Discrimination between citrus genotypes

By

Ir. Sumeru Ashari

Department of Plant Physiology Waite Agricultural Research Institute University of Adelaide South Australia

Thesis submitted for the Degree of Master of Agricultural Science

January, 1989

TABLE OF CONTENTS

n	•	ae	۲
•	a	EL	
		_	

SUMMARY	i	
DECLARATION	iii	
ACKNOWLEDGEMENTS	iv	
List of Tables	v	
List of Figures	vi	
List of Plates	vii	

Chapter 1.	Introduction	1
Chapter 2.	Literature review	3
2.1	Citrus classification	3
2.1	.1 Classification of rootstocks	8
2.1	.2 Classification of mandarins	11
2.2	Variation	11
2.2	.1 Genetic variation	12
2.2	.1.1 Self-incompatibility	12
2.2	.1.2 Variation due to segregation	14
2.2	.1.3 Variation due to mutation	14
2.2	.2 Non genetic variation	16
2.2	2.2.1 Variation due to Age	16
2.2	2.2.2 Variation due to climatic conditions	16
2.3	Citrus propagation	18
2.3	.1 Scion propagation	18
2.3	.2 Rootstock propagation	19
2.4	Growth, development, and discrimination of	
	zygotic and nucellar seedlings	20
2.4	1.1 Pollination and fertilization	20
2.4	.2 The site of zygotic and nucellae embryos within	
	the embryo sac	22
2.4	1.3 The time of zygotic and nucellar embryo initiation	23
2.4	.4 The proportion of zygotic and nucellar embryos	23
2.4	1.5 Disacrimination between zygotic and nucellar	
	seedlings	24
2.4	.6 Isozyme analysis	25
2.4	I.6.1 Enzymes	25
2.4	1.6.2 Enzyme separation	30
2.4	1.6.3 Electrophoresis	30
2.4	1.6.4 Genetics of isozymes	33

Chapter	3. Materials and Methods	35
	 3.1 Plant material 3.1.1 Rootstock study 3.1.2 Mandarin study 3.2 Method of leaf extraction 3.3 Gel preparation 3.4 Electrophoresis 3.5 Gel staining 	35 35 36 39 39 42 45
Chapter	4. Results	51
	 4.1 Discrimination between zygotic and nucellar seedlings of citrus rootstocks resulting from open pollination 4.1.1 Seed germination 4.1.2 Isozyme genotypes of the maternal parents and neighbouring trees 4.1.2.1 Glucose oxaloacetate transaminase (GOT) 4.1.2.2 Phosphoglucoisomerase (PGI) 4.1.2.3 Isocitrate dehydrogenase (IDH) 4.1.2.4 Leucine amino peptidase (LAP) 4.1.2.5 Malate dehydrogenase (MDH) 4.1.2.6 Malic enzyme (ME) 4.1.3 Troyer and Carrizo citrnges 4.1.4 Detection of zygotic seedlings by isozyme techniques 4.1.5 Parentage of the zygotic seedlings within the seed 4.1.7 Morphological characters of the zygotic seedlings 4.2.1 Phosphoglucomutase (PGM) 4.2.2 Peroxidase (PER) 4.2.3 Superoxide dismutase (SOD) 4.2.4 Catalase (CAT) 4.2.5 Shikimate dehydrogenase (SkHD) 4.2.6 Phosphogluconate dehydrogenase (GDH) 4.2.1.8 Laccase (LAC) and Glutamate dehydrogenase (GDH) 4.2.1.9 Fructose-1,6-diphosphatase (F1,6DP) 	51 53 53 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55
	4.2.2 Discrimination between the mandarin genotypes4.2.3 Genetic relationships between the mandarin types4.2.4 Determination of parentage of the mandarin types	75 75

Chapter 5. Discussion	82	
 5.1 Discrimination between zygotic and nucellar seedlings of citrus rootstocks resulting from open pollination 5.1.1 Isozyme identification of the zygotic and nucellar 	82	
seedlings	83	
5.1.2 The membelogy of sugaria seedlings	84	
5.1.5 The morphology of Zygone sectings	04	
5.1.4 Screening of zygotic securities in the nulsery		
and following controlled pollination in a breeding	00	
programme	00	
5.1.5 Survey of variant rootstocks and scions in	01	
the citrus orchard	91	
5.2 Identification of mandarin cultivars, hybrids and		
selections	92	
5.2.1 Isozyme genotype of the mandarins	92	
5.2.2 The genetic relationships between the mandarin		
types	93	
5.3 General discussion	94	
5.3.1 Further application of isozyme analysis	94	
5.5.1 I utilior application of isolythe analysis		
5.3.1.1 Classification of the genus Citrus	95	
5.2.1.2 Preading of aitrus cultivers	96	
5.5.1.2 Directing of citius cultivals	00	
5.4 Conclusions	20	
References	99	
	110	
Glossary of terms		

Discrimination between citrus genotypes

Summary

Isozyme analysis was used to distinguish between genotypes and explore relationships within the genus *Citrus*. Two experimental studies were conducted, the first concerned with the identification of zygotic (sexual) from nucellar (asexual) seedlings of five polyembryonic citrus rootstocks resulting from open pollination, and the second with identification of mandarin types and investigation of the relationships amongst them.

Eight isozyme systems of six enzymes were utilized in the first study. 2.1 % of the seedlings were determined to be zygotic in rough lemon, 2.6 % in trifoliata orange, and 0.8 % in each of sweet orange and Troyer citrange, but none in Cleopatra mandarin. There was no correlation between isozyme genotype and any morphological character of the seedlings. The zygotic seedlings detected isozymically were not always located at the micropylar end of the seed as has been suggested previously nor were they characterized by weak growth, or as the single seedling produced by a seed.

Nineteen isozyme systems of sixteen enzymes were employed in the second study to discriminate between mandarin cultivars, hybrids and selections. Variability was observed at 12 loci, and all but three mandarin types could be differentiated from one another. Two of those which could not be differentiated are probably identical genotypes. The reported parentage was confirmed for seven cultivars, and disproved for five, with the rest undetermined. Relatedness within the tangelo and the tangor groups was high, probably reflecting their recent origin. Relatedness within the common mandarin group was low reflecting their multiple origins and long period in cultivation. Exceptions were Algerian and Beauty of Glen Retreat which differed from each other at only one locus. Relatedness between groups was generally low, with the least relatedness between the tangelos and the other groups, probably due to the grapefruit parent of the former. The Ellendale cultivars formed a particularly cohesive group, but contained two genotypes differing in isozyme pattern, but both marketed as Ellendale. Five of the Ellendale type cultivars probably arose by self-pollination or by mutation of Ellendale.

This study has shown that isozyme techniques can be used successfully not only to discriminate between zygotic and nucellar seedlings, but also to investigate the parentage and relatedness of the cultivars. It has also shown that increasing the number of isozyme systems employed increases the probability of discriminating genotypes.

DECLARATION

I hereby declare that the work presented in this thesis has been carried out by myself and does not incorporate any material previously submitted for another degree in any University. To the best of my knowledge and belief, it does not contain any material previously written or published by another person, except where due reference is made in the text.

Sumeru Ashari

ACKNOWLEDGEMENTS

The following thesis is the product of the energy and concern of several people. Without their encouragement, counsel, and assistance, this manuscript would not exist. I wish to express my sincere appreciation to the following :

Drs. D. Aspinall and M. Sedgley for their encouragement and guidance during the course of this programme, and in the preparation of this thesis.

Mr. I. S. Tolley, Tolley's Nurseries, Renmark South Australia, Mr. S. L. Lee, Bundaberg Research Station, Queensland, and Mr. J. B. Forsyth, New South Wales Department of Agriculture for their advice and for supplying some leaf material.

Mr. R. B. Gupta and Mr. P. Hoskyns for their technical advice.

My late father, M. Ashari for waiting a long time for this study and providing a major influence in my life.

Endah, my wife, Dadang and Astri my beloved son and daughter for their unbounded enthusiasm, unselfish support and encouragement throughout my years as a student.

The people of the Department of Plant Physiology for their kind support, assistance and sharing of good times. And finally the assistance of others who helped but are not mentioned here is greatly appreciated.

Thanks also to the Dean of the Faculty of Agriculture, Brawijaya University, the Rector of the University of Brawijaya and the Goverment of the Republic of Indonesia for permission to study in Australia.

This work was supported by the International Development Programme of the Commonwealth Government of Australia and this assistance is gratefully acknowledged.

List of Tables

Table no.		Page
2.1	Botanical classification within Sub-Family Aurantioideac	7
2.2	Characteristics of rootstocks used in this study	10
3.1	Reported parentage of the mandarins	37
3.2	Composition of starch and electrode bridge buffer solutions	40
3.3	Current and duration of electrophoresis used	
	in the present study	44
3.4	Composition of enzyme staining systems	47
3.5	Chemicals used in this study and their sources	49
4.1	Seedling numbers of five polyembryonic citrus rootstocks	52
4.2	Isozyme genotypes of maternal parents and neighbouring	
	trees of five polyembryonic citrus rootstocks	57
4.3	The isozyme genotypes of Troyer and Carrizo citranges	58
4.4	Isozyme genotypes of surviving seedlings of five	
	polyembryonic citrus rootstocks	61
4.5	Summary of characteristics of zygotic seedlings identified	
	from populations of nucellar seedlings of four	
	polyembryonic citrus rootstocks	67
4.6	Morphological characters of surviving seedlings of five	
	polyembryonic citrus rootstocks	68
4.7	Isozyme genotypes of the mandarin types and	
	reported parents	77
4.8	Genetic relationships between the mandarin types based on	
	the number of loci at which the isozyme pattern differs	78
4.9	Summary of the genetic relationships between the mandarin	
	species groups	79
4.10	Assessment of the parentage of the mandarin types	80
5.1	Probability of discriminating zygotic from nucellar	
	seedlings following controlled-pollination	90

List of Figures

Figure no.

2.1	The general formula of an amino acid	27
2.2	Diagram of quartenary structure of protein	29
2.3	Detection of phosphatase enzyme	32
2.4	The segregation of citrus isozymes at the PGI locus	34
3.1	Assembly of starch gel electrophoresis system	43
4.1	Distribution of plant heights of nucellar and zygotic seedlings	24
	of five polyembryonic citrus rootstocks at 20 weeks	
	after germination	71
5.1a	Accuracy of isozyme analysis compared with morphological	
	methods in the discrimination of zygotic from nucellar	
	seedlings of five polyembryonic citrus rootstocks	87
5.1b	Zygotic seedlings detected by controlled crossing	87

List of Plates

Plate	no.		Page
4.1	2	Zymogram of GOT-1 and GOT-2 enzymes showing segregation	
	а	amongst rough lemon seedlings	62
4.2	2	Zymogram of MDH-1 enzyme showing segregation amongst	
	r	rough lemon seedlings	62
4.3	5 Z	Zymogram of ME enzyme showing genotype variation in	
	t	rifoliata orange seedlings	63
4.4	2	Zymogram of PGI enzyme showing variation in genotype	
	a	amongst trifoliata orange seedlings	63
4.5	5 2	Zymogram of PGI enzyme showing genotype variation in	
	t	trifoliata orange seedlings	64
4.6	5 2	Zymogram of PGI enzyme showing genotype variation	
	i	in sweet orange seedlings	64
4.7	7 2	Zymogram of IDH enzyme showing segregation amongst	
	1	Troyer citrange seedlings	69
4.8	3 1	Morphology of nucellar and zygotic seedlings of	
]	Troyer citrange	69
4.9) 1	Leaf morphology of zygotic and nucellar seedlings of	
	5	sweet orange, rough lemon and trifoliata orange rootstocks	70
4.1	10 2	Zymogram of IDH enzyme showing variation in the genotype	
	c	of the mandarins	81
4.1	11 2	Zymogram of MDH enzyme showing lack of variation for	
		this enzyme in the genotype in the mandarin cultivars tested	81