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ABSTRACT

Considerations of the number of labelling operators
in a general state labelling problem imply that for two-
rowed irreducible representations of U(N), labelled
[p,q,o,..,o], just one additional commuting labelling
operator, A , is required for the solution of the U(N)> O(N)
state labelling problem. A detailed investigatiog of the
U(N)D O(N) reduction via tensor representations leads to a
proposal of an integral label 2 , implying a non-orthogonal
labelling scheme. A simple U(N)> O(N) branching theorem
for two-rowed representations is formulated in terms of 2.

The additional labelling operator A, with eigen-
value A, is to be defined implicitly by an equation of
the form f(A, D, ) = °, where f is a polynomial in/\;
the additiomal O(N) invariants ® in the representation
subduced by U(N) [p,q,o,..,o], and other known labels and
invariants. The O(N) invariants, which are cubic and
quartic in the generators of U(N), are discussed. Tech-
niques develoéed by Green and Bracken(l) for the U(3)>2 s0(3)
problem are used to evaluate the single independent cubic
invariant, and it is shown how this is used in obtaining
the desired implicit operational definition of A

A cubic characteristic polynomial identity, satisfied
by the generators of U(N) in two-rowed representations, is
also found using these techniques.

Some possible physical applications of the U(N)> 0(N)

state labelling problem are briefly discussed.
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1. INTRODUCTION

Many problems in different fields of physics can
be viewed in a more abstract way as particular cases of
certain general problems in group representation.theory.
Of this kind is the state labelling problem, in which it
is required to find commuting labelling operators whose
common eigenstates specify a basis for an irreducible
representation of a group G, in such a way as to exhibit
its irreducible contents as a representation of one of its
subgroups, Go. Such state labelling schemes must take
account of the circumstance that a particular irreducible
representation of G° may occur multiply within a given
irreducible representation of G; the labels to be defined
must distinguish between such equivalent representations,
and remove the degeneracy. This is the case for the state
labelling problem to be studied, that of U(N), the group
of NxN unitary matrices, and its subgroup O(N), the group
of NxN orthogonal matrices.

In Sec. 1.1 is given a general discussion of the
irreducible representations of U(N) and O(N), and of the
counting of state labelling operators. In Sec. 1.2 some
pﬁysical applications of the U(N)> O(N) state labelling
problem, are discussed, together with solutions which have

been proposed in previous work.



1.1 Irreducible Representations and Abstract Bases

Irreducible representations of semisimple Lie groups
are characterised by their highest weights, the components

-

of which coincide with the maximum eigenvalues taken by
certain of the group generators in the representation(z).
In the case of U(N), the irreducible representations are
labelled &1, S orls pN], where the p, are nonnegative

(3)

integers satisfying

Ph2Pa> - pyo» Py o. ()
In the case of O(N), the irreducible representations are
labelled (41, I quQJ)’ the square brackets denoting
integer part, where the ei are nonnegative, and either all

integers or all half-integers, Satisfying(4’5’6)

B2 &% - dyy00- (2)

The corresponding labelling operators having these
eigenvalues in the irreducible representation, are denoted

Pl’ eees P and Ll’ 5 Wy L[N/ﬂ , for U(N) and O(N),

N’
respectively. These labelling operators are given in
terms of a complete set of invariants, which are known
polynomials in the group generators. For example, in the

case of 0(3), the total angular momentum operator L is

defined in the familiar way through

L: * L:, s L, = L= L(L+1) (3)



Sec. 1.2 shows, for the particular case of U(N)
and O(N), the physical significance of the general G D c°
state labelling problem of finding a complete set of
commuting operators, whose common eigenstates provide a
basis for the carrier space of a representation of G, such
that the subduced representation of ¢° is in completely
reduced form. The number of labelling operators required
for a general abstract basis of G may be determined as
follows(7). Let the group manifold of G have dimension
n, so that elements of the group can be specified locally
by coordinates (¢',%%, - ,%"). The matrix elements
<P IUP> = <¢’ju(s’ ---,$") >, of group transformations with
respect to abstract basis vectors ¢,¢’ in a representation
U of G, provide a system of independent functions of n
variables (which are orthogonal in a unitary representation),
which therefore require n labels for their specification.
Now the labellimg operators specifying the irreducible
representation will provide m such labels, where m is the
rank of the group (the dimension of the Cartan sub-algebra).
The remaining (n-m) labels will distinguish functions within
the same irreducible representation, with }(n-m) labels
associated with the rows, and }{(n-m) with the columns, of
the matrix elements. The abstract basis vectors will
therefore require m+i(n-m) = }{(n+m) labels.

For U(N) and O(N), such abstract bases, with the
requisite number of labelling operators, are the Gel'fand

bases. For the case of U(N)(S), the labels are those



specifying the irreducible representation of U(N), and of
its subgroups (U(n), 1 ¢ n & N, into which the given
representation decomposes upon restriction, according to

the chain
UN) D U(N-D2 - 2U(n) 2 U(n-1)> --- 2U@)2U(), (4)

The labelling operators commute, and are Hermitian. The
corresponding system of common eigenstates (the abstract
basis) 1is therefore orthogonal. The labelling scheme 1is
nondegenerate, for a particular irreducible representation
of U(n-1) occurs at most once within a given irreducible
representation of U(n). It is complete, for irreducible

representations of U(l) are one—-dimensional. The abstract

basis vectors are denoted

O
Nl

3 (5)

N et
Pa Pt
where column n specifies the irreducible representation
[p?, B e 0 pz] of U(n), and where all values of the labels,
satisfying the inequalities

SR S S A 2 N (6)

6ccur in the basis.
(4,5) ' . .
For the case of O(N) , the Gel'fand basis 1is

constructed according to the chain



O(N)2O(N=1)2 2 O(n)>-- 2> 0(3) o So(2). (7)
and has similar properties to the above U(N) basis. The
abstract basis vectors are denoted )

2 o
eN ‘eN—l
2 "2 2:'24'-
ee) (8)
- AN
N N-l
%3 Co-va

where column n specifies the irreducible representation

n K n )
(31, ooy z[n/ﬂ ) of O(N), where the labels are either all
integers or all half-integers, and where all values of the

labels, satisfying the inequalities

2n 2 2
L7 % & L7y 2 822 8 5 o, 2¢nsfug],

in- - 2
y L7 20 s s ey Gy ) 26meid,

3
£, » |€4]> o, (9)
occur in the basis.

The numbers of labelling operators for the Gel'fand
bases of U(N) and O(N) agree with those prescribed by the
counting procedure outlined above. For U(N) and O(N) the

dimension, rank and number of labelling operators are

n m i(n+m)
UN) N2 N IN(N) C10)

O(N) {N(N-Y) NA] [nra)[n+1/a]



The abstract basis in the U(N) D O(N) state
labelling problem is associated with the non-canonical

chain
UMN) 2 O(N) > O(N-1) > - - - 0o(3)2 S0(2) (1)

However, the first link of the chain, the U(N) o O(N)
reduction, is degenerate (examples are given in Secs. 2.4
and 2.5). Hence additional labelling operators, denoted
Ay, Ags which commute with the other labelling
operators of this chain, and amongst themselves, must be
introduced, to distinguish between equivalent irreducible

representations of O(N). The abstract basis vectors will

be denoted

R
A 8
)1
] 2 (12)
. ?{_
hy
where 2,,2;,---,d; are the eigenvalues of ANy A,

The number § of additional lables required in the general
¢ o G° state labelling problem can be determined from the

requirement
L(nem) = m +f + $(n°+m°), (13)
o= glnomontom, (1)

where no, n° refer to G°. For the U(N) © O(N) state

labelling problem; from Eq. (10),



f o= F(N*-N-2NA]) (15)

the first few values of which are

O 1 234 5 6% -+ N N+
0 001 2 4 69 - 4f &£ | (16 )

- Z
H

Of primary interest in the following will be a class
of irreducible representations of U(N) called here "two-

rowed", that is, of the form

[pisPa,0,--+0] = [P,,P,,,O“"'] =[p.qa]. (7))

The subduced irreducible representations of O(N) will then

also be two-rowed, of the form

(‘ely‘elso" : '50) = (’el"eu 0[“’;]-2) = (‘t;m)- ( le )

The corresponding Gel'fand patterns,

‘e N zN-l
m
: '14
, . msﬁg* . (19)

contain, respectively, 2N-1 and 2N-4 nonvanishing labels.

2
The number f() of additional nonvanishing labelling opera-
tors, required in the case of two-rowed representations, is

therefore given by

an-1 = 2+ §F 4 (2n-4), (20)



that is, only a single nonvanishing labelling operator A
is required.

In this respect, the U(N) D 0(N) state labelling
problem for two-rowed representations is similar.to the
ancient one of U(3)> 0(3) where, again, only a single
additional labelling operator is required; however a
considerable generalisation is obtained by allowing
arbitrary N.

Green(z) has shown that the matrix of generators of
U(N) satisfies a certain characteristic polynomial identity
of degree N in an irreducible representation. The restric-—
tion to two-rowed representations effectively reduces the
rank of the algebra. Correspondingly, it is shown in
Sec. 4.2 that the matrix of generators of U(N), in two-rowed
representations, satisfies a third degree characteristic
polynomial identity, which proves to be simply a factor
of the general polynomial.identity.

By the same reasoning as led to Eq. (20), if omnly
r-rowed irreducible U(N) répresentations are considered,

then at most
) _ (re1) ]
TR TI(E) IR AT M ( 21 )

additional nonvanishing commuting labelling operators are
required. Also, thefe should exist a characteristic
éblynomial identity of reduced degree (r+l) for the matrix
of U(N) gemerators.

The abstract basis vectors for two-rowed irreducible



representations U(N) p,q will be denoted

P 'c L““
q‘ m MN-|
0 0 o £
oo o — P A( ) ’ (22 )
N . . ¢ m
o o o
where A is the eigenvalue of A . The irreducible represen-

tations of O(N), occurring in the reduction of U(N)[p,q]+0(N),
will be denoted (p,q;A 3 %2,m) or (A ; 2,m),

A suitable choice of the label A is proposed in
Sec. 2.3 from an analysis of the tensor representations.

A simple U(N)> O(N) branching theorem in this scheme 1is
also derived. A proves to be integral in the range

0¢ 2\ 5 p, while the bounds of (&+m) and m are simply
related to p,q, and A .

The additional label A here proposed has a natural
meaning in irreducible tensor representations of U(N).
However, in order to ensure a completely repregentatioan
independent formulation, and for physical applicatibné,’it
is necessary to give an abstract definition of the corre-
sponding labelling operator A . Although this cannot be
done explicitly in terms of the U(N) generators, it is
possible to provide an implicit operational definition,

of the form

fA,0,--) = o, (23)

where f (Sec. 4.5) is a polynomial in A , and other known

labelling operators and invariants (compare Eq. (3)).
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Chs. 3 and 4 are devoted to the derivation of such an
equation. The question of the uniqueness of such a defi-
nition is not pursued in the following.

A theorem proved by Racah(7) in discussing the
U(3) O 0(3) state labelling problem, gives important
information about the operator A , if it is assumed to be

valid in general. The result is that, if the state label-

ling scheme is orthogonal, then the diagonal matrix elements
CAIAND) L KAlyX Y A= (24)

in this ,basis of certain indepeﬁdent 0(3) invariants %x , ¥ ,
cannot be polynomials in A . HOWe;er, this conclusion 1is
contradicted by the evaluation in Sec. 4.4 of what is
essentially the cubic invariant x (apart from a term
independent of A ). Hence, the state labelling scheme

here proposed is non-orthogonal, and the operator A is non-

Hermitian. Secs 4.4 shows in addition that the selection
rule
AA = o, =1 ’ (25)
(7)

investigated by Racah as the simplest non-orthogonal
case, is satisfied in the scheme proposed.

The U(N) D O(N) state labelling problem sometimes
appears in applications instead as U(N) > SO(N), or SU(N) >
éO(N), where SU(N) and SO(N) are the groups of NxN uni-

modular unitary and otthogonal matrices, respectively.

With appropriate modifications, a solution of the U(N) > O(N)
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state labelling problem will also provide solutions of
these other problems.

Irreducible representations of SU(N) are labelled
[Pl""’pN—l] s, where the p; are nonnegative 1nteg§rs

satisfying

bo>» by2 -- - 3 Py, > O. (26 )

The irreducible representation U(N) [pl’pN""’pN—l’pN]
(8),

reduces as

U(N)EP,,-", Pu-l,Pu] Y 5‘:’(”) = SQ(N)[PFPN:'". PN-V'PN] i (27 )

Irreducible representations of SO(N) are labelled
(@,,%£,,+, Lu21) , where the £; are either all integers

(9)

or all half-integers, satisfying

£, L% -+ » Lpaal » 0 (W odd ),

4% 2,% - » WUl > o (Nevwen), (28)

The irreducible representation O(N)(£,,8,, : - - , Ly

reduces as(3’5)

ON) (L, -+, Lpway) ¥ SON) = SON) (£~ Luis1). (N 0dd)

O(N) &,:-, o)lr So(N) = So(N)(&,,---,0) (Neaven, e[ﬂlz]=°)
o) (L., -+ -, 8puny) 4 SO(N) = So(N) (€, *".2p3) (Neven,

@ so(N) (2,,- -~ €unl), 2[../1]#0) Y

The abstract bases for the U(N) > SO(N) and
SU(N) o SO(N) state labelling problems are associated with

the chains



12.

U(N) > So(N)>SO(N=-1) > -+ + D>So(s) > S0(2) , (30)
SU(N) o So(N) o SO(N=1) @ - - - 2 80(3) 2 So(2) ,
(31 )
respectively. The abstract basis vectors are given by

Eq. (12), where now the labels of column n specify an
irreducible representation of SO(n), as in Eq. (9), and

satisfy the inequalities

n+y 1 n+t 2
A T T A T i 2 - IN

4&2;“ 5 L!n-! 5 12;\ > P 'z ‘e:..::‘ » L

]
T

I A (32)

In the case of U(N) o SO(N), the first 1link in the

subgroup chain, Eq. (30), can be expanded as

U(N) © O(N) > so(N). : (33)

Thus, in view of Eqs. (29), the additional labelling
operators A for the U(N) > O(N) state labelling problem,
will also remove the SO(N).degeneracy in the case of

U(N) > SO(N). '

In the case of SU(N) > SO(N), the irreducible repre-
sentation SU(N) Epl,...,pN_l,OJ , with the same SO(N) con-
tents., Hence the problem reduces to one of U(N) = SO(N).

Finally, from these observations, and the fact that

the diagram

U(N) — o)

U U (34 )

SU(N) —— SO(N)
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commutes, in the sénse of subduced representations, it
should be remarked that the U(N) > O(N) state labelling
scheme, here proposed for two-rowed representations, can
be considered as an U(N) o SO(N) state labelling scheme
for the special class of irreducible representations of
U(N) having N rows, of the form [p, q, 8, 8, «+.5 8] ,

since
UN)[p.a,s, - -.5] ¥ SO(N) = UWN)[p-s,q-5,0,-+-,0]¢ So(N). (35)
In particular, the complete U(3) > S0(3) state labelling

problem.can be treated.

1.2 Physical Applications

Perhaps the most studied orthogonal groups are
S0(3), the group of rotations of three-dimensional Eucli-
dean space, and 0(3), which includes the reflections.
The first applications of thg U(N) o O(N) state labelling
problem concerned this case.

Elliott(lo)

pursued the .question of the appearance

of rotational band structures in certain nuclear shell

model calculations (involving oscillator Hamiltonians),

which agreed with rotational model predictions and certain
observed nuclear spectra. This indicated a classification

qf states should be sought using as a label the total

angular momentum, £ , of states arising as mixtures from

two or more degenerate levels, with angular momenta L., £y 500

In particular, for simple harmonic oscillator levels, the

degeneracy being asscciated with the U(3) symmetry of the
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harmonic oscillator Hamiltonian, the U(3) ® S0(3) state
labelling problem arose. A whole number label,
essentially the A of Sec. 2.3, was proposed, but this

did not appear as the eigenvalue of any operator.

(11)

Bargmann and Moshinsky later considered the
N-particle simple harmonic oscillator with a quadrupole-
quadrupole interaction. In order to specify a complete
set of constants of the motion an invariant had to be

found commuting with the U(3) and SO(3) invariants, thus
solving the state labelling problem. A Hermitian operator,
with nondegenerate eigenvalues, was written down explicitly
in terms of the generators; however the eigenvalues were
in general irrational, and could only be found by solving

a system of linear equations (agreeing with the theorem of
Racah concerning orthogonal labelling schemes, Sec. 1.1).

(12)

Moshinsky and Syamala Devi considered the

U(3) © S0(3) state labelling problem in the context of
fractional parentage coefficients, in building states of
definite orbital angular momentum and symmetry of N identi-
cal, noninteracting particles, from those of N-1 particles.
Again an integral label was introduced, which did not
appear as an eigenvalue of any operator. It was however
related to certain polynomials in operators creating the
Pasic states in the representation from a vacuum state.

By this means the transformation .coefficients between the
canonical U(3) basis and the non-orthogonal basis could

(3)

be calculated. More recently Louck and Calbraith
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have used an U(N) o SO(N) embedding as a means of con-
structing such N-particle states (realised as homogeneous
polynomial solutions of Laplace's equation in N dimensions).

'Hughes(13) has given an algorithmic solution of
the U(3) > SO0(3) state labelling problem, in an orthogonal
basis.

The general state labelling problem for the case
N=4 is of importance in relativistic applications, in the
form U(3,1) > 0(3,1), where 0(3,1) is the group of Lorentz
transformations of Minkowski space. (In the analysis of
finite limensional representations, which will be studied
in the following, it is necessary only that the metric
tensor be nonsingular; no particular signature need be
specified.) Thus suppose a physical description in terms

1)y,

of quantities of the form (compare Green and Bracken

a b <

tAFV"' =tat»tv"'s("') (36)

The four-vectors &, could be particle space-time co-
ordinates, momentum operators, Y matrices, and so on;
S is a given scalar function of the Eu . The temnsors
tapv", may be regarded as belonging to a tensor repre-
sentation of U(3,1), whether or not this is present as
a symmetry group. The analysis of the t*#??' into
irreducibie representations of 0(3,15.may therefore be
made by firstly projecting out the irreducible U(3,1)
representations, and then using the solution of the

U(3,1) > 0(3,1) state labelling problem to project further
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on to the irreducible 0(3,1) constituents. For example,
if A is an 0(3,1) labelling operator, the projection on

to the subspace labelled by its eigenvalue A° is

(A=2)
aﬁ)ﬂ (l‘-)u) (37)

where A runs over all possible values occﬁrring within
the particular irreducible U(3,1) representation.
Unitary symmetry schemes in models of elementary
particles have been much in vogue in recent years. In
the fundamental U(3) classification(14), the isospin 1is
associated with the label of the irreducible SU(2) con-
stituents contained within an irreducible representation
of U(3), while the hypercharge distinguishes equivalent
SU(2) constituents. ‘However, there is an alternative

scheme(l’ls)

in which isospin and hypercharge are related

to the labels of the irreducible SO0(3) constituents con-

tained within an irreducible representation of U(3), with

two values of the hypercharge for each isospin submultiplet(l).
Just such a scheme is required in an order 3 generalised
parafermi statistics quark model(ls); an extension exists

to order N parastatistics.

There is also the possibility that the U(3,1) > 0(3,1)
state labelling problem may arise in a relativistic elemen-
tary particle model; in which the Poincare or Lorentz group
is embedded nontrivially in a larger group (whether or not

a strict symmetry).

Finally, it should be remarked that certain state
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labelling probléms in the classical groups are inter-
related, so that a solution of one provides indirectly
solutions of related ones. The connections between
various embeddings and irreducible representations have

been discussed for example by Quesne(16).

2. THE U(N) © O(N) REDUCTION VIA TENSOR REPRESENTATIONS.

Irreducible representations of the compact group
U(N) are finite dimensional (and may be chosen to be uni-
tary), and may be realised on a space of finite-rank
tensors'over an N-dimensional vector space. The aim of
this chapter is to use the U(N) 2 O(N) reduction in this
concrete framework, to provide some guidance towards the
solution of the abstract U(N) o O(N) state labelling
problem.

Secs. 2.1 and 2.2 give a review of some standard
results conceraing the irreducible tensor representations

of U(N) and O(N) (Hamermesh(s)).

In Sec. 2.3, considera-
tions of the decomposition of irreducible tensors into

their traceless parts, give rise to a simple U(N) > O(N)
branching theorem for the case of two-rowed representations,
involving an additional label, A , with a natural inter-
pretation. In Sec. 2.4, some results of Littlewood(17)
are stated, concerning the characters of U(N) and O(N).
These are used to provide an alternative method of carrying

out the U(N) > O(N) reduction. The methods are compared

in Sec. 2.5 for a particular example. Finally, Sec. 2.6
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gives the explicit reduction to irreducible O(N) con-
stituents, for some simple irreducible U(N) tensors,

according to the prescription of Sec. 2.3.

2.1 Irreducible Tensor Representations

A tensor £t of rank f is an f-linear mapping of
f-tuples of vectors belonging to some space (taken to have
finite dimension N), to scalars (complex numbers).
Consequently ¢t can be specified, with respect to some

chosen basis, by Nf components

t"“.*‘ . 1 € 9‘""',%;5 N ( 1 )

If a different basis is chosen, related to the original
by some nonsingular matrix P , then in the new basis t

must have components (summation over repeated indices)

’

e g Feg £ (2)

)

If only basis transformations corresponding to some matrix
subgroup G of GL(N) are considered, t 1is said to “"trans-
form under G".

Thi rank § tensors themselves form a vector space,

denoted T‘F 5 If ¥€ G, the linear transformation

x

u': TF*Tf’ (Uxt)"-""‘f- = w‘*.?(', - x”‘-‘ﬁ‘, t*\"' : (3)

is well-defined, independently of the basis chosen; the

mapping ¥* Uy is a representation of G on T* R Also

if 1V€S; , the symmetric group on f symbols, the linear Uy,
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g|...x ‘x"...x‘
U TFTF (Ue) 7F =t d (4)

is well-defined, independently of the basis chosen, for

if & is any nonsingular basis transformation,

Qun = Uu@ Vﬂés_‘_ (5)

The mapping x> U is a representation of S; on T
The fact that U, commutes with nonsingular basis

transformations has the consequence that

UgUy = UyUp VxeS, veG (6)

and this means that if Ti is a subspace of TF invariant
under SF , it must also be invariant under G. Now the
irreducible invariant subspaces of Tf under Sf are those
of the form \'T{, where Y , a linear combination of the

Ug » is a Young operator, with symmetry corresponding to
some partition of f . For G = GL(N), GL(N,R), SL(N),
SL(N,R), U(N) and SU(N), the YTfare also irreducible
invariant subspaces under G(B).

A further reduction is possible for certain groups

G corresponding to basis transformations leaving invariant
a quadratic form g . If 9 is symmetric, the subgroup is
O(N) (the orthogonal group, or a pseudo-orthogonal group).
If g is antisymmetric, the subgroup is Sp(N) ( N must be

even if g is to be nonsingular). The fundamental property

of the group transformations is that

« ¥ L
IULAEE S PR €7)
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and from this it follows that a tensor of rank f-2 may be
obtained by contraction of, say, indices 1 and 2 of a rank

f tensor t , with the metric tensor g :
|
!

Ay R X, KgKy ' X
€y = Gyt F . (8)
independently of the basis chosen. In féct, if T denotes

any collection of such pairs of index labels, then the
"operation of contraction with the metric tensor, or taking

the trace, over these pairs, satisfies

Tfo7h tmt,, (Uyt) = Ujt, VY¥eG, (9)

where f-fo is even, &t has rank f, , and ¥~ U; is the
representation of G on T | Moreover if 9. denotes
any product of g's, with rank f-f, , and t°e Tfe is

arbitrary, then
U (9.L°) = 9:(U/t’) VYV y¥eG, (10)

The following general result may be used to obtain further

invariant subspaces for the groups O(N) and Sp(N):

Theorem 1:
Let Tf, Tf°, f,s ¥ , carry representations
¥ Uy » XHU; , of a group G. Let Tf.° be an invariant
subspace of T under G. Let r: TF> 7% be a

linear transformation such that

Ust = MUyt VeeTr veG | (1)
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Then the pré—image Tﬁ = f(‘fTP) is also an invariant
subspace under G. In particular, the kermel of [' is
an invariant subspace.
- i
Thus from Eq. (9), the space TF of completely
traceless tensors, each of whose pair traces vanishes,
forms an invariant subspace. For O(N), SO(N) and Sp(N),
the irreducible invariant subspaces are simply those of
_the form YT , where Y 1is a Young operator(s).

Not every partition of f yields an independent
fnonvanishing irreducible invariant subspace YTFf or ‘YTF .
For GL(N), and hence for U(N) and SU(N), at most N-rowed

partitions'suffice. For O(N) and SO(N), at most N/2

N_ll (18) provides

(N even) or 2 (N odd) suffice. Murnaghan
modification rules for relating other irreducible tensors
to the independent omnes. (See also Sec. 2.4.)

Murnaghan also gives dimension formulae for the irreducible

tensor representations.

2.2 Symmetries of Irreducible Tensors

A Young operator Y is obtained(s) for each choice
of a standard tableau corresponding to a given partition

of f . Y. has the form

Y = (rQ)(Tr), (12 )

where the P(Q) are symmetrisation (antisymmetrisation)
operators on the index labels occurring in the rows

(columns) of the tableau, respectively. The Y operators
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so obtained are orthogonal, and essentially idempotent.

The scalars, § , required to make the Y idempotent,

|
(5Y)" = ¥Y'= EY, ; (13 )

are given by Littlewood(17), p. 73.

A subtableau of a given standard tableau will be
taken to mean a tableau in standard form obtained by
-choosing some subset of the rows, or some subset of the
columns, of the given tableau. For example, [;z] has
the following row subtableaux: [?J 3 [+al , [3] , and
the following column subtableaux: ;z] ’ (1 , hJ .

In the following, Young operators will be written

as ‘([;1], etc., to indicate their symmetry type. Com-
ponents of irreducible temnsors will be written as ::“ ;

etc., to indicate their symmetry type, where labels in the
corresponding standard .tableau are always assumed to be
assigned in the natural order, ;’] , etc.. A1l indices

are assumed to be contravariant.

Theorem 2:

Any Young operator Y may be written

Y= YZ. = ZeYe o (14)

where Z‘ ’ Zg are residues, and \2 : Yg are Young operators
corresponding to any column or row subtableaux of the stan-
dard tableau of Y .

Proof:

Let P, Qc be antisymmetrisation and symmetrisation
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) /
operators for some column subtableau, and (ﬂ'Q) the pro-

duct of the remaining column antisymmetrisation operators.

Clearly

(TP )(TTP) « (TTP) ,

(TT&), CHQQ) refer to different labels, they

and since

so that

Y = (n@)(me) = (MaMTm'a)TmPp) ,

Y = (WQUTQNTP)TP) = (TQ)(WP)WQ)(TP) ,
Y = Y. Z.

Y = Z‘Y; is similar.

commute,

The proof for

Corollary:

Let t=Yf be an irreducible temsor, with the

symmetry type of Y. Let \: be the Young operator for

any column subtableau of the standard tableau of Y .

Let ‘ﬁo ) x° %' be such that

Y'Y, =05 UgeY, = 05 ULY, <, (15 )
respectively. Then
Y‘t(f.t, Ugbec t
(16)

Yot = o, Uget = ©

In particular, { is symmetric with respect to interchanges
of columns of equal length, and antisymmetric with respect to

permutations within each column.
The corollary may be used to discover additional

symmetries of irreducible tensors. For example since
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I - o o)

it follows that for rank 5 tensors of symmetry corresponding
to the partitiom (2,2,1),

o o ] °
2, Ky x, %, &, Ky %% %, ®g Xy,
%g%y | + | %, %g + | e %y = 0, %y Au ETR B SR [
%xg . %y Ay *E xE Xy ( 18 )

Symmetry properties of irreducible tensors belonging

m

to two-rowed representations, that is, having two-rowed
tableaux, are specified by the following additional con-

ditions:

x
‘:;‘.l] = ':!‘*1] - ::. ]
X 3 %, Ay = xg Xy
":g '-‘:.] ["z "Q.] [“l *Q] . ( 19 )
The following identities, easily derived from

Eqs. (19), will find extensive use. The repeated index

stands for contraction with the (covariant) metric tensor:

L5 = sl

H3 R e

Il N el B P
[:.i i] = [ia x,] - [ii x;]
£ 8 g ] ]



Li XAy
AyXg

KRy b6 il %X3%e
KyR,, xR,

1«1
] -

] -1 ]

[zj ¢ J Ll
X Ry ANy

L
a

ti *.x;]
Jid

[

[ l'.x'(..'xa,

Y

] =

¢ Ky Xz
gl

[

¢ 0 %KXy
Ji %%y

L] =

2.3 U(N) ® o(N)

25,

L L %%y
XXy

] *]

_ [ii. x,
XXy

(20)

Branching Theorem for Two-Rowed Tensor

Representations

As shown in Sec. 2.1, the
jrreducible with respect to U(N)
reduction under O(N), because of
trace operation. The reduction

stituents may be pictured in two

decomposition into a direct sum ©
tensors; and secondly, the appli

to each of these subspaces.

The following result is proved by Weyl

Theorem 3:
Every tensor

two summands,

spaces ‘YT+ of temnsors

in general admit a further

the properties of the

to irreducible O(N) con-

stages: firstly, the

f subspaces of traceless

cation of Young operators

(19)
>

ﬁ. 150:

teT? can be uniquely decomposed into

(21)
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where t is completely traceless, and 4 is of the form

L TRER 4 Ay Ky o= X
W e g Ry TR e (22)
with 1£(f-1) summands; moreover t and ®w are ortho-

gonal, in the sense that

g Wnpoooxg = 0, (23)
‘Finally, the corresponding subspaces of T* are Both
invariant.

This process can be applied to each of the summands
of u , and so on; eventually a decomposition of €t into
a sum of products of completely traceless tensors with the
metric temsor, is obtained.

Let btg denote an arbitrary trace of the tensor U .
By contraction of both sides of Eq. (21) over the pairs of

indices labelled by T,

by = Ug (24 )

since t 1is completely traceless. By substitution from
Eq. (22), a system of linear equations is obtained for the
summands of W . The solution leads to a decomposition of

t of the form

- 4
t = t « tzﬁ s‘t‘ﬂ.‘ Uﬁ(stt'c) s (25)
for some scalars S;« , with ™®ée€ Sf . For example,

Ay X XXy HyNe o N5 Xg
(9(,,.)(”) Enos) = 979 " taoe (26 )
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Applying this process to each of the tp in turn, leads to

t = Eg-ctu-u(gri-r) > (27)
where each of the t, is completely traceless:

(28 )

as in Eq. (25) above. By Th. 3, the t; are uniquely
specified by the corresponding t. .

The decomposition of Eq. (27) may not be unique.

In particular, symmetry considerations may allow arbitrary
traces 5f L to be expressed in terms of traces in stan-
dard form, in which case the summation on T in Egs. (25)
and (27) runs only over these traces.

The application of Young operators to each of the
Ef produces a sum of irreducible O(N) tensors. Different
Er may produce identical irreducible O(N) tensors; after
grouping such terms, the various distinct irreducible O(N)
constituents (whether equivalent or inequivalent) are
found. These constituents are necessarily unique (up to
equivalence), whatever choice is made for the decomposition
into traceless parts, Eq. (27). A more explicit form for
these constituents is given in Sec. 2.6.

Attention is restricted in the following to two-
rowed tensor representations, that is, tensors whose
symmetry type corresponds to a two-rowed partition. The
spaces of irreducible tensor representations of U(N) and O(N)

of this type are denoted, respectively, T [},q] and T(g,m) .
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The following result provides a choice of standard

form for the traces of a tensor of two-rowed symmetry

type.

Theorem 4:

Each component of an arbitrary trace of a tensor of
two-rowed symmetry type, with partition (p,q), can be
expressed as a linear combination of components of traces
in standard form, specified by three non-negative integers

(e, ) Graphically, components of these standard-

form traces are represented:

+ 4 + & + &% + ot s

Sa ™
=
. (29)
4 + r=p-q -
where:
0¢2x¢p , 0s2p0¢q, A>H, (30)
Of k ¢ min (22-2p,P-4), A ¢ 4 (31 )
0¢ k ¢ min (g-2p ,P=22), 22> q
(20852955 h,0) = (20,4-20+%, 202"k, K,p-q =K ), < 4,
(90.3:,85.%n) = (2p,%, q-2p-K, 20 +ke-q,p-22-K), 22>q, (32)

Unshaded portions of the diagram represent free
indices not contracted. Shaded portions represent con-
tractions (of adjacent pairs). Here (A+pM) is the total
number of pairs contracted, s is the number of 2x2 blocks

contracted, and (A-p) the number of additional pairs
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contracted. The location of these additional pairs is
specified by ¥ .
For example, the (h*,l) trace of a tensor of

-

symmetry type (15,10) is:

i by Lply $,5:5384S58¢ J, “u“z“l“»]
3,0y 3,0, bbby 5sdy Jn

(33 )

and the (2,4,1) trace of a tensor of symmetry type (11,6)
is:

[i., i 523354 kR, ktk;th]

i, &t 0yJ, (34)

where the repeated index stands for contraction:
[ci] = [W] 94 (35 )

Proof:

By induction. Consider the effect of an additiomnal
contraction on a trace of a tensor of symmetry type (P,q)
which is already in standard form  (K,A,p) . In the
table below are set out the location of the indices over
which the additional (pair) contraction is to be performed,
the standard form(s) in terms of which the new trace can
be expressed, and the symmetry property required to make

this connection, the letters referring to parts of Eq. (20):

$35; + ST, or T,T, ¢ (,41-2,%.,.2")
555, : (q,42,,95-2,, ) | (g)
UlUl : (:n rl+21r1-2')

5153 or TI.SS ' (ql+2 ” qi-z ” ) (h)
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5,U, or T,U, (g even) & (5 4,-1, 44+ 1, r+1,n-1)
SuY, or TU; (45 0dd) (’q'l"qu'”:r"”:rl") * (q."zﬂz",qi'l:'s‘h"z“‘) (£)

|
sV, i+ (¢‘+2,’q,-2,n-l,q+\) . (a)

The range of values taken by &k is determined by
the range of ¢,» 0 , for fixed A and M .

The traces in the standard forms (K,K,y) are nbt
.dl1 independent. For example, Egqs. (20c,d,e,i) could be
‘used to express all traces in terms of traces in reduced
f‘standard form with KkK=zo0 , and MK=0 unless 222 g9-1 .
However, as will be seen, the (k,A,n) standard form is
closely related to the irreducible O(N) content.

Each of the traces in standard form (x,A, ) can,
by the application of Young operators, be further broken
up into a sum of traces in symmetrised standard form;

which of these occur is given by the following result.

Theorem 5:

Each component of an arbitrary trace of a tensor of
two-rowed symmetry type, with partition (p,q), can be
expressed as a linear combination of components of traces
in symmetf@sed standard form, specified by three non-negative
integers (k,A, ») , with values given by Egs. (30) and
(31), and symmetry type (42+93+ ", 4.) , in the notation
of Eqs. (29) and (32).

For example, the symmetrised (1,4,2) trace of a ten-

sor of symmetry type (15,10) is denoted

-—-—553535Q5556-“uu We
[zz==gupias B (36 )
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and has symmetry type (10,3) while the symmetrised (2,4,1)

trace of a tensor of symmetry type (11,6) is

[::::::3,3,,----“.] ’ ’ (37)

and has symmetry type (5,2).

Proof:

Not all Young operators corresponding to partitions
of length (p+q) - 2(A+p) , the rank of the unsymmetrised
trace (e,A,m), will yield a nonvanishing tensor, when

applied to (R,A,m) . By Eq. (16), antisymmetrisation

over three or more indices of a tensor of two-rowed sym-

metry type, gives zero. Also, by Eq. (16), a Young

operator Y[f,"] , with p,<q, , can be written as zZs ,

where S denotes symmetrisation over the indices of groups.
S;,5; and U, , and some subset of I & Therefore 3

annihilates (%,A,x) , since the latter is antisymmetric

in corresponding indices of groups S, and T, . Hence

the only nonvanishing contributions arise from the appli-

cation of Y ';L] , with P.> 4. , to (K.,X,Iu.) . In

Y[t 43+ 1a]

particular, Q.

produces the symmetrised standard
trace (e,A, K) . But by Eqs. (20d) and (20i), additional
antisymmetrisations between indices of 5; and U, , or
. P .
amongst 93, corresponding to the effect of *'[Pa] , with
PL’Q: » applied to (‘sk,ﬂJ, will produce symmetrised

standard traces (bﬂlﬁjf), with different values of the labels.

Hence the distinct symmetrised standard traces occurring
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are just the symmetrised (e, N, p) .

It follows from Th. 3 that to each of the symmetrised
standard traces (®,A,p) there will correspond a completely
traceless tensor, of the same rank and symmetry Eype,
namely (4.+gs* ", 42) , which therefore belongs to the

ijrreducible representation O(N)( £ ,m), where

(g,m) = (P-2p-%,4-IA+Kk) 2X¢ 4,

(e,m) = ((pra)-2(2+p)-%, &), 22> q. (38 )

Now by Fhe arguments accompanying Egs. (25) to (27), the
irreducible O(N) constituents, occurring in the reduction
of the irreducible representation U(N) [p,q ], will be
products of such symmetrised, completely traceless tensors
(e,A, p) , with the metric tensor (compare Eq. (51)).
Since the latter is invariant under O(N), these irreducible
O(N) constituents will belong to essentially the same
jrreducible representation as '(K,%,») (Eq. (10)). Relating
k and p to &£ and m by means of Eq. (32), the irreducible
0(N) constituents may be 1abe1ied O(N)(A ;£ ,m), and the
corresponding irreducible subspaces of tensors, T(A;l,m) .
Eqs. (30), (31) and (38) lead to the following branch-
ing theorem of U(N) > O(N) for two-rowed tensor represen-

tations.
Theorem 6:

Ny4: [pallot) = ZO(he,m) (39 )
N=3: [p,q]io(®) = (zb? (Mt))@(z,;@(x;z)*)
N=2: [p,q]lo@) = (ED@ (m;t))@)(zb;@(x;z)*)@( ZD;@(),-’Q-O)*).
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D! 6 & 22 s p,
max (0,q-13) ¢ (2+m) -(p-22) ¢ q |

max(0,9-22) ¢ m ¢ wmin ((L+m)-(p-22),p-22) ,

(ptq) - (£+m) even , mgsl.

Dy = Dy.3(m=0) , Dj = Dy,a(m=1) (40)

D, * Dyug(m=0) , Dy = D, ,(m=2) D" =D (2=m=1),

Neg

% . .
Here (£ ) 1is the representation associate to (€),

differing by the alternating character (the sign of the

determinant). The modification rules (Sec. 2.4) have been

used to obtain the branching theorems £for N=2 and N=3.

The domain Dy for fixed A is shown below for the

case 2A <4 , p-2A ¢4,

(Qfm)—(P-Z?)

The branching theorem of U(N) ® SO(N) for two-rowed
tensor representations is given by Theorem 6, except that

associated representations become identical, and for the

cases N=2 and N=4,
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0(4)(1,"\)\‘/50(4) = (l,m)@(l,—m) (m#o), (4,1 )
o) (1) Yso) = () ©&(-2) (4#0),

according to Eq. §1.29).

Theorem 6 %ears out the statement of Sec.'1.2 that
another independent label, in addition to the invariants
(£, m), must be introduced in order to remove the O(N)
degeneracy in the U(N) > O(N) reduction for two-rowed
'fepresentations. That the label 2 introduced here
actually distinguishes equivalent representations is clear
from the fact that for fixed A and (£, m), (£+m, m)
lies in D: at most once. In fact, the multiplicity of
the irreducible representation O(N)(£ , m) within u(N)[p,q]

is just the number of A such that (£+m, m) lies in D: :

By rearrangement of Egs. (40):
max((p-£),(3-m)) ¢ 2 ¢ min ((prq)-(L+m), p-m), (42 )

The U(N) > O(N) reduction is intrinsically more com-—
plicated than, for example, U(N) > U(N-1) or O(N) » O(N-1).
The branching theorem for two-rowed representations, however,
is not unmanageable as formulated here (an example is given

in Sec. 2\5). Other branching theorems are given (for

\
three-rowed representations) by Brunet and Resnikoff(zo),

and (for the case U(3)  S0(3)) by Elliott(lo), and Green

(1)

and Bracken Whippman(6) discusses a different approach.
The remaining chapters are devoted to the aim of
obtaining an operational definition of the label A , which

so far has a natural significance only in the context of
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tensor representations. Firstly, however, the relation-
ship is shown between Th. 6 and the methods of character

analysis.

2.4 U(N) © 0(N) Reduction by Character Analysis

Purely algebraic methods of character analysis have
been applied to the problem of determining branching
multiplicities in the classical groups(21). However, in
the context of tensor representations, it is more natural
to consider the group approach, in particular as given by
Littlew$od(17).

Let m be a partition of £ of N rows,

M= (,""n"'v}"'N),

/U'l""'..'.'}l'N:'Fs #l”f“l””")"‘»o' (43)

To each such u there corresponds an irreducible tensor
representation [m] of U(N). The corresponding simple
character of U(N), which is a certain symmetrised function
("Schur"—function(17)) of the eigenvalues of elements of
U(N) (NxN unitary matrices), is also denoted Cpd. To
each irreducible rank § tensor belonging to U(N)[p] there
corresponds according to Th. 3 a unique completely trace-
less tensor, of the same ramnk and symmetry type, which
belongs to an irreducible representation of O(N), with
simple character (m).

However, not all of these simple characters are in-

dependent. They can be expressed in terms of simple
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characters (m) with at most [N/2]-rowed partitioms,

(}“') = (}‘la"',)‘-[ulz]) 5 (44 )

and the associated simple characters (pJ*, by means of
modification rules, given by Murraghan(ls), p. 282. (ﬂJ*

is defined by
() = e(p), (45 )

where € 1is the alternating character of oO(N). For uni-
formity the trivial character of O(N) is denoted (o).
For two-rowed representations the modification rules

are necessary for N=2 and N=3. They are:

o it K,>12

N=2 : (pu,1)

()Jn,Z) = -(}‘-I)*
(pis1) =0 if p
(v,1) = (% (46 )

o F pir2

(/"l)* (47 )

N= 3 (/"u}‘-z)

\(}‘"n' )

Theorem 7:

The simple characters, occurring in the product
[Pf][ﬂj of two simple characters of U(N), have Young
tableaux which are built from that of LN] by adding M

identical symbols 1, M, identical symbols, 2, and so on,

subject to:
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(i) after the addition of each set of identical symbols,
a standard tableau results with no two identical
symbols in the same column; ‘

1
(ii) 1if the set bf additional symbols is read from right
to left in the consecutive rows of the final
tableau, a lattice permutation of Ll A S B

results (the number of symbols 1 » the number of

symbols 2, and so on, at each point).

. Proof:

Littlewood(17), p. 94.

Theorem 8:
Let [pl and (p) be the simple characters of U(N)

and O(N) corresponding to a partition M . Then

Cpd

(r) + E,ESN*(V) , (48 )

where the summation extends over all partitionms § into
even parts (2), (4), (2,2), (6), ..., and so on, and over
all partitions V such that [p#] occurs in the product

s1Cv1 with multiplicity gspv .

Proof:

Littlewood(17), pP. 240,

This theorem enables the irreducible O(N) constituents
of any imeducible representation of U(N) to be found. The
modification rules can be used to express the (m) and (¥)

in the right-hand side of Eq. (48) in terms of simple



characters of O(N) of the form given by Eq. (44).

u(s)L4,3,2,1,01 4 0(5).

[s]

(o]

(2]

(4]

[22]

[42]

(222]

f422]

The procedure is illustrated for the case

[v]

0000
000
00

0001
001
00

0001
001
ol

0011
002
02

0001
o001
02

0011
1012
02

0011
022
03

0111
022
13

3

k

0001
000
o1

0001
ol12
02

0001
000
12

0011
002
11

0011
002
23

0011

112
23

3

0001
000
00

0001
002
01

0000
0l1
02

0001
ol1
12

0001
o012
23

0000 0000
001 001
o1 00

0011
002
00

0000

- 001

12

0000
000
o1

1

38.
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[4,3,2,1,0] =  (4,3,2,1) + (3,2,2,1) + (3,3,1,1) + (3,3,2) +
+ (4,2,1,1) + (4,2,2) + (4,3,1) +(3,1,|~) +
+(2,2,0,0)+ (3,1,1,1) + (3,2,0) + (2,2,2) +(3,2,)) +
+(3,3) + (4,1,1) + (4,2) + (2,1,1) + (2,2) +

+(3,1) + (2,1,1) + (2,2) + (3,1) + (,1) + (2,0},

After applying the modificaton rules,

v(5)[4,3,2,1,0]d 0(5) = 23,2 @3, @ GO N ® (4,2)@®
2(2,1)*"®2(2,2) @ 2(3,1) ® (2,0) ® (1,1)

with dimensional check

1024 = 2x105" + 30% + 84 + 154" + 220 + 2235% + 2x35 + 2x81 + |4 + {0,

2.5 Comparison of Branching Theorem and Character Analysis

for the Case U(4)[9,41].

The method of character analysis of Sec. 2.4 gives

for the reduction of U(4)[9,4] with respect to 0(4):

[s1 [v]

L 01 (94)

(201 1921 + (83} + [74]

(401 [90] + [811 + [72] + [63] + [54]
{221 [72]

t6ol [70] + [611 + [52] + [43]
{421 (701 + [61) + [52]

tgsol [50) + [41]

623 [501 + [411 + [32]

{441 [(50]

(823 [301 + [21]

641 [30]

(843 [10]
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The branching theorem of Sec. 2.3 leads to:

U(4{[9,4]l 0(4) =

(0;9,4)®

(139,2)®5:8,3)DUH1,4)D0:7,2)@

(2;9,0)® (2;8,)@ 25 1,2)D (2, 6,3)D (235,4)O(2; 7,00D(2; 6,1)D(2: 5, 2)
(25 5,0)®D (% 7,00® (3:6,)D (3;5,2) @ (3:4,3)@D(3;5,00D(3;4,1) D (35 3,2)
(353,00 *;500® (4, 4,)® (4;3,0)® (4;2,1) D (431,0)

Here each occurrence of the degenerate representations of
0(4) in the reduction is distinguished by é different
value of the additional label A , of Th. 6. Evidently
2A is just the length of the leading row of the pagtition
§ of Th. 6,

The dimensional check in this example is:

1980 = 168 +
+ 192 + 144 + 96 + 120 +
+ 100 + 160 + 120 + 80 + 40 + 64 + 96 + 64 + 36 +
+ 64 + 96 + 6‘4+ 32 + 36 + 48 + 24 + 16 +

+ 36 + 48 + 16 + 16 + 4

2.6 Explicit Tensor Reduction for Some Special Cases

The branching theorem of Sec. 2.3 leads to a reduction
of the carrier space of U(N)[p,q] into irreducible subspaces

(orthogonal when (£,m) # (2',m"')),

Tip,q] = ZD@NT(P,quLm) (49)

The irreducible O(N) constituents were found to be certain
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products with the metric tensor of symmetrised, completely
traceless tensors associated with certain traces in standard
form of tensors of two-rowed symmetry type (p,q). In

.

fact define

Mem @ TH™ — T(e,m) | (50)

»Mm)

to be the projection operator from the space of tensors of
rank (€ + m) on to the irreducible subspace of tensors of
symmetry type (£,m), the carrier space of O(N)(£,m).

Then if (pmis some standard trace of te€ T[p,q), and 9Gem)
the corresponding product of é's, the associated irreducible

O(N) constituent is of the form

% gd Y U« ( 9((.,.) r‘ t(,!;m)) ( 51 )

The Young operator Y is present as a result of the

uniqueness of the decomposition

t = E * U 2 (52 )
Yt = ¢ = Yt + Yu B (53)
of Th. 3. Therefore each summand must have the symmetry

type (p,q). The summation over T« ESP,q only extends to
permutations resulting in distinct tensors after the
application of Y .

This argument leads to a recursive computational
procedure for the evaluation of rkhq) . For if Eq. (52)

is written

Mot = F = £, | (54)
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and it is supposéd that all f\%m)‘ of lower rank,
occurring as summands of W , are known, then nh%’ can
be found by solving for the ¥, the system of linear
equations obtained by making arbitrary contractions of =,
which is completely traceless.

Now Th. 1 will lead to a direct sum decomposition
similar to that of Th. 3 for any invariant subspace. One

?P*%

such is , the subspace of all double-traceless

tensors, that is, tensors which vanish upon contraction of

two pairs of indices with the metric tensor. T is
of course a subspace of ?b+¢ : A decomposition in two
stages,

? = t=-uw ,

E = 'E-u;=t-u.—u1, (55)

is then possible, with each stage involving a system of
linear equations (in fewer unknown coefficients than for
the single-stage decomposition).

The first method can be used for tensors of low
rank, while the second is more economical for higher-rank
tensors. The decompositions of [2,0], [3,01, 12,11, [4,01,
(3,11, [2,2], [3,2] and [3,3] are given in the appendix,
Sec. A2.6. The degenerate case [4,2] is treated there by

the second method.

3. U(N) AND O(N) INVARIANTS

As shown in Sec. 1.1, the solution of the U(N) 2 O(N)
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state labelling problemlfor two-rowed representations
requires the introduction of a single additional labelling
operator A which commutes with the O(N) labelling operators
| [ Now the latter can be given in terms of functions of

9

the O(N) generators Hencé A necessarily commutes
with the O(N) generators; that is, it must be an O(N)
invariant, and therefore a function of a complete set of
0(N) invariants. However, if A involved invariant
functions of only the O(N) generators, it would not be
independent of the operators L. Hence A must involve
certain additional O(N) invariants.

This chapter concerns the determination of additional
O(N) invariants, as a preliminary step towards their use
in defining an additional labelling operator A , with
the eigenvalue A defined in Sec. 2.3.

A class of such invariants, monomials in the U(N)
generators, is described in Sec. 3.1. The independent
invariants cubic and quartic in the U(N) generators are
found in Sec. 3.2. The two-rowed representations are

treated as a special case in Sec. 3.3.

3.1 General Properties

The generators atj of U(N) have the commutation

(2)

relations
¢ : l l ; . .
[a%;,a%,] = [8'2a"; - 8 ;2% ] ei,i, R4 sN (1)

The generators “aj of the subgroup O(N)< U(N) of all NxN

matrices leaving invariant a nonsingular bilinear quadratic
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form g are given by(z)
«t, = at; - aY) 1s i & N, (2)
=% . a P - i x i (3
a i Jikg 2 2, )
with commutation relations
[, %he] = gp;%e = Fue™y =~ uiie * se™w - (4)

The generators may be regarded as matrices a , &, €.
(9)

Following Bracken and Green , matrix products may be

defined, for example

(a*)'; = a'gad’;

"
~~
]
B
e
s
x
st
-

(a")’; (5)

Traces of such matrices are operators, and will be denoted

Do Thus

&> = &', = o« o= ey, (6)

where summation over repeated indices is understood.

The following result gives a general form of U(N)
and O(N) invariants in terms of such traces. Not all of
these are independent; nor are all invariants necessarily

of this form.

Theorem 1:
(i) If u,v are U(N) tensor operators, having commutation

relations

[“ii.ak.z“] = 8i¢ “tj - 8kj Utiz (7))
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with the generators of U(N), then the matrix product
w is also a U(N) tensor operator.

(ii) If w is a U(N) tensor operator, then the trace <u’
is a U(N) invariant. In particular, trahes of the
form <a"> are U(N) invariants.

(iii) If w , v are O(N) tensor operators, with commutation

telations

[wi,%ne] = GgjUie - Ge*Rrj ~ Jui Uje + 9je Uki (&)

with the generators of O(N), then the matrix product
v 1is also an O(N) tensor operator.

(iv) If w is an O(N) tensor operator, then the trace <u;
is an 0(N) invariant. In particular, traces of the
form <«"> are O(N) invariants.

(v) Traces of the general form

ma"a - > (9)

monomial in the generators of U(N), are O(N) invariants.
Proof:
(iii)

m
[“tj,“-"kt] = Uy [%m"iﬁ * gjeVmi " Gk VYmj ~GimVie] *

& [gjluim + GimUki T~ GimUirj — Gin “Jm] v© e

Wi Vie + Gje Wi = Jig uvej ~ UwiVje *

+ Gr uvie * U Vje T UgVie T Qe Wje

[}

[“ii i “th] gijrUVie ~ 9ie Wkj - Gk WVje + gjeWVy; |
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] ke
(iv) [“q,uut]g = Wy - By Uit Wi = O

(v)  [=xy, ae] = [ag-2i,ae]

[, dne] = [ag-2i, 3]

gk]al'l— - gmakj - gkiajl + g.’-cau

Ik Bt ~JieBuj ~ Incdje * Gitdni .

For example, for the case N=3 the quadratic O(N)
invariant <x*> 1is just the familiar square of the total

angular momentum.

The following result aids the determination of the

independent O(N) invariants of‘the form given by Eq. (9.

Theorem 2:

(i) 2™ = 33> + N2 - <" Vi1 (10)
(ii) <an+l_-ah§l> - (3(3"—3")> Ynyi (11)
(iii) <a™a"» = ¢ata™) Ynxi,myi (12)

Proof: Sec. A3.1

Hence a", a"

can be expressed as polynomials in

2, & respectively, with coefficients which are O(N)

invariants.

3.2 Independent Invariants

An O(N) invariant of the form given by Egq. (9) above
can be related to other O(N) invariants of the same form,
either by transposition, or by cyclic rearrangement of the
factors, using the commutation relations.

For fifth order or lower invariants, the following

combinations can be chosen as the independent ones, with



47.

Tegpect to these manipulations:
41> = fa+dd> = Kad = <D (13)

> = Katedy = @b = GH

> = §<ad +3a?= <add = <3ad (14 )
a3y = Kat+ A

G3) = §<ada + 32d) (15 )
@y = 4cat+ 3

Q14> = $<adaid + 2adad

24y =  fcatar 4+ Fat)> = (a'@) = 3'ah)

34> = 4<ad’+ 3a¥)> (16 )

5> = Ka*+3%)

G5> = i<adalda + 223add

<35> = 4¢aradd + 3a?)>

<45y = kaat + aa*y (17 )

I;\will suffice to treat in detail only the cubic

and quartic cases. The results are as follows:

Theorem 3:

(i) Cubic Invariants:

<aity = <3tay = <aday - Kat-add

<iaty = <a*a) = <3ad) + (at-ad>
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¢a¥-3%y = N<ary - <ay

<ada -3ai) = 2<a*y - (N+2)<add + (ay (18 )

|
|

cady = 4¢a%+3A%) 4 YA - 4cay

Ci?> = yqat+3d - YAy v f<ay

<aday = 4<ada +32d> - j(ne2)CaB)y + <@ + f<a¥
<iaid = 1<a3a +333)> + 4(nNs2)<ad> - <A - sqas
Ca*ay = (3’ = 1icala+3ady + §Kad) - Lcay

(*a> = a3 = Li<ada +3ad> - Bcad) + i<ay  (19)

T o= 3+ NE ¢ NPD -3 - (<Y +NCD) (20)

(ii) Quartig Invariants:
Caty = <3%) o+ aN<Ah ¢ NECGAYY - <ar(2daty + NKa))
(aiary = <3a%) + (al) - (N+1)<@aY) + <aX<a) =<adad
¢3a3d’y = <ad’y - (@) + (N+1KaF) - <cax<a*> =<3%d>
\

<aita) = <3%a') + (3% - (N#1)KE%a) + <At X<ay

CAAA) = <A'A?) - <a¥> + (n+1)4at3) - <atxiad

ca*t-3%> = n<ad+3%> - 2<¢axabh

¢aad?-3a’y = -N<ada +3ad) + {a)(ady + {aYa?r) (21)
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<aty = jat+ @ty + §CA@R) - <adany

CE*> = 4<at +3%y - H<c@+ 3> ¢ cad<aly

<a3a3 > = <3a3a) = §<a3a33 + 33da>

<at3d*> = (3> = §4aF ¢ )

<a§sa> . <az:z> + -'1-<a"+§'> = i(u+l)<353+-éa§> +
+4N(NFDCEEY - F<aY  + <ad(kat)y - 5<ay)

<§al§> = <alél> - i(a’...a’) + i(N+l)<a—aa*aa-a> +
+IN(NEDKAE)Y - Bqaty - car(cahm + 1<)

<a3?s = <3%) = i<a3a?+3d’y - ¥<ada+3ady ¢ §<aXad+a)

<33%y = ¢a'3iy = 4<a3’ +3a% + N<ad3a +3a3> - j<axad«

<a*3ady = 4<aa’+3a’y - §<a’+3% - 4<a3a+ 33>+

Al
[N

ol
o)

N
v
"

+ Jqary - §N(NA)<CaT)> - <Ay (§<ad) - §<at - <))
<Ead3*) = <3a3> = §<ai+3d%) + <@+ I + §CaIa 333>

+ Yqaty - IN(N+1)Ca3) + <ay(3<aay - 4<a*> + §<ad) (22)

(iii) Invariants in &« =3-4

{X> = <a-a» = o

<ty \ = <(a-3)» = 2<at-add

¥ = <(a-3> = -2

<*> = <(3-30"> = (at+3*y +<a3al 4 3a3a) + 243N+ -

- 4¢a3%+3a%) + 3N ((N+CaD) -<a%> -<3Y)

(23)
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Proof:
By direct evaluation of the commutation relations.

Working for the quartic case is carried out in Sec. A3.2.

3.3 Invariants for Two-Rowed Representations

In general further relationships exist between the
cubic and quartic O(N) invariants given in Egqs. (15) and
(16). In particular, the invariants <a™ can be ex-
pressed in terms of the U(N) labels (in principle, by
direct evaluation). Thus the cubic and quartic invariants

<a*» and <3*> are in principle known.

Similarly, the invariants <«"> can be expressed in
terms of the O(N) labels. Thus <%*> is in principle
known. In fact if N ¢ 4, it may be evaluated explicitly
by means of the polynomial identity of degree N satisfied

(9,

by the O(N) generators & , given by Bracken and Green
(2)

and Green For example, in the 0(4) representation

labelled (4 ,m),

K2y = 28(L4+2) + 2m? (24 )
{a?y = («2)

and the identity 1is
(¢-2-2)(k-m-1)(Kk+m -1)(x+L2) = ©O (25)

from which

Gy = 2(LR+2)+m*)" + 2(L(€+2)+ m*) -4mt(€+)  (26)

Hence because of Eq. (23d) an additional relationship exists
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between the quartic O(N) invariants.

The conclusion from the above considerations is
that in general tPere is one independent cubic invariant
of O(N), namely %(aia-«ﬁai) , and there are two indepen-
dent quartic invariants of O0(N), say £<a3a3 + 3a3a)
and 1¢ad* + 33> .

For the case of two-rowed representations, the num-—
_ber of independent invariants is further reduced. As
will be shown in Sec. 4.2, in this case there is a cubic
' polynomial identity satisfied by the U(N) generators a .
This enables the quartic invariant 3$<aa% +3a*> , and
incidentally the invariants 1¢a?+33) , Lica*+3a%
to be evaluated explicitly.

From Eqs. (4.34) and (4.35), the cubic identities

are

a® = (<ay+an-3)ab + §(<3*> -<¢ay¥ - (3n-5)<a> - 2(n-1(N-2)a
A% = (<8>-3)3% # L(a%) -<aY - (n-7)<a)-4)3 + (k&> ~¢a¥ - (N-3K3) (27 )

Hence, taking care that quantities rearranged actually
commute,

@ = (2N-3)KA%) + 4 (3<a%) ~<d - (IN-5)CaY - 2(N-1)(N-2))KAD

3% (N-3)<aty + $(3<a" -<a) - (3N-T7)<a) - 2(N-1N-2))K3> (28 )

<33%> = {(<a)>-3)<3d3a +3a3> + j(a® - <ay - (28-T)<a) + (3n8-4))<a3)
+ 4(2¢a?> - <@ - (-3
3a%y = (ca) +2N-3)(a3a +333> + (<at) - <3V - (N-5)<a) + (3N-4))¢33>

- (a*y o+ (2m-3)¢@))K (29 )
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Therefore:

¢at-33 = Ncary - <ay
1¢a*+3% = 3(n-2)¢a" + 1(3<a* - {ad® —-3(n-4)<ad -2(N-1)(N-2))<Ad
¢a3’-38> = -N<a3a +3a3) + <ay<ady + <a¥xam

$¢a3+3a% = j(<ay+ n-3)<ada +333) + 3(K3a% -<a)y - 2(N-3)43> +(3n-4))Ka3)

+4 (<@ -<ay - (2n-3)Ka2)<aY | ' (30)

Similarly, <a*> , <&*)> and Lgateaty could be
written down. |

For the case of two-rowed representations, therefore,
there is one independent cubic invariant of O(N), and one
independent quartic invariant of O(N), namely %(aéa-+§a§$ ,

and 3<3333 +3ada) , respectively.

4., EVALUATION OF INVARIANTS

In this chapter certain of the U(N) and O(N) invariants,
described in Ch. 3, will be evaluated, in the temsor repre-
sentations TLp,ql and T(p,q; A s £ ,m) .

In Sec. 4.1, some results are proved which facili-
tate these evaluations, using Secs. 2.3 and 2.6. In Sec.

4.2, a technique used by Green and Bracken(l) for the
evaluation of invariants in tensor representations, for the
U(3)>D S0(3) problem, is adapted for the case of general
two-rowed representations, and a short-hand notation intro-
duced. The cubic characteristic polynomial identity,

satisfied by the matrix of U(N) generators in two-rowed
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representations (Sec. 1.1), is found by this means. As
a further check of the method, the quadratic 0(N) invariant

<ai> = <3*> - 45<&® is found by direct evaluation in
Sec. 4.3. In Sec. 4.4 the cubic O(N) invariant

i¢a3a +aaa> is evaluated. Finally in Sec. 4.5
it is shown how this evaluation is used, in obtaining an
implicit definition of the labelling operator A .

Most of the details of the calculations are given

in the appendix, Secs. A4.2 - A4 4.

4,1 Preliminaries

1

The arguments of Secs. 2.3 and 2.6 showed that an
arbitrary tensor te€ T[p,4] can be reduced into a sum of
irreducible O(N) constituents belonging to the invariant
subspaces T(%;l,m) , corresponding to traces E(nem)
of £t in standard form. Each irreducible constituent is

a linear combination of tensors of the form (Eq. (2.51))

r‘;m) t(l',-l.m)_ = Y(ﬂo-,:.m)rzzm) t(a;em)). (1)

where rz;) stands for the process of projection on to the
subspace of completely traceless tensors, effected by f&mh
appropriate combination with the metric tensor, and sym-
metrisation. The space T(»;2,m) 1is therefore spanned by
tensors of this form. The shift operators are defined

on TLp,q] through their actions on these tensors:

AE (Mo taasemy) = Tem tas,tm (08 20080 € P),

/\*(r'{,,,,, t(z;lm)) = 0 ( otherwise ), (2)
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using Eq. (2.40a).
If & is an arbitrary invariant of O(N) in the re-
presentation carried by TLp.q], then a modified invariant

$° is defined on TIp.al = ZOT(;L,m) by .

Pt = ﬂfm;(@t)u,em > te T(Ase,m). (3)

The proof is given by the following theorem.

Theorem 1:
®° , defined by Eq. (3), is an O(N) invariant.
Proof:

aet te-r(Xif,m) , and Y€O(N). Then by definition

-] []
Ug(b t = Uy M em(Bt) (s em) (4)
Now r&m) is some combination of permutations, contractions,
and products with the metric tensor. In view of Eqs. (2.6),

(2.9) and (2.10), respectively,

Uy §°t r‘(:m) ( Uy Qt )(a;an)

r(;m)(‘burt)(a-,.cm) = Q" U,t (5)

?

using the fact that § is an O(N) invariant.

. . . . . o
Since ®° is an O(N) invariant, the image § T E,m)
is an invariant subspace. Moreover @° can only mix the

label A , leaving the O(N) labels fixed. Therefore
¢ TOLm) — Z@T(R;Lm) (e)

° N
The ¢ , rather than the § , are more readily
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evaluated in the framework developed here. When & is
a function only of the O(N) generators, oOr is an U(N)

invariant, then

@t&t,@°=@- (71)

The following results pertain to situations arising

in the subsequent calculations.

Theorem 2:
Let té€ T(x;€,m) and Ctaiem) the corresponding
standard trace. Let ® be an arbitrary O(N) invariant

in the representation carried by TLp,al , and ®° the

related invariant. Let § be some scalar factor. Then

€ €(ayem) , then t = st.

(i) if (Pt)ajem
(ii) 1if (Cpt)(a-,zm) = YUq basem) , where Eﬁm) tea;em) is
symmetric under the permutation we Sgem , then §°t =St
(iii) if (®t) nem) is a (non-standard) trace, or com-
bination of standard traces, antisymmetric in some
pair of indices which are symmetrised by the appli-
cation of Tgm) , then d°t=0.
(iv) if (@t)(;\igm)=§9¢-to;¢m)o-,where ¢ denotes a trace dis-
joint from the standard trace (2;4,m) , then ot = o.
(v) 1if (@t)u;gm)'—‘f Ugt(zm,em),where Memy £ asem) is symmetric

o e
under the permutation « € Sgem , then Pt =SNE .

" Proof:
(i), (ii) and (iii): by substitution, using Eqs. (1) and

(3.
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. y ] B g
(iv): 1let ue€ T*™: the contraction of 9stiem)e with

F@m,u , a completely traceless tensor, must vanish

because of the presence of the factor 9, : since w
4
i

is arbitra%y, P«m)q,t(uzmn-= o .
(v) : by substitution, using Egs. (1), (2) and (3).

In general, it will be found that

(ét)(ﬁiem) = 3 U'l’ t(*'.em) . '§*U*+ t(lol,-dm) + g.un’ ta-lztn),( 8 )

. in the subsequent calculations, where w, 2* € Sgem all act
on indices which are symmetrised by the application of am) -

Therefore from Th. 2(ii), (v),
- T o+ TN + TN, (9)

&

where the scalar factors § , § are polynomials in the

parameters N3 P,q; A3 &,m.

4.2 U(N) Invariants and Cubic Polynomial Identity

The action of the generators of U(N) in tensor

representations is given by(z)

| (a.i. J t)‘ll'”x“ - 8“‘5 ti“"”'“f b - 8““:’ t’p--’{'\" . ( 10 )

\

Such substitution operators, and their products, may be

(1,

represented in the following way

-
1]

(),
5%,

ddy = 858 Gh) ¢ 8 800),

o]
~
"
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aaja..'g am" = 81'3 Sx; an(i':’l:) . Shjsm‘ Sv.“(,;) +.
5% 5%, 8 (hm) + 878 8T (Bi) v 8787 87 GR),

{
|
Xt A # X" ; (1)

2

where the index label x runs over the indices of the
. .
index set, namely x,,---, Xg , and where the bracket (;)
" indicates that for each of these values, the label ¢ is to
be substituted in the appropriate location.

It is convenient also to introduce a more contracted
notation for substitution operators, involving only the
index sets X,Y,Z, ", and the labels to be substituted:

(x)ij . 8*_,(;&)

b
i LY

(le) 3 5 Sf 3(; x/
, . 70 o

(X)X)‘_’- N ) j (:‘:« s

(xIYZ)iJ- = S*J(jsz:)

?

(xly) = () = G2,
(xy) = 9”(:&)9:3,
\xvlz) = gUGER) gy + g ey, (12.)

and so on, where xeX, yeY , ..., and indices x,x€X running
over the same index set, do not take the same value simul-

" taneously. Index sets separated by a vertical stroke
contribute only internal summations.

(9)

As shown by Bracken and Green , and Green(z), the



58.

generators of U(N) satisfy a polynomial characteristic
identity of degree N in a particular jrreducible represen-

tation. For the two-rowed representations U(N)(p,q]l,

[

|

however, there exists a cubic polynomial identity, of re-
duced degree (Sec. 1.1), as will be shown by direct evalua-

and ad . The calculation also yields <a) ,

tion of A&
Ry, <av | @b | <3 | and §<@+3H. Details are given
.in Sec. A4.2,. Eqs. (2.19) are used extensively in the

proofs. :
According to Eqs. (lla) and (11b) above,
at; = 8%, (%), (13 )
ati, = atale = N8&"L(L) + §"e(iX (14 )

»

which may be written, in the scheme of Eq. (47),

at; = 8%,(5) + 8tj(':t) + 8500 (15 )

atl, = NSTL(E) + N8 (L) 4+ NBUL(E) +
e 85 LYY +(A8) # (A9)] # 85(E) « (LR) + (L)) +
e 85[(GER) + (D) + (6N, (16 )

and using appropriate results of Sec. A4 .2,

&Yy = (aen-0)[8%(5)+ 82 (H)] eepen-180a(h) +[8%e(L5) + & (L0)], (17)
ati, = (qen-2)aty + (p-ae1) 8 2(l) + [872(L3) + 8% (L0)], (18 )
2k, = (qrn-2)a%, + (pras )8 @ L) ¢ 8028 (L5) + 8.2 (L], (19)
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whence, from Sec. A4.2 again,

3%, = (g+n-2)a"y + (p-qv Dpen-1)82(R) + (pen-0) [5%(5s) + F(8 9] (20 )

-

Comparing with Eq. (18) gives

a' = (prq+anN-3)at- (p+N-1)(q+N-2)a . (21 )

The corresponding calculation for the conjugate

is given without comment:

5.;" = aj;, = S‘;(‘;) + St;(‘g) * 8“..('.'.,.) ’ (22)

'é.’,,-" = a‘ja“,_ = (P+q‘)5lj() + S'J(::’ ) ( 23)

M= (e 850) ¢ @-n[85(8) + 8]+ (0 8%(R) -

L8558 « 85007, (24 )

;3;" (|)+q,)3.i"t * (t!.-Z)i"-,.'l + (P-‘L"")S‘Jaa.j(t) +

v [8%3,9(8%) + 8553, (%)), (25 )

Fh s ()it v @-)ER 4 (praXpr)8R() +
Cp-a+)(p-8"(5) « ()[R0 » 55 (L0)] (26)
3 = (p+a-3)3* - (p(a-1) -2(a-1) -2p)A - 2p(a-1) , ( 21)

. and is carried out as for a’ , using the results of Sec.

AL,2,
(9)

Bracken and Green give the general characteristic

polynomial identity, of degree N, satisfied by the generators
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in an arbitrary irreducible representation of U(N). For
two-rowed representations, of the form [p,q,0, ..., 0],

this reduces to

(a-o)a-o0-1)(- - )a~-o-N+3)a-q-N+2)(a-p-N+1) = O,

(3-0+N-1)(3A-0+N-2)(---Na-0+2)a-q+1)a-p)= o, (28 )

while from Eqs. (21) and (27) above,

a(a-g-N+2)a-p-N+1) = o,

(3+2)(3 -q +1)3 -P) = O. (29 )

Thus for the two-rowed representations, a cubic
characteristic‘polynomial identity exists, which is a
factor of the general identity of degree N.

Fo£ the irreducible representatioms U(N)[p,p,0, .., 0],

in a similar manner, quadratic identities are found:

o, (30)

a(a~p-N+2)

(3a+2)@A-p) o. | (31 )

The values of the quadratic and cubic invariants of
U(N) (Sec. 3.1) may also be found from the above (compare

Sec. 3.3):
<a) = <a) = p+q , ‘ (32)

<a') = <@ = plp+N-1) +q(g+N-3), (33 )
a3 =(<ay +2nN-3)a" + 4 (<a*) -<a¥ - (3N-5)Ka> - 2(N-1)(N-2))a, (34)

3% = Kay - 3)3® + 4@ - < - (N-7CY -4)R + (Y -<a¥ - (w-3)<ay),  (35)



61.

(@3> = (2n-3)<a%> + £(3<a®> - <aP - (3N-5)AY - 2(N-1)(N-2))<a>, (36 )

¢3¥ = (N-3)a?> + L(3<a?> -<ay* - (3N-7F)ad> - 2(N=1)(N-23)<a>, (a7 )

4.3 O0O(N) Invariant i) = <a*» - 3<a*),

From Eq. (11b), the O(N) invariant ad> 1is given in

terms of substitution operators by

<a3> - 3Lja;ka-:’-£9he :
caa> = §5.5) + VG gy
ai> = <@y o+ (xx), (38 )

The direct evaluation of <3a&> should be consistent

with the identity

<ad)y = <a*> - 5<a*> (39 )

The evaluation is carried out using Eq. (3) and Th. 2,
Sec. 4.1, and the form of ;he standard trace labelled
(a;2,m) ,

For example, consider the special case of the irre-
ducible representations O(N)(n4 ,0) contained within the
irreducible representation U(N)[n,0]. The corresponding
tensors are completely symmetrical. The associated stan-

dard trace has the form

+ n, —+ n=n-n, —+

X (40 )

4 n, —+ ne2n; —+
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where shaded portions represent contractions. The sub-

stitution operator to be found is
(xX) = (x%X,) + (%¥2) + (Xx1) , (41)

and is evaluated by considering special cases. Tensor

components appear in square brackets; all indices are

taken to be contravariant. Repeated indices stand for
contractions. The general results follow from
(x%) [xxa] = 29" [22] (42)

%) [exaiiia] = 2g™0 [4x,25,] + 2™ [Lx,0,8] +
« 290 [xee ] + 29" [x4i2], (43 )
whence,lapplying the standard trace, and using Th. 2,
XX [x%] - 0, (xx) — 0 (Th.2();
(%) [i1i2] > aN[44] (ni=1),
(2% )[ais 8] = (an+8)[€8mm] (n]=2),

(X, X)) = nzp(na*N-2),; (Th.2(2);

(xx) [xmaiia] = slxx,2e], (x%:) = 2mn, (44)

where the notation —» indicates the result after applying
the standard trace, and the appropriate part of Th. 2.

Adding these results, and using <a> = n, gives

(xx) = Ny + 2nn, + (N-2)n, R (45 )
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<@Ay = n(n+nN-1) -n(n+N-2), (46 )

in agreement with the general result, Eq. (55).

In general the standard trace labelled (A;2,m) has

the form given by Eq. (2.29),

1 s: S) uﬂ-
Ta
82 —I— qs=2q; + r,=2r/ -1- Yz +
Sa (
47 )
II =
+oe 4 a4 dapgpmid—trmezdd o 4
depending upon whether 44,1 are both even or both odd,
where shaded portions indicate contractions, and from
Eqs. (2.32), (2.38),
9,+4:+43 = 4 , (48 )
rl* Y.. = r = P—q 3
4,= 24 = (p+q) - (L+m) - 22,
4,= k + max (0,4-23) = m ,
4y= q - 24 - x - Max (0,g-21) = £~ (p-22),
= k +max(0,9-21) - (¢-23) = m-(q4-22),
= p-22 -x-max(o,4-22) = (p-22)-mM (49 )
1 ol QZ* 13 Al rz 3
m= q,. (50 )
In terms of substitution operators in this scheme,

to be evaluated is
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= ss (ss') 9y * 9“'(2‘{')% + gw(."ii')ﬂij +

265 ((1)gy + 20(H) ey + 29™(EL) 9y (51 )
8. (33) + (2%) + (3D +GR) G + 3T + (v)»

EY) + @) @Y G EY - G, (52)

& - TT.) * ﬁ':'s;‘:) M (s,u.s, ) + (%% '?': %; Vo) + i;?-’ Ue) + (wu) +
(%‘:,‘h) * (%: Ul) + (§r:U.) + (_5‘_:U1.) + (i;Uoul) * (%U.U;). ( 53 )

The details of the calculation are given in Sec. A&4.3.

The method used 1s the same as in the above example. The

symmetry properties of traces of two-rowed tensors, Eqgs.

(2.20), are also needed. The result for both cases is

3= 247+ 4} +4qq, + 408, ¢ 2495 + 2NDA T (T

+ Py ann + (N-2)n + 287 * 28, + 245h v 24> (54 )

Gi> = (4,484,483 + N+ N)(4,+q,403+n et N-1) + (4 q,%q)(a q,+94+ N-3)

= (qz"'QI*’Yz)(Qz*qJ"'rz"N'” - 42(q,+ N -4),
or, using Eqs. (48), (50),

Qa3) = p(p+N-l)+a.(a,+N-3) —4(24nN-2) - m(m+N-4), (55)
The result is, as required, in agreement with the

identity

Caiy = <> - i<« ( 56)
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since the right-hand terms are(z’g)

La¥)y = p(F+N—l)-rq(¢+N-3),
o*y = 28(L+N-2) + 2m(meN-4) (57)

in two-rowed representations.

4.4 O(N) Invariant 4<ada + 3a3)

From Sec. 3.2, there is a single independent additional

O(N) invariant which is cubic in the U(N) generators a and

3 , taken to be $<ada+ d3d) . For computational purposes
it is more convenient to evaluate <aa*> , for which, from

Eq. (3.19),

fqaia +ial) = CAa - Ycad) + L<ad”, (58 )
In terms of substitution operators, from Eq. (18),
b, = (asn-2)aty . Cp-qen) 8%5(L) ¢ [875CE%) + 85,(00)], . (59 )
Gays ah @ ta gt

'Y

@G> = (gen-2)<as> » (p-a+1) gPat;(R) g+ [47a05(25) + 9%a%(R8) ] gu,( 60)

ga' (%) gy = (p-a) + [g°C8) gun + 8V (%) 9] + [g"°(E0) 9], (@ )

992t (5%) g + 992 (%) g =

[(033) + g*(bsl) + g™(ith)gy + g™ (4l) « g*(L¥2) « g™ (i),

s

[g™GL) + 9™ (E)] gy + [E3) + (W], (62 )

and obtaining the last term from Sec. A4.2,
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<3a® = (p-a)(p+1) + (q+N-2)Ka3) + (p-q+1)Q; + (P+a-2)Pp + §y , (63 )

1CaBa+3a3> = (p-a)pet) + 5(pra) +(@rY-2)CaR) +(pas0By ¢ (pea-2)fy + By, (64 )

= [o(tl) 9y] Coes)

[g™ () + ¢™(i gy,

. rpiwj triwj . iwj tau] i u’) fianjy
= [g%(L32) + 9" (l2d) « go((td) + g™(WN2) » g™(N2) + g (X0,

@, and @n have been found in Sec. 4.3. Details

of the calculation of g are given in Sec. A4.4 for the

case when 4,,r;, are both even. In the scheme of Eq.

47,

?,

(UU) = (U,U.) "'(uz.uz) +(U.U,),

2@; - fr:u.) 5 ('?'.‘ Uz) (s.u) (stu,) 5 (s,u.) s,ul) ,

IR D M CE DN DGO CTIDE

Tsz
sV, 5|U1 Sa U,
T ) | ) + (3

)+ () @) (B, o

with values
(pi = rtednr + (N-2)T, ,' ( 67)
O = an+an * qn +ran, (68 )
du” (.q'zr' v ain +agn v qrt v At sat 4 29.9,7 + 2a4,m * 20450 Y
29,957 * 29,3,V ¥ 2.0 * 3NN + 4N+ (N3)qr v (N-3)qr, + (N-D)g,r)

+ 2N (arF - qn) - 1A (g3n v 29,95 + (N-4)q,n), (69 )
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@m being evaluated in accordance with Eqs. (2),
(3) and Th. 2.. The parameters q,,4,;,83,"," are linear
functions of p,g;2;4,m, given by Egs. (49).

4.5 OBeréfional Definition of A

" The evaluation in Sec. 4.4 of the cubic O(N) in-
variant 3<aia +2a3) , by the techniques developed in

this chapter, gives an expression of the form

d = AFT(p.asd;&m) + A4 (pairsem), (g

where the lengthy constant term in Eq. (69) has been ab-
sorbed in the invariant term @ on the left hand side.

4 . .
The functions f are polynomials in the labels

Nip,a:2; £, m; in terms of the related parameters
N>9,,4,,43,"," ’
ft= 2qnn-1) = 2(p-2a-mXp-22-m-1)(p+q-22-L-m) |,

§7= -5 4@, 20,0 N-4) = 3 (p-r-LNa-Dr-m)p-2a-£-2m-nwa) . (T1)

. . . *
Another equation in the shift operators /A" can be

found by commuting Eq. (70) with the labelling operator A

2 N\ (712)

\ [N, AE]

(A ] = AF'(pasaem) - Ni(pga;m). (73D

Eqs. (70) and (73) give

ANAN LT + (DART + ONIARI-B) = o (74 )

Now in the abstract basis l23(3)> for the irreducible
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representation O(N)(p,q; 3 ; £ ,m),
EFEN NN IEAE)Y = CBXENTAE)Y (2a50,28< )
4 :9\’ (f,:,) l/\*/\' I :7‘ (f,,,» = o (otherwise) _ : (75)
from the definition of /\t. However, since from Eq. (49)

43° O (A =0) |

n=o0 (n=p),

n=1 (@=p-1), (7e)

then the product £*f° vanishes, whenever A takes on its

1

maximum or minimum value:

{%°=20 (2a=0, M=p or A= p-1), 77)
Hence, in the irreducible representation o(N)(p,q3 A ;£ ,m),
RGN AN RG> = KEYGATTTEA G SIS

so that Eq. (74) becomes
48°7(Pa;5 A5 L,M) + ([ADT +3)(TAQI-®) = O (79)

providing an implicit operational definition of AR
Another, somewhat more explicit, definition can be

given when there exists a second equation
¥ = A'g (har;,m) + Ag(pasnrse,m) (80)

of the type of Eq. (70). For example, Sec. 3.3 shows that,
for two-rowed representations, there is just one independent

additional quartic. O(N) invariant, taken to be
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3<adad + aaaa) ; an evaluation of this along the lines of
Sec. 4.4 would produce such an equation. Then combining

‘Eqs. (70) and (80),
AN (£%97-9%7)" + (9g - Uf NBg'-¥*) = o, (81 )

leading to an implicit operational definition of A in the

irreducible representation O(N)(p,q;A ; & ,m),

(497 - g (A" + (3g°(N) - TF(NXEGW) - (M) =0, (82)

provided that the products f'9" , g'f  satisfy the con-
dition of Eq. (77).

A disclaimer must be added in connection with Eqs.
(79) and (82). Since a definite choice of normalisation
of the abstract basis lil(ﬁ)> has not been given, the
operator A appearing in Eqs. (79) and (82) should possibly
be accompanied by a normalisation factor which is a further
polynomial function of the labels. This could also be
accomplished by a subsequent redefinition of the unnormalised
labelling operator A .

Finally, it should be remarked also that, by the
arguments of Sec. 2.3, and the explicit construction of
common eigenstates of Sec.'2.6, the operator A , introduced
by Eq. (79) or (82), does indeed commute with the other

labelling operators, as required.
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APPENDICES

The following results show the reduction af several
low-rank irreducible U(N) temsors of two-rowed symmetry
type, to their irreducible O(N) constituents, according to
the method outlined in Sec. 2.6.

Tensor components are arranged between brackets C1l
to indicate the symmetry type. Traceless and double-trace-
less tensors are written 1 and E=3 respectively. All
indices are assumed to be contravariant. Repeated indices
indicaté contraction with the metric temsor. Dashes indi-
cate that the tensor is obtained by applicatian of an
appropriate Young operator to a trace of a higher-rank
tensor.

The Young operators have variable (but definite)
normalisation. Thus Y[g][ﬂ“'“;'["‘s'x‘l]] has only 6 = z—l%

distinct terms, and the highest common factor 4 is divided

Out.

(2,0) @ (0,0)

o'

P
O

v
i

7] = [ - 9 g%
£7 - [
§(°) = +7;"

[3,0] = (3,0)®(1,0)
[7(17‘:.7‘3] = [‘7‘-7‘:"‘5] - EO)Y[g“axs xl—-]l
f;(T:t—j = [‘Xli.i-_']

~§(‘) = +

(N+2)
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[2,'] = (2,) ® (,0)
X - o] - Y]
=] - 4]

) -
‘Sﬂ et W-n

[+,0] = (+,9)® (2,0) ® (0,0)
frxrm] = [auxex] - $OY[go™[xa—-1] - §°Y[g" g™ [----]]
%= = [xmii] - 5 g™ ™ [itii]
[---1=[ii]
2

) — =am
Eu - (N++) gt =+ NN +2XN+4)

[3,t] = (3,1) ® (2,0) ® (1,1)
[:-f;xé] = [:thﬂ,] - EQ“)YEQX‘:XS[_—]’-““’— ] _ f(")Y[S“zxs—m'- J
P I Ol I e

E(:M) - 4_?'5 §(u)

i 2 (N +2)

[22] = (2,2) ® (2,0) ® (0,0)
ERl - e - §“°’Y [ FF] - @Y [ F]
E=] = [rel - % 9]

EERIE

1 1
™ o-ra ¥ = e

[(3,2] = (3,2) @ (3,0) ®(2,1) ® (1,0) _

RO I el IR L € il S0 DRI S ¥l S Vi
- 3OY[gM g ]

BES) - [3e) ¢ [ee] ¢ (e - .

= anen (VL] + T - 97 )
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T IR ot BT e € i 67 1 B i () D)
i ;J = |.l. x,J

3a) U — () ! (D) '
S( =7 3(N"2) 3 R TCTD 5 = ¥ 2(n-)(N+2)
3] = (,3) ® (3, @ a,n
(X2 X - hall 1) Ag A 2 (1] x L -
[::;(;’KJ‘ - -x“:;:z,‘] - E(s Y [9 y ‘[xﬂ 7L’]J - Y [g"l"sg"s c’x __JJ
x 4 KX, ii .
%, Xy K3 % :"‘:;’:u = __52("“ (9 a":[ﬂ-l;J] + g :[::JJ] . 913"4 :z:-‘;
HuXg I, C |"z A %,
AR el gai)
=, ti
Xg dd
@n . W  —x
g = N X = 2(N+D(N +2)

[+,2] = *,2) @ (+4,0) ® (3,1) ® (2,2) @ (2.0Y @ (o,0)

Bl = fpgom] - ™Y [y ™ =701 - 10y [gvg ™ =)

- EL:’“)Y[Q"P&Q";"‘ wa]] - E@”‘)Y[ 3%y "‘-"z[*s"c"‘_]]
gy [geg ™ ]
B - m -k e

FE] - [p] - weved
=== . rii kR
F=""1 = L]
(1320 - < 0i20) e
§| = T ON(N+)(N ) 2 " 2N(N +1)
jre) 2 (2120) (n=1) 6o _ \
'gt: = F NN (-2 (N4 §35 = * ‘NN+D)(N-2) b ¥ N(N-Omr2)
s 4o) XeXe TR X %1% ] ] (30 A Xy X Xy Ry -
x;‘:;" 3 4-] :.‘:,,1;1.] - §‘~ Y [9 [_|_x. ] -¥ Y [g [x‘;-" JJ

x -
- Uy [T
A———— ————— ————— ettt ——
’_un‘:x;-u = [ﬂ.x.:x.-x*] [«,nx -x.,J + [x.-x,x;x.J * [__—'«,ag.x,x,] I‘:.:,—x:?,x_,] + [_?‘?'—“"‘j
-x.s:.,'x, ] a [:s—:‘x,c] :.51: X L

G 1- EE

) ! (s 1 2) r
geh = e '§ = T gued) Sa = e
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a™ - AT o+ ND - <@ Y n o

™' -a™'> - <A@ -3 Ynat

<ama"y = <a*a™» Ym,n 3t
Proof:
(1) .

al"\i-l L k . av\+|kl.

= a"Ja;
' = a;ta™ - [aji,&"kj]

(ii) = da . - [«Sak<a"> - Na ]

<a™> = K3a") + (Nt -<a™y = <3F>
ithmsy - ama o A%aTy - (gfay - a’ah) - <3,

<a™a™ = <AVa™> VYprono .
<a™3"s = am a¥ET)

- a¥a@Em)’ - [(&m)ka(-é"-'): - (&™) EI]

Ab«i a"\g alk(-an-z)‘i _ <-a._'-"§""> = <_a'ﬁ§_n-'\>

(G ) - AR [9x@™) - 84 ElE), -

- (...)

(3*Yta7 (3™, - <3ama") + (Ea"a

= <a"a™)y - <CaA"tam> +
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The expansion above can be written as a sum of pairs of

the form

'’

R ai SRS S LN

Using the result of (i), since a™ can be expressed as
a polynomial of degree m in % , with O(N) invariant co-

efficients,

-n’

3“3 = ama
whence by the induction hypothesis, since n-n-1¢< n-1

it follows that each of these pairs cancels.

Commutation Relations:

[aaj,au] = 93~ Jie 3k
[aik,3;"] = ay - ai
[aw,a%;] = &y - ag
law, 3%] = Nag - g4<a>
[k, 8] = 9y<ay - nNay

[a;,-,'a..c] = Gap - 9 dje
[auhaj"] = N3 - gg<ad
[a:,3%;] = g <ad - N3y
[3u,3‘j] = Ay - &y
[aw,3;%) = 33 - &y



[a_q ,a3 e ]
Law, ai\j"]
[aw ,33K.i]
[aie,a3%;]

[ak'"- ’ a-ai h]

[34,335]
[a;k’ﬁa_i"]
[2ki,38"]
[3&,335]

[aw,3<:"]
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= Gjeddm T Bwidgy * gpadTie ~ 33w

= Nad; - <aray + aiy; - 'a"_;;,

= 9y<add - <adag + Ay - &y

= Aa_',i. - a‘g + N a3 S <a>ay
. AEﬁ ;3; + g“<a§)— <a¥ay
= apda 9ed3dy * 3idjp - I 33 e
= a% - 3ay + <a¥ay - gy <3
= 3‘5 - 3a; + <a%; - N 360
= (aYay - gy<day ¢ Ay - 33y

= <ada; - N3y ¢ T - 3y

Quartic Invariants:

3 = 3 4+ 203 4 N3 - <a¥3 - (Ka®> + m<ad)

¢3a% = <aF> = <a3’> + 2n <a3’> +NR<a3> - <aX<ady - <a¥(Kahy + N<3)
33%-33°> = -N<ada +3a3> + <aY<ad> + <aX<ay,

TH o= 3%+ 303 4 (3R*-<3X) T+ (NP-20<2) -<a) T - (Kaf) + NS + NK®)

@%> = @Y ¢ <3 & NIEY) - @Y (243> + NK)

Kat-3*> =

(3'3ay =

N <a%+33) - 2<aXxa’y

- £
a.jaa L3
=18} - 1 -2t - H 2
adigat;at, + (a3, -3 "¢+ Nad'y -<ada,)a
3 < 2 = - - .
aziga®; a%; ¢ <aF) ~<Fa) + NKaday - <axad)

+ a3, (3%, ca> - nat;) ¥ N<aTa) - <axad)y
€a3><3> — N<aday + N<ada) —<adiasy

[<aday, <a>] ;



<adad*y =

£3%a3dy =

<a3*ad

76 .

L 5 .k
A ;8R4

aa; &k ¢ (ata- a1 at;
I [ 3 -
ag at;at, + <a’» -<@ah
. 1. 3 - N —
a &% ab; + a8t <aty - Na) + <a’> - <3at

¢3a?) + <a¥y -~ (N+)¢Fa?) + <adcary

a,‘,iakj a':-'l"i
i, =k i iy =R
an 8; a3 ¢ * (8 ,<a)-uag)aa i

ad ajta3®, + <axad> - N3
o . i
ak.i aaki.aj“ -+ akJ (Maak:’ . akj<a> + an _ alk.j) * ( : _)

¢3a3%> + N<333) —<adxa) +<FA> -<33H ¥ (9H<EaY - N<333 >

. t _a i i\ —32 R
aJkaJﬁa ki.+ (a\k_ékl.)a o

PR 4 a3y - <3Y

a3 a;b « ale(nEh -85 aEh) + caE - <3%>

<a3®> - ¢3%> + (N#1)KAE? - <ad<ar>

— . . 2 h
3Jka".idk + (3R -3a'r)a:

-é'lj k [ . + -é".ik (SRJ <3y - h’ak.,) + <33> "<§18>

¢3*a%> + (3% - (M+1)<3%3> + <a*¥<ad>;

. N
a; ad e,
J k k H i L3
= &‘Jkaj a.: + (a-.n.k . a‘kt)ai
j kR, F k =
= a-"’hé\i. aj" + a""k(N-‘l,,'k- § ;<) + <a*3> - <a%»

= a3y -"<ay + (M) AE> - Katxa)
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<aaaa) = a
= az’pajtaty o+ (Ftn<ad> - <ayan ¢ At - Th) 8,
= a3’ p3; a. ¢ <aEXad> - <ayady ¥ <a3ay - (Fa>
= aﬁjkgakla,-i + aﬁjg(a;k—akj) + <adad - Fay
= <a3a3d)y + <a33%) -<ada)> + (ada)y - <3*a>

= <<a3aa> ,

A4.2

The various substitution operators occurring in the

=23

calculation of a*, a*, a*, 3* are found by evaluating

them in various special cases, using the symmetry properties
of tensors with two-rowed symmetry type, Egs. (2.19).
Since the scalar factors occurring are polynomial in the
parameters p and ¢ (at:most quadratic, for these calculations),
théy can be found from a limited number of special cases.

The notation for substitution operators introduced
in Sec. 4.2 is followed; tensor components appear in square
brackets, indicating the symmetry type. In the proofs,
external indiceé, appearing in & -factors, are held fixed,

and the others are summed over their appropriate index

set.
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Substitutions for a* , 2 , a~, a

(u]v) L) = (pog-) 8
Glgy;, - & [( D8] = @ sl)
CI13) s 1G9« (V)] = q-28500)
C15) s [+ G5 = ast; (4
“3) (GARRA aip-2)()
sy, = slEsD) fGE] - @8l

“3), SO Py - -nsn Gl
13, s [0 (YD) = qlp-a-08(L)
(1°°); 85 (Lws) (p-2-1) 8°;(0s)
CI3), s LGS+ (8] = 485 - -850
CI13°); = sIGLY). L] = 28508 - w-0) 85,

1
1§

|

a“;(ii;.) = (p-9q) 5{;() ¥ (P-%")S“i(}i‘) + [ésa(i:) *'Sta(i:)]

A (B) e ati(l) = 28°0) + ad% () v (@-9[8G) 5. ()]

2 (08 (5% = a-0)85() + alp-g+ 085l + (q-nl& (L) + 85 (Y
a* 8%5,() = (arn-2)8%(5) + §;(L%

2", 85, (5) = (e+w-2)8(8) + 8%(0%

85 G) = (prn-1)85(5)

a k85 () = (pen-0) 8 (LY)

a8 ('ﬁ) = (peo-0) 85 (L%

Proof:

(u]u)* [eams] = 8% ([uaiws] * [ws%atd) = 28“[iws]  (r=3)
CI9EER] = s ([an) i) [, o D) e i)
. 5 ([t.r.,]*[e, ]“'[t ])”3 [e](€3)
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“15) ::“'] = s AR - sTET e
S0 A PR M L (a=1)
(s,u5) ii’; = 8T (Ml LT +[23) =0 =2

LIRS - 8 ([f=.“'1‘] [ T8+ [T + [9700,)
= s (e IR Taet)) = sl
(Ulos)fam=] - gy( ““'] ) BTSN (Al B CEPY
G Ch B ST € IR ! EE W (CRRD R )
*l T")J[i:i:“] = " ([“'°’]+[“"*°'] et
= & ([ER ~[eat]) = 57 (2%t -[6w])

3 an(8s) = g[8 D) e s (i) - ‘(e - oG]

- 54 [NCES) ¢ () #(ENE) ¢ (21‘2 +(L0%)]
= (pen-1) 8%(L%)

Substitutions for <Kad> . :

I (43 =245 3 n = 20 ) II (@s= 243+ 1 ; v = 2/ +1)
‘S lsl
sﬁ'r:) —> 2q,(q,+N-3) 3%) —> 29,(q,*N-3)
s .
?-:‘-?-: — o %3 — 0
S5 Ss — g (4, +N-%) (5:%-3 ve) —> (a5-)(a5-1+N-4) +4q,+2N-6
T Ts %3 3 Ty T 5 3 3
(U'U') +(Ulul) +(U'Uz) —> r(n+2n+ N-2) (U,U.)+(U,U,)+ (U,U,.) - (']")(rl" +In*t N -1)
s .
£3) ~ tas, #%) = tas,
‘S UQ -
33 —> 49,9, 2% — 44,a5-1) * 64,
$;S Ua
(2% —> 24,3, &%™) > 24,(457) * 44,
'
&*) — 24,7, &™) — 24,(n-0)



o
24 —> 295 %) - 45
%) ~> 2a, (3 —> 24,0,-1)
(% — o (%) —= o
=2 — 2., (%> = 2(g5-)(n-1) +4(5-)
(%) — 0 s,u. ?) — 0 +12r,

80.

Proof I:

The terms are calculated in special cases, and the
géneral formulae deduced therefrom. The symmetry proper-
ties of traces of two-rowed tensors, Egqs. (2.20), are
used throughout. The gppropriate section of Th. 2

being invoked is indicated in each case.

All terms can be deduced from three general

evaluations:

safpn]l = 2g*[EL] + 28] + 20 ¢ 28 [EA);
5 l.. ,2 a : ' < i LS,
D eyt I Pl e I P xR IR et Ry v
r 2¢" ] + 2 ETE) + 2g TN ¢ 28 ([
\ + 29".' ‘3;:?:’.] + 29 a[Jn.);s‘ls] * 1 3'[?""2:2‘1‘* + 29'.1 [:‘j:t's‘-]
v agtIt ¢ 2t 200D 2P,
OO o T A ICREY s e Y L o R Y i M B
M deyl “Q'Srfu‘] " Zst,..,[s (Satl ] " th‘u ss,_lu.,] + zgtu,[ssut

and applying the standard trace appropriately, following

the prescription of Eq. (4.3).

The notation (...)
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indicates terms whose general form has already been

deduced.

R) [l = ]+ ]+ 200 + 208) = en-m ).

2GRl = o)« W [HED + e[E] > Gu-nal ey,

TWIERE = 0+ [P ¢ 4B = e-wdg,
BRI =6+ a[FRIV) + 4QRer) -
K S.5yS4 ks,35S, S,k 3y s,_ S R3;3,
+2([J'Jk5 JJsk]+[JJk3. stk])"'
ca(BEiE] - I - BEe ¢ LD,

< S 5.5, 8
SRB LRI = ) < slTRN) « 0 = 4g@r) ¢ 2R g (Th2w @),
(UIUI) (U U:.) ..,(U.Ul) = n(nrin+ N-Z) (Eq.(‘.-.‘ﬁ)).

g 3Sa 12
bRl = e [ital - eqa,.

8; S 55;5354] [s 1515y 4]
('r,'r: ttaiind ™™ 8 legiid ™ 4q, 13

%;i’,)[:-::-:i-;?:] = 5 [jGR] = e[5R] = eaa
LR = e [:-;“"J 8((i**] = eaqln.

(‘*”)[""" "] - s[5 = 44

GEWGERY = L3 = e[l = 4an

s,u,)[j‘j:k.k,. — SL.:,JRJ + 4[151_‘5,&]_, 8[:_,{._!&&] =— eq'r.'

Rl B v B R R

Proof II:

The results of I are used (with modified 43 , nr )
except where the index set U, appears. Three additional

general evaluations are needed:
(B2 ) = 2B v 202

_s;_:u,u,)[s. unk,k,.] - 2333‘ [%“u,l.k,] n zsu,k, [_Z:uk,] N zge.k.[séu.,zk,] z

(]

+2 ssokg[.%:l.. kll] + zgu.hz[stzl k.l] + zgt.k"[i. u.k.lJ .
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] [] L) 4 L
SR | i BT i e IR Y i il IR Y B e i B
*Zsi"'L“ ] 20 YR zs”“-["f:f“') .
da b wate Jula
Py 29‘."" 2 J' s ¢, "t: < zgjlt‘°[2l‘:lshu°] +
J; » JI.
+ 235 '- (.,.l. ] 2.91"[“"'"5‘2] + 29 10["1 25, u..]

(_s,u Sa ua) [ oj’_ -

(s;u,,S;U ss,_s-

Jl-la 1

SS:Uo)[:‘:z"'I ] = (-
(_sra.:_‘u ‘.szso l:.] —)(

T IS

AL .4

Substitutions for

(nl—z)[‘-“j_] > (2n-12)
J=(
"(13")(“3" +N-4) + (aN-2) + 4(g,-1)

<)+ |2&":i"‘}

SRACTED)) il BRI i I b o D

JJ R

( Th. 26)).

> 4q,(q,71) + ¢4,.

) t 8 SS,,S.k] == 1"’:.(%!-‘) v 49,.

)+ 8[7*R] > 20400 + 4(n-n),
('s!'; UOU;)[SJ_:J',_ u’!"'l] - ( .‘.

) + +[§'j“‘u‘] + 4[&""*“] > o+ 2r,+ o (M. 2GiE)),

t¢aia+ 3ad>  (as= 295 ,n =2nr);:

GI:'.U) > qi(rr) v (N-3) g (n+n)

@) = o

G’;T:l ) > qyn + (n-#)qyr - 5 A (a5n + (s—+)q,r,)
7YY = a4+ 243.n

(§r.sT',u) > 299;% + 294,n

T = o2 - Nagyn

GYY) = ant+ann

@&

> gr*+ gnn,
@) = a5t v enn
) = gqnn+ 28 g n(n-)
7)) = e
@) = o



Proof:
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Again the terms are calculated in special cases,

using the symmetry properties of traces of two-rowed temnsor,

Eq

The appropriate section of Th.

. (2.20), and the general formulae deduced therefrom.

in each case.

are evaluated in two stages,

ly

5,5,
T T,

2 being

invoked is indicated

Internal summations over the U indices

over the U,

and U, separate-

A1l terms can be deduced from four general evalua-

)G

ILzS s, U
s Bt

z] B

+

tﬁ([u,.b 225, Lu,

Jida 6i6a

[ wirsie Luy E&,s.u,lu.,]
ﬂ ([J Ja 6,8 ] j..i,_ €, Ey

(S friu,Ls,2 u.,_] LLu, SR
J ([JJ,,!:(: al S ]

A L,u,sllu] .csuQu.J
9 |JI- ' 1. ) t.

b, L2538, 2 ..;s,szz.u,j
g ( J..J,,i’,l ti a] Jodg i ba

I'.'g( u.l.;s Silu g ols|s’.£u]
3 . ,Ja 6L iidy &

%(ttuﬂs iuﬂ q@s;,zu]
3 Jal b Jrdgu,t

“ «,S5,8, .cu.J g:,s,,l.v.,]
3 J,.;,_ [J,J,_t '™ +

is /e iy LS Uy ;,;.u.,s,-lu-,]
S o R Iy e

IS, l:.‘.,c:t s, 2L u;-." Gl “1]
f(u.,,;tt,_ +[zj‘tt,_ +

Jlt([l,. LT ﬂu,] e ,_.;,,_s,s,_Zu.]

|Ja ‘-Jzu‘ t

sjntz(["- S s; “1] + Liady 3;‘!“]
w, ), 62 L,

: ¢, ‘-;!5;‘“1] iiaus,u
g',"|([~i| g &ty + [Jl‘e t C. ]

H il Lu su, Lu
955, l‘l"!-sl'2 1] Gl 54 z.]
c) '([J. wtt J¥ [J.l XN

T 5'511_1.1,]
AU

t(ﬁ' sazu]
9"‘:' ss,,lu]

hi;aszluﬂ
(-L,.

he Su,

Rl w S, Lu
¥ |7 a0 i
] [J.J;t.t; L

[u;c. 228534, 4]
iz tta
[u.,:., 5.2 u.‘l-]
gy da &
[huzlsgu.]
Jy Ja £ tl.
[._zu,,_s.l.u.,?.]
Joda & L
u.ii.ls,s,.u,e]
Ji iy £ Ea
[u.,_l.,s Sa%y
3, dy .2

[t ]+

[iaiad seet]

[a.als.z u.l]

s i, €ty

['-l ils,s,.u.,l;]

ulj;“ tl- +

[l. L2 S 5.‘L|L]
“y), &L *

i [.:', f'.l :‘ t:u' l])

[,.14 s‘u,l]
u,t t

[c., i,8,fu, l]
gt by

[;,L,s s,u.,l]
J,ll Lty

e B

£]+

(“u.lﬁs u, ]
[J J;-Z tz. +

i)

tiasitand])

[t )

eyl
73 t;s.szwﬂ])

:’.J; U‘zel

2 L,s,s,u.l])
Juj; t u‘l

le alstu' '0'1
o dy 4262

)
N Eiriaal)
rraoall)

t.'-,S. Uy, 2]
£J, bk,

)
[rizae?)
)

<, L;s 5;“0
€yt u,

[F5ue)

« L2 :ﬁ:“"])

i)
j, L tug '
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salaen] - ] « Bt + [ + [ree)

+4 at, ([u, 5,2 u.,:] Is‘l wy ] u‘g‘u 2 .:_:::J.,-l.])

+9s,_t,(su¢u,_l s,u;u;] + su,_"--‘ [iAuZJ)

. s'e.t‘( s,se_l. u:‘l N Z,f‘:l u:.] [s St ¢] s stu 2.])
g I

RIBE T = S GO ) T G
S N e R
Tt FU e Rt
» (Gt LD - 9’ MG - L),

Ol v I e IO b R ey R

. 3.;, [n. L,_—Ql] 5.: [,_k;tl-e 31}. [t.(. 21] % SJAka[E:;.:Iﬁ-E]’

and applying the standard trace appropriately, following
the prescription of Eq. (433). The notation (...)
indicates terms whose general form has already been

déduced.

Gs ) -> (8N-8) [J.J g k'] (4n-#) [ ‘“] > (4n-4)qlr’
A1 Erie I SR 6+[3:7:3$:“"‘] > ¢+ eallal- 0w,
G= Iu‘)[:::u] = (-4 [389] = (an-2) [Bh0] > (an-2)aln,

DAY A iyl
8 1.)[“1”:; IEASR 31[J'J 2] )+ 4ql(el-0n.

s,salu. 5,5, 1y k..] > (Ssz[-ﬂi k.k.] + g [uk* _ g"t‘[f“'k'_] - sle‘[u k.k.]
3 R 3

T, T2 tky
_ (95 si[:.:'t,t‘] N St,t [g'k'ss] _ s,e‘ i'k St ] sst[:::t )
Pl ]*9”‘(& oy f'if e g ([asf] + 550D
FEA - B2 - (G B

229) + %i:l”‘ >0 +0 (Th.Z(iu)).

$.S,
T
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St el I P el vl IRN G i ] - -0 55

k, s,8 R R llkk
GRIEET = e+ O AR e e
+a( [3IR] « [330nin] - ;:t':z** i
] tJale 4 ava 193 Ja2v2
? & K, SRETY
RE (ritou IR brortl R vt B Rvavial)
T > 0+ Gu-0)apn - (-8 KGR ¢ 0 s0 + B (aj-0N - 4AG) (g5 1) R
229G = 2 [T e - z>([ W5) > ovo (Tn.26@),@).
$43, u 2 AL L ... .
ERETE] = @S [T - ,.:.‘3,:: ]+ )+ (55%™ ) v )
, & L
H([Laent] 23:1.21 P BRed s ),

§r;1’,:|”=) >o0+to+0 (Th 2G),Go),

10 Breans Bt Pl BRI Pl B IO XS

@S lint] = e[Gnit] = o[i%] = 4qian

S, s,lu. L.izs.xk-kz] LRy %SGR 6i, 53, kK,

(T. T [, jrigde 17> 32[4’. Jr dyia = 161\, dady 'l >weqiapn’
S, Sy U; 0255, W [ u..s 3;'-1 ULy 35S Wy
T T;l [:,J;J,J, ] > o [: gy dada ] 2 8[4'4:4.,1; ] =849 er'z

SaSs

?3;'“')" o + 84,9;r, - 4Nq.ajr,. (Th. 20); Eq.(2.200)) .
G > o (3] B :""] + 9”’([“.53‘}‘] +[e35 D +
g (A0 Gt + (5t ~ 3D +

e2 ([0 2] » 040 (Th2@) @),

D] vl I ot ) I il v el D IR i vl B

\

G| R R B LS

G:U'lu')[:,::“ k.ln,] = () + 1 o.k.l- R, k,k.] + lGLk‘k Ry g h,_]

> () + 81.r;’(r. -1).

AT = sl - sfgee] > sain.
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(EAER > olg ) > sar
GO [EMERST = (o) ¢ B (LERNN] « [FRR)
= (10) ¥ 4q,n/(n-0).

GO > (LM B4 = o] > 2.

(;;U:llh) j.j:'k.hz] = B[jjrk kz] > Bq’ o,

_sl._;u.lu.)[?:j:k.k,k,h.] 2 % (“’[j Schkyiika] g Ik R.k,k;SSz])
. o8 ) + 6 ‘:lj;k k\kxk:.]
wh

(-f-;"'l"')-a(...) + 84N '(r’—l)
GO > (T Tyl » B i)

N PY 1 v 4y Uy dy Ji Uy
= 4q;nr,
@) = a[bgmeb] o a[bbhkn] 5 gy
ARG > el
(_Sr: UzIUz)[g:fj:u.u;us] > 8[‘:‘:‘.‘1"‘1“’] v 8 .:lz:; i.,i.,u..] +8 ts:(}?é,i.uz]

G:”zl‘JZ) = 4A'gr(r-1) (Th.2m)).

(S;U;\U.)[S.k.k,.u. - s,u.[zk.k..e] = 2ge.u.[s.h.k.1] >0 (Th. 2@))

(51U=|Uz)[5“"~] = 3su [u,u] Ss.ut[u. u] £ St, [s.u] + gtu,_ sM]
(F:%]Y) > o (Th. 2@)).

(s;ua. v, l’j j:k kzu.] - 1(95 AN IJ.sJ,‘h k.l-] = sszlh s:j.k.k.ﬂ]) + 2([3:;& k.J.] [uls:k k..)]).

1)

(B%") = ovo (Th.2(@), W),
GUEse] = (@ [5tt] « 5T+ o) 2B+ [359]),
(5%]%) > o+o (Th.26E),w).
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