

Mechanisms of Manganese Efficiency in Barley (Hordeum vulgare)

Ву

Jane Louise Harbard

Department of Plant Science
Waite Agricultural Research Institute
The University of Adelaide
South Australia

Thesis submitted for the Degree of Master of Agricultural Science

January 1992

DECLARATION

I HEREBY DECLARE that the work presented in this thesis has been carried out by myself and does not incorporate any material previously submitted for another degree in any university. To the best of my knowledge and belief, it does not contain any material previously written or published by another person, except where due reference is made in the text. I am willing to make the thesis available for photocopy and loan if it is accepted for the award of the degree.

J.L. Harbard

ACKNOWLEDGEMENTS

This work was supported in part by an Australian Research Grant Scheme (D18315804) "Genetic control and physiological mechanisms of nutritional differences in cereals", and was undertaken part-time in the Department of Plant Science.

My thanks go to my supervisor Dr Robin Graham and the many members of the Department for their support and friendship.

DEDICATION

I wish to dedicate this work to my mother Marlene Joy Harbard in recognition of her love and support.

Mechanisms of Mn efficiency in barley (Hordeum vulgare).

ABSTRACT

This project sought to identify those mechanisms which confer Mn efficiency on some barley genotypes in the South Australian barley breeding program. Experiments were conducted under controlled environment conditions to test four areas which may contribute to Mn efficiency.

It was found that H⁺ ions were extruded from roots of barley and wheat as a consequence of normal root growth and were not 'switched-on' as a consequence of Mn deficiency and these pH decreases were severely restricted in highly buffered calcareous soils of high pH. In addition, H⁺ ion production was not responsible for the reduction of insoluble higher oxides of Mn as has been shown for Fe efficient dicots and some monocots. However an unidentified component of root cells was able to reduce Mn dioxide when leaked from damaged root cells of barley and wheat.

No difference between barley genotypes in seminal root morphology were identified in either soil or nutrient solution studies. However a more highly branched nodal root system was found in the more Mn efficienct genotypes which would enable greater exploration of the soil, an increase in the number of root tips which were shown to be areas of H⁺ extrusion and an increased area of root exudate production.

A correlation between the severity of Mn deficiency symptoms on the plant and numbers of Mn oxidising populations in rhizosphere soil could not be established with certainty. At high soil Mn levels a decrease in numbers of colonies of Mn oxidising bacteria (not statistically significant) around the more Mn efficient cultivars was observed. This could prove to be important in increasing Mn availability to Mn efficient plants. Further studies would clarify whether this is a significant factor in determining Mn efficiency.

The critical level of Mn in whole tops was similar in Weeah and Galleon (16 and 18 μ g/g respectively). However, the critical level of Mn in the young growing tissue (YEBs) as a function of YEB growth was higher in the Mn inefficient cultivar Galleon (12 μ g/g) than the Mn efficient cultivar Weeah (8 μ g/g).

Mn efficiency could not be wholly attributed to any of the mechanisms researched here. The results of this research suggests the presence of a plant produced compound released through the roots and capable of reducing unavailable Mn oxides. Further studies should therefore be directed at finding and identifying the component of root exudates in Mn efficient genotypes which can reduce insoluble Mn oxides in Mn deficient soils.

TAl	BLE OF	CONTENTS
DE	CLARAT	ION i
A C	KNOWL	LEDGEMENTSii
DE	DICATIO	N iii
AB	STRACT	iv
CH.	APTER 1	LITERATURE REVIEW
1.1	INTROI	DUCTION1
1.2	METAB	OLIC FUNCTIONS OF MANGANESE
	IN PL	ANTS4
1.3	SYMPT	OMS OF MANGANESE DEFICIENCY8
1.4	MANGA	NESE AVAILABILITY IN SOILS 10
1.5	MANGA	NESE ABSORPTION AND TRANSLOCATION
	WITHIN	THE PLANT14
1.6	GENOT	YPIC VARIATION17
1.7	MECHA	NIMS OF MANGANESE EFFICIENCY
	IN B	ARLEY 20
	1.7.1 The	e Effect of the Rhizosphere on Mineral Availability21
	1.7.1.1	Changes in rhizosphere pH21
	1.7.1.2	Root Exudates22
	1.7.1.3	Micro-organisms24
	1.7.1.4	Mycorrhizae
	1.7.1.5	Root Morphology26
	1.7.2 Nu	trient Efficiency due to Internal Utilisation and
	Tr	anslocation of Nutrients
	1.7.2.1	Mobilisation 29
	1.7.2.2	Utilisation
1.8	THESIS	PROLOGUE35
1.9	REFERE	ENCES

CHAPTER 2 ROOT INDUCED CHANGES IN THE RHIZOSPHERE

2.1	INTR	TRODUCTION 61				
2.2	MATI	ERIALS AND METHODS62				
Exp	Experiment 2 (a) pH Changes Along Roots Embedded in Agar					
	2.2.1	Seed62				
	2.2.2	Methods				
	2.2.3	Nutrient Solutions				
Experiment 2 (b) MnO ₂ Reduction By Roots Embedded in Agar						
	2.2.4	Seed				
	2.2.5	Methods				
Exp	eriment	2 (c) pH Changes and MnO ₂ Reduction Along Roots				
		Precultured in Mn deficient Soil.				
	2.2.6	Seed				
	2.2.7	Soil				
	2.2.8	Nutrients66				
	2.2.9	Design				
2.3	2.3 RESULTS					
	2.3.1	Experiment 2 (a)				
	2.3.2	Experiment 2 (b)				
	2.3.3	Experiment 2 (c)				
2.4	DISC	CUSSION				
2.5	REFE	ERENCES 82				
2.6	APPE	ENDIX96				
	2.6.1	Design96				
	2.6.2	Results and Discussion				
	2.6.3	References99				

CHAPTER 3 ROOT SYSTEM GEOMETRY

3.1	INTRODUCTION100			
Ехр	erimen	t 3 (a)	Root morphology of soil	l grown plants under
			conditions of both Mn st	ifficiency and deficiency,
3.2	MAT	ERIALS	AND METHODS	100
	3.2.1	Design		100
	3.2.2	Seed	• • • • • • • • • • • • • • • • • • • •	101
	3.2.3	Soil	• 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	101
	3.2.4	Nutrie	nts	102
	3.2.5	Measur	ements	102
	3.2.6	Statisti	cal Analysis	103
3.3	RES	ULTS		103
3.4	DISC	CUSSIO	V	106
3.5	REF	ERENC	ES	108
Exp	erimen	t 3 (b)	Root morphology of so	lution culture grown plant
			under conditions of both	h Mn sufficiency and
			deficiency.	
3.6	INTR	RODUC	ΓΙΟΝ	126
3.7	MAT	ERIALS	AND METHODS	126
	3.7.1	Desig	1	126
	3.7.2			127
	3.7.3	Nutrie	nt Solutions	127
	3.7.4	Measu	ements	128
	3.7.5	Statisti	cal Analysis	128
3.8	RE:	SULTS.		129
3.9	DIS	CUSSI	N	131
3 10) REI	FFRFN	TES	134

CHAPTER 4 BIOLOGICAL OXIDATION OF MN IN RHIZOSPHERE SOILS

4.1	INTRODUCTION1			
4.2	MATERIALS AND METHODS			
	4.2.1	Design	147	
	4.2.2	Seed	.147	
	4.2.3	Soil	. 148	
	4.2.4	Nutrients	148	
	4.2.5	Measurements	149	
	4.2.6	Assessment of Mn oxide deposits	149	
	4.2.7	Statistical Analysis	150	
4.3	RES	ULTS	151	
4.4	DISC	CUSSION	152	
4.5	REF	ERENCES	154	
СН	APTE	R 5 CRITICAL MN CONCENTRATION BARLEY	IN	
		A O D LI OTTIONI	1.64	
5.1		RODUCTION		
5.2		ERIALS AND METHODS		
	5.2.1	Design		
	5.2.2	Seed		
	5.2.3	Soil		
	5.2.4	Nutrients		
	5.2.5	Measurements		
= 2	5.2.6	Statistical AnalysisULTS		
		CUSSION		
		ERENCES		
3.3	KEF.	ERENCES	., [/ 4	
CF	IAPTE	R 6 GENERAL DISCUSSION		
6.1	DISC	CUSSION	185	
		ERENCES		