

THE EFFECTS OF GREEN MANURE

ON

SOIL STRUCTURE IN CALCAREOUS SODIC AND NON-SODIC SOILS

Mark Anglin Harris

Thesis submitted for the degree of

Master of Agricultural Science

in

The University of Adelaide

(Department of Soil Science)

October, 1995

TABLE OF CONTENTS

		Page	
List of Tables			8
List of Figures	List of Figures		
List of Appendices			7
Summary			
Declaration			
Acknowledgements			
Chapter 1 Introd	luction		
1.1	The Problem		20
1.2	Green Manure		21
1.3	Aim		22
1.4	Hypothesis		22
1.5	Outline of Thesis		23

Chapter 2 Literature Review

2.1	The Importance of Organic Matter, Green Manure, and Soil Structure	26
2.2	The Role of Green Manuring	27

2.2.1	Historical Development	27
2.2.2	Effects of Green Manure on Soils	27
2.2.3	The Rates and Methods of Application of Green Manure	31
2.3	Types of Green Manuring	33
2.3.1	Main Crop	33
2.3.2	Companion Crop	33
2.3.3	Winter Cover Crop	33
2.3.4	Catch Crop	34
2.4	Choice and Justification of Green Manure Crop Type	34
2.5	Soil Structure	35
2.6	Structure of Sodic Soils	37
2.6.1	Main Effects of Sodicity on Plant Growth	37
2.6.2	Dispersion and Dispersive Factors in Sodic Soils	38
2.6.2.3	Effects of Clay Mineralogy on Dispersion	38
2.6.2.4	Effects of Electrolyte concentration of Soil Solution	40
2.6.3.	Green Manure and Dispersion	41
2.6.3.1.	pH	41
2.6.3.2.	Green Manure Effects on Electrical Conductivity	41
2.6.4	Effects of Subsoil Sodicity	42
2.7	Green Manure and Soil Structure	46

2.7.1	Microaggregation	46
2.7.2	Macroaggregation	47
2.7.2.1	Biological Activities	48
2.7.3	Green Manure as a Source of Plant and Microbially-derived Polysaccharides	48
2.8	Factors Influencing the Rapid Decomposition of Green Manure	50
2.8.1	Lignin Content and C:N ratio	51
2.8.2	Effect of Plant Age	53
2.8.3	Effect of Plant Parts	53
2.8.4	Moisture Conditions	55
2.8.5	Decomposition of Green Manure During Alternate Wetting and Drying	58
2.8.6	Temperature	59
2.8.7	pH and Green Manure Decomposition	60
2.9	Strategies for the Amelioration of Sodic Soils	61
2.9.1	Gypsum Addition	61
2.9.2	The Choice of Gypsum Above Other Multivalent Compounds	62
2.9.3	Rationale for the Use of Gypsum as Compared with Other Calcium Compounds	63
2.9.4	Calcium Compounds in Combination with Green Manure	64
2.9.5	Effects of Nature of Organic Material	65
2.10	The Effect of Soil Management Systems on the Decomposition of Organic Matter	66

Chapte	er 3	Pilot Experiments	
	3.1	Introduction	71
	3.2	Materials and Methods	71
	3.2.1	Soil Preparation	71
	3.2.2	Plant Species, Management and Harvesting	72
	3.3	Results and Discussion	73
	3.3.1	Cowpeas	73
	3.3.2	Alfalfa	74
	3.3.3	Clover	75
	3.3.4	Vetch	75
	3.4	Conclusion	76
Chap	ter 4	Green Manuring for Soil Structural Stability	
	4.1	Introduction	78
	4.2	Methodology	79
	4.2.1	Treatments	79
	4.2.2	Plant Parts Incubated: Shoots Only, & Shoots + Roots	79
	4.3	Materials and Methods	79
	4.3.1	Soils and Preparation	79

4.3.2	Incubation	80
4.3.3	Wet/Dry Regime	80
4.3.4	Field Capacity Regime	81
4.3.5	80% Field Capacity Regime	81
4.3.6	Assessment of Soil Structural Stability	81
4.3.6.1	Water Stable Macroaggregation	81
4.3.6.2	Water Retention	82
4.3.6.3	Hydraulic Conductivity	82
4.4	Results and Discussion	83
4.4.1	Saturated Hydraulic Conductivity	83
4.4.1.1	Effect of Water Regime	83
4.4.1.2	Effect of Different Parts of Green Manure Plants	83
4.4.1.3	Effect of Time	94
4.4.1.4	Effect of Prior Soil Management History	95
4.4.2	Macroaggregate Stability	95
4.4.2.1	Effect of Water Regime	95
4.4.2.2	Effect of Different Parts of Green Manure Plants	96
4.4.2.3	Effect of Time	96
4.4.2.4	Effect of Prior Management History	96
4.4.3	Water Retention	97
4.5	Conclusions	97

Chapter	5	Reclamation of Sodic Soils by the Action of Green Manure	
5.	1	Introduction	100
5.	2	Materials and Methods	101
5.	.2.1	Properties of Soils	101
5.	.2.2	Assessment of Structural Stablity	102
5	.2.2.1	Spontaneous Dispersion	103
5	.2.2.2	Mechanical Dispersion	103
5	.2.2.3	Particle Size Analysis of Dispersed Material	103
5	.2.2.4	Electrophoretic Mobility	103
5	.2.2.5	Macroaggregation, Water Retention and Hydraulic Conductivity	104
5	.2.3	Treatments	104
5	5.2.3.1	Rate of Gypsum Application	104
5	5.2.3.2	Soil Pre-treatment	105
5	5.3	Growth Responses on Sodic Soils	105
5	5.3.1	Results of Gypsum Pre-treatment	105
5	5.3.2	Results of Plant Growth on Sodic Soils	106
ŧ	5.3.3	Shoot Development	107
ł	5.4	Incubations	118
ļ	5.5	Results and Discussion	118
:	5.5.1	Response of Soils to Gypsum Treatment and Leaching	118
:	5.5.2	Hydraulic Conductivity	118

5.5.2.1	Green Manure Treatment	118
5.5.2.2	Green Manure + Gypsum	125
5.5.2.3	Effect of Water Regime	125
5.5.2.4	Effect of Period of Incubation	126
5.5.3	Measurement of Macroaggregation	127
5.5.4	Water Retention	130
5.5.5	Dissolved Cations	130
5.5.6	Hydraulic Conductivity as Related to the Factors of Clay Dispersion	139
5.6	Conclusions	156
5.7	General Conclusions	157
References		160
Appendices		178
Key to Appendices 1 and 2		178a
Appendix 1	Electrophoretic Mobility as Determined by the Malvern Zetamaster	178b
Appendix 2	Sub-micron Particle Sizes as Deterrmined by the Nicom Analyzer	205

LIST OF TABLES

TABLE		
1.1	Yield of Irrigated Pastures, Crops and Trees on Structurally Modified (Gypsum- treated) Red-Brown Earths (After Cockroft and Bakker, 1966)	45
2.1	Effect of Soil Water Content on Decomposition of Fresh Incorporated Clover	56
3.1	Index of Succulence at 35 Days	73
3.2	Dry Weight of Roots and Tops (grams per pot) for Four Legumes	74
3.3	Dry Weight (t/ha) of Tops of Legumes at Spraying at Two Locations in South Australia (after Mayfield <i>et al.,</i> 1993)	75
4.1	The Effect of Water Regime, Green Manure from Different Plant Parts, and Prior Soil Management on the Hydraulic Conductivity (cm/hr) of a Red Brown Earth	84
4.2	Effect of Leguminous Green Manure, Prior Soil Management and Period of Incubation on the Hydraulic Conductivity (cm/hr) of a Red Brown Earth	86
4.3	Effects of Leguminous Green Manure on the Percentage of Water-stable macro- aggregates (WSMA) in a Red Brown Earth Under Different Water Regimes	88
4.4	The Effect of Prior Soil Management and Green Manure from Different Plant Plants on Stability of Macroaggregates of a Red- brown Earth	91
4.5	The Effect of Different Plant Parts of Green Manure and Water Regime During Incubation on the Water Retention (vol. %) of a Red Brown Earth	92
4.6	The Effect of Green Manure, Prior Soil Management and Water Regime During Incubation on the Water Retention of a Red Brown Earth	93
4.7	Effect of Green Manure on the Organic Carbon Content (%) of a Red-brown Earth	94
5.1	Properties of Soils	102
5.2	Gypsum Treatment Effect on Penetrometer Restistance (kg/cm ²) of Soils (average values)	106
5.3	Average Root Weights (g/pot) of Plants Grown in Calcareous Sodic soils (15-30 cm depth)	107

5.4	Average Shoot Weights (g/pot) of Plants Grown in CalcareousSodic Soils (15-30 cm depth)	117
5.5	The Effect of Water Regime and Green Manure Only, on the Hydraulic Conductivity (cm/hr) of a Calcareous Sodic Soil	119
5.6	Effects of Different Parts of Green Manure Plants and Duration of Incubation on the Hydraulic Conductivity (cm/hr) of Two Calcareous Sodic Soils	120
5.7	The Effect on Hydraulic Conductivity (cm/hr) of Water Regime and Gypsum after Incubation with Green Manure on Two CalcareousSodic Soils	121
5.8	The Effect on Hydraulic Conductivity (cm/hr) of Gypsum, Different Plant Parts of Green Manure and Water Regime at Incubation on Two Calcareous Sodic Soils	122
5.9	The Combined Effect of Gypsum and Green Manure and Sampling Site on the Hydraulic Conductivity (cm/hr) of Two Calcareous Sodic Soils	123
5.10	The Effect of Gypsum, Green Manure and Soil Type on the Hydraulic Conductivity (cm/hr) of Two Calcareous Sodic Soils at 80% Field Capacity	124
5.11	Effect of Green Manure \pm Gypsum on the Organic Carbon Content (ppm) of Two Calcareous Sodic Subsoils.	128
5.12,	The Effect of Green Manure \pm Gypsum on the Percentage of Waterstable Macroaggregates in Two Calcareous Sodic Soils.	129
5.13.	The Effect of Green Manure \pm Gypsum and Water Regime During Incubation on the Water Retention of a Calcareous Sodic soil from Two Wells	131
5.14	The Effect of Green Manure \pm Gypsum and Water Regime During Incubation on the Water Retention of a Calcareous Sodic soil from Strathalbyn	132
5.15	Effect of Green Manure \pm Gypsum on the Soluble Calcium (ppm) of Two Calcareous Sodic Soils	133
5.16	The Effect of Green Manure, Sampling Site and Time, on the Soluble Calcium (ppm) of Two Calcareous Sodic Soils	134
5.17	The Effect of Green Manure \pm Gypsum on the Soluble Calcium (ppm) in Two Calcareous Sodic Soils (Average Values)	135
5.18	The Combined Effect of Green Manure \pm Gypsum on the Magnesium (ppm) of Two Calcareous Sodic Soils (Average Values)	136

5.19	The Combined Effect of Green Manure and Sampling Site on the Soluble Magnesium (ppm) of Two Calcareous Sodic Soils	137
5.20	The Combined Effect of Green Manure, Time, and Sampling Site on the Electrical Conductivity (dS/m) of Two Sodic Subsoils.	138
5.21	The Combined Effect of Gypsum + Green Manure, and Time, on the Electrical Conductivity (dS/m) of Two Calcareous Sodic Soils (Average Values)	149
5.22	Treatment Effects on Two Calcareous Sodic Soils (Average Values)	141
5.23a	Linear Correlation Matrix for Measured Parameters (Combined Values)	142
5.23b	Strathalbyn Correlations for Measured Parameters	143
5.23c	Two Wells Correlations for Measured Parameters	144

LIST OF FIGURES

Figure		Page
1.1	Ranges of Water Content (volumetric) in Subsoils Where Soil Aeration and Strength are Non-limiting for Root Growth	44
4.1	The Effect of Water Regime During Incubation, Green Manure Plant Part and Prior Soil Management System on Hydraulic Conductivity of a Red-brown Earth	85
4.2	The Effect of Length of Incubation Period on the Saturated Hydraulic Conductivity of a Red Brown Earth from Different Management Systems	87
4.3	The Effect of Green Manure Plant Part and Water Regime under which it was Incubated on the Stability of Macroaggregates	89
4.4	The Effect of Time Duration and Green Manure Plant Part on the Water Stability of Macroaggregates at 80% Field Capacity	90
5.1	Relationship Between EC and SAR of the Treated Soils	145
5.2	The Relationship Between EC and pH for the Treated Soils	146
5.3	The Relationship Between pH and SAR for the Treated Soils	147
5.4	The Relationship Between pH and Particle Size for the Treated Soils	148
5.5	Relationship Between pH and Mechanically Dispersed Clay in the Treated Soils	149
5.6	Relationship Between pH and (K_S) (cm/hr) in the Treated Soils135	150
5.7	The Relationship Between pH and Particle Size in the Treated Soils	151
5.8	Effect of pH on Mechanical Dispersion of the Treated Soils	152
5.9	Relationship Between Electrical Conductivity and SAR of Treated Soils	153
5.10	Relationship Between SAR and Mechanical Dispersion in the Treated Soils	154

LIST OF PLATES

5.1	Set-up of Pot Experiments	108
5.2	Visual Appearance of Sodic Soils Treated with Gypsum (left) and No Gypsum on the Right	109
5.3	Evidence of Boron Deficiency in Cowpeas (Vigna sinensis) in Two Wells Soil	110
5.4	Loss of Succulence at 8 Days after Incidence of Boron Toxicity in Cowpeas in Two Wells Soil	111
5.5	80% Field Capacity Treated Soil (Strathalbyn) at 4 weeks of Incubation with Green Manure and Gypsum	112
5.6	Undecomposed Parts of Vetch (Vicia Sativa) due to high lignin content	113
5.7	Appearance of Treated Soils (Strathalbyn) at 12 Weeks after K_S Measurements	114
5.8	Appearance of Treated Two Wells Soil at 12 Weeks after K_S Measurements	115
5.9	Total Quantity of Leachate after Treatments	116

SUMMARY

Inappropriate soil management has resulted in structural degradation of red-brown earths in southern Australia. Decades of continuous cropping have caused some red brown earths of South Australia to have a weakly structured surface horizon that is prone to further deterioration under further cultivation and exposure. Further, accumulation of sodium in some sub-soil layers has exacerbated the structural problems due to damaging effects of sodicity. Dense subsoils have few macropores, restricting profile drainage and depth of wetting. A proper management system to improve and maintain soil structure while concurrently allowing opportunities for cropping is necessary to sustain the productivity in these soils.

It is well known that organic matter is essential for the improvement of soil structure. Addition of organic residues has been shown to improve the structure of non-sodic red brown earths. Clay swelling and dispersion are the major factors affecting structural degradation in sodic soils. Most of the sodic red brown earths in Australia are highly alkaline and also contain lime (CaCO₃) in an insoluble form. Dissolution of this lime will help in generating Ca ions in solution to provide electrolyte effect in flocculating the soil clays and exchanging Na from the clay surfaces. Decomposition of organic matter can produce CO₂ and organic acids which may help in dissolving the native lime. Therefore, the aim of the present study was to investigate the efficiency of green manuring to ameliorate the degraded soil structure both in non-sodic and calcareous sodic soils.

A non-sodic red-brown earth from Urrbrae (0 - 15 cm) and two calcareous sodic soils of the B-horizons (15 - 30 cm) from Strathalbyn and Two Wells were used in this study. All experiments were carried out in glasshouse conditions in pots containing 1 kg soil. The non-sodic soils from Urrbrae rotation plots (maintained over > 50 years duration) were taken from the treatments wheat/fallow, continuous wheat, and permanent pasture. In the sodic soils, the effect of green manure was examined with and without the addition of gypsum, while for the surface non-sodic soils, green manure only was added.

Because green manuring requires the addition of a considerable amount (mass) of plant material, plants to be used had to be selected largely on this basis. Pilot experiments were thus conducted to determine the production of biomass from the following green manure plants: common vetch (*Vicia sativa*), alfalfa (*Medicago sativa*), cowpea (*Vigna sinensis*) and white clover (*Trifolium repens*) as influenced by soils with different previous management histories. Without its breakdown by microorganisms, the incorporated organic matter is of little value to the soil. Because succulence is related to the efficiency of plant matter decomposition, estimates of the quality of green manure produced were carried out via a subjective index of succulence. Of the above mentioned plant species, the common vetch was found to be the most succulent, whilst achieving more biomass in these soils.

In the main experiments, common vetch was chosen as a green manure plant. For the sodic soils with gypsum treatment, gypsum (20 t/ha) was added initially to ameliorate sodicity, where four cycles of wetting and drying allowed exchange of Na⁺ with subsequent leaching. Green manure crops were then planted in the sodic soils. After the growth and harvesting, soils, both sodic and non-sodic, were incubated with green manure (20 t/ha equivalent) by incorporating fresh plant material throughout the soil mass in the pots at 25° C in a sealed cabinet under the following water regimes: (1) alternate wet and dry, (2) field capacity (3) 80% field capacity.

Soil structural stability of non-sodic soils was assessed by wet sieving, water retention at -100 kPa potential and saturated hydraulic conductivity (K_S). These measurements were chosen for the following reasons: (1) Organic materials in general have been observed to maintain pore openings in soils by holding aggregates intact and thereby reducing dispersion which results in the filling of small pores with clay particles. (2)The stability of aggregates to wetting helps to determine the speed at which water flows through a column of soil. (3) The amount of water retained at various potentials depend on texture and structural characteristics of a soil, indicating that at the lower potentials a fine texture and good structure increases the amount of water retained by soils and available for plant use.

In sodic soils, spontaneous and mechanical dislocation of clay particles facilitate their mobility in the soil solution, thereby blocking pores and microchannels. Low permeability in clayey soils such as sodic subsoils, is the main problem. Additional measurements for sodic soils thus included clay dispersion, electrophoretic mobility of clays and particle size analysis.

11

3

11

In non-sodic Urrbrae soils, the improvements due to green manuring on water stable macroaggregation (WSMA), and water retention at -100 kPa potential were not statistically significant. However, these measurements showed a significant soil structural improvement in the Urrbrae soil which had previously been under permanent pasture. Further, green manure when incubated at 80% field capacity substantially improved the structural features in this soil. Saturated hydraulic conductivity values were improved by green manuring in all soils under all conditions due to the increasing trend in macroaggregation.

In sodic soils, generally, the improvements in soil structure was in the following order of treatments: gypsum + green manure > gypsum > green manure > control. The Ks increased in the same order. The soils incubated at 80% field capacity showed highest increases. The differences in water retention and water stable macroaggregation measurements were not statistically significant. In sodic soils, green manure increased the cations Ca⁺⁺ and Mg⁺⁺ in solution and the electrical conductivity, and pH was reduced. A marked decrease in pH was observed in Strathalbyn soil containing 15% CaCO3, due to the dissolution of native CaCO3 by the protons and CO₂ produced by green manure. The combination of these changes reduced the sodium absorption ratio (SAR) of these soils considerably.

Green manure did not improve macroaggregation in sodic soils, although in non-sodic soils, a slight improvement was observed. However, in sodic soils, stabilisation occurred at the microstructure level. The average size of dispersed materials in control soils were < 0.5μ m, whereas after green manuring, the average particle size increased up to 30μ m. The products of decomposition of green manure were both organic compounds and the release of Ca⁺⁺, which aggregated the clay particles and stabilized

the domains. Thus, the effect of green manure on sodic soils containing CaCO₃ markedly differs from non-sodic soils. The results of this experiment promise the use of green manure as an economic ameliorant for sodic soils with CaCO₃ and high pH.

対応にたいてい

「小学のない

DECLARATION

This dissertation contains no material which has been accepted for the award of any other degree or diploma in any University. To the best of the author's knowledge and belief, this dissertation contains no material previously published or written by another person, except where due reference is made in the text.

I consent to this dissertation being made available for photocopying and loan.

October, 1995

1002

The set of the set of

3

M. A. Harris

ACKNOWLEDGEMENTS

The support of Supervisors Professor J. M. Oades and Dr. P. Rengasamy for the full duration of this project is highly appreciated. I wish to thank Colin Rivers, David Burrow and Danny Iandiorio for their technical help.