21.1.98

Design of a partially Parallel Stump Jump Mechanism

using

Computer - Aided Design

by

B.B.S Lutchmeea

Thesis Submitted for the degree

of

Master of Applied Science

in

The University of Adelaide

Australia

(Faculty of Agricultural and Natural Resource Science)

May 1997

TABLE OF CONTENTS

Table of Figures	iv
List of Tables	iv
Acknowledgments	V ·
Declaration	V1
Abstract	VII
1. LITERATURE REVIEW	4
1.1 Stump-jump mechanism	4
1.2 Historical background	4
1.3 Current stump-jump mechanism	5
1.3.1 Coil type stump-jump	5
1.3.2 Cushion spring type.	6
1.3.2.1 Forward-mounted cushion spring	6
1.3.2.2 Rear-mounted cushion spring	6
1.3.3 Lock toggle type	7
1.3.4 Hydraulic type	0
1.4 Past research on stump-jump mechanism	9
1.5 Forces acting on the stump-jump mechanism	13
1.6 Computer Aided Design (CAD)	15
1.6.1 Kinematic synthesis/analysis of mechanism	16
1.6.2 Computer-Aided design of spring loaded mechanism	17
1.6.3 Rigid body motion/Finite element analysis	18
1.7 Desirable features of a stump-jump mechanism	21
1.8 Eactors affecting the design of stump- jump mechanism	22
1.8 1 Desirable characteristics of stump-jump mechanisms	22
1.8.1 1 Avoid excess storage of energy	22
1.8.1.2 Setting of pre-load	22
1.8.1.3 Re-entry of tine into soil	22
2. KINEMATIC DESIGN OF THE MECHANISM	23
2.1 Introduction	23
2.2 Desirable kinematic specifications of the mechanism	26
2.3 Kinematic Design of the mechanism	26
2.3.1 The approach via the computer package	26
2.3.2 Procedure for kinematic design	27
2.4 Results	27

3. KINETIC ANALYSIS OF THE MECHANISM	35
3.1 Introduction	35
3.2 Assumptions made for force analysis of the mechanism	36
3.3 Force analysis of the mechanism.	39
3.3.1 General Description of MICRO-MECH	39
3.3.1.1 Executive module	4()
3.3.1.2 Model definition module	4()
3.3.1.3 Model modification module	4()
3.3.1.4 Mechanism analysis module	40
3.3.1.5 Mechanism animation module	41
3.3.1.6 Report generation module	41
3.4 INPUT DATA FOR FORCE ANALYSIS	42
3.4.1 Definition of the kinematic topology	42
3.4.2 Link length /dimensions	42
3.4.3 Gravity vector	43
3.4.4 Centre of gravity, Polar mass moment of inertia, weight of link	43
3.4.5 Definition of points.	44
3.4.6 Definition of the known forces	45
3.4.7 Definition of the unknown forces	46
3.4.8 Specification of the independent joint elements	46
3.4.9 Solution control parameters	46
3.5 Results of force analysis	48
3.5.1 Forces At Joint J1	48
3.5.1.1 Forces At Joint J2	49
3.5.1.2 Forces At Joint J3	50
3.5.1.3 Forces At Joint J4	51
3.5.1.4 Acceleration Of Point P9	52
3.5.1.5 Acceleration Of Point P10	53
3.5.1.6 Acceleration Of Point P11	54
3.5.1.7 Unknown Force	55

4. DESIGN OF THE MECHANISM FOR STRENGTH	56
4.1 Introduction	56
4.1.1 Finite element method	56
4.1.2 General description of the finite element method and steps of finite el	ement
analysis	57
4.1.3 Steps of finite element analysis	57
4.1.3.1 Discretise(model) the structure	57
4.1.3.2 Define the element properties	58
4.1.3.3 Assemble the element stiffness matrices.	58
4.1.3.4 Apply the loads	58
4.1.3.5 Definition of boundary conditions.	58
II	

32

4.1.3.6 Solving the system of linear algebraic equations	59
4.1.3.7 Calculation of stresses	59
4.2 Finite element analysis of the mechanism	59
4.2.1 Procedure for Finite element analysis of the mechanism	60
4.3 Structural Design of the driver link	66
4.3.1 Stress analysis using finite element method	66
4.3.1.1 Results of the driver link	67
4.3.2 Fatigue analysis of the driver link using Soderberg criteria	69
4.4 Structural design of the coupler link	69
4 4.1 Finite element analysis of the coupler link	69
4.4.2 Fatigue analysis of the coupler link	71
4.5 Structural design of the follower link	72
4.5.1 Finite element analysis of the follower link	72
4.5.2 Fatigue analysis of follower link	72
5. GENERAL CONCLUSIONS	74
DEFEDENCES	77
ADDENDIX 1 (a) Diagram of the detail of the joint and time at rest	
(b) Diagram of the effects of striking an obstruction	80
ADENDLY 2 Input listing for the finite element analysis of the driver link	82
AND THE REAL AND A THE OWNER AND	

AFFENDIA 2	liput listing for the finite element analysis of the end of the	
APPENDIX 3	Input listing for the finite element analysis of the follower link	115

Table of Figures

FIGURE 1-1FORWARD MOUNTED CUSHION SPRING	6
FIGURE 1-2 REAR MOUNTED CUSHION SPRING	7
FIGURE 1-3 LOCK TOGGLE	8
FIGURE 1-4 HYDRAULIC TYPE	9
	22
FIGURE 2-1 EXISTING STUMP-JUMP MECHANISM	23
FIGURE 2-2 POSITION OF EXISTING FOUR BAR LINKAGE	24
FIGURE 2-3 VERTICAL DISPLACEMENT V/s ROTATION OF THE TRACER POINT P	25
FIGURE 2-4 VERTICAL DISPLACEMENT V/s HORIZONTAL DISPLACEMENT OF THE	25
TRACER POINT P	2.3
FIGURE 2-5 POSITION OF THE MECHANISM	20
FIGURE 2-6 DISPLACEMENT IN Y V_{s} DISPLACEMENT IN X OF TRACER POINT P_{s} DISPLACEMENT IN Y V_{s} DISPLACEMENT IN X OF TRACER POINT P2	22
FIGURE 2-7 DISPLACEMENT IN Y V/s ROTATION OF THE TRACER POINT P2	22
EICUDE 2.1 EREE RODY DIAGRAM OF THE MECHANISM	36
CICIDE 2 2 A and 2-2B	37
FIGURE 3-2	37
FIGURE 3-4 ARCHITECTURE OF MICRO-MECH (FROM MICRO-MECH MANUAL)	40
FIGURE 3-5 POSITION OF POINTS ON THE MECHANISM	47
FIGURE 4-1 ANSYS PROGRAM ORGANISATION	60
FIGURE 4-2 DRIVER LINK	61
FIGURE 4-3 COUPLER LINK	62
FIGURE 4-4.FOLLOWER LINK	62
FIGURE 4-5 FINITE ELEMENT MODEL OF DRIVER LINK	63
FIGURE 4-6 FINITE ELEMENT MODEL OF COUPLER LINK	64
FIGURE 4-7 FINITE ELEMENT MODEL OF FOLLOWER LINK	65
FIGURE 4-8 STRESS CONTOURS OF THE DRIVER LINK	68
FIGURE 4-9 STRESS CONTOURS AT THE JUNCTION OF THE LINK AND THE TINE	70
FIGURE 4-10 STRESS CONTOURS OF THE LINK AND TINE	71
FIGURE 4-11 STRESS CONTOURS OF THE FOLLOWER LINK	/3
List of Tables	
TADLE 2.1 DIMENSION OF THE EXISTING FOUR BAR LINKAGE	24
TABLE 2-1 DIMENSION OF THE EAST HIGT OUR DAR ENAMED	28
TABLE 2-2 DIVIENSION OF THE FOUR-BAR LINKAGE	29
TADLE 2-3 KINEWATION OF THE FOOR DARCEMANNED	
TABLE 3-1DIMENSION OF THE LINKS	42
TABLE 3-2	44
TABLE 3-3 POSITION OF POINTS ON THE MECHANISM	45
TABLE 3-4 FORCES AT JOINT 1	48
TABLE 3-5 EORCES AT IOINT 12	49

TABLE 3-4 FORCES AT JOINT 1 TABLE 3-5 FORCES AT JOINT J2 TABLE 3-6 FORCES AT JOINT J3 TABLE 3-7 FORCES AT JOINT J4 TABLE 3-8 ACCELERATION OF POINT P9 TABLE 3-9 ACCELERATION OF POINT P10 TABLE 3-10 ACCELERATION OF POINT P11 TABLE 3-11 UNKNOWN FORCE AT POINT P1

50

51

52

53

54

55

Acknowledgements

I gratefully acknowledge the assistance, guidance and encouragement of my supervisors Hugh Reimers and Paul Harris of the Faculty of Agricultural and Natural Resource Sciences, The University of Adelaide and Dr. Kazeem Abharry and Dr. John Fielke from the School of Manufacturing and Mechanical Engineering, The Levels Campus, University of South Australia. The completion of this research would not have been possible without their guidance and assistance in particular Dr. Kazem Abhary who was actively involved in the design part of the project.

I would also like to thank Dr. J. M. Desbiolles and Andrew Burge from the Agricultural and Machinery Research and Design Center, School of Manufacturing and Mechanical Engineering, The Levels, University of South Australia for their help, advice and friendship.

Special thanks are due to Professor David Coventry, Head of the Department and David Matthew, Acting Departmental Manager for providing administrative and financial support. It was my pleasure to be with them during my stay.

Finally my deep appreciation goes to my father who provided me with moral support and encouragement throughout the period of study

V

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed

Date 3575197

B.B.S. Lutchmeea

Abstract

Change in tillage practice over the past decade has been greatly influenced by two factors namely the need to reduce energy consumption in tillage operations and the retention of crop residue as a soil conservation measure. These changing cultural practices have greatly influenced tillage tool design. One response to these changes involves the design of a partially-parallel stump mechanism to cope with the new conditions. In this research computer aided design is used to improve the design of a partially parallel stump jump mechanism which was initially developed by Riley. The principal aim is to reduce the existing link dimensions of the mechanism so that it can be suitable for use on small tractors.

To achieve the above aim, kinematic analysis was performed by using the LINCAGES-4 computer software package for sizing of the links. The mechanism was designed for chisel ploughing for fluctuating load with average horizontal and vertical soil forces of 2.5 kN and 1.0 kN respectively. Force analysis was carried out using the MICRO-MECH software package for calculation of joint forces. For the stress calculation impact and fatigue phenomena were taken into consideration and a separate computer-aided finite element analysis was performed on individual links of the mechanism. The result obtained from the kinematic analysis shows that there was an improvement in the dimensions of the links. The driver link has been reduced from 600 mm to 363 mm, the coupler link from 400 mm to 303 mm and the follower link from 400 mm to 306 mm.

vii