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Summary

Sodic soils, cover about 28% (340 million ha) of Australian continent. Many studies have

shown that the dispersive propensity of sodic soils causes detrimental changes in soil

structure, water logging and soil erosion, leading to severe land degradation. Clay

movement from sodic soils has also been recognised as a major cause of turbidity of

streams and cause a deterioration of the quality of water.

The Herrmanns sub-catchment in the central Mt. Lofty Ranges (near Mt. Torrens) is one of

the regions in South Australia affected by saline-sodic soils. A soil survey of the sub-

catchment showed a variation in the levels of salinity and sodicity in relation to

topography and that dispersibility of clay also varied along the toposequence. Little is

known about the mobility of clays from these soils in relation to the seasonal salinity-

sodicity conditions. Consequently, the main objectives of this study were to quantiff the

interrelationships between clay movement and soil properties (especially salinity and

sodicity) down a toposequence.

Three profiles with different levels of salinity and sodicity were excavated and described

according to the Australian Soil and Land Survey Handbook (McDonald et al, 1990) and

classified according to Soil Taxonomy (Soil Survey Staff, 1999). Samples from the

profiles were analysed in terms of chemical, physical and mineralogical properties. Two

lysimeters were installed in each profile to collect colloids moving vertically. These were

embedded in the A,/Bt horizon boundary and at the base of the Bt horizon. KBr was

applied to assess the possibility of clay being transported laterally by flow of water over

the Bt horizon. Overland flow sediment collectors ''vere installed in a typical eroded area

of the sub-catchment (a highly sodic area) and in a non-eroded area, which was less sodic'

Stream water samples were collected during the periods of rainfall at three locations,

chosen randomly. Two toposequences were sampled to charactenze the distribution of

soil properties (i.e. soil colour, texture, soil EC, gravel contents). The hydrology of the

saline ground watertable was inferred from the results of the distribution and value of

intensive EC measurements taken from the core samples (up to 1.5 m depth) collected

using a systematic grtd (50 m x 50 m).

Alt the soils were classified as Alfisols with Subgroups being dependent on topographic

position as follows: Tlpic Natraqualfs on the eroded areas of the foot slopes, Typic

!
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Natrixeralfs on the waning mid-slopes and stream banks, and Ultic Palexeralfs on the

upper waning mid-slopes. Each subgroup had vastly different sodicities. The most sodic

was the Typic Natraqualfs (ESP ranged from 9 to 243 %), followed by the Typic

Natrixeralfs (ESP ranged from 0.4 to 16.5 %) and the Ultic Palexeralfs (ESP ranged from

0.3 to 2.6).

There was a strong positive relationship between clay dispersibility and sodicity in the

eroded areas along the foot slopes. For the other profiles (from the mid slope and stream

bank), the increase in sodicity was accompanied with a drop in clay dispersibility. ln the

midslope profiles, the flocculative-dispersive phenomenon was largely controlled by other

soil properties (i.e. pH, rnineralogical composition, organic carbon, base cation content,

etc.) rather than salinity-sodicity effects. In the stream bank profile, the high salinity level

caused the clay to flocculate.

Clay dispersibility, hydraulic conductivity and the amount of clay collected in the

lysimeters (vertical clay movement) were correlated. Increase in clay dispersibility

predisposed clay to move and clog micropores, a process that lead to a decrease in

saturated hydraulic conductivity and a decrease in the amount of colloid transported to

lower horizons. High hydraulic conductivity correlated with higher amounts of colloids

collected in the lysimeters. The Typic Natraqualf in the eroded area along the foot slope

was the exception. The profile had the most readily dispersible clay but the hydraulic

conductivity remained high. This was thought to be caused the high gravel content (about

35 %), which conferred an appreciable macroporosity in this prof,rle. h this profile, the

dispersibility of clay led to an increase in the vertical mobility of clay'

In the Herrmanns sub-catchment, an appreciable amount of clay moved laterally via

throughflow of water over Bt horizons (concluded from KBr tracer experiment), and via

overland flow. The amount of clay collected via overland flow was 0.425 glL and 0.034

SIL in eroded (highly sodic) and non-eroded (less sodic) areas respectively. The relatively

high concentrations of clay in the overland flow water in the eroded area compared to the

non-eroded area was attributed to high potential clay dispersibility, lack of vegetative

cover, and the steeper and longer slopes in the eroded area compared to non-eroded area.

The concentration of sediment in the stream water was 0.15 glL and was less than the

concentration of sediment collected from overland flow (0.34 glL) in eroded area, but
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higher than the concentration of overland flow sediment (0.03 gll) collected from non-

eroded area. From this, it was concluded that the area with soils having highly dispersive

clays with no vegetation cover was a major contributor of sediment into the stream

draining the Herrmanns sub-catchment.

The high electrical conductivity values in soils at depths greater than 50 cm across the

study site indicated that a saline water table strongly influenced the nature of the soils

along the entire foot slope (i.e. from the contour line at 388 m ASL in the stream up to the

contour Iine 392 m ASL). However, the interplay between incoming water from rainfall

and the saline groundwater table in the area along the foot slope provided an explanation

for the origin of the various soils down the toposequence (i.e. highly sodic, non or slightly

sodic soils).

In summary, in the Herrmanns sub-catchment, soil sodicity was the dominant factor

causing clay to disperse in the eroded area along the foot slopes, whereas in non eroded

areas of the mid-slopes and on the stream banks, the dispersive power of sodicity was

attenuated by the flocculative power of other soil properties. The dispersed clay was more

easily transported by flow of water laterally over the soil surface than non-dispersed clay.

For vertical movement of clay within profiles, however, the dispersed clay appeared to be

less mobile than non-dispersed clay, especially where micropores dominated the soil

matrix.
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