTE)

and the marginal policy relevant treatment effect (MPRTE), as employed by Carneiro

et al. (2011), to changes in the model specification and network structure, demon-

strating the robustness and intricacies of the model. The MTE describes the effect

of treatment for individuals who are at the margin i.e. are indifferent to attending

college, allowing us to consider the true returns to college attendance.

The MPRTE, proposed by Carneiro, Heckman & Vytlacil (2010), describes the

returns to treatment for those induced to attend college as a result of policy. The

presence of networks implies the existence of a social multiplier (Glaeser et al. 2002),

such that the decision of one individual or the effect of policy on an individual is

dispersed across their network. As a result, the net effect of policy becomes greater

than the direct effect usually intended by policy makers, particularly if the individual

is central to their network. The structure of the MPRTE allows us to investigate the
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role of this social multiplier in the returns to education.

Although navigating the identification and separation of the components of peer

effect proves somewhat difficult in the non-linear treatment effects model, the con-

struction of the network theoretical model allows us to decompose the interaction of

networks with the treatment and outcome equations in the context of the returns to

college education. The integration of these distinct areas of literature demonstrates

the flexibility of the network model when brought to existing econometric models.

The specification of the components of peer effects inside the treatment effects model

proves to have significant implications on the performance of the model.

This thesis is organised as follows. Section two reviews the literature on peer

effects and the returns to education. Section three presents the theoretical model.

Section four describes the estimation technique. Section five details the Monte Carlo

simulations and sensitivity analysis. Finally, section six makes concluding remarks.

2 Review of Literature

2.1 Peer Effects

Peer effects comprise a growing body of literature in economics, particularly of recent

years. The identification of peer effects, however, has proven to be a difficult prospect.

Jackson (2013) identifies several of the challenges many researchers encounter when

considering peer effects, namely, identification, endogenous networks and homophily,

computation, measurement error and misspecification. Comprehensive network data

has only recently begun to emerge due to the complexities in measuring true net-

works. Accompanying several key datasets, the research on networks and peer effects

has expanded greatly. Many of the challenges Jackson mentions are associated with

the difficulty in identifying and disentangling the components of peer effects.

In his seminal paper on the identification of peer effects, Manski (1993) explores

the issue of identification in the light of the “reflection problem”. The “reflection

problem” refers to the difficulty in isolating endogenous and exogenous effects due
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to the strong correlation between them. Endogenous and exogenous effects, as iden-

tified by Manski (along with correlated effects), comprise two of the major channels

through which peer effects can occur.

Endogenous social effects refer to the influence of an individual’s outcomes or

decisions on their peers. The decision of an individual often has repercussions for

decisions made by the friends of that individual. Consider the decision of a high

school student in taking up smoking. The friends of that student have a much higher

probability of smoking than individuals who have no friends smoking at all, whether

by explicit or implicit peer pressure (Mercken et al. (2009) and Christakis & Fowler

(2008)).

Exogenous social effects, also called contextual effects, describe the influence of

an individual’s characteristics on their peers’ outcomes. For example, if an individual

is a hard worker, they will likely encourage their friends to be hard workers as well.

This peer effect may have numerous positive implications, with individuals more

likely to attend college and obtain a higher wage.

Manski’s (1993) “reflection problem” derives from the perfect multicollinearity

between the expected outcomes of a peer group and the mean characteristics of

the group. Simultaneity in behaviour, leads to a group of peers displaying similar

characteristics and as a result making similar decisions.

Unravelling endogenous and exogenous effects has been the subject of several

research papers. Traditionally the peer effects literature assumed that individuals

interacted in defined groups, with each member having an equal influence on all

others in the group. Lee (2007), however, draws upon the comparisons between

network estimation models and spatial autoregressive models (SAR models); utilising

the structure and non-linearity of a social network to enable identification of the

exogenous and endogenous effects. Similarly in the notable paper by Bramoullé,

Djebbari and Fortin (2009), the structure of an individual’s peer network is exploited

to allow identification, using an instrument variable approach.

A third effect must also be considered; the effect of homophily, or more broadly,

correlated effects as outlined by Manski (1993). Moffitt (2001) segregates correlated
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effects into two key components; individual preferences leading to the creation of

friendship ties and unobserved common environmental factors. Expanding on the

first component, individuals are prone to homophily, such that friendships are more

common with people that display similar characteristics or personality. These effects,

like social extraversion or athletic ability, can be difficult to observe. As an example

of common environmental effects, students in the same high school face similarities

in teaching styles, school resources and the average socio-economic standing of the

school. This similarity in environment may lead to similar college preferences or

employment outcomes.

In an attempt to distinguish the peer effect from correlated effects, Sacerdote

(2000) and Zimmerman (2003) analyse natural experiments where individuals are

allocated randomly into a peer group, removing the effect of homophily that may

occur under individual choice. Once the noise of homophily is accounted for, the

true peer effect can be estimated.

Lee (2007), as in Lin (2010), addresses the correlated effect empirically by in-

troducing an unobserved network fixed effect variable into the model. This term

accounts for all unobservables (correlated and homophily effects) common to the

network. Bramoullé et al. (2009) employ the same method for dealing with cor-

related effects, generalising the models of Manski (1993), Moffitt (2001) and Lee

(2007), achieving not just identification of endogenous and exogenous effects, but

also controlling for correlated effects. Lin (2010) and Lee et al. (2010) build upon

the methods of Lee (2007) and Bramoullé (2009), broadening the context and as-

sumptions of the peer effect model to explore the applicability and versatility of the

peer effect model in more complex real world settings. Lin (2010) generalises the

context of the model by considering variations in group structures, while Lee et al.

(2010) introduce disturbances to the SAR model to enable contextual and group

unobservables to be considered.

However, the addition of a network term is an imperfect approach, not account-

ing for unobserved within-network and individual characteristics that may influence

both outcomes and the decision to establish links. Taking the unobserved personality
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characteristic social extraversion as an example, extraversion can influence not only

who an individual befriends but also key outcomes and decisions made by the indi-

vidual, such as their place of employment and observed wages. If social extraversion

is not accounted for and varies across a network, the network will be endogenous,

causing bias in the peer effect estimates. Goldsmith-Pinkham & Imbens (2013) pro-

pose a network formation model to control for this network endogeneity, incorporat-

ing unobserved individual characteristics which influence the likelihood of friendship

formation and perceived outcomes. Goldsmith-Pinkham & Imbens examine the net-

work formation process and peer effect estimation through Monte Carlo simulations

and in the context of high school friendship networks, using the Add Health dataset

(2009)1. Hseih & Lee (2014), apply the model of Goldsmith-Pinkham & Imbens,

extending the model by allowing for non-reciprocal friendships and modelling un-

observed individual characteristics as multidimensional continuous variables, rather

than the binary variable adopted by Goldsmith-Pinkham & Imbens.

Several authors have followed the example of Goldsmith-Pinkham & Imbens in

utilising a network formation model to consider network interaction and peer effects.

The network formation literature holds promise for greater accuracy in the analysis of

peer effects. As part of this literature, Badev (2013) uses a game theoretic approach

in order to determine the Nash equilibrium of a friendship network to identify and

decompose peer effects. Boucher (2015) develops a network formation model, focus-

ing heavily on the homophily aspects of friendships. Calvó-Armengol et al. (2008)

combine the existing network formation model framework with network centrality

concepts to achieve identification of peer and network effects. In each of these cases,

while the individual correlated effect may not have been strong enough to warrant a

network formation model, the network formation process allows exploration of some

aspect of peer effects and the relation to the initial building of the network.

Due to the limitations in network data, applied research tends to take a more

practical approach. Rather than overcomplicating the issue of correlated effects,

1The Add Health Dataset tracks the outcomes and friendships of students in a sample of US
high schools over time, providing an opportunity for expansive peer effect research.
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the authors include variables in their equations that effectively account for environ-

mental effects. This approach is taken by Patacchini & Zenou (2012), by including

network and school correlated effect dummies, and exploiting the depth of the Add

Health dataset; including several individual characteristic and personality variables

which typically remain unobserved. Once these effects are controlled for, the authors

are able to show that peer group formation is random conditional on the network.

Similar approaches are taken in the applied literature by Fletcher (2012), Kremer &

Levey (2008) and Patacchini, Rainone & Zenou (2012) due to the simplicity of the

method and robustness with the data. In general, these applied papers utilise the

method proposed by Bramoullé et al. (2009) in accounting for unobserved variables,

exploiting the network structure in order to achieve identification.

2.2 Returns to Education

As mentioned, the scope of peer influence is broad. These effects can be found in nu-

merous decision making processes, such as the decision to attend college (Patacchini,

Rainone & Zenou 2011, Fletcher 2013), engage in delinquent behaviour (Patacchini

& Zenou 2009) and consume alcohol (Kremer & Levey 2003, Fletcher 2012). Peer ef-

fects can also be found when describing outcomes and behaviour, such as high school

GPA (Goldsmith-Pinkham & Imbens 2013), obesity (Christakis & Fowler 2007) and

loan behaviour (Karlan, Mobius, Rosenblat & Szeidl 2009). Two key channels of

peer influence lie in the friendship networks of high schools, and the peer networks in

entering the labour market. The common adage that finding a job is more about who

you know than what you know, seems to hold elements of truth when taken to the

literature. Considering peer effects, Kramarz & Skans (2014) find that the parents of

classmates are an important determinant of where an individual finds employment.

Similarly, Black, Devereux & Salvanes (2013) find that the average income of the

fathers of high school peers has a small exogenous peer effect on the future wage of

the individual. Bifulco et al. (2014), however, find little evidence of persistent peer

effects of high school friends on wages, with the suggestion that the college educated

mothers of one’s friends may have a significant effect on future wages. Significantly,
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they do find the delay in college education from the decision of peers not to attend

college has a temporary negative effect on wages. Networks can also be used as a

determinant of social skills. Using the networks of high school students, Galeotti &

Mueller (2005) and Barbone & Dolton (2015) find that the social skills associated

with network position lead to a significant increase in future earnings.

High school students have also been shown to have a large effect on the decision

of their friends to attend college. Bifulco, Fletcher & Ross (2011) find a positive

exogenous peer effect in that students who have classmates with college educated

mothers are more likely to attend college and are less likely to drop out of high

school. Fletcher (2012) and Wu (2015) focus on the endogenous peer effect of college

decisions, both finding strong social influence of friendship networks on the likelihood

of college enrolment and college preferences. Fletcher (2013) finds that an increase

in classmates attending college by 10% leads to an increase in the probability of an

individual attending college by a significant 2-3%. We see, therefore, a peer effect on

both wages and college enrolment, with a particularly strong peer effect emerging in

the college enrolment decision.

College educated individuals earn significantly more than those with only a high

school education level. According to the OECD (2016), the benefit to an individual

(in the 25 OECD countries) of obtaining a bachelors level degree is around 48%.

Peer effects on wages come from two sources; the direct endogenous peer effect of

friends on wages and the indirect effect of peers on the college decision and therefore

wages. The result mentioned of Bifulco et al. (2014), provides positive evidence for

this indirect college effect of high school friends on wages. The paper of De Giorgi,

Pellizzari & Redaelli (2010) takes a similar trajectory, finding a significant peer effect

on the college major decided by students when at college, associated with adverse

outcomes on academic achievement and entry wages.

Through the use of a treatment model, Carneiro, Heckman & Vytlacil (2011)

present a model to analyse the heterogeneous returns to education. Specifically,

they identify the marginal treatment effect (MTE); the effect of going to college

on wages for those indifferent to attending college. Björklund & Moffitt (1987)
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first proposed the MTE as an alternate measure to traditional estimators such as

the Average Treatment Effect (ATE) and Average Treatment Effect of the Treated

(ATET), which do not account for heterogeneous treatment effects. Carneiro et al.

(2011) use the instruments from the treatment model in order to calculate the MTE

at each supported probability of attending college. This allows them to effectively

consider the true effect of general policy changes, using the marginal policy relevant

treatment effect (MPRTE), first developed by Carneiro, Heckman & Vytlacil (2010).

Carneiro et al. (2011) propose both a parametric and non-parametric method for

estimating these marginal effects, while Carneiro et al. (2010) examine the properties

of these estimates.

The method of Carneiro, Heckman & Vytlacil (2011) has been applied across

countries and contexts as evidence for the heterogeneous returns to education and

to examine the true implications of policy on those who are affected. Kyui (2016)

examines the returns to education in Russia, while Lavaglio & Verzillo (2016) consider

the Italian context. Joensen & Nielson (2016) conduct a gender comparison on

the importance of taking high school mathematics. They utilise the heterogeneous

returns the model allows for, to consider the differing effects of policy on convincing

boys and girls to take high school mathematics.

3 Model

Following Carneiro et al. (2011), we apply the generalised Roy model2 to estimate the

effect of peers on the decision to attend college, and from there the effect on wage

outcomes and the marginal returns to college. The model comprises an outcome

equation of wage and a treatment equation of the probability of attending college.

The outcome can be represented by the equations

Y1 = µ1(X) + U1 and Y0 = µ0(X) + U0 (1)

2The model was first developed by A.D. Roy (1951) and Richard E. Quandt (1958,1972).
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where Y1 is the potential log wage when an individual attends college and Y0 is the

potential log wage when an individual does not attend college. X is a matrix of

observed variables that influence wage outcomes. U0 and U1 are the unobserved

components.

The decision to attend college is modelled by the following discrete choice latent

variable model, where S = 1 if the individual chooses to attend college and S = 0

otherwise. This choice depends on observed variables, Z and unobserved variables,

V .

S∗ = µs(Z)− V

S = 1 if S∗ ≥ 0; S = 0 otherwise
(2)

S∗ is a latent variable representing the net benefit of attending college. Under

this setup, Z contains some or all of the variables in X. Additionally it must contain

variables not included in X to be used as instruments for college attendance in the

outcome equations in (1). V is a strictly increasing continuous random variable with

distribution function FV . We assume that (U0, U1, V ) are uncorrelated with Z given

X. Throughout this thesis, P(z)=Pr(S = 1|Z = z)=FV (µS(z)) is used to denote

the probability that an individual who has characteristics z attends college.

Using equation (2), the observed outcome is expressed by

Y = (S)Y1 + (1− S)Y0 (3)

which can be rewritten, substituting in the expressions of (1), as

Y = µ0(X) + [µ1(X)− µ0(X) + U1 − U0]S + U0 (4)

As in Carneiro et al. (2011) the conditional expectation of Y given X = x and
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P (Z) = p is then expressed as

E(Y |X = x, P (Z) = p) = E(Y0|X = x, P (Z) = p)

+ E(Y1 − Y0|X = x, S = 1, P (Z) = p)p
(5)

3.1 College Attendance Decision

College attendance can be viewed as the treatment in our model, such that attending

college (or being in the treatment group), would be expected, on average, to result

in a higher wage.

Considering the first stage, and following Carneiro et al. (2011) we take college

attendance as a binary variable, indicating the completion of a college degree for an

individual. We aim to incorporate peer effects in the model in (2). For simplicity, we

assume linearity in parameters. This restriction can be relaxed without altering the

findings of this thesis. To achieve this goal, we consider the following latent model:

S∗il = βzZil + βs̄S̄
∗
(il) + βz̄Z̄(il) + ηl − εil, (6)

such that if S∗il > 0, then S = 1 and individual i attends college, and if S∗il < 0

then S = 0 and the individual i does not attend college. This basic model is based

upon Manski’s (1993) Linear in Means model with individual i belonging to the

network l. In this equation S∗il is an unobserved continuous variable indicating the

benefits for individual i of attending college and Zi describes all observable individual

characteristics that influence the college decision process.

To account for the role that peers play in the decision to attend college, three

additional terms are added to the college attendance equation (6), relating to the

three avenues through which peer effects may occur. If Sil describes the decision to

attend college for individual i in network l, then S̄(il) describes the average decision for

individual i’s friends (who also appear in network l) to attend college, corresponding

to the endogenous peer effect. Similarly, if Zil describes the individual characteristics

affecting the college decision, then Z̄(il) describes the average characteristics of an
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individual’s friends corresponding with the exogenous peer effect. In both cases, the

effect is averaged over friends, such that every friend has an equal impact on an

individual. Taking the average across peers additionally ensures that the expected

total peer effect is equal for every individual, so that an individual with more friends

is not subject to a greater peer effect than an individual with less friends.

The final peer effect that must be accounted for is the correlated or environmental

effect. This is controlled for by the inclusion of the term, ηl that controls for all

unobserved characteristics that are common to a network and may affect both the

outcome variable and the network formation process. As discussed, this term does

not account for unobserved individual characteristics that vary within a network that

may influence the likelihood of forming friendships and simultaneously the decision

to attend college. As in much of the literature, due to the difficulty in appropriately

controlling for unobserved individual characteristics, we assume this individual effect

is negligible and statistically insignificant after controlling for network effects.

The vector Zi should contain economic, contextual and academic information as

well as personality based variables, to account for as much within-network variation

as possible. S̄∗(il) represents the benefits of attending college for the average of indi-

vidual i’s peers. If this value is higher, then individual i’s average friend will have a

higher probability of attending college.

We next express the model in matrix form to demonstrate the relation between

variables from the inclusion of network components. Following Goldsmith-Pinkham

& Imbens (2013), the network is constructed by introducing the adjacency matrix

D such that an element of D, Dij is equal to 1 if individual i and j are friends and

0 otherwise. We begin under the assumption that friendship is a mutual relation,

resulting in a symmetric adjacency matrix. This assumption could be relaxed so

that friendship is modelled as a one-way relation, with unequal effects of friendships.

By convention, we set the diagonal elements of D to 0. The number of friends of

individual i is denoted Mi =
∑N

j=1Dij. Individuals with no friends are discounted

from the model so that Mi is positive and peer effects can be estimated for all

individuals. M is the corresponding n × 1 vector so that the ith element describes
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the number of friends of individual i. It is necessary to construct a row-normalised

adjacency matrix, to describe the average friend of individual i. This matrix is

defined as

G = diag(M)−1D, such that Gij =

Dij/Mi if Dij = 1,

0 otherwise.

(7)

Writing the model in equation (6) in matrix notation we obtain the expression

S∗
l = βzZl + βs̄GS

∗
l + βz̄GZl + ηlι− εl, E[εl|Z] = 0 (8)

where S∗
l is an n × 1 vector of the individual benefits of attending college, ι is an

n × 1 vector of ones, Zl is an n × q matrix of individual characteristics, G is an

n × n row normalised interaction matrix and ηl is an n × 1 vector describing the

unobserved network effect. εl is the unobserved component of the college decision.

We require the matrix G to be exogenous conditional on ηl and Zl. This condition

will only hold if there are no unobserved individual characteristics affecting both the

network formation process and the probability of attending college. This model is

estimated in order to recover the fitted values to be used in outcome equation (3),

as in a two-stage least squares (2SLS) treatment effects model. Z is a matrix made

up of the regressors from the outcome equation (1), X, and the instruments Z2 such

that Z = [X Z2].

We define the probability of attending college given characteristics Z̃ to be

P (Z̃) = Pr(S = 1|Z̃) where Z̃ is a matrix consisting of Z, the network effect

ηl and the endogenous and exogenous peer effects, GS and GZ. We also define the

variable US = Fε(ε), where Fε is the cumulative distribution function of the unob-

served component ε. As such it has a uniform distribution between 0 and 1, and US

corresponds to the different quantiles of ε. US is related to P (Z̃) via the relation

Fε(βzZl + βs̄GS
∗
l + βz̄GZl + ηlι) = P (Z̃) such that S=1 if P (Z̃) ≥ US. When con-

sidering changes in the probability of attending college, we see that at the margin

when an individual is indifferent to attending college, P (Z̃) = US. Therefore each
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value of US describes the quantiles of the unobserved component for an individual

wanting to attend college. This interpretation becomes important when considering

the MTE.

3.2 The Wage Model and Returns to Education

Once the fitted values of the treatment equation are obtained, the wage equation

and the marginal returns to a college education can be estimated. Z̃ must include

some or all elements of X, with some added variables not correlated with the wage

outcome, that are used as instruments for the treatment effect. We must therefore

consider which peer effect and individual variables included in Z̃ are determinants

of future wages and which can be used as instruments. One difficulty of developing

the proposed model is the presence of a time gap in the two estimation steps. The

decision to attend college is observed earlier than wages by several years. We must

therefore be cautious in the definition of variables to be included in the wage equation.

However, this time discontinuity can also be beneficial, allowing some relaxation of

the required assumptions. During the time between high school and full employment,

an individual’s network will evolve fundamentally until it is almost unrecognisable,

with many friendships disappearing altogether. Consequentially, peer effects in the

original network will diminish over time. The expected direct effect of high school

friends on wage is negligible in terms of endogenous effects. The wages and college

experience of high school peers would reasonably not be expected to influence the

future wage of the individual.

The characteristics of friends, however, may have a longer lasting legacy on an

individual and their own characteristics. While the wage or college decision of a

high school friend may not have a direct impact on a person’s wage, the study

habits and social skills developed with friends may influence the performance in

the labour market. Therefore, in this initial specification, we include the effect of

friend’s characteristics, GX on wages, but do not include the effect of friends’ wages,

or friends’ college decisions. A similar argument can be made for the unobserved

network components which are assumed to not be important determinants of wage
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in the baseline model. As a result, the instruments we use in the treatment equation

(8) are [Z2, GZ2, GS,η].

Assuming the wage equation (3) is linear in parameters (µ0(X) = δ0X + γ0GX,

µ1(X) = δ1X + γ1GX), we obtain the following expression describing the effect of

college education on individual wages:

Y = δ0X + [δ1X − δ0X]S + [(U1 − U0)S + U0]. (9)

Y is an n×1 matrix of wages and S is an n×1 matrix of the binary variable indicating

college attendance. Adding in the influence of friends’ characteristics gives us:

Y = δ0X + γ0GX + [δ1X + γ1GX − δ0X − γ0GX]S + [(U1 − U0)S + U0]. (10)

Taking expectations conditional on the value of X and the value of P (Z̃), we obtain

as in (5)

E[Y |X = x, P (Z̃) = p] = E[Y0|X = x, P (Z̃) = p]

+ E[(Y1 − Y0)|X = x, P (Z̃) = p]p, (11)

noting that E(S|P (Z̃) = p) = P (Z̃) = p by the conditional expectation. From

equation (10) with peer effects, we have

E[Y |X = x, P (Z̃) = p] = xδ0 +Gxγ0 + px[δ1 − δ0] + pGx[γ1 − γ0] +K(p), (12)

where K(p) = E[(U1 − U0|S = 1, P (Z̃) = p]. Letting X̃ = [X GX], equation (12)

can be expressed as

E[Y |X = x, P (Z̃) = p] = x̃ψ0 + px̃ψ1 +K(p), (13)

where ψ0 = [δ0 γ0]′ represents a 2n×k matrix with the first n elements equal to δ0 and

the second n elements γ0, k is the number of parameters in X. ψ1 = [δ1−δ0 γ1−γ0]′
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has a similar interpretation.

The marginal treatment effect (MTE) originally developed by Björklund & Mof-

fitt (1987) and extended in Heckman & Vytlacil (1999,2005,2007b), is defined as the

effect of treatment (attending college) on those indifferent to attending college, given

characteristics x and probability of attending college p i.e.

MTE(x, us) = E(Y1 − Y0|X = x, Us = us), (14)

which Carneiro et al. (2011) show is equal to

∂E(Y |X = x, P (Z̃) = p)

∂p
= MTE(x, p). (15)

We are concerned with the case when US and P (Z̃) are equal, i.e. when an

individual is indifferent to attending college. Individuals with a high value of US

have a high unobserved cost to attending college, and require a similarly high P (Z̃)

to attend college. A marginal increase in P (Z̃) starting from a high value of P (Z̃)

induces those who are less likely to attend college, to attend. Those who are already

attending college will not be affected by this marginal increase in P (Z̃). Therefore

the MTE at a high value of US describes the effect of treatment on those who have a

large unobserved characteristic component, making them unlikely to attend college.

Similarly at low values of US, the probability of attending college only needs to be

low for an individual to attend. This means that a marginal change in P (Z̃) starting

from a low value will not affect those who have a high US and are already unlikely

to attend college. The change in P (Z̃) will only affect those who are likely to attend

college and have a low cost to attending. Therefore tracing the MTE across increasing

values of US shows us the effect of treatment on those who are increasingly unlikely

to attend college. Differentiating (13) with respect to p gives us the MTE.

From this point, we can evaluate the effect of a change in policy, or the effect of a

change in one of our instruments on those induced to attend college. As in Carneiro

et al. (2011) we use the marginal policy relevant treatment effect (MPRTE) to
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evaluate the outcome of a policy on those who are actually affected.

Consider a policy which changes the probability of attending college by an amount

epsilon (Pε = P + ε). The policy relevant treatment effect (PRTE) is defined by

Heckman and Vytlacil (2005,2007a) as the average effect of going from a baseline

policy to an alternative policy for each person who changes treatment due to the

policy. Explicitly this is

E(Y |Alternative Policy)− E(Y |Baseline Policy)

E(S∗|Alternative Policy)− E(S|Baseline Policy)
(16)

The MPRTE is simply the marginal version of this statistic and is found by taking

the limit of the PRTE as ε goes to zero. This ensures that rather than measuring

the number of individuals affected, the MPRTE simply describes the effect on those

who do change treatment. For example consider an increase in the proportion of an

individual’s friends that attend college. This is equivalent to increasing the variable

GS in the college equation, i.e., GSε = GS + ε. The MPRTE measures this effect

as ε goes to 0. Carneiro et al. (2011) find that estimating the MPRTE is equivalent

to taking a weighted average of the MTE across the support of the data. The

appropriate weight for estimating the MPRTE in terms of the MTE in this example

is

hMPRTE(x, us) =
fP |x(us)fv|x(F−1

V |x(us))

E(fv|x(µs(Z))|X)
(17)

such that the MPRTE is equal to

∫ 1

0

MTE(X, us)hMPRTE(x, us)dus. (18)

4 Estimation

4.1 Estimating College Attendance

The first step is to estimate the college attendance model in equation (8). The fitted

probabilities must then be recovered in order to estimate the wage equation and the
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marginal returns to education. The fitted wage will be a function of the decision to

attend college. The college decision model closely follows the setup of Bramoullé et al.

(2009), with the additional complication of a binary dependent variable. Therefore,

we estimate this model, adapting the method of Bramoullé et al. (2009). As in the

spatial econometrics literature, a local within transformation can be used to remove

the unobserved network effect. This involves subtracting from individual i’s college

equation the average of equation (20) over all i’s friends.

(I −G)S∗l = βz(I −G)Zl + βs̄(I −G)GS∗
l + βz̄(I −G)GZl − (I −G)εl (19)

Difficulties arise when attempting to recover the fitted values from this model. As the

matrix G is row-normalised, (I−G) is non-invertible. Therefore, we can only recover

the difference between an individual’s outcomes and their average friend’s outcomes.

The raw fitted values are an integral component in estimating the wage equation

and marginal treatment effect. Therefore, this method of simply first differencing

is untenable. As an alternative, we include a dummy variable for each network.

This will give us an equivalent estimation, with each dummy able to control for the

unobserved components that influence the college decision common to the network.

For this, we use the following equation:

S∗
l = βzZl + βs̄GS

∗
l + βz̄GZl + ηlαl − εl, E[ε|z] = 0, (20)

where ηl is a matrix of dummy variables describing which individual belongs to each

network and αl is a vector of coefficients on the dummy variables.

Perfect multicollinearity stemming from the reflection problem (Manski, 1993)

must also be addressed. Multicollinearity causes problems in estimation and may

produce inconsistent estimates. Bramoullé et al. (2009) propose the following trans-

formation to remove the S∗ matrix from the RHS of the equation:

S∗l = (I − βs̄G)−1(βzI + βz̄G)(I −G)Zl − (I − βs̄G)−1(I −G)εl, (21)
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where the matrix (I − βs̄G) is invertible as βs̄ is less than one.

Bramoullé et al. (2009) indicate that under this transformation, the model is

identifiable as long as I, G, G2 and G3 are linearly independent. This will occur as

long as the network diameter is greater than or equal to 3. The diameter is defined

as the greatest distance between two individuals within a network. A diameter of

three indicates the existence of at least two individuals in the same network that are

neither friends nor friends of friends (have a friendship distance of at least three). In

this case, (G2Zl, G
3Zl,...) can be used as valid instruments for GS∗l . This occurs

indirectly, such that the characteristics of an individual i will influence the outcomes

of their friends, which will in turn influence the outcomes of their friends of friends.

The resulting model in equation (10), with S = 1 if S∗l > 0 and S = 0 otherwise,

can be estimated via a linear probability model using instrumental variables. While

a probit or logit model with instrument variables may be desirable here, the presence

of network effects makes the recovery of the non-linear fitted values difficult, such

that the linear probability model provides more consistent estimates for the values

of S. We may be concerned about fitted values that lie outside the range of [0, 1],

however these only represent a small proportion of the fitted values and can therefore

be trimmed from the sample. This trimming may lead to inconsistent estimates for

those at the extremes of the distribution and must be considered when interpreting

the results.

Under the assumptions of the model, the error terms are i.i.d but need not

be homoskedastic. The 2SLS linear probability model is estimated using W =

[Z GZ G2Z η] as instruments to obtain an estimate for θ̂. The regressors are

Z̃ = [Z GZ GS η] with endogenous variable GS. This estimation results in consis-

tent estimates for the model parameters.

We use the estimated θ’s to determine the predicted value of P (Z̃), i.e. the

probability of attending college for an individual given their individual attributes,

the average individual attributes of their friends, the average college decision of their

friends and the unobserved network effect.
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4.2 Estimating Marginal Returns to Education

Estimation of the wage equation and marginal treatment effects can be achieved

following one of the approaches proposed by Carneiro et al. (2011). The first is

a parametric approach using maximum likelihood. This requires the assumption

of joint normality of (U0, U1, ε) and independence of these error terms from (X,Z).

This assumption is strong and will not hold in most cases, indicating that a semipara-

metric approach may be necessary. In the discussion that follows, the semiparametric

method will be estimated under the more flexible assumption that (X,Z) are inde-

pendent of (ε, U1, U0). Under this semiparametric model, the MTE is identified over

the marginal support of P (Z̃) i.e. the values of P (Z̃) that are observed such that

the distribution of P is greater than zero given observed variables X̃ = [X GX]

and college attendance S. Estimating conventional treatment parameters such as

the average treatment effect (ATE), the treatment effect for the treated (TT) and

the average treatment effect for the untreated (TUT), requires the full support of

P across the interval. If we do not observe this full support of P , then the non-

parametric estimation cannot identify these statistics. These measures do not take

into account heterogeneity of returns. However, the non-parametric estimation can

identify the MPRTE. Estimating the MPRTE occurs on the MTE over the support

of the data, controlling for heterogeneity.

Estimation of the MTE from this point follows a two stage methodology. Firstly,

the Peter M. Robinson (1998) method for estimating partially linear equations is

used to obtain estimates of ψ0 and ψ1. Subtracting the expected value of equation

(13) from itself removes the non-linear component in P . We obtain the following

equation:

Y − E(Y |P (Z̃)) = [x̃− E(x̃|P (Z̃)]ψ0 + p[x̃− E(x̃|P (Z̃)]ψ1 (22)

Estimation is achieved by running kernel regressions of the dependent variable and

each of the regressors on P in order to estimate the expected values in equation (22).

OLS is then run using the residuals from these kernel regressions to determine δ0,
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δ1, γ0 and γ1.

Once we have these parameter estimates, we consider estimating K(P (Z̃)). From

equation (12) we see that

E(Y − X̃ψ̂0 − P (Z̃)X̃ψ̂1|P (Z̃)) = K(P (Z̃)). (23)

From here, a local polynomial regression of Y − X̃ψ̂0 − P̂ (Z̃)X̃ψ̂1 on P̂ (Z̃) is run

in order to estimate the function K(P (Z̃)) and its partial derivative with respect

to P (Z̃).3 The partial derivative is then added to the linear component of equation

(13) in order to estimate the MTE.

Recall that in order to estimate the MPRTE we take a weighted average of the

MTE across the support of P (Z̃). The formula for this weighted average is given in

equation (17). However, the relevant weight is expressed conditional on the value of

X and therefore to determine the MPRTE, after applying the weight, the parame-

ters must be integrated over the distribution of X.4 We can measure different forms

of the MPRTE using different weighting functions and definitions of policy changes.

In particular we consider a policy change that directly increases the probability of

attending college equally for all individuals (Pε = P + ε), a policy which proportion-

ally increases the probability of attending college (Pε = P (1 + ε)) or a policy that

affects one of the instruments used in the treatment equation (Zε = Z + ε). In each

of these cases we will be able to ascertain the effect of peers on policy outcomes.

5 Monte Carlos

5.1 Baseline Model

From this point, we use Monte Carlo experiments to examine alternate network

specifications and conduct sensitivity analyses. This process involves generating

3Fan and Gijbels (1996) recommend using a local quadratic estimator for fitting a first order
derivative. We therefore use a local quadratic estimator with a bandwidth that minimises the
residual square criterion proposed by Fan and Gijbels.

4Since conditioning on X is computationally demanding due to the possible high dimension of
X, as in Carneiro et al. (2011), we condition on the index X(δ1 − δ0) as an approximation.
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data from predefined distributions and estimating the model, enabling us to not only

examine the sensitivity of the model to changes in specification, but also determine

the relative effect of a change in peer effects on the outcome variable. As such we

can explore the role networks play in policy changes that impact the decision of

individuals to receive treatment.

We begin using the specification given in the model section, running N = 1000

simulations with n = 500 observations per simulation. The simulation codes are

developed and run in Matlab, using the codes of Carneiro et al. (2011) as reference.5

To simulate the data, the error terms (ε, U1, U0) are drawn from a joint normal

distribution such that [ε, U1, U0] ∼ N(µε,Σε) where,

µε =


0

0

0

 , Σε =


1 ρ1 ρ0

ρ1 1 ρ2

ρ0 ρ2 1


with ρ = [ρ0, ρ1, ρ2] = [0.2, 0.6, 0.5]. We require the value of ρ1 to be greater than ρ0,

so that the unobserved component of the treatment equation has a greater relation

with the outcome equation for those attending college and the wages are positively

related to the probability of attending college. For simplicity we letZ = [X Z2] be an

N × 2 joint normally distributed matrix, such that Zi ∼ N(0, I2), where the variable

X is the first column and the second column is the instrument for the selection

model, Z2. In this initial specification, we estimate the network graph randomly.

We start by generating four complete networks. The size of the networks are drawn

as a random partition of the sample size n. We construct complete graphs using

the Watts-Strogatz (1998) random graph generation process. A ring lattice graph is

generated with each individual connected to its four closest neighbours (two on either

side). Links are rewired with a defined probability 0.5, such that with probability 0.5

a link is removed and the individual is connected randomly to another individual in

the network. Changing the rewiring probability affects the randomness of the graph,

5The codes (Stata, Gauss, Matlab and R) of Carneiro et al. (2011) are available as part of the
additional materials for their paper on the AEA journal website.
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(a) Baseline: r = 0.5, k = 2 (b) r = 0.2, k = 2

(c) r = 0.5, k = 3 (d) Random Graph: r = 1, k = 2

Figure 1: Watts-Strogatz network graphs

and as a result the diameter of the network. The density of the network can easily

be modified by changing the number of neighbours each individual is initially linked

to. Associated with each of the four networks is a dummy accounting for unobserved

network effects. In Figure 1 we see network graphs across values of the rewiring

probability r and the number of initial neighbours on each side k. Figure 1d displays

a completely random graph corresponding to a rewiring probability of 1.
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We define the initial values of the parameters to be estimated as

[βX , βZ2 , βX̄ , βZ̄2
, βS̄] = [1, 1, 0.5, 0.5, 0.5],

[δ0, δ1, γ0, γ1] = [1, 1, 0.5, 0.5],

α = (α1, α2, α3, α4) ∼ N(0, I4).

The outcome variables S∗ and Y are constructed using these defined parameters and

variables in the model equations. The binary variable S is determined using the

indicator function such that S = 1(S∗). This specification will act as our initial

baseline model.

Note that under this initial specification, we assume that X and GX have an

equal effect on the wage regardless of the decision to attend college. This implies

that, holding all else constant, the sole effect of increasing the value of X and GX

will be a negative proportional reduction in returns. The peer effect in both the

treatment and wage equation is assumed to be exactly half of the individual effect.

Running this simulation and bootstrapping the errors, we obtain a plot of the

MTE across values of US. The MTE is only defined over the support of P (Z̃). Figure

2 displays the density function for the support of P , conditional on the observations

of X. Due to the linear relationship between X and P , we see that at low values of

X, there is a high density of low P values and at high values of X, there is a high

density of high P values. In general, we observe that the support of P covers the

majority of the interval.

We proceed conducting a comparison of the model containing no peer effects

with the baseline model described, utilising the Watts-Strogatz network formation

process. The MTE graphs are presented in Figure 3. Firstly, note that the graph is

downwards sloping. Recall US represents the quantiles of the desire to attend college,

or the unobserved components of the college decision.

Regarding Figure 3a, at low values of US (and high probabilities of attending

college), the returns to attending college are positive, with a maximum return of

17.2% to receiving treatment. At high values of US (and low probabilities of attending
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Figure 2: Support of P conditional on X

college), the returns to attending college are negative, with a minimum return of -

16.5%. The MTE graph therefore takes the desired shape and is roughly symmetric

around zero, accompanying the symmetry of the initial assumptions. Comparing

this with Figure 3b, we see that the initial introduction of networks has little effect

on the scale or shape of the MTE. This similarity should be expected and can be

explained by the specification of zero average network effects and completely random

friendships. Both the size of the networks and the associated unobserved network

components are randomly generated with mean zero, so that the effect of a network

on the treatment and the outcome is, on average, zero. While the values of X and

GX have a positive effect on the probability of attending college, the peer effect GX

is independent of the individual and completely random. Consider a student who

has friends, on average, with high values of the characteristic X, leading to a high

value of GX and increasing the value of P (Z̃) for the individual. The value of US

for which they are at the margin will now increase. The effect of this high value in

GX is to increase the wage additively by a factor of 0.5, proportionally reducing the

return. As GX acts almost identically toX and is independent, random and centred
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(a) No peer effects (b) Peer effects

Figure 3: Baseline graphs of the marginal treatment effect (MTE)

around zero, this small proportional effect on the MTE is negligible. The inclusion

of networks, however, is more noticeable when considering changes in policy.

We examine two types of policies; regular substantive policy changes and marginal

policy changes to the probability of treatment. The marginal policies we consider

are an increase in the instruments Z̃6 by the marginal amount ε and an increase in

the probability of attending college for all individuals both additively (an equal in-

crease in probability for each individual) and multiplicatively (an equal proportional

probability increase for each individual). We also consider the PRTE for increases in

peer related variables, namely, an increase in the proportion of peers that undergo

treatment (GS) by 1% and an increase in the characteristic Z2 by 0.01.

A blanket policy change affecting all individuals will induce a greater number of

people into treatment when networks are present due to the social multiplier effect.

The PRTE and the MPRTE, however, do not examine the number of individuals that

transition into the treatment group, but the returns for those individuals that do so.

Table 1 presents the comparison of the effect of networks on policy changes. We see

that for marginal policy changes, the introduction of networks has a minimal effect on

the MPRTE values, which can be discounted by randomness. However, an increase

in the value of Z2 by 0.01 has a significantly higher impact in the peer effects model.

As the variable Z2 increases, more individuals are enticed into attending college in

the networks model through the influence of peers, both exogenously (through the

6The variables used as instruments in this model are Z̃ = [GS Z2 GZ2 ηl].
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increase in GZ2) and endogenously as the number of individuals, and therefore peers,

attending college (GS) increases. Furthermore, those who are induced into college

by an increase in Z2, on average, gain more in the network model. Those enticed

into treatment are likely to be those with more moderate X and GX values, who

receive higher returns from attending college. This increase in returns is partially

due to the higher proportion of individuals who now receive treatment.

Confidence intervals are not included in this image but can be obtained via boot-

strapping (see Figure A.1). The bootstrap shows us that the associated standard

error is large, so that we cannot determine if the slope is significant for a single

simulation. These results are likely to improve if we increase the value and size of

our initial data.

We must be careful when attempting to draw intuition from these results. In what

follows, analysis is conducted solely at the margin. These returns are not representa-

tive of individuals not at the margin, who may display significantly different returns

to college. Nonetheless, analysis at the margin is desirable, as these individuals are

the ones most likely to be affected by changes in policy.

Table 1: Incorporating peer effects

Policy Change (MPRTE) No peer effects model Peer effects model

Z2 = Z2 + 0.01 0.0925 0.1058

Z = Z + ε 0.1140 0.1179

P = P + ε 0.1081 0.1104

P = (1 + ε)P 0.08550 0.0867

5.2 Alternate Network Models

Network structure can determine the nature and strength of the peer effect. Alter-

ing the density and randomness of the network changes the number of friends an

individual has and how connected they are in the network. Figure 4a demonstrates

the effect of increasing the density of the network on the MTE (k=3 so that each

individual is initially connected to 6 neighbours). Figure 4b shows the effect of de-
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(a) r=0.5, k=3 (b) r=0.2, k=2

(c) Number of Networks=8 (d) Random Network

Figure 4: MTE - Changes in network specification

creasing the rewiring probability to r = 0.2 and Figure 4c the effect of increasing the

number of networks to eight. Figure 4d displays the MTE for a completely random

network, such that r = 1.

There appear to be no major differences in the resulting MTE graphs, such that

the network structure does not have a significant impact on the MTE, given the initial

assumptions. In each case most of the variation can be attributed to randomness.

This is not surprising, given the introduction of networks has very little initial impact

on the MTE.

The effect of changes in network structures on policy are recorded in Table 2.

Again we see negligible differences in the MPRTE values. We see that all network

models outperform the no network model when increasing the value of Z2, consistent

with the established result. Some networks appear to have a stronger effect than

others. The density of the network appears to have no effect on the policy returns.

Increasing the density of the graph narrows the distribution of GX, as the average
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characteristics of friends are drawn closer to zero, reducing the already negligible

effect of networks. Adjusting the rewiring probability appears to influence the returns

to treatment, with the random network displaying the highest return. Increasing

this randomness implies that individuals are more interconnected, increasing the

dispersion and therefore effect of policy in the network.

Table 2: Effect of networks on policy

Policy Change (MPRTE) r=0.5, k=2 r=0.5, k=3 r=0.2, k=2 8 Networks Random Network No Network

Z2 = Z2 + 0.01 0.1058 0.1024 0.1107 0.0978 0.1133 0.0925

GS = GS + 0.01 0.1106 0.1130 0.1091 0.1189 0.1108 -

Z = Z + ε 0.1179 0.1116 0.1135 0.1142 0.1135 0.1140

P = P + ε 0.1104 0.1036 0.1065 0.1062 0.1064 0.1081

P = (1 + ε)P 0.0867 0.0793 0.0842 0.0861 0.0862 0.0855

5.3 Relating Network Formation to Z

Considering again the network structure, the assumption that the network formation

process is unrelated to the values of Z seems unlikely. Furthermore, without correla-

tions between friends, the characteristics of friends of friends cannot be used as valid

instruments in the estimation. There are several ways in which we can construct

networks based upon the observed variables. The simplest method is to compare all

values of X and establish links between individuals if the difference between their

characteristic X lies within a certain bound. If both variables in Z are used, we can

analyse the distance between both variables to establish links, either by taking the

sum of characteristics, or by establishing links with the variables separately. This

process, however, leads to a very particular graph structure with a large diameter,

so that those with high values of X are very far from those with low values of X.

The process is improved by imperfectly defining these links, establishing friendships

with a predefined probability. The number of links (and density of the graph) can

be adjusted by varying the bound on the distance between characteristics. However,

this still implies that all friendship connections occur between those with similar

characteristics, with no randomness occurring in the graph.
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To improve this network formation process, we can adapt the Watts-Strogatz

method. We start by linking all individuals based upon the values of the variables

in X. Individuals are linked to their k neighbours with the closest values of X. We

then destroy links and create new random links with probability r. As in the original

Watts-Strogatz method, increasing r increases the randomness of the graph and in-

creasing k increases the density of the graph. In this case, however, r also determines

to what extent individuals with similar characteristics befriend each other. We refer

to this parameter from now on as homophily, such that a graph with r = 0, links

individuals exactly with those closest to their characteristics X. Such a network can

be described as perfectly homophilic.

The MTE plots for the random and Watts-Strogatz graphs based upon both

variables in Z are found in Figure 5 with policy effects given in Table 3. The results

are presented for networks where links are defined by the sum of the characteristics

in Z and for networks with links defined by either variable in Z.7 In reality, we

would expect a mixture of these two phenomena, such that individuals seek friends

that are strongly similar in a few characteristics and not too opposingly different in

other characteristics. Graphs based on the value of X alone are in the appendix A.2.

Table 3: Linking networks and Z

Policy Change (PRTE) Basic Link, X+Z2 Basic Link X&Z2 Watts-Strogatz, X+Z2 Watts-Strogatz, X&Z2 Random Network

Z2 = Z2 + 0.01 0.0952 0.1136 0.0917 0.1111 0.1133

GS = GS + 0.01 0.1046 0.1184 0.0958 0.1236 0.1108

Z = Z + ε 0.1001 0.1185 0.0949 0.1152 0.1132

P = P + ε 0.0922 0.1099 0.0882 0.1078 0.1066

P = (1 + ε)P 0.0813 0.0983 0.0725 .0875 0.0898

Comparing the Watts-Strogatz graphs and the basic link graphs, we see that

while the scale of the MTE are similar, the shape of the graphs differ. The shape of

the Watts-Strogatz graph bears a greater resemblance to the baseline graph with no

network correlation, explained by the increase in randomness.

Considering the MTE for the network with Watts-Strogatz links in relation to the

7In this case, two friendships are created based on the value of X and two are created based on
Z2.
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(a) Basic Network Link, sum of X,Z2 (b) Basic Network Link, X and Z2

(c) Watts-Strogatz, sum of X,Z2 (d) Watts-Strogatz, X and Z2

Figure 5: MTE - Correlating network formation with Z

baseline model, we see that at high values of US, the negative returns are increased,

while at low values of US, returns are reduced. An individual who has a high positive

value of X and Z2 is likely to be at the margin only for high values of US. With the

introduction of correlated networks, peer characteristics are much more correlated

with one’s own characteristics, leading to high values of GX and GZ2. This increase

in correlation is exaggerated further through the endogenous peer effect, as similar

peers are likely to exhibit the same college decision, correlating GS with the other

variables. With this higher correlation between regressors, the distribution of P (Z̃)

is widened so that there are more individuals with high or low values of P (Z̃) and

less in the centre. Accompanying this increased distribution, the average size of X

and GX at the margin is reduced (values are reduced at high US and increased at

low US). The effect of this is to increase returns for those with a low probability of

attending college (high US), and reduce returns for those with a high probability of

attending college (low US).
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Comparing this to the graphs where networks are determined perfectly by the

values in Z, we see that the size of the MTE is diminished further, with some

distortion at high values of US. This distortion is likely to result from the almost

perfect collinearity of Z with GZ. By introducing some randomness into the network

formation, the contracting effects on the MTE are diminished, particularly at very

high and low values of X.

Regarding the networks where the components of Z are used deterministically,

we see that the range of the MTE expands. When friendships are determined by

either X or Z2, the effect of homophily is reduced. In this case, the X and Z2 values

are treated separately and are therefore not correlated. An individual may be friends

with someone with a highX but low Z2 characteristics, reducing the total peer effect

in this way. While there is a correlation between X and GX, these variables are

independent of the rest of the regressors, such that the effect on the distribution

of P (Z̃) does not differ significantly from the distribution in the randomly linked

network. Acknowledging this, we observe that the network performs similarly to

that of a random network.

In contrast, the summation linked graphs reduce the policy effect in each case.

Those induced into treatment will now, on average, be those with more moderate

negative values of Z, as those with extreme values in Z experience similar peer

effects, pulling them away from the margin. Those affected by policy now receive

less benefit from attending college, decreasing the values of the PRTE and MPRTE.

We see, therefore, that the overall effect of homophily in the Watts-Strogatz

graph is to reduce the spread of the MTE, so that the size of returns is diminished.

Strikingly, homophily also works to reduce the effect of policy. Those with high

probability of attending college will be even more likely to attend college, due to

the similarity of their peers, while those with unfavourable characteristics will be

even less likely to enrol. Those who are influenced to attend college by policy, now

have less favourable characteristics and will therefore have lower returns to attending

college.

Varying the network properties of the correlated graph (Figure A.3), we see that
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as the probability of rewiring increases and the network becomes more random; the

range of the MTE increases, reducing the effect of homophily. When modifying the

density of the graph, the shape of the MTE curve changes. If the probability of

rewiring is kept constant, the effect of lowering the density is to increase the effect of

homophily. As the density decreases, the average number of friendship connections

decreases and therefore the correlation with friend’s characteristics increases. In this

case the scale of the graph is reduced as homophily is amplified.

From here we proceed making comparisons with the three base models discussed;

the model with no networks, the model with peer effects and random friendships

using Watts-Strogatz and the model with networks determined by the sum of the

values in Z, involving homophily. We denote the model with random friendships

Nrand and the model with correlated friendships Ncor.

5.4 Sensitivity Analysis

Varying α

To extract the greatest understanding of the implications of incorporating networks

into the model, we consider the case when the unobserved network correlated effects

have a mean that differs from zero. We consider this in the context of fixed network

sizes so that the number of individuals who experience the unobserved network effect

is constant over time. The results are presented in Figure 6, with MPRTE values

given in Table 4. We can also extract insight into the impact of network sizes by

varying the distribution of people across the networks. Figure 6 plots the MTE

when networks have sizes [200 100 100 100], while Figure A.4 and Table A.1 in the

appendix contain the results for networks of size [300 150 40 10].

Firstly, comparing the MTE across the random and correlated networks provides

clear evidence of homophily reducing the inequality in the MTE, particularly evident

in the networks of size [300 150 40 10].

α is used as an instrument in the treatment equation and therefore has no effect

on the wage outcome. A change in α influences only the probability of attending
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(a) Nrand, α1=[0.1 0 0 0] (b) Ncor, α1=[0.1 0 0 0]

(c) Nrand, α2=[-0.2 0 0 0] (d) Ncor, α2=[-0.2 0 0 0]

(e) Nrand, α3=[0 0.1 0.1 0.1] (f) Ncor, α3=[0 0.1 0.1 0.1]

Figure 6: MTE - Network size=[200 100 100 100]

college, and therefore the distribution of P(Z) compared to US. An increase in the α

values appears to shift the MTE curve upwards at all US. α increases the probability

of attending college for all individuals in that network. As a result, those at the same

margin of US have lower average values of the other regressors, includingX and GX,

so that lower values of X and GX are required for attendance at college. Recalling

that reducing X and GX will proportionally increase returns, we see a small shift

in the MTE corresponding with the change in α. The opposite effect occurs for a

negative α value. These effects are only small and localised to the network that is

affected. With an increase in α for the first network, there will be less individuals in
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network 1 at the margin for very low US values and more at high US values. This

will distort the MTE at the edges of the curve.

The network sizes appear to have little effect, except in defining the number of

individuals subject to the increase in the unobserved component.

Some of these graphs display a slight peak in the MTE. This is a product of

the polynomial modelling and generally appears once the MTE has been shifted. It

indicates a shift in the proportion of individuals undergoing treatment. As in the α

case, this section may be subject to some distortionary effect representing individuals

in networks not affected by the change in α. However, the results on this section of

the MTE curve cannot be taken as deterministic due to the potential trimming of

extreme values and the polynomial modelling.

Table 4 and A.1 describe the policy effects when the unobserved network effects

are varied. In general increasing α leads to a small increase in the MPRTE in line

with the MTE effect. Therefore we see that increasing the environmental effect

induces a greater effect of policy and greater treatment effects for all individuals.

Table 4: Changing the unobserved network effect

Policy Change (MPRTE) Nrand, α1 Ncor, α1 Nrand, α2 Ncor, α2 Nrand, α3 Ncorr, α3 Baseline Ncor

Z2 = Z2 + 0.01 0.1324 0.08399 0.1345 0.0820 0.1448 0.1164 0.0917

GS = GS + 0.01 0.1071 0.0902 0.1071 0.0901 0.0879 0.1101 0.0958

Z = Z + ε 0.1218 0.08801 0.1188 0.0924 0.1193 0.1154 0.0949

P = P + ε 0.1148 0.0811 0.1111 0.0876 0.1114 0.1087 0.0882

P = (1 + ε)P 0.0898 0.0651 0.0906 0.0829 0.0879 0.0932 0.0725

Examining the outcome equation

We next analyse alterations to the specification of the model to test for robustness.

We consider the effect of removing GX from the outcome equation, such that the

characteristics of peers do not affect the outcome. We also consider the inclusion of

the unobserved network components and GS individually into the outcome equation.

GS and GX cannot be incorporated simultaneously in the outcome equation due

to the presence of the “reflection problem” which proves difficult to navigate when
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estimating the nonlinear MTE.

Figure A.5 demonstrates that these specifications dramatically impact the results

of the model. In the case where GS is included in the outcome equation, the MTE

curve becomes solely negative, so that there are negative returns to attending college

for those at the margin. Including the unobserved network components, we find

the curve tends to be condensed. In this model, an increase in the unobserved

component increases both the probability of attending college and the wage by an

identical amount. Those within a network who have the same α value are more

likely to have similar wages, increasing the effect of homophily and ensuring the

change in returns are smaller across the MTE. Some of these specifications prove to

make identification of the MTE difficult. Removing all peer effects from the outcome

equation is especially problematic. We see, therefore, that the model is sensitive to

the inclusion of the peer effect terms in the outcome and treatment equations. This

is indicative of the contrasting roles of the endogenous and exogenous peer effects,

and the interactions between the peer effects and the non-linear estimation.

The policy effects of such specifications are found in Table 5. Most specifications

have little effect on the MPRTE measures despite the impacts on the MTE. The

MPRTE policy changes consider only the effect of policy on a general increase in the

probability of treatment and are therefore invariant to the inclusion of variables in

the outcome equation. The specification does play a role in the effect of non-marginal

policy changes (PRTE). For example, the policy effect of increasing the value of X

for every individual is reduced by introducing new terms into the outcome equation

which increase the scale of wages. Each of these have an intuitive explanation. Re-

moving GX from the outcome equation reduces the size of wages for all individuals,

amplifying the proportional difference between the outcome equations and exagger-

ating the effect of homophily. This explanation is confirmed by comparing the peer

effect for the randomly linked networks, which have a much higher policy effect in

each case.

36



Table 5: Alternate model specifications

Policy Change (MPRTE) Nrand, GX removed Ncor, GX removed Nrand, GS included Ncor, GS included Nrand, ηl included Ncor, ηl included Baseline Ncor

Z2 = Z2 + 0.01 0.0951 0.1077 0.1266 0.076132 0.1430 0.0852 0.0917

GS = GS + 0.01 0.0782 0.0981 0.1171 - 0.1292 0.1050 0.0958

Z = Z + ε 0.1090 0.0953 0.1105 0.093023 0.1236 0.0904 0.0949

P = P + ε 0.1000 0.0888 0.1021 0.084944 0.1159 0.0839 0.0882

P = (1 + ε)P 0.0743 0.0677 0.0808 0.070242 0.0919 0.0654 0.0725

Effects of coefficients

Adjusting the coefficients in the specification enables us to further analyse the perfor-

mance of the model. We consider changes in the coefficients of X and Z in both the

treatment and outcome equations. The results in Figure 7 and Table 6 demonstrate

that the basic structure of the MTE graphs are not affected, with the most significant

change found in the scale of the graphs and changes in the MPRTE estimates.

Notably, increasing the effect of X and GX in the outcome model changes the

shape of the MTE curve. Considering this increase for the non-attendance equation

Y0, the benefits of attending college reduce for those with X and GX values greater

than 0. These individuals are likely to be at the margin for high values of US and in

this case the gap between the wages will decrease. For X and GX values less than

0, returns will increase, as the gap between the wages increases. The MTE therefore

spreads out, particularly given the correlation of X and GX.

Increasing the effect of X and GX in the attendance outcome equation Y1, mod-

ifies the shape of the MTE considerably. The size of the MTE reduces substantially,

and the shape appears to be, for the most part, concave. Following a similar thought

process we see that at high US we expect to see a reduction in returns and at low

US, increased returns.

Figure 7c further decomposes this effect by looking at an increase in the effect of

peers’ characteristics only for those attending college. Under this change, the MTE

still reduces in size but not to the same extent. As in the MTE, the MPRTE values

reduce significantly under these conditions.

In conclusion, altering the coefficients in the outcome equation has a direct effect

on the wage returns. Alterations for the college attendance outcome increase the
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variation in returns at the margin, while alterations for the non-attendance outcome

has the opposite effect.

Turning to the treatment equation, an increase in the endogenous peer effect

slightly reduces the MTE and MPRTE. The effect is identical to an increase in α,

but is more pronounced due to the correlation of GS with Z and GZ associated

with homophily, diminishing the MTE over US. Decreasing the coefficient of X or

Z2 reduces the effect of homophily for the MTE and MPRTE. As before, those with

positive values of X will now have a smaller value for P (Z̃). The value of X at the

margin is shifted, spreading out the values of the MTE .

When considering changes in the coefficients of the instruments in the treatment

effects model, the effects on the MTE and MPRTE measures are smaller. The effect

is on the distribution of P (Z̃), rather than directly impacting wages. However, the

effects on policy changes are more pronounced, determining the scale and character-

istics of the individuals that are induced into treatment.

The MPRTE, in this case, is somewhat more informative. While the MTE de-

scribes the returns to college across all quantiles of the desire to attend college, the

MPRTE weights the policy response for those induced into college attendance. We

see that changing the coefficient of GS marginally reduces the effect of policy, while

decreasing the coefficients of Z and GZ has a positive effect on the MPRTE.
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(a) Ncor, δ′0 = [1.5 0.8] (b) Ncor, δ′1 = [1.5 0.8]

(c) Ncor, δ′′1 = [1 0.8] (d) Ncor, βS̄ = 0.8

(e) Ncor, β′
Z = [0.5 1], β′

Z̄
= [0.2 0.5] (f) Ncor, β′′

Z = [1 0.5], β′′
Z̄

= [0.5 0.2]

Figure 7: MTE - Altering model coefficients

Table 6: Coefficient specification

Policy Change (MPRTE) Nrand, δ
′
0 Ncor, δ

′
0 Nrand, δ

′
1 Ncor, δ

′
1 Nrand, δ

′′
1 Ncor, δ

′′
1 Baseline Ncor

Z2 = Z2 + 0.01 0.0809 0.0520 0.1183 0.0595 0.1152 0.0894 0.0917

GS = GS + 0.01 0.0911 0.0043 0.1209 0.0925 0.0896 0.0832 0.0958

Z = Z + ε 0.0883 0.0574 0.1236 0.0612 0.0953 0.0774 0.0949

P = P + ε 0.0853 0.0549 0.1144 0.0592 0.0890 0.0726 0.0882

P = (1 + ε)P 0.0648 0.0452 0.0935 0.0483 0.0724 0.0582 0.0725

Policy Change (MPRTE) Nrand, βS̄ = 0.8 Ncor, βS̄ = 0.8 Nrand, β
′
Z Ncor, β

′
Z Nrand, β

′′
Z̄

Ncor, β
′′
Z̄

Baseline Ncor

X = X + 0.01 0.0950 0.0822 0.1589 0.1147 0.0899 0.1030 0.0917

GS = GS + 0.01 0.0908 0.0727 0.1579 0.1163 0.1090 0.1116 0.0958

Z = Z + ε 0.0986 0.0867 0.1606 0.1189 0.1097 0.1075 0.0949

P = P + ε 0.0914 0.0804 0.1539 0.1128 0.1026 0.0995 0.0882

P = (1 + ε)P 0.0731 0.0631 0.1163 0.0883 0.0842 0.078 0.0725
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Effects of distributions and correlations

Turning to the distributions and correlations of the data, we note that the variables

X and Z2 in Z are likely to have a high correlation due to the influence of homophily

and conformity. As an extension of this, the unobserved network component may be

correlated with X and Z2, such that the network effects are similar to the charac-

teristics observed within a network. We see that increasing the correlation between

X and Z2 will reduce the size of the MTE, pulling it towards zero. An increase

in this correlation will lead to a greater degree of homophily such that individuals

with high X and therefore Z2 are friends with others with high X and Z2. The

distribution of P (Z̃) will become much wider, so that there are less individuals in

the centre, and more at the extremes of P (Z̃). As such, the effect on the MTE

builds on the effect of homophily, further compacting the MTE curve. All policy

effects are diminished with this correlation. An increase in the instruments now has

a smaller effect for those induced into treatment. On average, those with X values

that are slightly negative will be the ones transferring to the treatment group more

often. Those with a high X are likely to be in the treatment group already due to

the correlation with Z2.

When these variables are correlated with the unobserved network effects, the

change in MTE becomes difficult to estimate. In fact, the model is not robust to a

high correlation between X, Z2 and α. These parameters almost perfectly predict

the outcome S, making estimation difficult. When estimation is achieved we see that

the policy effects are very close to zero for random networks, and meaningless for

the correlated networks.
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(a) Ncor, corr(X1,X2)=0.5 (b) Ncor, corr(X1,X2)=0.9

(c) Ncor, µ(X) = µ(α) (d) Ncor, µ(X) = µ(Z) = µ(α)

Figure 8: MTE - X,Z and α correlated

Table 7: X,Z and α correlated

Policy Change (MPRTE) Nrand, corr(X1,X2)=0.5 Ncor, corr(X1,X2)=0.5 Nrand, corr(X1,X2)=0.9 Ncor, corr(X1,X2)=0.9 Baseline Ncor

Z2 = Z2 + 0.01 0.0869 0.0568 0.0943 0.0641 0.0917

GS = GS + 0.01 0.1237 0.0654 0.0936 0.0699 0.0958

Z = Z + ε 0.1190 0.0723 0.0922 0.0672 0.0949

P = P + ε 0.1099 0.0657 0.0856 0.0610 0.0882

P = (1 + ε)P 0.0905 0.0545 0.0692 0.0493 0.0725

Policy Change (MPRTE) Nrand, µ(X) = µ(α) Ncor, µ(X) = µ(α) Nrand, µ(X) = µ(Z) = µ(α) Ncor, µ(X) = µ(Z) = µ(α) Baseline Ncor

Z2 = Z2 + 0.01 0.0561 -0.0699 0.0218 0.962598 0.0917

GS = GS + 0.01 0.0094 -0.3186 0.0259 28.762337 0.0958

Z = Z + ε 0.0425 -0.0515 0.0235 1.349076 0.0949

P = P + ε 0.0388 -0.0490 0.0034 37.822344 0.0882

P = (1 + ε)P 0.0543 -0.0574 0.0211 4.235802 0.0725

Correlating the error terms, the results are reported in Figure 9 and Table 8.

These correlations play a pivotal role in determining the shape and results of the

model. As the unobserved component US of the college decision determines the

probability of an individual attending college, understanding the relation between

ε, U0 and U1 is primordial. Altering the correlation between the error term in the

treatment equation and the errors of the outcome equation (ρ0, ρ1), we see that when

the correlation with U0 increases, the MTE reduces and loses its shape. When the
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correlation with U1 decreases, the MTE becomes very small, retaining its downward

slope. When ρ0 and ρ1 are similar, the change in returns to education fall away. Indi-

viduals receive a similar wage regardless of whether they go to college. Furthermore,

the probability of attending college, reflected in US will not have differing effects on

wages. The only variation in the MTE and MPRTE will occur due to the value of X

which plays a role in both outcome equations. This assumption does not give us the

desired shape of the MTE graph. In both cases, the policy effects are accordingly

greatly reduced. The model is therefore not robust to these changes in the error

correlations. In both cases, making the correlations similar has adverse affects on

the MTE. Due to the important role the unobserved components of the treatment

equation play in determining the MTE and MPRTE, changing these correlations

has a large impact. Altering the correlation between the error terms U0 and U1 is,

however, of small concern, not having a substantial impact on our results.

(a) Ncor, ρ0 = 0.5 (b) Ncor, ρ1 = 0.2

(c) Ncor, ρ2 = 0.1 (d) Ncor, Baseline

Figure 9: MTE - Correlated error terms
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Table 8: Correlated error terms

Policy Change (MPRTE) Nrand, ρ0 = 0.5 Ncor, ρ0 = 0.5 Nrand, ρ1 = 0.2 Ncor, ρ1 = 0.2 Nrand, ρ2 = 0.1 Ncor, ρ2 = 0.1 Baseline Ncor

Z2 = Z2 + 0.01 -0.0650 0.0315 0.0135 0.0118 0.0910 0.0897 0.0917

GS = GS + 0.01 -0.0174 0.0261 0.0249 0.0122 0.1207 0.0937 0.0958

Z = Z + ε 0.0631 0.0282 0.0108 0.0102 0.1130 0.0915 0.0949

P = P + ε 0.0593 0.0241 0.0089 0.0093 0.1056 0.0852 0.0882

P = (1 + ε)P 0.0603 0.0309 0.0113 0.0079 0.0823 0.0694 0.0725

5.5 Policy Effects

Understanding the structure of peer effects allows us to now consider the important

policy implications of networks. As seen, there is significant evidence of the presence

of a social multiplier effect in the model setup. So far, we have only interpreted a

policy change as affecting all individuals in our model. However, policy is commonly

individual specific such that the policy only affects some people, or has a differing

impact on individuals. To consider the effect of an individual specific policy, we set

up the policy vector pol = [p1 p2 ... pN ] and consider the effect of a policy that has

the effect P = P +(pol+X)βX +G(pol+X)βX̄ (an increase in the characteristics X

for some individuals only). We can define a change in the number of peers receiving

treatment similarly. The results are presented in Table 9. We see that the effect

of a localised policy is significantly higher than a general one. Those that enter the

treatment group as a result have much greater returns. The returns for those who re-

ceive treatment due to the increase in characteristics of a few friends are greater than

the returns for those who receive treatment because all friends have more favourable

characteristics. One factor driving this is that fewer individuals are affected and

receive treatment, with these individuals being more likely to obtain greater benefits

from the treatment. A policy affecting one network only has a reduced effect due to

the level of homophily and is similar to the effect for all individuals.

Table 9: The effect of localised policies

Policy Change (MPRTE) All individuals Every 5th individual First Network Only

X = X + 0.01 0.0917 0.1326 0.0917

GS = GS + 0.01 0.0958 0.1492 0.0873
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6 Conclusion

The effects of networks on policy implications are twofold in such a treatment model.

Networks present a social multiplier such that the effect of policy on one individual

is spread to their peers and subsequently throughout their network. This policy may

therefore induce a greater number of individuals into treatment than first targeted.

Given that the number of individuals induced into treatment increases, it is natural

to consider the benefits to these individuals of receiving the treatment. Networks

play a key role in determining who receives treatment.

At first glance the initial addition of networks, with no assumptions on the net-

work, has little effect on policy. However, once this initial result is broken down

and the network model augmented, we find that networks do in fact contribute in-

trinsically to the benefits of treatment. Firstly, if the characteristics of peers are

significant in defining not just treatment, but also outcomes, the effect of treatment

and policy increases with the introduction of networks.

Furthering this analysis, we have found that homophily is a notable player in the

interaction of networks with policy. Homophily establishes friendships defined by

similar characteristics. An increase in this homophilic effect is shown to diminish the

effect of policy and the role of networks in policy. If individuals relate only to those

with similar characteristics, they have little influence on those with dissimilar char-

acteristics. Those more likely to be in the treatment group will be linked to others in

the treatment group, benefiting those who are already receiving treatment. However

those not receiving treatment are likely to have friends with less desirable charac-

teristics who also do not receive treatment. The outcome for these individuals from

receiving treatment is significantly reduced due to the less favourable characteristics

of their peers.

We have found that policy in our model becomes most effective when the proba-

bility of attending college is increased, without influencing the wage of the individual.

To maximise the effect of policy, positive environmental effects should be encouraged,

impacting the returns of all individuals and ignoring the negative homophily effects.
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Additionally, increasing the exogenous peer effect leads to increased positive out-

comes, such that encouraging positive characteristics in peers has a significant social

multiplier effect.

Optimal networks, in terms of positive policy and educational returns, are net-

works characterised by high density and high levels of randomness. Increasing the

number of friends and the randomness of the network formation both work to reduce

the negative effects of homophily.

In conclusion, networks are found to generally hold a positive role in education,

increasing the effect of policy and promoting the returns to treatment. Homophilic

relationships diminish these initial returns, to the extent that the benefit to these

networks is in fact minimal.

As demonstrated, involving the exogenous, endogenous and correlated effects

in the educational treatment model must be managed carefully. The non-linear

estimation of the treatment effects model is sensitive to the specification of these peer

effects within the treatment and outcome equations due to the complex interactions

of the components of peer effect with the estimation strategy. Nevertheless, by

considering the nature of each form of peer influence, we establish the fundamental

role peer effects play in the returns to education, and the flexibility of the network

model when brought to the existing econometric literature.

Incorporating peer effects into a treatment effects model has numerous applica-

tions. Most obviously we can consider the effect of peers on the returns to attending

college, the context around which this paper is discussed. Similar settings may be

found whenever we consider the role of peers in making a binary decision. For exam-

ple we could consider the effects of peers on the decision to smoke, take high school

mathematics or get married, investigating the outcomes and the role of networks in

each case. The treatment effects model is robust to the addition of networks and

provides a vehicle through which the complex influences of peers can be explored.

This paper has demonstrated this interaction, drawing out the significant impact of

exogenous, endogenous and correlated peer effects on the treatment model, treatment

effects and policy.
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Network models such as those proposed by Bramoullé et al. (2009) and Goldsmith-

Pinkham & Imbens (2013) hold important potential when considering policy and

optimal outcomes for individuals. The results of this paper demonstrate that these

models, when integrated with existing economic research and econometric methods,

allow us to consider carefully the interrelated and complex networks which are fun-

damentally embedded in the way we interact. The integral role of networks and peers

must therefore be fully contemplated when analysing critical decisions of individuals

and evaluating key policy proposals.
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Appendix A

Additional Figures and Tables

(a) MTE - no networks (b) MTE with networks

Figure A.1: MTE - Bootstrapped errors
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(a) Perfect links with X (b) Imperfect links Prob(link)=0.8

(c) Watts-Strogatz correlated with X

Figure A.2: MTE - Networks dependent on X

(a) Correlated network with k=1 (b) Correlated network with p=0.2

(c) Watts-Strogatz p=0.5,k=1 (baseline)

Figure A.3: MTE - Correlated network
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(a) Nrand, α = [0.2 0 0.2 0] (b) Ncor, α = [0.2 0 0.2 0]

(c) Nrand, α = [0 0 0.2 0.2] (d) Ncor, α = [0 0 0.2 0.2]

(e) Nrand, α = [−0.2 0.3 − 0.3 0.1] (f) Ncor, α = [−0.2 0.3 − 0.3 0.1]

Figure A.4: MTE - Network size=[300 150 40 10]

Table A.1: Network size=[300 150 40 10]

Policy Change (MPRTE) Nrand, α = [0.2 0 0.2 0] Ncor, α = [0.2 0 0.2 0] Nrand, α = [0 0 0.2 0.2]

Z2 = Z2 + 0.01 0.0951 0.1077 0.1266

GS = GS + 0.01 0.0782 0.0981 0.1171

Z = Z + ε 0.1090 0.0953 0.1105

P = P + ε 0.1000 0.0888 0.1021

P = (1 + ε)P 0.0743 0.0677 0.0808

Ncor, α = [0 0 0.2 0.2] Nrand, α = [−0.2 0.3 − 0.3 0.1] Ncor, α = [−0.2 0.3 − 0.3 0.1] Baseline Ncor

0.076132 0.1430 0.0852 0.0917

0.084032 0.1292 0.1050 0.0958

0.093023 0.1236 0.0904 0.0949

0.084944 0.1159 0.0839 0.0882

0.070242 0.0919 0.0654 0.0725
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(a) Nrand, GX removed (b) Ncor, GX removed

(c) Nrand, GS included (d) Ncor, GS included

(e) Nrand, ηl included (f) Ncor, ηl included

Figure A.5: MTE - Alternate model specifications
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