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Asymptotic scaling and infrared behavior of the gluon propagator
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University of Adelaide, Adelaide SA 5005, Australia

Claudio Parrinelld
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(Received 23 November 1998; revised manuscript received 1 June 1999; published 7 October 1999

The Landau gauge gluon propagator for the pure gauge theory is evaluated dix 843Rttice with a
physical volume of (3.35x6.7) fnf". Comparison with two smaller lattices at different lattice spacings allows
an assessment of finite volume and finite lattice spacing errors. Cuts on the data are imposed to minimize these
errors. Scaling of the gluon propagator is verified betwger6.0 andB=6.2. The tensor structure is evalu-
ated and found to be in good agreement with the Landau gauge form, except at very small momentum values,
where some small finite volume errors persist. A number of functional forms for the momentum dependence of
the propagator are investigated. The fobig?) =D g+ Dy, whereDr(g?) = (g?+M?)~ 7 andDy,y is an
infrared regulated one-loop asymptotic form, is found to provide an adequate description of the data over the
entire momentum region studied — thereby bridging the gap between the infrared confinement region and the
ultraviolet asymptotic region. The best estimate for the exponeist3.2" 53" 33, where the first set of errors
represents the uncertainty associated with varying the fitting range, while the second set of errors reflects the
variation arising from different choices of infrared regulatoDig,, . Fixing the form ofD,,, we find that the
mass parametevl is (1020+ 100) MeV.[S0556-282199)05119-X

PACS numbgs): 12.38.Gc, 11.15.Ha, 12.38.Aw, 14.70.Dj

[. INTRODUCTION tion. However, previous lattice studies of the gluon propaga-
tor in Landau gaug¢11,17 have been inconclusive. The
Over the years, the infrared behavior of the gluon propareason for this is that the lowest non-trivial momentum value
gator has been studied using a variety of approaches, aratcessible on a finite lattice is inversely proportional to the
with widely differing results. GriboJ1] argued that by re- length of the box. The region of interest is likely to be below
stricting the functional integral to eliminate gauge copies,1 GeV. Referencgl2] used a lattice with a spatial length of
one would obtain a gluon propagator which vanishes in the.5 fm and a length of 5 fm in the time direction, giving
infrared. Stingl[2] found that this solution was consistent access in principle to momentum values down to 250 MeV.
with the gluon Dyson-Schwinger equatioDSE), when ig-  However, finite volume effects could be shown to be signifi-
noring the 4-gluon vertex and placing certain restrictions orcant at least up to approximately 500 MeV on this lattice,
the remaining vertices. Recent studies of the coupled ghoskereby casting doubt on the validity of the results in the
and gluon DSE$3,4] support this conclusion, in principle if jnfrared. In this study we increase the lattice size to 3.35 fm
not in detail. On the other hand, DSE studies of the gluon, the spatial directions and 6.7 fm in the time direction,

self-energy[5—7] (ignoring the role of ghosishave resulted iying access to momenta deeper in the infrared and signifi-

in a gluon propagator ‘\,Nh.iCh is strong,lyy enhanced in the Ncantly reducing finite volume effects. Preliminary results can
frared. Occupying the “middle ground” between these posi-
tions, Cornwall[8] has used a gauge invariant “pinch tech-

nique” DSE to obtain a dynamical gluon mass. For a recen

be found in Ref[13]. We have also compared the results for
{his lattice to those obtained on a smaller volume and used
review of DSEs, see Refd]. anisotropies in the data to assess finite volume effects. How-

The infrared behavior of the gluon propagator is often€Ver an extrapolation to infinite volume has not been at-
considered to be crucial to confinement. Both the infrared!€MPted. ) )
vanishing and the infrared-enhanced solutions have been ar- 1n€ structure of this paper is as follows: In Sec. Il we
gued to provide mechanisms for confinement. It has eveRreésent our method for calculating the gluon propagator on
been arguefi10] that an infrared-enhanced gluon propagatorthe lattice, as well as the notation we use. The details of our
is a necessarycondition for confinement. C|ear|y then, a Simulations are giVen in Sec. lll. In Sec. IV we diSCUSS hOW
settlement of this issue should allow us to shed some light o handle finite volume and finite lattice spacing artefacts.
the problem of confinement. The majority of our results can be found in Sec. V. Section
Lattice field theory provides a model-independenit,ini- VA discusses the tensor structure. In Sec. VB the
tio approach to QCD, and can in principle answer this quesasymptotic behavior is studied, and in Sec. V C we fit the
gluon propagator as a function of momentum to various
functional forms. Finally, in Sec. VI we discuss the signifi-
*Member of the UKQCD Collaboration. cance of our results.

0556-2821/99/6(®)/09450717)/$15.00 60 094507-1 ©1999 The American Physical Society



LEINWEBER, SKULLERUD, WILLIAMS, AND PARRINELLO

Il. GLUON PROPAGATOR ON THE LATTICE

A. Definitions and notation

The gauge linksU ,(x) e SU(3) may be expressed in

terms of the continuum gluon fields as

UM(X)=PeXp< igofXH;LA#(z)dz)

=el90aA.(x+ 412 4 ) (a3), (2.1

whereP denotes path ordering. From this, the dimensionless

lattice gluon fieIdA';L(x) may be obtained via

AL 12 =5 —[U,,00 = UL(0)

1 T
— —Tr[U,(0—-ULx)],

610, (2.2

which is accurate t@(a?). The discrete momenta avail-
able on a finite, periodic volume of length, in the x di-
rection are given by

~ _anﬂ

9= aL, ’ n,=—(3L,—1),....+(3L,). (2.3
The momentum space gluon field is
AL@) =3 & T 0HiDAL (x4 u12)
X
efiaﬂalz A )
2igo [UM(q)_UL(_Q)]
1 o
—5TrlVu(@ -V, (-]}, (2.4

where U, (0)=3,e '"U,(x), A,(q)=t?A%(q), and t*
=\?%2 are the generators of the @) Lie algebra. This
definition differs by a term of0(a) from the one usually
found in the literature, WherU#(x)=exl:[igoA;’L(x)], which
gives A’ (0)=exp(q,a/2)A,(a)=A,(q)+O(a). The di-
mensionless lattice gluon propagamh'fb(f:]) is defined by

(A2(Q)AY(—0"))=Va8(q—q)DL2(q), (2.9

whereV is the lattice volume.

The continuum, infinite-volume gluon propagator in a co-

variant gauge with gauge parametehas the form

qﬂq qMQV

S*D(g7) +éE—5

D3%(q)= ( S,
(2.6)

. 2 b
The scalar functioD (g°) can be extracted froerw(q) by

PHYSICAL REVIEW D60 094507

_i) 27
q

1
-3
This expression is also valid on a finite volume, provides
not too close to zero. The finite volume induces an effective
“mass” m~1/L which becomes significant fay sufficiently
close to 0. In this case, the most general form possible for the
tensor structure is

E}; ; Daa q)

(Q)

hw<q>) ,
5D (g?) + £6P L~ il
¢ CR) P

ab — _
,lLV(Q) ( 5;LV f(qz)

wheref(q?)—q? g(g®)—q*, andh,, andh),—aq,q, for
sufficiently largeq, but f(g?) and g(qz) go to finite values
for g=0. In the following, we will work in the Landau
gauge,£=0, and we will only attempt fits to lattice data for
which finite size effects can be shown to be small.

A well-known lattice artifact is that the tree level propa-
gator of a massless scalar boson field does not reproduce the
expected continuum result of

1
DO(g?) =, (2.9
q
but rather produces
A 1
DO(q)= (2.10
> [(2fa)sing,al2]?

"

Since QCD is asymptotically free, we expect tii@D(q?)
—1 up to logarithmic corrections ag—oe. To ensure this
result we work with a momentum variable defined as

2 q,a
qM: aSIﬂT. (21])
In the infrared region of greatest interest, the choice o6
61 makes little difference in the results.

B. Renormalization

The bare, dimensionless lattice gluon propagatb¢qa)
is related to the renormalized continuum propagator

Dr(Q;u) via
a’D (qa)=Z3(u,a)DR(q; ). (212

The renormalization consta@i(u,a) is determined by im-
posing a renormalization condition at some chosen renormal-
ization scaleu, e.g.,

The momentay andq are often defined the other way around in
the lattice literature. However, we feel it is more instructive here to
defineq as above, such that lattice results reproduce the continuum
formula (2.6) and the tree level formulé&.9).

094507-2
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1
DR(q)|q2=#2=E. (2.13

PHBICAL REVIEW D 60 094507

(2.20

Fb[g] can be minimized numericallffor a review, see Ref.

U9(x)=g(x)U,(x)g"(x+ ).

The renormalized gluon propagator can be computed botht4)). and the resulting link configurations satisfy

non-perturbatively on the lattice and perturbatively in the
continuum for choices of the renormalization point in the
ultraviolet. It can then be related to the propagator in other
continuum renormalization schemes, such as the modified

minimal subtraction schemds.

C. Gauge fixing

The lattice implementation of the Landau gauge is based

1 1
9= VN, 2 000= VN,

X

2 TrIA(x)AT(x)]=0,
(2.21)

whereA(x) is the lattice four-divergence of the gluon field:

A)=2 [AL(x+pl2) = AL(x— ui2)]
o

on a variational principle. In continuum language, this can be

seen by defining for any generic field configuratiap(x)

the following functional on the group of gauge transforma-

tions:
Folal=AdP= [ axTriasor 21
where
AS(X)=g" (X)AL(X)9(X) g~ (X)d,9(x),
g(x) € SU(3). (2.15

By considering gauge transformations of the form

it2wa(x)

(2.19

and expanding to second orderdn it can be shown that

g’ (x)=g(x)e'"“®=g(x)e

Filo 1=F3la1-2i | dixTrAL0,000]

—f d*x Tr >, w?(X)(O[A%w)2(X)+ O(w3).

(2.17)

This implies thatFj[g] is stationary whemA%(x) satisfies
the Landau gauge condition A9=0. If A% is in the Landau

gauge, the operator appearing in the quadratic term of Eg;

=2 [AL(0)=AL(x=p)]. (2.22
Y23

In momentum space, the lattice Landau gauge condition

A(X)=0 reads

> 4,A.(@)=0, (2.23
M

using the definition ofy in Eq. (2.11). It is worth noting that
Eq. (2.23 only holds if one defines the gluon field according
to Eq.(2.2. If the asymmetric definitio®\’ is used instead,
then Eq.(2.23 is replaced by

> (ising,+1—cosq,)A/(q)=0. (2.24
"

In the limit a— 0 the continuum Landau gauge condition is
recovered with©O(a?) corrections if one uses the field de-
fined in Eq.(2.2 and with O(a) corrections ifA’ is used.
This makes Eq(2.2) the preferred definition.

Coming back to the continuum formulation, it is well
known that in non-Abelian gauge theories, given a typical
(regularized field configurationA ,(x), the functionaF 5[ g]
will in general have multiple stationary points. These corre-
spond to distinct configuration@ribov copies, related to
each other by gauge transformations, which all satisfy the
andau gauge condition. This is a consequence of the fact

(2.17) is O[A9]=FP[AY], i.e. the Faddeev-Popov operator hat the Faddeev-Popov operat@rl8 is not positive defi-

in the Landau gauge:

(FP[A%)20= —[d- 98P+ f2P°A% ()3, ] 8*(x—Y).
(2.18

nite. In particular, it can be shown that multiple local minima
can occur, so that local minimization &f;[g] does not fix

the gauge uniquely. This feature of the theory is preserved on
the lattice[15], as it turns out thaE}[g] can have multiple
stationary points(lattice Gribov copieg and in particular

Since configurations corresponding to local minima ofmytiple local minima.
Falg] satisfy the gauge condition, Landau gauge fields may Some possible solutions to this problem have been sug-

be constructed from a generic configuratidp(x) by mini-

gested in the literature, mainly aiming to identify the global

mizing F[g]. This can be implemented in a quite straight- minimum of the gauge-fixing functionalsee for example

forward way on the lattice: a suitable discretizatiorGf g]
is given by
Fulgl=1-2> Re Trud(x), 2.19
X

where

Ref.[16]). At present, the problem is still open. However,

from the point of view of quantum theory, the relevant issue
is to quantify the numerical impact of the residual gauge
freedom on gauge-fixed correlation functions. In the frame-
work of a Monte Carlo simulation, one may look for the

signature of gauge uncertainty as a “noise” effect, in addi-
tion to the purely statistical uncertainty. Previous studies

094507-3
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TABLE I. Simulation parameters. The values for the string tensigi are taken from Ref23], and the
lattice spacings are calculated using the “physical” vallie= 427 MeV for the string tension. The sepa-
ration is the total number of updat&Sabibbo-Marinari or over-relaxatipseparating the configurationdJ)
is the average link, ,Re TrU ,(x)/(4VN).

Name B aJK a ' (GeV) Volume Ngyg Separation  6ay (U)

Small 6.0 0.22665) 1.88545) 16°x 48 125 800 10*?  0.86093931)
Large 6.0 022665  1.88545 32Xx64 75 1000 10*? 0.86179315)
Fine 6.2 016109  2.63730) 24°x48 223 2400 102  0.87394815)

[17,18 indicate that this effect is negligible for most gauge where we have introduced the shorthand notation
dependent quantities including the gluon propagafesr the
purpose of the present investigation we shall therefore as- atA4(>Z,t)EALL1(>Z,t+a/2)_A£L1(>Z,t_a/2) (3.2
sume that for the gluon propagator, the numerical uncertainty
associated with Gribov copies effects provides only a small
contribution to the overall error bars.

In the continuum formulation of the Abelian gauge theory
there is no Gribov problem, as the Faddeev-Popov operatar

reduces to a positive definite, field-independent one. How!n Fig- 1 we show typical values ai;A4(x,t) for both the

ever, it is interesting to notice that abelian Gribov copiesSMall and large lattices. As one can see, the time component
may appear on the lattid 9], due to the structure of the of the gluon field is constant to 1 part in 10000. Note that the
lattice Faddeev-Popov opera,tor. value of one of the color components of the gluon field has

no significance in itself, although the fact that it is constant
I1l. SIMULATION PARAMETERS AND METHODS in time has.

AI(X, D) =AM(Xx+e/2t) — AN (x—e/2t).
(3.9

The details of the simulations are given in Table I. In
short, we analyze three lattices, two@t 6.0 and one a8
=6.2, and denote these as the “large,” “small” and “fine” We begin by considering the effect of the kinematic cor-
lattices respectively. The gauge configurations are generatedction introduced through the change of variables in Eg.
using a combination of the over-relaxation and Cabibbo<2.11). In the absence of this correction, data in the high
Marinari algorithms. All three lattices are fixed to Landau momentum region are expected to exhibit significant anisot-

gauge using a Fourier accelerated steepest descent algoritrpgby when shown as a function of This is confirmed in

[20]. : : lieddia?
To double-check the gauge fixing we also considerFlg'Z' which shows the gluon propagator multiplieddfi

s . L . and plotted as a function afa. Here and in the following, a
?grﬁi\é((j?c,ti),onv:é(;?ys:g)nuéﬂi:fs,constant in time when using Z5 averaging is performed on the data, _Where for exa_mple
the momentum alongx(y,z,t)=(2,1,1,1) is averaged with
. R (1,1,2,2 and(1,2,1,2 and the corresponding negatively ori-
2 Ag(X,t)=—2 GA(X1)=0, (3.1 ented momenta.

X X In Fig. 3 the gluon propagator multiplied lgyfa? is dis-
played as a function offa. We see that the kinematic cor-
rection results in a significant reduction in anisotropy in the

2The infrared behavior of the ghost propagator may be more seftarge momentum region, fara>1.5. The effect of the kine-
sitive to the removal of Gribov copig48]. matic correction is even clearer for the fine lattice, as dis-

IV. FINITE SIZE EFFECTS AND ANISOTROPIES

2.378 T T T T | T T T T | T T T T I
L A (t) (x1000) ]

AM(t) (x1000)

1||||||||||

%

||I||IIIJ|I||||IIII

0.7225
i FIG. 1. Plots of the1,1) color
o~ ] component of S;A,(X,t) as a

0.7220 2.377 — — function oft for one gauge fixed

configuration on the small lattice
(left), and on the large lattice

0.7215 i 1 (right).

b b b L

SO N B R
10 20 30 40 0 20 40 60

[«]
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4.0
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L "] T T T T e | T T
um &
35 | ., - 35 - *ae -
P2 °
3.0 i’ 3 3.0 -
o R5 g 25 -
ool N 20 -
o~ ! Nd
15 |- - & 15 i
1o | - 1o |
05 - =
05 - -
OO | | | | |
0.0 ' ' : : ' 0.0 05 1.0 1.5 2.0 25 3.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 ga
qa

he af h I latti tivlied FIG. 4. The gluon propagator from the fine lattice multiplied by
EIG' 2. The gluon propggator from t eAsma attice multiplie g%a? plotted as a function of momentg. The symbols are as in
by g?a® plotted as a function of momenta. Values for each

Fig. 2.
momentum direction are plotted separately. OnlZaaveraging 9
has been performed. Solid squares denote momenta directed along)ngn time axis. In Figs. 3 and 5 this is shown by the

spatial axes, while solid triangles denote momenta directed alonaiscrepancy between the solid squafdenoting momenta
the time axis. Other momenta are indicated by open circles. along one of the spatial axeand solid trianglegdenoting

| - . ising T momenta along the time a)is
played in Figs. 4 and 5. We expect anisotropy arising from Figure 6 displays the gluon propagator data for all mo-

finite lattice s_pacing artifacts to be reduced on this Iattic_e entum directions and values on the large lattice, using the
when the lattice results are compared at the same phySiCgi,ematic correction. Again, only @, averaging has been
value ofg, Res_callng these figuréand comparing them al herformed. Examination of the infrared region indicates that
the same physical momenta shqws_a reduction in the anisofte yolume artifacts are very small on the large lattice. In
ropy compared to the small lattice in both cases. However articular, the agreement between purely spatisolid

this reduction is considerably smaller than the one resultin quaresand time-like momentum vectotsolid triangles at

from applying the k'”e“_“a_“c correction on the fine Iatt_|ce: . qa=0.20 appears to indicate that finite size effects are rela-
At lower momenta, finite volume effects become S'gn'f"tively small here

cant, T?ese effects ar? greatest V\Qen one ofr trrr:ore of the Some residual anisotropy remains for both the large and

momentum components IS zero. because of the unequgh]a” lattices at moderate momenta arowgyad- 1.5, despite

length .Of the time and spatial axes on our Iattlc_es, there IS ﬁ‘lcluding the kinematic correction of ER.11). This anisot-

clear difference not only between on- and off-axis points, bu?opy is clearly displayed in Fig. 3 by the solid squares and

also between the points where three of the components afﬁangles denoting momenta directed along lattice axes lying

zero, depending on whether or not one of these lies along thr?elow the majority of points from off-axis momenta fq&

~1.4. Since tree-level @) breaking effects should be re-
moved by the kinematic correction, the remaining anisotropy

3Recall that the small to fine lattice spacing ratiiga;=1.4. appears to have its origin in quantum effects beyond tree

4.0 ra T T T T 4.0
3.5 - — 3.5 - —
3.0 - — 3.0 - —
& R5 | . & R5 | .
= =
5 2.0 | . 5 2.0 | .
[=] [=]
> 15 | > 15 |
1.0 + — 1.0 + —
05 . 05 - .
OO | | | | | OO | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
qa qa

FIG. 3. The gluon propagator from the small lattice multiplied  FIG. 5. The gluon propagator from the fine lattice multiplied by
by g2%a? plotted as a function of momentg. The symbols are asin  g2a? plotted as a function of momentga. The symbols are as in
Fig. 2. Fig. 2.
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4.0 T T T T 4.0 3 T T T T
°»
35 + - 35 + g ., -
3

3.0 + - 30 F , . -
25 - . 25 - . .
= = 5
820 F : Q20 F e, :
[N [ ' o
[s} [=] .‘-o....
> 15 | . > 15 | "eoea.. * sepees |

1.0 F - 1.0 F -

05 . 05 .

OO | | | | | OO | | | | |

0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0

qa qa

FIG. 6. The gluon propagator from the large lattice multiplied  FIG. 7. The gluon propagator from the small lattice multiplied
by g?a? plotted as a function of momeniga. Values for each by g?a®. The points displayed in this plot lie within a cylinder of
momentum direction are plotted separately. Onlpaveraging radius Aqa<1x2#/16 directed along the diagonalx,f,zt)

has been performed for the data shown in this figure. Plotting sym=(1,1,1,1) of the lattice. The solid points also lie within a cone of
bols are as in Fig. 2. Finite volume errors are greatly reduced comz0° measured from the diagonal at the origin.

pared to the results from the smaller lattice, as displayed by the

overlap of points obtained from spatial and time-like momentum . o
vectors. However, significant anisotropy is apparent for larger mo- 1HiS cut does not address the large finite volume errors
menta. surviving in Fig. 7. To remove these problematic momenta,

we consider a further cut designed to remove momentum
level. This anisotropy is significantly reduced for the fine vectors which have one or more vanishing components. This
lattice, indicating that it is an effect of finite lattice spacing is implemented by keeping only momentum directions that
errors as opposed to finite volume errors. The fact that itie within a certain anglef,,,, from the diagonal, i.e., by
occurs at the same momentum values and with the samieepingf;< 6y, Whered; is given by Eq.(4.2). We found
magnitude on both the large and small latticesfat6.0  that a cone of semivertex angtg,,,=20° was sufficient to
lends further support to this interpretation. provide a set of points lying along a smooth curve. The solid

In order to minimize lattice artifacts for large momentum points in Fig. 7 represent these data.

components we select momentum vectors lying within a cyl-  Since finite volume errors on the large lattice are small, it
inder directed along the diagona,¢,z,t)=(1,1,1,1) of the s not necessary to impose the additional cone cut there.
lattice. This allows one to access the largest of momenta Withjowever, it is interesting to note that even with this conser-
the smallest of components. We calculate the distév@ef  vative cut, illustrated by the solid points in Fig. 8, the turn-
the momentum vecta from the diagonal using over ing?a®D(q?) in the infrared region is still observed.

Aqg=|q]siné;, 4.9

4.0 T
where the angléy is given by | ' I '

3.5 ag?‘s%i .

qa.n g
n 3.0 [ .

cosﬁa=L, (4.2 %“w.
|l 25 F 3 i
o .
-~ 1 . . . S 2.0 3 -
andn=3(1,1,1,1) is the unit vector along the diagonal. i

On the small lattice, we found that the selection of a cyl- = 15 [ -

inder with a radius of one spatial momentum unit(ia<1 1.0
X2m/Lg, whereLg is the number of sites along a spatial
axis) provides a reasonable number of points falling along a
single curve for large momenta. The data surviving this cut 0.0 ‘ ' ' ' '
are displayed in Fig. 7. For the large lattice the correspond- 0o 05 10 }12 025 30

ing physical cut dictates that all momenta must lie within a

cylinder of radius two spatial momentum units directed FIG. 8. The gluon propagator from the large lattice multiplied
along the lattice diagonal. Figure 8 displays the data survivby g2a?. The points displayed in this plot lie within a cylinder of
ing this cut. Figure 9 shows the data surviving the correradiusAqa<2x2w/32 directed along the diagonal of the lattice.
sponding cut on the fine lattice, using a radius of 1.5 momenThe solid points also lie within a cone of 20° measured from the
tum units, which provides a similar physical radius. diagonal at the origin.

05 - b
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4.0 Fo . . . . tios of components for the lowest momentum values, dis-
g5 L = ‘Z; i playing, in some cases, significant violations of this form. In
o, particular, the ratio of thex=4 (time) component of the
3.0 ° 7 diagonaIDlLW(q) to the other diagonal components is con-
—~25 g.,. i siderably larger than what one would get from Eg1). The
= B discrepancy is smaller on the large lattice than on the other
o 20 ° "o, 7 two lattices, but is still significant at these lowest momenta.
‘“’2 15 L "'*---..................... . This gives us a more rigorous test of finite volume effects

than what we could obtain by inspection in Sec. IV, where
1.0 - 7 finite volume effects were not obvious for the large lattice.
05 - ] At zero momentum Eq5.1) is not well defined, and the
finite volume replacement Eq2.8) (with £&=0) must be

0.00 0 OI5 1'0 1|5 2'0 2'5 30 used instead. The exact behavior of the functiopsq) and
' ' ' qa ‘ ' ' f(q? with g and V is not known, but any deviation from
D,,(q=0)x4,, must be due to finite volume effectsim,,

FIG. 9. The gluon propagator from the fine lattice multiplied by of Eq. (2.8). Table VIII shows the ratios of the diagonal
radiusAqa<1.5x 27/32 directed along the diagonal of the lattice. component is in all cases much smaller than the other three
The solid points also lie within a cone of 20° measured from thecomponents, although the discrepancy is considerably re-
diagonal at the origin. duced from the small to the large lattice. The small and fine
lattices have a rati®;; /D44 Of 3 and 2 respectively, which is
equal to the ratid_;/L;. For the large lattice, with.;/L;

A. Tensor structure =2, D;/Dj,~1.4, indicating the reduction of finite volume

errors at zero momentum.

V. RESULTS

Using the Landau gauge conditid@.23, we can infer
that the lattice gluon propagath/L”(q)E%Eanaa(q)

14

should have the following tensor structure, mirroring the B. Asymptotic behavior
continuum form(2.6): The asymptotic behavior of the renormalized gluon
a0.q propagator in the continuum is given to one-loop level by
L _ _ ApHv ) SLy a2 5,21
Dw(q)—(% e LACEE 61 521

Z(1 ~do
By studying the tensor structure of the gluon propagator, we Dr(0% #)=Dpard qa)/Z5(u,a)~ —2(§|n(q2//\2)) :
may be able to determine how well the Landau gauge con- q 5.2
dition is satisfied, and also discover violations of continuum '
rotational invariance. The tensor structure may be evaluated o
directly by taking the ratios of different components of where the constarﬂ dgpend_s on the renormalization scheme
D%,(q) for the same value of. The results for moderate to and the renormalization point, and
high momentum values, where we expect Eg.1) to be
valid, are summarized in Tables II-1V, and compared to ~ 39-9£—4N¢
what one would expect from Ed5.1), and to what one D™ 2(33-2N¢)

would obtain by replacingy with q in Eq. (5.1). For the

small and fine lattices, we have also evaluated the tensah the case we are studying here, both the gauge parageter
structure using the unfavored asymmetric defini#drof the  and the number of fermion flavorsl; are zero, sodp

(5.3

gluon field. =13/22.
The selected momentum values in Tables I[I-IV are not an
exhaustive list, but are representative of the respective mo- 1. Fits to the asymptotic form

mentum regimes. It is clear from these tables that our nu- ) . . , .
merical data are consistent with the expectation from Eq. We have fitted the data, with the kinematic correction, for

(5.1). In particular, where two of the components @fare all our three lattices to the asymptotic form in_ E§.2) for
zero, this relation is satisfied with a very high degree ofva@lues ofq above~2.7 GeV. For the large lattice, we have
accuracy. Where 3 or 4 of the components are non-zero, tHéSed the data surviving the cylindrical cut, while for the
errors are larger, but in most cases smaller than 10%. We Céﬁher two lattices, both cylindrical and cone cuts have been
also see that, in general, the asymmetric definifidrof the !mpos_ed. Table IX_shows the parameter values for the_r_nost
gluon field gives results which are inconsistent with thisinclusive of those fits. Other regimes are selected to facilitate
form.

At very low momentum values, we expect finite volume
effects to lead to violations of the infinite-volume “This expression differs by a factor of 2 from tkiecorrecj ex-
continuum-limit form(5.1). Tables V-VII show selected ra- pression given in Ref22], which is also quoted in Ref9].
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TABLE Il. Tensor structure for the small Iatticé].is in units of 2/Lg, whereL is the spatial length of
the lattice. The theoretical predictions are the values for the ratios one obtains frg® Egand from Eq.
(5.1) with q—>€]. The numbers in brackets are the statistical uncertainties in the lagsdigithere no error
is quoted, the statistical uncertainty is less than®0'he values obtained using the asymmetric gluon field
definition A" are only shown where they differ from the value usig

Theoretical prediction This simulation

[ay Jiy ,0,.0¢] Components Using q Usingq Using A Using A’
[2,1,09 (1,9/(1,2 -0.5 —0.509796 —0.509796 —0.519783

(1,9/(2,2 0.25 0.259892 0.259892 0.259892

(1,9/(3,3 0.2 0.206281 0.208) 0.2048)

(1,0/(4,9 0.2 0.206281 0.199) 0.1999)

(1,2/(2,2 -0.5 —0.509796 —0.509796 -05

(1,2/(3,3 -04 —0.404634 —0.40(2) —0.38(2)
[4,1,09 (1,9/(1,2 —-0.25 —0.275899 —0.275899 —0.331821

(1,0/(2,2 0.0625 0.0761205 0.0761205

(1,2/(2,2 —-0.25 —0.275899 —0.275899 —0.229402

(1,2/(3,3 —0.2353 —0.256383 —-0.277(12) —0.231(10)
[4,2,0,9 (1,9/(1,2 -0.5 —0.541196 —0.541196 —0.585786

(1,9/(2,2 0.25 0.292893 0.292893

(1,9/(3,3 0.2 0.226541 0.22)

(1,2/(2,2 -0.5 —0.541196 —0.541196 -05
[2,1,1,0 (1,D/(1,2) -1 —1.01959 —-1.01(2) —-1.03(2)

(1,/(2,2 0.4 0.412562 0.4115

(1,/(3,3 0.4 0.412562 0.4184)

1,2/(2,2) -0.4 —0.404634 —0.407(10) —0.398(11)
[4,2,1,9 (1,9/(1,2 —0.625 —0.681848 —0.678(9) —0.743(10)

(1,D/(2,2 0.2941 0.342911 0.3%39

(1,1/(2,3 -25 —2.47137 —2.3(4) —2.5(5)

(1,3/(3,3 -0.2 —0.213397 —0.208(10) —0.187(11)
[4,2,1,1/3 (1,/(1,2 —0.6389 —0.697656 —0.695(9) —0.750(10)

(1,9/(2,2 0.2987 0.348094 0.348)

(1,1/(4,4 0.2434 0.275796 0.2883)

(1,2/(2,2 —0.4675 —0.498947 —0.500(7) —0.464(7)

1,3/(2,2) —-0.2338  —0.254361 —-0.25(2) —-0.20(2)

comparisons between the three lattices. The largest regiaerive a simpleg-independent expression for the ratio of the

providing x?/Ngs=1 is also indicated. unrenormalized lattice gluon propagators at the same physi-
We see that the asymptotic form fits the data quite wellcal value ofq:

although the relatively high? for the fits beginning aty . 5 )

~2.7 GeV may be taken as a sign that there are still signifi- Dr(da) Zs(w.an)Dr(a;p)/a;  Z; ag 5.4

cant nonperturbgtive and/or higher loop contributions to the Di(ga,) _Zs(M,ac)DR(q;M)/ag - Z a? '

propagator at this momentum scale. The values for the scale

parameter\ are reasonably consistent for the tyovalues, where the subscridtdenotes the finer latticg3= 6.2 in this

although the variation i\ between different lattices and fit study and the subscript denotes the coarser lattices (

ranges indicates that the one-loop perturbative form is stil=6.0). We can use this relation to study directly the scaling

not valid even at?=25 Ge\?. properties of the lattice gluon propagator by matching the

data for the two values oB. This matching can be per-

formed by adjusting the values for the ratiRg=2/Z. and

R,=a;/a. until the two sets of data lie on the same curve. It
Since the renormalized propagaigi(d;«) is indepen-  should be emphasized that this procedure matches the lattice

dent of the lattice spacing when the lattice spacing is finelata directly, and does not depend on a functional form of

enough(i.e., in the scaling regimewe can use Eq2.12 to  the gluon propagator.

2. Matching results for the two lattice spacings

094507-8



ASYMPTOTIC SCALING AND INFRARED BEHAVIOR OF . .. PHBICAL REVIEW D 60 094507

TABLE lll. Tensor structure for the large Iatticé. is given in units of 2r/Lg, whereL, is the spatial

length of the lattice. Since the spatial length of this lattice is twice that of the small lattice, the valufps for
must be multiplied by 2 when comparing these values with those of Table II.

Theoretical prediction This simulation
[0y ,ay ,0,.,0:] Components Using q Usingq Using A
[2,1,0,0 (1,0/(1,2 -0.5 —0.502419 —0.502419
(1,D/(2,2 0.25 0.252425 0.252425
(1,9/(3,3 0.2 0.201549 0.2113)
(1,2/(3,3 -0.4 —0.401157 —0.43(3)
[8,4,0, 1,9/(1,2 -0.5 —0.541196 —0.541196
1,/(2,2 0.25 0.292893 0.292893
(1,/(3,3 0.2 0.226541 0.21)
[8,4,2,0 (1,D/(1,2 —0.625 —0.681848 —0.691(12)
(1,D/(2,2 0.2941 0.342911 0.3511)
(1,2/(2,2 —0.4706 —0.502914 —0.508(9)
(1,3/(3,3 -0.2 —0.213397 —0.223(15)
[8,2,1,1/3 1,9/(1,2 -0.3281 —0.362996 —0.360(6)
(1,1/(4,9 0.07609 0.0914336 0.089
(1,2/(2,2 —0.2452 —0.269425 —0.265(5)
(1,3/(2,2 —0.1226 —0.135364 —0.134(11)

In this study, we have used the fine and small lattices talata sets. In this way the scaling of the momentum is ac-
perform this matching, as they have similar physical vol-counted for by shifting the fine lattice data to the right by an
umes. The combination of cylindrical and cone cut has beeamountA , as follows:
applied to both data sets. We have implemented the match-
ing by making a linear interpolation of the logarithm of the L L
data plotted against the logarithm of the momentum for both InDc[In(gac)]=InDg[In(gac) —Aa]+Az. (5.5

TABLE IV. Tensor structure for the fine lattice.

Theoretical prediction This simulation

[&x,dy,&z,ét] Components Using q Usingq Using A Using A’
[2,1,0,0 (1,D/(1,2 —-0.5 —0.504314 —0.504315 —0.508666

(1,D/(2,2 0.25 0.254333 0.254333

(1,2/(2,2 —-0.5 —0.504314 —0.504315 -05

(1,2/(3,3 -0.4 —0.402058 —0.405(14) —0.402(14)
[6,1,0,9 (1,/(1,2 —0.1667 —0.184592 —0.184592 —0.232673

(1,2/(2,2 —0.1667 —0.184592 —0.184592 —0.146447

(1,2/(3,3 —0.1622 —0.178509 —0.183(6) —0.145(5)
[6,3,0,d (1,D/(1,2 —-0.5 —0.541196 —0.541196 —0.585786

(1,D/(2,2 0.25 0.292893 0.292893

(1,D/(3,3 0.2 0.226541 0.228)

(1,2/(2,2 —-0.5 —0.541196 —0.541196 —-0.5
[6,3,1,0 (1,/(1,2 —0.5556 —0.604157 —0.605(4) —0.655(4)

(1,D/(2,2 0.2703 0.316193 0.318

(1,3/(3,3 —0.1333 —0.142774 —0.149(8) —0.118(8)
[6,3,1, (1,/(1,2 —0.6111 —0.667118 —0.666(7) —0.717(8)

(1,D/(4,4 0.2391 0.27208 0.279)

(1,2/(2,2 —0.4737 —0.506668 —0.500(5) —0.464(5)

(1,3/(2,2 —0.1579 —0.172815 —0.188(14) —0.147(12)
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TABLE V. Tensor structure for low momentum values on the  TABLE VII. Tensor structure for the large lattice, low values of
small lattice. g. Note thatq is given in units of 2/Ls, so that e.g.q
=[2,0,0,0 corresponds t(ﬁ]=[1,0,0,q for the small lattice.

o Ratio according
[Ox.0y.0,,G;] Components to Eq.(5.)  This simulation

Ratio according

(1,00, (2.2/(3.3 1 1.015) [0x.0y.0,,0.] Components to Eq.(5.)  This simulation
(2,2/(4,9 1 1.246) [1,0,0,0 (2,2/(3,3 1 0.975)
(331449 1 1.236) (2,2/(4,9 1 1.136)
[0,0,10 V@44 1 1.255) (3,9/(4.9 1 1.176)
(2.2/(4.4) 1 1.336) [0,1,0,0 (1,/(4,4 1 1.137)
(3,3/(4,9) 1 1.178)
[1,0,0,1/3 (1,9/(2,2 0.101034 0.08@H [0,0,1,9 (1,1/(4,9 1 1.056)
(2,2/(4,4 1.11239 1.367) (2,21(4,9 1 1.086)
(3,3/(4,4 1.11239 1.36)
[2,0,0,0 (2,2/(3,3 1 0.917)
[1,0,0,2/3 1,D/(2,2 0.309218 0.274.3) (2,2/(4,4) 1 1.1Q7)
(2,21(4,9 1.44763 1.687) (3,3/(4,9 1 1.146)
(3,3/(4,9 1.44763 1.6@7) [0,2,0,0 (1,2/(4,4 1 1.096)
[1,1,0,0 k344 1 1.105) (3.3/(4.4 1 1.027)
[1,0,109 (2,21(4,9 1 1.176) [1,0,0,1/2 (1,/(2,2 0.200386 0.182.0)
(01,10 (1,D/(4,9 1 1.085) (1,91(2,2 —0.400289 —-0.36(2)
(2,2/(4,% 1.2506 1.37)
[1,0,0,1 1,D/(4,% 1 1
22/(11) 5 1.9810 (3,3/(4,9) 1.2506 1.347)
(3,3/(4,9 2 2.2210 [0,0,1,1/2 (3,3/(1,2) 0.200386 0.19@.0)
[0.0.11] (LD/3.3) 5 2.2510) (3.4/(1,1) —0.400289 0.3@)
(LD/(4.4) 5 2.2510) (1,D/(4,% 1.2506 1.277)
(2.2/(4.4) 5 2.1310) (2,2/(4,4 1.2506 1.38)

HereA; is the amount by which the fine lattice data must be  Figure 10 shows the data for both lattice spacings as a
shifted up to provide the optimal overlap between the twofunction of ga before shifting. In Fig. 11 we present the
data sets. The matching of the two data sets has been pgggit of the matching using as the momentum variable.
formed for values o\, separated by a step size of 0.08%.  The minimum value fory2/Ng; of about 1.7 is obtained for
is determined for each value af, considered, and the opti- R _—(.815. This value foR, is considerably higher than the
mal combination of shifts is identified by searching for the a|ye of 0.716:0.040 obtained from an analysis of the static
global minimum ofy“/Nys. The ratiosR, andR; are related  gyark potential in Ref[23]. From this discrepancy, as well
to Ay andAz by as the relatively high value fog?/Ng¢, we may conclude
R,=e %, R,=RZe %z, (5.6)  that the gluon propagator, taken as a functiom pfloes not
exhibit scaling behavior for the values gfconsidered here.
TABLE VI. Tensor structure for low momentum values on the  Figure 12 shows the result of the matching usipas the

fine lattice. momentum variable. We can see immediately that this gives
much more satisfactory values both fp#/Ng; and forR,.
A Ratio according The minimum value fory?/Ny; of 0.6 is obtained forR,
[dx.dy.9.0] Components to Eq.(5.D  This simulation  _ 745 Taking a confidence interval wheyd/Ngs< x2,
[1,0,0,0 (2,21(3,3 1 0.953)
(2,2/(4,4) 1 1.204) TABLE VIII. Ratios of the diagonal components @ ,,(q
(3,3/(4,4) 1 1.264) =0) for all three lattices.
[2,0,0,9 (2,2/(3,3 1 1.004) Components Small lattice Large lattice Fine lattice
Eggﬁjg i 185(2; (1,D/(2,2 0.936) 1.058) 0.984)
' ' (1,D/(3,3 1.036) 0.948) 0.984)
[1,0,0,1/2 1,D/(2,2 0.200687 0.17®) (2,2/(3,3 1.1077) 0.908) 1.005)
(1,D/(3,3 0.200687 0.18(®) (1,D/(4,9 3.0919) 1.4211) 2.069)
(2,2/(4,% 1.25107 1.45) (2,2/(4,4 3.31(20) 1.3512) 2.10110)
(3,3/(4,9 1.25107 1.3%) (3,3/(4,4 3.0018) 1.51(11) 2.099)
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TABLE IX. Parameter values ang? for fits to the asymptotic forn5.2). Note that in this tableZ is
actually Z3(u«,a)Z of Eq. (5.2). The fits are to data surviving the cylindrical and cone cuts, except for the
large lattice, where only the cylindrical cut has been applied.

Lattice  Omin:Omax (@ 5 Gmin.Omax (GeV)  No. of points x*Ng  Z Aa A (GeV)

B=6.0 1.47 2.78 2.72 5.14 27 148 2.140 0.399 0.752
16°x 48 1.59 2.78 2.94 5.14 25 143 2162 0.387 0.730
2.12 2.78 3.92 5.14 15 113 2151 0.394 0.743
B=6.0 1.53 2.83 2.83 5.23 69 142 2159 0.387 0.729
32%x 64 1.53 2.76 2.83 5.10 67 1.34 2157 0.387 0.730
2.10 2.76 3.89 5.10 29 128 2.184 0.373 0.703
2.12 2.76 3.91 5.10 27 1.10 2220 0.354 0.667
2.12 2.83 3.91 5.23 29 129 2223 0.350 0.660
B=6.2 1.09 2.83 2.83 7.36 53 1.33 2286 0.275 0.726
243x 48 1.09 2.44 2.83 6.34 43 130 2274 0.279 0.736
1.09 2.00 2.83 5.20 29 0.81 2222 0.297 0.782
1.49 2.83 3.87 7.36 41 1.02 2341 0.253 0.668
1.49 2.00 3.87 5.20 17 0.78 2.212 0.301 0.793

+1 gives us an estimate ﬁa:0_745f§§, where the errors tion parameteiZ. This parameter is not equal to the renor-
denote the uncertainty in the last digits. This is fully compat-malization constanZs, although the two can be related for

ible with the value of 0.716 0.040 obtained from Ref23].  €ach individual model.

The corresponding estimate for the ratio of the renormaliza- We introduce an infrared-regulated versibtg?®,M) of

tion constants isR,=1.038"2%. That R,=1 is consistent the one-loop logarithmic correction given by EG.2) in
with what one would expect from continuum perturbationorder to ensure that these models have the correct leading

theory. ultraviolet behavior. This is given by

2 1 20 M2y -2 -2 o
C. Model functions L(q*,M)= Eln[(q +M) (g “+M79)] . (5.7

Having verified scaling in our lattice data over the entire

range ofg? considered, we will now proceed with model fits. > ) 2 .
We have considered a number of functional forms, based o-r|1_he factor q” “+M ensures that (q°,M) is properly

a variety of theoretical suggestions from the literature A"regulated in the infrared.
Y 99 ' For simplicity of presentation of the models, all model

these forms, as well as the new models we have construct(?d . ! .
) ) . . . . _formulas are to be understood as functions of dimensionless
in this study, include an overall dimensionless renormaliza-

2.0 6 T T
1.5 B 5 F _
1.0 - §°4
—~ i E B
= 00 . 83 .
% 5
S -05 B =
2 _ —
>~
-1.0 . e
~-15 N 1 =
—2.0 I I I I I 0 1 | 1 1 1
-04 -02 00 02 04 06 08 10 1.2
0.76 0.78 0.80 0.82 0.84 0.86 0.88

lo a
g(qa) a/a,

FIG. 10. The dimensionless, unrenormalized gluon propagator
as a function of Inga) for the two values of3. The triangles denote FIG. 11. x* per degree of freedom as a function of the ratio of
the data for the smallcoarse lattice at3=6.0, while the circles lattice spacings for matching the small and fine lattice data, wping
denote the data fgB=6.2. The lines represent linear interpolations as the momentum variable. The dashed line indicates theRatid
between the data points. the renormalization constants.
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4 T T T T
D'(q%)= = (5.13
g2 +AgAn(g2/M2) + M2 '
§‘8 Here,Z, M, A, A and« are parameters to be optimized in the
N fit. In addition, we study the following 4-parameter forms:
5o Model A:
8 2a
z Li~2) — M 1 2
~o =
le D (q) Z (q2+M2)1+a+q2+M2L(q 'M) ’
(5.19
0 I | I I I Model B:
068 070 072 074 076 078 0.80
af/ac AMZa
DL(qZ)ZZ{ 2y1+ a2 zL(qZ’M) '
FIG. 12. ¥2 per degree of freedom as a function of the ratio of (@) 7MY g+ M
lattice spacings for matching the small and fine lattice data, uging (5.1
as the momentum variable.
Model C:
guantities(scaled by the appropriate powers of the lattice
spacinga). The models considered here are DY(q?) =2 ie—(qzxmz)a_,_ 1 L(g? M)l
Gribov [1]: M2 24 M2 ' '
(5.16
2
DY(g®)=———L(d*M). (5.8)  We have also considered special cases of the three forms
q°+M (5.14—(5.16, with specific values for the exponent All
Stingl [2]: these models are constructed to exhibit the asymptotic be-
’ havior of Eq.(5.2).
Zq? .
DY(g®)=——————L(g%M). (5.9 D. Numerical results
q*+2A%0%+M* _ : :
The fits are performed to the large lattice data using the
Marenzoniet al. [12]: cylindrical cut, and excluding the first poirtat ga~0.1),
which may be sensitive to the volume of the lattice. To bal-
ance the sensitivity of the fit over the available range af
D Yg)=————. (5.10 we have averaged adjacent lattice momenta lying within
() e+ M? Aqa<0.005.
In order to determine the stability of the fits, we have
Cornwall I [8]: varied the starting point and width of the fit. After averaging
5 by 21— over adjacent momenta, th(_a data points_ are number_ed
DL(q?) =2 [q2+M2(q2)]Inq +4M=(q°) 12,...142. The starting point has been incremented in
A2 ' steps of 2, and for each starting point the width has been
(5.11) Vvaried in steps of 2 between the minimum possible width
(i.e., the number of parameters plug dnd the maximum
where width. The statistical uncertainty in the parameters is deter-
mined using a jackknife proceduf®5]. Since the number of
g2+ 4M?2 611 points in most of the fits is larger than the number of con-
In IE figurations, we have not been able to compyfeusing the
M(q?)=M full covariance matrif26]. However, in the cases where this
AM? is possible, the results are compatible with those achieved
In—:;- using the “naive” y2.
Table X shows the values far?/ Ny for each of the mod-
Cornwall 11 [24]; els (5.8—(5.13. Unfortunately, none of these models suc-
' ceed in providing an acceptable fit over the entire available
2, am2] 1 momentum range. In the case of the model of Marenzoni
DY(q?)=Z| [q?+ MZ]Inq (5.12 et al, Eq.(5.10), this is not surprising, since this model does
A? not have the correct asymptotic behavior. Our models, model

Cornwall 111 [24]:

A and model B, are constructed as generalizations of Eq.
(5.10 which should remedy this problem. Of the models put
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TABLE X. x? per degree of freedom for fits to the modéis8—(5.13. x2, is the x? for the maximum
available fitting rangexﬁﬂn corresponds to the minimum value obtained §8fNy;, “Range” is the corre-
sponding fitting range, andy; is the number of points included in that rangéq refers to the widest fitting
range starting in the deep infrar¢point 2 or 4 where y?/Ng;=<1.

Model XalNgt  Xhi/Nar  Range ¢a) N x@&/Ngr  Range @a) Nt
Gribov 827 0.31 0.28-0.39 5

Stingl 838 0.44 0.28-0.45 8 1.03 0.28-0.49 10
Marenzoniet al. 163 0.79 1.11-1.47 24 1.20 0.20-0.59 18
Cornwall | 50 0.67 0.99-1.47 30 1.01 0.20-0.62 20
Cornwall 1l 89 0.49 1.26-1.47 14 0.69 0.28-0.45 8
Cornwall I 38 0.64 1.13-1.33 23 1.05 0.20-0.48 11

forward in the literature, we note that Cornwall's proposal Figures 15 and 16 show the best fit of model A. We see
(5.12) lies closest to the data. that this provides a near perfect fit to the data. The optimal fit
Figure 13 shows?/Ng4; as functions of the starting point parameters are shown in Table XI. Figure 17 shows fits of
and width(in number of pointsof the fits, for fits to models several other models, which we can see fail to account prop-
A—C. Of these three, only model A is able to account prop-erly for the data.
erly for the infrared behavior of the gluon propagator, while  Table XI also shows the parameter values for the model
models B and C yield values for?/ Ny of 14 and 12 respec- of Marenzoniet al,, Eq.(5.10, and Cornwall’s mode(5.11).
tively. All the models give reasonable fits to the data forThe values quoted are for fits to all the available data, while
intermediate momentum ranges. the errors denote the spread in parameter values resulting
Fit parameters for model A are illustrated in Fig. 14. All from varying the fitting range. The statistical errors are in all
the parameters, in particul and «, are well determined cases much smaller than the systematic errors associated
and stable over the most interesting regidiits with a large  with varying the fit regime. In the case of model C, the
number of points, including the infraredn the ultraviolet variation in parameter values becomes unstable in the usual
region alone, all the parameter values become unstable. Thiiting ranges; in order to avoid this problem, we have chosen
is expected, since we found in Sec. V B that a 2-parametest more restricted set of fitting ranges to evaluate the uncer-
form is sufficient to describe the data in this region. Theretainties than for the other models.
the 4-parameter forms, models A—C, will be poorly con- In order to determine the dependence of our models on
strained. the exact functional form used to regulate the ultraviolet term

FIG. 13. ¥? per degree of free-
dom for fits of model A(top left),
model B (top righy and model C
(bottom). The “Fit start” axis in-
dicates the starting point for the
fit, while the “Fit width” axis in-
dicates the number of points in-
cluded in the fit. The most inclu-
sive fits are in the near right-hand
corner, with the smallest value for
the starting point and the largest
number of points included. We see
that model A is stable over a wide
variety of fitting ranges, while the
other two models fail to account
properly for the data in the infra-
red.
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Tavameher 7
Tarameler A

FIG. 14. Stability plots for
model A. All the parameter values
are stable over the region of inter-
est.

Tarameier M
Tarameler o

in the infrared, we have performed fits to E¢5.14 and  mance of model A and model B is not affected, and model A
(5.15 (models A and B with L(g%M)—L(g%y2M) and remains clearly the preferred model of these two.

with L(g?,M)—L (g% M/2), altering the relation between

masses in the infrared and ultraviolet terms. This turns out to VI. DISCUSSION AND CONCLUSIONS

have a significant effect both g¢f/N4s and on the values for
the fit parameters. The quality of the fit deteriorates substan- _ ) _
tially as M—2M in the logarithm, while it improves We find that none of the models from the literature give a
slightly as M—M/\2. The value for the exponen satisfactory fit to the data. It can be argued that Stingl’s form

changes by more thars2 and this feeds through to the other (5.9 is only supposed to be valid in the deep infrared. We do

: ) not have sufficient data in this region, or control over the
parameters, although the value fdrremains approximately volume dependence of the data at our lowest momentum
within 1o of its original value. The relative perfor-

values, to be able to distinguish between the performance of
the various models in this region aloriee., the first 10
4.0 : : : : points in our fit3. All models give a reasonabjg/N4s when

A. Comparison of different models

we fit to only the first 10-20 points. A generalization of
35 - Stingl's form has been used to fit to lattice data at high
30 B 20 T T T T
=25 i 3
Q
o 2.0 [ _ 15 - |
T
1.5 F - =
210 r .
1.0 i =~
=
05 L° ! ! ! ! I Q
0 1 3 6 5 F B
q (GeV)
FIG. 15. The gluon propagator multiplied mf, with nearby 0 . ,

points averaged. The line illustrates our best fit of model A defined
in Eq. (5.14. The fit is performed over all points shown, excluding g (GeV)

the one at the lowest momentum value, which may be sensitive to

the finite volume of the lattice. The scale is taken from the value for FIG. 16. The gluon propagator in physical units. The line illus-
the string tension quoted in ReR3]. trates our best fit of model A, as in Fig. 15.
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TABLE XI. Parameter values in lattice units for fits of models stable and lend credence to model A as correctly encapsulat-
(5.10—(5.16. The values quote_d are for fits to th_e_entire setof dataing the lattice results. It should be noted, however, that al-
The errors denote the uncertainty in the last dyiof the param- though the 1-loop perturbative form does provide an ad-
eter values which results from varying the fitting range. The fittingequate fit in the ultraviolet. we found in Sec. V B 1 that the
ranges considered when evaluating the uncertainties are those wi rameter values are not 'stable The 2-I00[:; form should be
a minimum of 40 points included and with the minimum value for an improvement on this. The third model we considered
ga no larger than 0.99point number 4§ corresponding t@y;, . P . S " " ’

gsing an exponential function rather than a “mass” term to

=<1.86 GeV. For model C, the fitting ranges have been restricted t . ; . A
minimum values foma no larger than 0.62point number 2§ in  describe the infrared behavior, was clearly unsatisfactory.

order to obtain meaningful uncertainties. Model denotes model Our approach here_differ§ significantly from those of pre-
A with « fixed to 2. Recall that the inverse lattice spacing for this vious studieg11,12. Firstly, in order to reduce the effect of
lattice is 1.885 GeV. lattice artifacts at high momenta, we use the momentum vari-
ableq defined in Eq(2.11) rather than the “naive” momen-
Model X*INgg  Z A M aorA  tym variableq. We believe this approach has been justified
Marenzoniet al. 163 2419, 0.144, 0.29°8 by the verification of scaling in Sec. V B. A similar approach

has been used in a recent study of the three-gluon vertex

Cornwall | 50.3 6.57] 0.24"3, 0.27'7 .
9147 8 16 : [28]. Furthermore, we select an improved and larger set of
Model C 13.9 255;*% 1.07°5, 0.23'3, 0.53%5, . . ; )
Model A 140 2008 98410 o545 2171 mpmentg to t'he ones used in those previous studies. With
Model A 2.16 ' 33 ' 5;33 “53 7771 this in mind, it should nevertheless be possible to make at
odel A 16 2.0 o, 8.8 -9 0'5L§3 a6 least an approximate comparison between the results at small
Model B 12.1 2,099, 22973 0.387° 1.09°3 to intermediate momenta.

Both previous studiegl1,17 fit their data to the form of
Marenzoniet al, Eq. (5.10, or special cases of this model
n(tWith M=0 or «=0), which we have found does not ac-
count satisfactorily for the data. In addition, in REE1] the

momentum valueg$27], but these results are not directly
comparable to ours, since they are obtained for a differe

cpoice of gauge and do not include the infrared regioqow—momentum data are fitted to the Gribov fo(f8). The
(Qmin=1 GeV). In the case of Cornwall's propos&l.1D) it |4tter form fails to provide us with any fit which would make
should also be mentioned that this form was derived using g comparison of parameter values meaningful. However, we
gauge-invariant “pinch technique,” and may not be directly may compare the values we obtain for the parametierthe

comparable to our Landau gauge results. . form of Marenzoniet al, Eq. (5.10 with those of Refs.
We have found that the data can be adequately descrlbeﬁlilz]_ Although x2/Ny; for fits to all the data with this

by two terms: one governing the ultraviolet behavior accordy,oefis very high, the value fat is reasonably stable over
ing to the one-loop perturbative formula and the other pro-, large region, including fits whergZINdf~1. We find a
viding the infrared behavior. The infrared term is propor- _, 3" i, agreement with the value quoted in Rafl]. This

. 2 N —a . . . Ny .

tlo_nal to @+ M%)~ with a~3. It should be emp_ha3|ze_d al is inconsistent with the value of 0.5 quoted in Ref[12].

this point that the performance of model A, and. n p"irt'CUI""rHowever, this value is obtained by fitting only to data in the
the value of the exponent, dep_end; SUbSt."’mt'aZ"y on the infrared region. If we restrict ourselves to the same region,
exact form chosen for the logarithmic functiariq”,M) in e 4150 obtain a value af~0.5. Hence, when repeating the

order to regulate the ultraviolet term in the infrared. Given aanalysis of Refs[11,17, we find results consistent with
particular form forDyy, all the parameter values are very pairs. T

We find that model A provides a fit to the data throughout

4.0 . . . th : .
e entire available momentum range. However, we are un-
35 | i aware of any current physical interpretation of this model, in
contrast to the models arising from the approximate analyti-
3.0 . cal studies by Gribov, Stingl and Cornwéll,2,8].
g/ =5 r i B. Finite volume effects
20 7 The asymmetry of the lattices, with = 3L for the small
s | lattice andL,= 2L for the large and fine lattices, is one of
‘ = the measures used to assess finite volume effects. By com-
10 k il paring momenta along the time axis with momenta along the
spatial axes, we find that finite volume errors are small on
05 ' ‘ ‘ ' ' the large lattice, even at low momentum values. A “cone”
0 1 2 . (?}e\/) 4 5 6 cut along the diagonal in momentum space is imposed for

the smaller lattices to remove finite volume effects, but this
FIG. 17. The gluon propagator multiplied kg, with nearby ~ CUt is not found to be necessary for the large lattice.

points averaged. The lines illustrate the best fit of various other Inspection of the tensor structure reveals some residual

models. The solid line is model B, the dotted line is Cornwall I, thefinite volume effects in the order of 10-15% at the lowest

dash-dotted line is Marenzoat al. and the dashed line is model C. momentum values. Apart from these 4—6 points, finite vol-
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ume effects are negligible. Excluding _these point; does nqtandled by using the kinematic correctioﬁ —q
change the parameter values. Nor will the relative perfor- s . reooH
mance of our models be affected. Implementing the “cone”~ (2/2)sin(@,a/2), and by selecting momenta along the
cut on the large lattice will have a similar effect to excluding 4-dimensional diagonal. Scaling is verified betwgen 6.0
these points. and 6.2. _

Comparing the data at low momenta for the two lattices at 1he Ppropagator is found to be well represented by the
B=6.0, we find that the value of the gluon propagator defunctional formD(q?) =D+ Dyy, whereDg=AM?*(q?
creases with increasing volume. This opens up the possibility M%) ~*** andDyy is an infrared regulated versidsee
that in the infinite-volume limit, the propagator may be Egs.(5.7) and (5.14] of the one-loop asymptotic form de-
strongly suppressed or even vanishing at extremely smafined in Eq.(5.2). Our best estimate for the parameteiis
momenta, as suggested by Gribov and Stiig]. Recent «=2.2"31"32 where the second set of errors represents the
studies at strong coupling and in lower dimensi28-31]  systematic uncertainty arising from the choice of infrared

lend some support to this possibility. regulator forDy, . Using the regulator given in Ed5.7),
our best estimates for the parametdvls and A are M
C. Finite lattice spacing effects =(1020+ 100+ 25) MeV andA=9.8"J3, where the second

The kinematic correction—q gives a large reduction in set of errors inVl represents the statistical uncertainty in the

finite lattice spacing anisotropy at high momentum values!atticé spacing quoted in Table I. o

but does not remove this anisotropy completely. A “cylin- _Among the issues s_tlll under consideration is an extrapo-

der” cut along the diagonal in momentum space is imposed@ation of D(g?) to infinite volume at lowg?, as well as an

on all lattices to remove this residual anisotropy. evaluation of the effect of Gribov copies and of the gauge
We have verified scaling of the gluon propagator for mo-dependence of the gluon propagator. Work is also in

mentag>1.3 GeV betwee=6.0 and3=6.2. This scaling progress to calculate the gluon propagator using improved

is dependent on the kinematic correctign:q. If q is used actiorjs, tr_\ereb){ reducing finite IatFice spacing effects and

as the momentum variable, scaling fails, even after the “cyl-2llowing simulations on larger physical volumes.

inder” and ‘“cone” cuts are imposed. We are currently

working on using improved actiori82,33 to reduce or re- ACKNOWLEDGMENTS

move finite lattice spacing effects. . . . -
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