The University of Adelaide Faculty of Agricultural and Natural Resource Science

Resistance of faba beans to Ascochyta blight

Uyek Malik Yakop

Thesis submitted for the degree of Master of Agricultural Science

Department of Plant Science Waite Agricultural Research Institute Glen Osmond, South Australia

August, 1998

TABLE OF CONTENT

Cont	tents			Page	
Statement					
Acknowledgments					
Summary					
Chapter 1. Introduction					
Chapter 2. Literature Review					
<u> </u>	2.1	Introduction		5	
	001	Ascochyta blight on faba bean		5	
		2.2.1	The Anamorph of Asochyta fabae	6	
		2.2.2	The Teleomorph of Asochyta fabae	6	
		2.2.3	Symptoms of Ascochyta blight	7	
		2.2.4	Yield losses	8	
		2.2.5	Control of the disease	9	
	2.3	Epidemiology		10	
		2.3.1	Sources of infection	10	
		2.3.2	Pathogen dispersal	11	
	2.4	Variability in Asochyta fabae			
	2.5	Genetics of resistance		13	
		2.5.1	The terminology of resistance to disease	13	
		2.5.2	Types of resistance to disease	14	
		2.5.3	Nature of the resistance of faba bean to Asochyta fabae	15	
	2.6	Selection of resistance of faba bean to Asochyta fabae		17	
		2.6.1	Sources of heritable resistance	17	
		2.6.2	Development of suitable screening techniques	19	
		2.6.3	The assessment of resistance	22	
	2.7	Factors affecting successful inoculation		22	
	2.8	Genotype variability within populations of faba bean			
	2.9	AFLPs and genetic variability			
2.10		Conclusions		26	

Chapter 3	6. General Materials and Methods	28	
3.1	Genetic materials	28	
3.2	Culture of the pathogen	30	
3.3	Screening methods	31	
3.4	Rating scale	31	
3.5	Statistical analysis	36	
Chapter 4	. Variation in resistance of faba bean (Vicia faba L.) to		
	Ascochyta blight in Australia	37	
4.1	Introduction	37	
4.2	Materials and methods	37	
4.3	Results	39	
	4.3.1 Trial 1	39	
	4.3.2 Trial 2	41	
4.4	Discussion	43	
Chapter :	5. Genetics of resistance to Ascochyta blight in the		
51	faba bean cultivar Ascot	46	
5.1	Introduction	46	
5.2	2 Materials and methods		
	5.2.1 Evaluation of F_1 hybrids	47	
	5.2.2 Evaluation of an F_2 population and F_2 derived F_3 families	48	
5.3	Results	52	
	5.3.1 Reaction of F_1 hybrids to <i>A. fabae</i>	52	
	5.3.2 Evaluation of the F_2 population of Acc 622 x Icarus	54	
	5.3.3 Evaluation of F_3 families	57	
5.4	Discussion		
	5.4.1 Evaluation of F_1 hybrids	58	
	5.4.2 Number of genes conferring resistance to A. fabae	60	

Chapter o. Ge		r 0.	Genetics of resistance of faba bean accessions	
		to A.	fabae	62
6.1 Introducti			uction	62
	6.2	Mater	als and methods	63
		6.2.1	Genetic materials	63
		6.2.2	Experimental procedure	64
		6.2.2	Data analysis	64
	6.3	Results		
		6.3.1	Reaction of parents	66
		6.3.2	Experiment 1	67
		6.3.2	Experiment 2	72
	6.4	Discu	ssion	77
Chap	ter 7	'. Al	FLP analysis of genetic differentiation among	
		Asco	chyta blight resistant accessions of faba bean	84
	7.1	Introd	uction	84
	7.2	Mater	ials and methods	85
		7.2.1	Plant materials and DNA samples	85
		7.2.2	DNA extraction	85
		7.2.3	Digestion of DNA	87
		7.2.4	Gel electrophoresis	89
		7.2.5	AFLP analysis	89
	7.3	Resul	ts	93
	7.4	Discu	ssion	99
Chap	oter 8	B. G	eneral discussion	102
APPE	NDIC	CES		
	App	endix 3	3.1 Recycle Soil (R.S.)	108
	App	endix 3	2.2 Results of preliminary screening of putatively resistant	
			accessions prior to selection of individual plants to be	
			used for further experimentation	108
			8	
Appendix 7.1			7.1 Extraction Buffer	109
	App	endix 7	7.2 10 x R-L Buffer	109
	App	endix (7.3 0.1 M TE	109

Chapter 6. Genetics of resistance of faba bean accessions

REFFERENCES		111
Appendix 7.6	Gel Loading Buffer	110
Appendix 7.5	5 x TBE	110
Appendix 7.4	10 x PNK Buffer	110

STATEMENT

This thesis contains no material which has been accepted for the award of any other degree or diploma in any other university or other tertiary institution. To the best my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text.

I give consent for this thesis being made available for photocopying and loan.

Uyek Malik Yakop

ACKNOWLEDGEMENTS

I especially express my gratitude to my supervisors, Dr J.G. Paull and Mr. Mark Ramsey, for their advice, encouragement, and patient supervision throughout the years, particularly when preparing this thesis.

I am also thankful to Mr. Ian Roberts and Mr. Kevin R. James, the members of Faba Bean Breeding team, for their assistance with my glasshouse experiments, and to Ms. Jodie M. Kretschmer for her guidance in molecular work.

Grateful thanks are also due to Associate Professor P. Langridge and Dr. Susan J. Barker for allowing me use of their laboratory, materials and facilities, and Ms M. Cargill for her helpful English course.

I acknowledge the financial support of the government of Australia (AusAid).

Finally, I would like to thank Eriani, Alifia and Amira for their encouragement, support, and patience.

SUMMARY

Ascochyta blight, caused by *Ascohyta fabae*, is one of the most destructive diseases on faba bean and it is widely distributed in all states in Australia, particularly in the southeastern region. Cultivation of resistant cultivars may reduce the damage. The present study was conducted to investigate various aspects of genetic resistance to Ascochyta blight of several accessions with the objective of providing the information to implement an efficient breeding strategy for the long-term control of Ascochyta blight.

There was variation among putatively resistant accessions in their response to Australian isolates of *A. fabae*. Several accessions were resistant to all isolates, while the remainders were resistant to several isolates and susceptible to the others. The variance within several accessions was reduced when lines produced by single plant selection were tested, rather than bulk samples. The average reaction of accessions that were homogenous resistant did not differ between single plant selections and the bulk populations. Variability for virulence was also evident and some isolates produced symptoms on all accessions, while others infected only several accessions.

The genetic resistance of Acc 622, one of the components of the Australian cultivar Ascot was investigated. Ascot was crossed to the *A. fabae* susceptible Australian cultivar Icarus and the reactions of reciprocal F_1 hybrids and the F_2 and F_3 generations were tested for reaction isolate 331/91. Reactions of the three generations indicated that a single co-dominant, or partially recessive, gene conferred resistance to isolate 331/91, relative to the susceptible Icarus.

The specific resistance of resistant accessions, most of which were obtained from ICARDA, was compared with Acc 622. The resistant lines were crossed to Acc 622 and the F_2 generation of each cross was tested for reaction to isolate 331/91. The alternative parent was considered to carry the same resistance gene as Acc 622 when all F_2 progeny produced a resistant reaction. Transgressive segregation, indicated by the presence of susceptible F_2 plants, was observed in several crosses and it was concluded that the *A. fabae* resistance of the alternative parent was conferred by a different gene to that present in Acc 622. Eight accessions (Acc 295, 297, 303, 484, 496, 668, 680 and 975, derived from BPL460, BPL465, BPL472, BPL74, BPL365, L83120, BPL2485 and L83125, respectively) were identified to carry the same resistance gene as Acc 622 and six accessions (Acc 299, 674, 712, 948, 970 and 1046, derived from BPL471, L83124, L82003, Quasar, ILB752 and BPL646, respectively) were different. The relationship between these alternative sources of resistance was not determined. Results for four populations were inconclusive due to a high variance of one of the parents.

AFLP analysis was utilised to identify the genetic distance among 20 resistant and 2 susceptible accessions. Three primer combinations (*PstACA-MseCAG*, *PstACA-MseCCA* and *Pst* ACA-*MseCGA*) revealed a high level of polymorphisms. The average of genetic distance over all accessions was 0.34 with the pair-wise range from 0.09 to 0.53. The phylogenetic tree divided the 22 accessions into two major groups and several groups of two and three. The analysis was inconclusive when the genetic control of resistance to *A. fabae*, the region of origin and the source population were compared to the genetic distances among the accessions. Resistance to *A. fabae* in the well adapted Australian cultivar Ascot is under simple genetic control therefore it should be relatively straightforward to transfer this resistance to other high yielding, but susceptible, lines either through simple crossing or backcrossing. As resistance is either partially recessive or co-dominant selection would be effective in the early generations. Identification of alternative resistance genes to the one in use in Australian agriculture should enable a long-term strategy for the development and deployment of resistant cultivars to be implemented.