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We study the repeated implementation of social choice functions in environments
with complete information and changing preferences. We define dynamic mono-
tonicity, a natural but nontrivial dynamic extension of Maskin monotonicity, and
show that it is necessary and almost sufficient for repeated Nash implementation,
regardless of whether the horizon is finite or infinite and whether the discount
factor is “large” or “small.”
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1. Introduction

Many economic and social interactions are repeated: the same buyers and sellers of-
ten trade with one another multiple times, teams of contractors regularly work for the
same procurement agencies, and voters repeatedly elect representatives, to name just a
few. The central theme of this paper is the design of institutions, or contractual arrange-
ments, that generate “socially desirable” outcomes in settings where agents repeatedly
interact and preferences change over time.

To illustrate the type of economic problems this paper addresses, consider for ex-
ample the situation in which a buyer and a seller interact more than once. Are there
contractual arrangements that (in all equilibria) allow the seller to extract all the surplus
from trade? As another example, consider the case in which two (or more) agents may
work on a number of tasks that are profitable to a principal. Can we design arrange-
ments that (again, in all equilibria) induce the agents to work on the most profitable
tasks at each point in time, even if it is costly to them? In all these problems, an es-
sential difficulty is the multiplicity of equilibria, including “undesirable” equilibria, that
repeated interactions make possible to sustain. The aim of the paper is to character-
ize the social outcomes that are implementable; that is, those outcomes for which there
exist contractual arrangements that only yield equilibria consistent with them.
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More formally, we study the problem of repeated, full implementation of social
choice functions in environments with complete information and a changing state of
the world. A social choice function is repeatedly implementable in Nash equilibrium if
there exists a sequence of (possibly history-dependent) mechanisms such that for any
period, for any profile of preferences at that period, the set of equilibrium outcomes
corresponds to the social choice function at that profile of preferences.

Full implementation in a static environment (i.e., with a single period) has been ex-
tensively studied.1 The seminal contribution is Maskin (1999), which states that Maskin
monotonicity is necessary and almost sufficient for full implementation. In this paper,
we provide a condition, called dynamic monotonicity, and show that it is necessary and
almost sufficient for repeated Nash implementation, regardless of whether the horizon
is finite or infinite and whether the discount factor is “large” or “small.”

Dynamic monotonicity is a natural but nontrivial dynamic extension of Maskin
monotonicity. It reduces to Maskin monotonicity in single-period settings, but is weaker
in all other finitely repeated implementation problems. Thus, perhaps surprisingly,
finitely repeated implementation is “easier” to achieve than single-shot implementa-
tion. For example, while full-surplus extraction by a seller cannot be implemented in a
static problem, it can be if there are at least two periods in which the buyer and the seller
interact (see Example 1 in Section 3).

We also show that in infinitely repeated problems with patient enough agents, dy-
namic monotonicity implies that the social choice function is weakly efficient from the
agents’ point of view. However, no efficiency condition is necessary in infinitely repeated
problems with impatient enough agents and in all finitely repeated problems. For exam-
ple, collusion among agents in a team can be deterred in all finite horizon problems and
in infinite horizon problems with impatient enough agents (see Example 2 in Section 3).

In a repeated implementation problem, the designer’s choice of a mechanism in
each period may depend on the agents’ actions and mechanisms in all previous periods;
agents need not be playing the same stage game in each period. Intuitively, contractual
arrangements may be used to compensate an agent when he deviates before period t

from a collusive strategy profile that would induce socially undesirable outcomes from
period t onward. This possibility of inducing preemptive deviations from future collu-
sion facilitates implementation and is the reason why finitely repeated implementation
is easier than static implementation. Indeed, it is only when the horizon is infinite and
the discount factor is close to 1 that the gain from a future collusive agreement domi-
nates any preemptive punishment and only outcomes that are efficient for the agents
can be implemented. This insight is at the heart of Lee and Sabourian’s (2011) work on
infinitely repeated implementation problems (to be discussed shortly).

Unlike the literature on dynamic mechanism design, which has recently seen a flurry
of papers (e.g., see the survey by Bergemann and Said 2011), the literature on full imple-
mentation in dynamic environments is in its infancy. Two papers have studied repeated
setting where, unlike in this paper, the state of the world does not change over time.

1See Jackson (2001), Maskin and Sjöström (2002), and Serrano (2004) for recent surveys on implementa-
tion theory.
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Kalai and Ledyard (1998) study infinitely repeated implementation in dominant strate-
gies; they show that every social choice function can be repeatedly implemented start-
ing from some (possibly distant) point in the future. Chambers (2004) studies virtual
repeated Nash implementation in continuous time.

In an important recent paper, Lee and Sabourian (2011) consider environments in
which, like in our paper, the state of the world changes over time.2 Unlike us, they fo-
cus on infinitely repeated settings with patient agents; that is, agents with a discount
factor arbitrarily close to 1. Their main result is that weak efficiency of the social choice
function relative to any other function with an equal or smaller range is necessary for
infinitely repeated implementation. Under some mild additional assumptions on the
environment, they also show that if the discount factor is larger than 1/2, then strict effi-
ciency in the range is sufficient for infinitely repeated implementation from period two
onward (but the designer may fail to implement the correct outcome in the first period).

Maskin monotonicity and weak efficiency in the range are very different conditions,
and thus it is perhaps a puzzle that the first is necessary and almost sufficient in the
static case and the second is necessary and almost sufficient in the polar case of infi-
nite interactions with patient enough agents. In this paper, we solve this puzzle by in-
troducing the condition of dynamic monotonicity and showing that it is necessary and
almost sufficient in all repeated implementation problems, including the so-far unex-
plored, but clearly empirically important, case of a finite number of interactions and
the case of infinitely repeated interactions with general discount factors. In the static
case, dynamic monotonicity is equivalent to Maskin monotonicity. In infinitely repeated
problems with an arbitrarily high enough discount factor, dynamic monotonicity is es-
sentially equivalent to weak efficiency in the range. As we illustrate in Examples 1 and
2, neither Maskin monotonicity nor an efficiency condition are necessary for repeated
implementation in general.

The paper is organized as follows. Section 2 defines the problem of repeated im-
plementation. Section 3 presents two examples motivating our investigation. Section 4
introduces the condition of dynamic monotonicity. Section 5 presents the main results
of the paper. Section 6 provides some extensions of our results and Section 7 concludes.
All proofs are given in the Appendix.

2. Definitions

Single-shot implementation. A static or single-shot implementation problem P is a tuple
〈I�X��� (ui)i∈I〉, where I = {1� � � � � I} is a set of I agents, X is the set of alternatives—
a compact subset of a finite dimensional Euclidean space, � is a finite set of states of the
world, and for each agent i ∈ I , ui : X × � → R is a state-dependent continuous utility
function. Let Li(x�θ) = {y ∈ X : ui(x�θ) ≥ ui(y�θ)} be agent i’s lower contour set of x at
state θ. A social choice function (henceforth, scf) f : � → X associates with each state
of the world θ the alternative f (θ) ∈X .

2See also Renou and Tomala (2015) and Lee and Sabourian (2013) for the problem of approximate im-
plementation in environments with incomplete information.
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A static mechanism G is a pair 〈(MG
i )i∈I� g〉 where MG

i is the set of messages of agent
i and g : ×i∈IMG

i → X is the allocation rule. Let MG = ×j∈IMG
j and MG

−i = ×j∈I\{i}MG
j ,

where m and m−i are generic elements. The mechanism 〈MG�g〉 and the state θ in-
duce the strategic-form game G(θ) = 〈I� (ui(g(·)�θ)�MG

i )i∈I〉. Let NEG(θ) ⊆ X be the
set of (pure) Nash equilibrium outcomes of the game G(θ). The social choice function
f is single-shot implementable in Nash equilibrium if there exists a static mechanism G

such that NEG(θ)= {f (θ)} for all θ ∈�.
A necessary and almost sufficient condition for static Nash implementation is

Maskin monotonicity. In Definition 1, we present two equivalent, slightly unusual, for-
mulations of Maskin monotonicity, as they foreshadow and will help understanding our
definition of dynamic monotonicity. Call any map π : � → � a (static) deception and let
�1 be the set of static deceptions. The interpretation is that when the state is θ, agents
act as if the state were π(θ) instead.

Definition 1. A social choice function f is Maskin monotonic when it satisfies (MA)

or, equivalently, (MB).

(MA) For all π ∈ �1, for all θ ∈ �,

[∀i ∈ I�Li

(
f
(
π(θ)

)
�π(θ)

) ⊆Li

(
f
(
π(θ)

)
� θ

)] ⇒ [
f
(
π(θ)

) = f (θ)
]
�

(MB) For all π ∈ �1, for all θ ∈ �,

[
f
(
π(θ)

) 
= f (θ)
]

⇒ [∃(i ∈ I�x ∈X) : ui
(
f
(
π(θ)

)
�π(θ)

) − ui
(
x�π(θ)

)
≥ 0 > ui

(
f
(
π(θ)

)
� θ

) − ui(x�θ)
]
�

The intuition for the necessity of Maskin monotonicity is simple. Suppose that f is
implementable and let π be a deception. At state π(θ), there must exist an equilibrium
m∗ that implements f (π(θ)). However, if f (π(θ)) 
= f (θ), m∗ should not be an equilib-
rium at state θ, so that at least one agent must have a profitable deviation; that is, he
must have a unilateral deviation from m∗ that induces an alternative x strictly preferred
to f (π(θ)) at state θ. And since m∗ is an equilibrium at state π(θ), the deviation can-
not be profitable at π(θ); that is, f (π(θ)) is preferred to x at state π(θ). Condition (MB)
precisely captures this intuition.

Repeated implementation. A repeated implementation problem, denoted PT , repre-
sents the T -time repetition of the implementation problem P ; T can be finite or infinite.
At the beginning of each period t ∈ T = {1� � � � �T }, the state of the world is drawn from �

with probability mass function p, with p(θ) > 0 for all θ ∈�. In each period, the realized
state is commonly observed by all agents, but not the designer.

Let (x(t� θ))t∈T �θ∈� be a sequence of alternatives, where x(t�θ) is the alternative im-
plemented in state θ at period t. An agent’s expected payoff over sequences of alter-
natives is given by the discounted criterion; that is, there exists δ ∈ (0�1) such that the
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payoff of agent i from (x(t� θ))t∈T �θ∈� is given by3

Ui

((
x(t�θ)

)
t∈T �θ∈�

) = 1 − δ

1 − δT

∑
t∈T

∑
θ∈�

δt−1ui
(
x(t�θ)�θ

)
p(θ)�

The aim of the designer is to repeatedly implement a social choice function f .
A dynamic mechanism regime specifies a mechanism in each period t, contingent on
the profile of mechanisms offered and messages played up to period t (excluding pe-
riod t). A designer history ht

D is a sequence of mechanisms and corresponding messages
(G1�m1� � � � �Gτ�mτ� � � � �Gt−1�mt−1) such that Gτ is the mechanism adopted at period τ

and mτ ∈ MGτ is the corresponding message profile, for all τ < t. The set of all possible
histories observed by the designer at period t is denoted Ht

D. The set of initial histories
H1

D is the singleton {∅} and the set of all possible designer histories is HD = ⋃T
t=1 Ht

D.
A dynamic mechanism regime, or regime for short, specifies a lottery over static

mechanisms as a function of the designer history. We write r(G;ht
D) for the probability

that mechanism G is chosen after history ht
D.4

We assume perfect monitoring.5 At the beginning of period t, each agent knows the
entire profile of mechanisms chosen up to period t − 1, the entire profile of messages
sent up to period t − 1, the entire profile of states of the world realized up to period
t − 1, and the period t’s mechanism selected as well as the realized state of the world for
period t. Write θt = (θ1� � � � � θt−1) for a profile of realized states of the world up to period
t − 1. A history for agent i is thus ht = (ht

D�θ
t). Let Ht be the set of all possible t-period

agent histories and ket H = ⋃T
t=1 Ht be the set of all such histories. The only possible

initial history is the empty set: H1 = {∅}.
A pure strategy si for agent i specifies a message in each period t as a function of

the history ht , the mechanism Gt currently selected, and the current state θt ; that is,
si(h

t�Gt�θt) ∈ MGt
i for all (ht�Gt�θt). Let s = (s1� � � � � sI) be a strategy profile. The strat-

egy profile s, the random draw of a state in each period, and the regime r generate a
random sequence of histories ht .

Given a regime r, we write q(ht; s) for the probability that history ht occurs when
the strategy profile is s. Throughout, we slightly abuse notation and write r(Gt;ht) for
r(Gt;ht

D) for any ht = (ht
D�θ

t). The expected payoff of agent i when the profile of strate-
gies is s is

Ui(s) = 1 − δ

1 − δT

∑
t∈T

∑
ht∈Ht

∑
Gt∈G

∑
θt∈�

δt−1ui
(
g
(
s(ht�Gt�θt)

)
� θt

)
q(ht; s)r(Gt;ht)p(θt)�

3When computing payoffs starting from any period t, we use the normalizing factor (1 − δ)/(1 − δT−t+1),
so that the discounted payoff from t is measured on the same scale as the single-shot payoff.

4We assume that, for each ht
D, r(·;ht

D) has finite support.
5In other words, we assume that the designer truthfully and publicly reveals all his information (i.e.,

messages received, alternative implemented, and mechanism selected) at each period. In a more general
model, the communication policy would also be part of the design problem, i.e., the designer would also
choose how much to reveal to the agents in each period. Clearly, this can only enlarge the set of imple-
mentable social choice functions.
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A profile of pure strategies s∗ = (s∗i � s
∗
−i) is a pure Nash equilibrium of the dynamic

game induced by regime r if Ui(s
∗) ≥ Ui(si� s

∗
−i) for all strategies si, for all agents i ∈ I

(where s∗−i denotes the strategy profile of agent i’s opponents).

Definition 2. A social choice function f is repeatedly implementable if there exists
a dynamic mechanism regime r such that (i) there exists a Nash equilibrium s∗ of the
dynamic game induced by r and (ii) for each Nash equilibrium s induced by r, we have
g(s(ht�Gt�θt)) = f (θt) for all θt ∈�, for all (ht�Gt) such that q(ht; s) > 0, and r(Gt;ht) >

0, for all t ∈ T .

Intuitively, a social choice function is repeatedly implementable if we can construct
a dynamic mechanism whose unique equilibrium outcome is f (θ) in all periods where
the state is θ. As is customary in the literature, Definition 2 does not rule out mixed
strategy equilibria with outcome realizations different from f (θ). In Section 6 we will
show that it is possible to rule out such undesirable mixed strategy equilibria.

We end this section with three notions of efficiency of an scf. The expected payoff of

agent i when f is repeatedly implemented is vfi = ∑
θ∈� ui(f (θ)�θ)p(θ). Let F(f ) = {f ′ :

�→ X : f ′(�) ⊆ f (�)} be the set of social choice functions with a range (weakly) smaller

than f , let V (f ) = {(vi)i∈I : vi = v
f ′
i for all i ∈ I , for some f ′ ∈ F(f )} be the associated

(expected) payoff profiles, and let co(V (f )) be the convex hull of V (f ).
The social choice function f is weakly efficient in the range if there does not exist a

payoff profile (vi)i∈I ∈ co(V (f )) such that vi > v
f
i for all i ∈ I ; f is efficient in the range if

there does not exist a payoff profile (vi)i∈I ∈ co(V (f )) such that vi ≥ v
f
i for all i ∈ I and

vi > v
f
i for some i ∈ I ; f is strictly efficient in the range if it is efficient in the range and

there exists no f ′ ∈ F(f ), f ′ 
= f , such that vf
′

i = v
f
i for all i ∈ I .6

3. Two examples

This section illustrates repeated implementation with the help of two simple examples.

Example 1 (Trading a Good). This is a multiperiod variation of the leading example of
Aghion et al. (2012).

There are two periods, t = 1�2, a buyer B, and a seller S. In each period, the seller
has a good for sale; the quality θ of the good is independently drawn in each period and
equally likely to be θL = 10 or θH = 14. The buyer and the seller have a common discount
factor δ and observe the good’s quality at the beginning of each period.

As in Aghion et al., payments to and from a third party are allowed. Hence, the set
of outcomes X is the set of triplets (z�pB�pS) with z ∈ {0�1} representing whether the
good is traded (z = 1) or not (z = 0), pB ∈ P representing the price paid by the buyer,
and pS ∈ P representing the price paid to the seller, where P is a (arbitrarily large) closed
interval in R. For any outcome (z�pB�pS), the (per-period) buyer’s utility is u(zθ − pB)

6Efficiency and strict efficiency in the range were first defined by Lee and Sabourian (2011).
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Seller

Buyer

θL NθL NθH θH

θL
(1�10�10) (1�10�10) (0�1�1) (0�1�1)
↪→G2 ↪→ (1�11�11) ↪→ (0�0�0) ↪→ (0�0�0)

NθL
(1�14�10) (1�14�14) (1�0�0) (0�1�1)

↪→ (0�−y�0) ↪→ (1�14�14) ↪→ (1�0�0) ↪→ (0�0�0)

NθH
(0�1�1) (1�0�0) (1�14�14) (1�14�10)

↪→ (0�0�0) ↪→ (1�0�0) ↪→ (1�14�14) ↪→ (0�0�0)

θH
(0�1�1) (0�1�1) (1�14�14) (1�14�14)

↪→ (0�0�0) ↪→ (0�0�0) ↪→ (1�11�11) ↪→G2

Table 1. The first-period allocation and the transition ↪→ to the second-period allocation or

game played in Example 1.

when the good quality is θ, with u(0) = 0 and u a strictly increasing, strictly concave
function. The seller’s utility is pS .

We want to implement the efficient allocation prescribing that in each period the
good is traded and the buyer pays the seller the true quality, pB = pS = θ; that is, the
scf we want to implement is f (θL) = (1�10�10) and f (θH) = (1�14�14).7 Since f is not
Maskin monotonic, it cannot be implemented in Nash equilibrium in a static setting.8

We now present a simple dynamic mechanism that repeatedly implements f in
Nash equilibrium. In the first period, the buyer and the seller report a message in
{θL�NθL�NθH�θH}. We interpret the report θk as stating that “the quality is θk.” The
reports Nθk are objections that lead to different first-period allocations and second-
period mechanisms than announcing either θH or θL. In the second period, the buyer
and the seller have the opportunity to make an additional report in {θL�θH} if and only
if they have reported the same quality in the first period. In all other cases, the second-
period allocation is chosen without requiring buyer and seller to make reports. Table 1
gives the allocation rule in the first period along with the regime.

Table 1 has 16 cells, one for each possible report profile in the first period; the row
(resp., column) report is the buyer (resp., seller) report. Each cell has two elements. The
top element gives the first-period allocation, while the bottom element (indicated with
the symbol ↪→) gives the transition to the second-period mechanism. For instance, if
the buyer reports θL and the seller reports NθL, the first-period allocation is (1�10�10),
while the second-period mechanism implements (1�11�11) and requires no second-
period reports. When the buyer and the seller report the same quality in the first period,
the second-period mechanism is G2, given in Table 2:9

7Note that if u′(0) = 1, then this allocation also maximizes total surplus.
8Formally, we have that LB(f (θL)�θL) = {(z�pB�pS) : u(0) ≥ u(zθL − pB)} ⊆ {(z�pB�pS) : u(4) ≥

u(zθH − pB)} = LB(f (θL)�θH), while LS(f (θL)�θL) = LS(f (θL)�θH). Since f (θL) 
= f (θH), we have a vio-
lation of Maskin monotonicity.

9On the equilibrium path, mechanism G2 guarantees that trade takes place in the second period and the
expected price is 12 for both the buyer and the seller.
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θL θH

θL (1�10�10) (0�0�0)
θH (0�0�0) (1�14�14)

Table 2. The second-period mechanism G2 in Example 1.

We claim that whenever y is chosen so that −u(−4) > δu(y) > u(4), the unique pure
strategy equilibrium implements the efficient allocation in both periods.10 This is ver-
ified in the Appendix, which presents the two reduced strategic-form games that are
obtained by conditioning on the first-period quality.11

A notable feature of our mechanism is that it provides at least one agent with the
incentive to deviate early (at t = 1) from future (at t = 2) coordination on undesirable
equilibria (coordinating on announcing θL when the good’s quality is θH ). It is precisely
the ability to provide such incentives in a dynamic setting that allows the repeated Nash
implementation of social choice functions, like the one in this example, that are not
implementable in a static setting. ♦

Example 2 (Task assignment). In each of a possibly infinite number of periods, a princi-
pal needs to assign two agents (experts), 1 and 2, to one of two tasks, A and B. There are
two states of the world, θ ∈ {θA�θB}. The agents know the state of the world, but not the
principal. In state θA (resp., θB), task A (resp., B) yields the principal a benefit v greater
than the cost to undertake it, while the other task yields zero benefit and cost. An allo-
cation is a quadruplet (a1� a2�w1�w2), with ai ∈ {A�B} the assignment of agent i ∈ {1�2}
and wi ≥ 0 his wage. When the state is θ, the assignment is (ai� a−i), and the wage is
wi, agent i’s payoff is wi − ci(ai� a−i� θ), where ci(ai� a−i� θ) is agent i’s cost of executing
task ai when the other agent is assigned to task a−i, at state θ. There are complementar-
ities: the more agents work on a task, the less costly it is: ci(ai� a−i� θ)= 1 if (ai� a−i� θ)=
(A�A�θA) = (B�B�θB), ci(ai� a−i� θ) = 3 if (ai� a−i� θ) = (A�B�θA) = (B�A�θB), and the
cost is zero otherwise; in addition, v is sufficiently large, e.g., v > 4, so that it is profitable
for the principal to induce the agents to work on the right task.

The principal wants to maximize his ex post profit in each period, subject to giving
the agents at least their per-period outside option payoff, which we normalize to zero.
This corresponds to the scfs f (θA) = (A�A�1�1) and f (θB) = (B�B�1�1). Note that f
maximizes social surplus in each period and state.

The scf f is Maskin monotonic, but it is not efficient relative to social choice func-
tions having (weakly) smaller ranges. For instance, the functions f ∗(θA) = (B�B�1�1)
and f ∗(θB) = (A�A�1�1), with agents being paid to work on the unprofitable task, give
a strictly higher expected utility to both agents than f . Thus, if the agents are sufficiently
patient, then f cannot be repeatedly implemented in infinite horizon problems (Theo-
rem 1, Lee and Sabourian 2011).

10The existence of y follows from observing that u(4)+u(−4) < 0, since u is strictly concave and u(0) = 0.
11As we argue in Section 6, undesirable mixed strategy equilibria could also be ruled out, at the cost of

introducing a more complicated mechanism.
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Agent 2

Agent 1

θA θB

θA (A�A�1�1) (B�A�2�2)
θB (A�B�2�2) (B�B�1�1)

Table 3. The static mechanism in Example 2.

θA θB

Agent 1 Agent 2 Agent 1 Agent 2

(A�A�1�1) 0 0 1 1
(B�B�1�1) 1 1 0 0
(B�A�2�2) 2 −1 −1 2
(A�B�2�2) −1 2 2 −1

Table 4. Agents’ payoffs in Example 2.

At the end of Section 5 we will show that f is infinitely repeatedly implementable if
the discount factor is not too large. We now argue that the f is repeatedly implementable
in any finite horizon problem. Consider the static mechanism where each agent has two
messages, θA and θB, and the allocation rule is represented as in Table 3; Table 4 displays
the payoffs to each agent of each alternative in each state.

At state θA, the mechanism induces a prisoner’s dilemma, with (θA�θA) as the
unique Nash equilibrium and equilibrium outcome (A�A�1�1). Similarly, at state θB,
the mechanism induces a prisoner’s dilemma, with (θB�θB) as the unique Nash equi-
librium and equilibrium outcome (B�B�1�1). So f is implementable when T = 1. More
fundamentally, at states θA and θB, the unique equilibrium payoff coincides with the
min-max payoff. Consequently, repeated play of the stage game equilibrium is the only
Nash equilibrium of the finitely repeated game (e.g., see Benoît and Krishna, 1987, and
González-Díaz 2006), and by selecting the mechanism regime that uses the static mech-
anism in each round, f can be finitely repeatedly implemented in Nash equilibrium,
regardless of the number of periods.

This shows that there is an important difference between what can be implemented
in finitely repeated problems and what can be implemented in infinitely repeated prob-
lems with an arbitrarily large discount factor, as studied by Lee and Sabourian (2011). ♦

4. Dynamic monotonicity

Consider any period t and any sequence (uτi )τ≥t of payoffs from period t onward. We
can write agent i’s discounted payoff at period t as

1 − δ

1 − δT−t+1

(
uti + δ

T∑
τ=t+1

δτ−t−1uτi

)
= (1 −βt�T )u

t
i +βt�T vi(t)�
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where vi(t) is the (normalized) discounted continuation payoff and βt�T is the (normal-
ized) discount factor at period t: that is,

vi(t) = 1 − δ

1 − δT−t

T∑
τ=t+1

δτ−t−1uτi and βt�T = δ− δT−t+1

1 − δT−t+1 �

When the horizon is infinite, i.e., T = ∞, we have βt�∞ = δ. The lowest and highest
expected payoff agent i can obtain are

vi =
∑
θ∈�

min
x∈X

ui(x�θ)p(θ)� vi =
∑
θ∈�

max
x∈X

ui(x�θ)p(θ)�

For each t ∈ T \ {T }, let Vi(t) be the closed interval [vi� vi] with the convention that
Vi(T) = {0} if T < ∞. The set Vi(t) corresponds to the set of feasible agent i’s (nor-

malized) continuation payoffs at period t. Denote by v
f
i (t) the (normalized) expected

discounted payoff of agent i when f is implemented from period t + 1 onward. Thus,

v
f
i (t) = v

f
i = ∑

θ∈� ui(f (θ)�θ)p(θ) if t < T and v
f
i (T ) = 0 if T < ∞.

We now generalize the important concept of deception to the dynamic setting. At
each period t, a deception specifies a state θ̂t as a function of the realized state θt and
the history of realized states up to period t, θt . Formally, a deception π is a sequence of
maps (πt : �t × � → �)Tt=1. Intuitively, suppose that each agent is asked to directly re-
port a state at each period (as in a direct mechanism). A deception then corresponds to
a situation where the agents coordinate their reports to θ̂t = πt(θ

t� θt) at period t, when
the current state is θt and the profile of realized states is θt .12 (If reports are not coordi-
nated, the designer detects a lie and can punish the agents.) Of course, the mechanism
does not have to be direct. Nonetheless, the concept of a deception remains important:
agents can play at period t and realized states θt as if the current state is πt(θ

t� θt) and
not θt . A special deception is π∗, given by π∗

t (θ
t� θt) = θt for all (θt� θt), for all t. This

corresponds to truth-telling. Let �T be the set of deceptions.
We define the (normalized) expected discounted continuation payoff of agent i from

following the deception π after state history (θt� θt) recursively as

v
fπ
i (θt� θt) =

∑
θt+1∈�

(
(1 −βt+1�T )ui

(
f
(
πt+1

(
(θt� θt)� θt+1

))
� θt+1

)

+βt+1�T v
fπ
i

(
(θt� θt)� θt+1

))
p(θt+1)�

This is agent i’s discounted continuation payoff if, in all periods τ > t, the designer uses
the social choice function f at the reported state πτ(θ

τ�θτ) to determine the period τ

alternative. Note that the discounted continuation payoff vfπ∗
i (θt� θt) from the truth-

telling deception π∗ is equal to v
f
i (t), regardless of (θt� θt).

12Note that π and the history of realized states θt determine a unique history of reported states.
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For any history of realized states θt and deception π, we define the dynamic lower
contour set of x at θt as

L
fπ
i�θt

(x�θt) = {(
y� vi(t)

) ∈X × Vi(t) : (1 −βt�T )ui(y�θt)+βt�T vi(t)

≤ (1 −βt�T )ui(x�θt)+βt�T v
fπ
i

(
(θt� θt)

)}
�

Dynamic lower contour sets are defined in the space of alternatives and continuation
payoffs. Intuitively, for any deception π and history of states θt , the dynamic lower con-
tour set at θt is composed of all the pairs of alternatives and continuation payoffs that
give agent i a smaller expected discounted payoff than when x is implemented at state
θt in period t and agents continue to follow the deception π from period t + 1 onward.

Note that Lfπ∗
i�θt

(x�θt) does not depend on θt , since the truth-telling deception π∗ does

not. With a slight abuse of notation, we therefore write L
f
i�t(x�θt) for Lfπ∗

i�θt
(x�θt).

We are now ready to present two equivalent definitions of dynamic monotonicity,
the dynamic generalization of Maskin monotonicity.

Definition 3 (Dynamic monotonicity). A social choice function f is dynamic mono-
tonic if it satisfies (DMA) or, equivalently, (DMB).

(DMA) For all π ∈�T , for all θT ∈�T ,[∀(i ∈ I� t ∈ T )�L
f
i�t

(
f
(
πt(θ

t� θt)
)
�πt(θ

t� θt)
) ⊆L

fπ
i�θt

(
f
(
πt(θ

t� θt)
)
� θt

)]
⇒ [∀(t ∈ T )� f

(
πt(θ

t� θt)
) = f (θt)

]
�

(DMB) For all π ∈�T , for all θT ∈�T ,[∃(t ′ ∈ T ) : f (
πt ′(θ

t ′� θt ′)
) 
= f (θt ′)

]
⇒ [∃(

i ∈ I� t ∈ T �x ∈X�vi ∈ Vi(t)
) :

(1 −βt�T )
[
ui

(
f
(
πt(θ

t� θt)
)
�πt(θ

t� θt)
) − ui

(
x�πt(θ

t� θt)
)]

+βt�T

[
v
f
i (t)− vi

] ≥ 0�

0 > (1 −βt�T )
[
ui

(
f
(
πt(θ

t� θt)
)
� θt

) − ui(x�θt)
]

+βt�T

[
v
fπ
i (θt� θt)− vi

]]
�

Intuitively, dynamic monotonicity says that if agents coordinate on a deception that
induces an undesirable alternative at some period t ′ (for some profile of realized states),
then at least one agent must have a profitable deviation starting at some time t. Since
the problem is dynamic, the profitable deviation does not have to start at t ′; it could start
before or after; t need not equal t ′. For instance, in Example 1, the seller has a profitable
deviation at the first period from the second-period coordination on trading the high
quality good at the low price.

It is worth noting that we can restrict attention to deceptions that weakly domi-
nate truth-telling in checking for dynamic monotonicity, i.e., to deceptions π such that

v
fπ
i (θt� θt) ≥ v

f
i for all i, for all (θt� θt), for all t.
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A few additional observations are worth making. First, for T = 1, dynamic mono-
tonicity reduces to Maskin monotonicity. Second, observe that when T = ∞, βt�T = δ

for all t, and the dynamic lower contour sets do not vary with t. Consequently, when
checking for dynamic monotonicity, it is sufficient to consider t = 1. Third, an easy-
to-check sufficient condition for dynamic monotonicity is as follows. For each agent i,
define vmax

i = maxπ:�→�
∑

θ ui(f (π(θ))�θ)p(θ) as the highest payoff that agent i can ob-
tain if all agents coordinate on the most favorable static deception π for agent i (vmax

i

is also the highest payoff that agent i can obtain by maximizing over all dynamic de-
ceptions). Suppose that f (θ) 
= f (θ∗). Using (DMB), a sufficient condition for dynamic
monotonicity is that for all deceptions such that πt ′(θt

′
� θ∗) = θ for some θt

′ ∈ �t ′ and
t ′ ∈ T , there exist t ∈ T , i ∈ I , x ∈X , and vi(t) ∈ Vi(t) that satisfy

(1 −βt�T )ui
(
f (θ)�θ

) +βt�T v
f
i ≥ (1 −βt�T )ui(x�θ)+βt�T vi(t)

and

(1 −βt�T )ui
(
f (θ)�θ∗) +βt�T v

max
i < (1 −βt�T )ui(x�θ

∗)+βt�T vi(t)�

The example illustrating Remark 5 shows that this condition is easy to check.
We end this section with a series of remarks. The message we want to convey is that

dynamic monotonicity is the “general” condition for repeated Nash implementation.
It reduces to Maskin monotonicity when there is a single period and essentially corre-
sponds to Lee and Sabourian’s (2011) efficiency in the range when there are an infinite
number of periods and a discount factor close to 1.

The first remark gives another easy-to-check sufficient condition for the dynamic
monotonicity of a social choice function. The second remark states that, in finite hori-
zon problems, dynamic monotonicity is weaker than Maskin monotonicity. The con-
verse is false; Example 1 demonstrates that dynamic monotonicity is strictly weaker than
Maskin monotonicity.

Remark 1. If the social choice function f is strictly efficient in the range and (v
f
i )i∈I is

an extreme point of co(V (f )), then f is dynamic monotonic whenever T ≥ 2.

Remark 2. Suppose T <∞. If f is Maskin monotonic, then it is dynamic monotonic.

Remark 3. Suppose T = ∞. There exists δH ∈ (0�1) such that for all δ ∈ (δH�1), if f is
dynamic monotonic, then it is weakly efficient in the range.

Remark 4. Suppose T = ∞. If f is Maskin monotonic and efficient in the range, then it
is dynamic monotonic.

Remark 5. There are social choice functions, which are neither efficient nor Maskin
monotonic, and yet are dynamically monotonic.

As a demonstration of Remark 5, suppose that there are two agents, two periods, no
discounting (i.e., δ = 1), two equiprobable states of the world θ and θ′, and five alterna-
tives a, b, c, d, e. Let the payoffs be as in Table 5.
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θ θ′

a 3�3 1�7
b 6�0 3�3
c 10�10 10�10
d −10�−10 0�0
e 0�0 −10�−10

Table 5. Agents’ payoffs in the example illustrating Remark 5.

The social choice functions are f (θ) = a and f (θ′) = b, and the associated payoff

profile is (v
f
1 � v

f
2 ) = (3�3). It is not Maskin monotonic since Li(f (θ

′)�θ′) ⊆ Li(f (θ
′)�θ)

for all i, and yet f (θ′) 
= f (θ). It is also not efficient in the range since if players coordinate
on θ (resp., θ′) when the state is θ′ (resp., θ), then they each obtain a payoff of 7/2. Yet, f
is dynamic monotonic. To see this, remember that vmax

i is the highest payoff that agent i
can obtain if all agents coordinate on the most favorable deception for agent i, and note
that vmax

1 = 9/2, while vmax
2 = 5. It is immediate to check that the pair (d�10) satisfies

u1
(
f (θ)�θ

) + v
f
1 = 3 + 3 ≥ −10 + 10 = u1(d�θ)+ v1

max
(
u1

(
f (θ)�θ′)�u1

(
f (θ′)�θ′)) + vmax

1 = 3 + 9/2 < 0 + 10 = u1(d�θ
′)+ v1�

Similarly, the pair (e�10) satisfies

u2
(
f (θ′)�θ′) + v

f
2 = 3 + 3 ≥ −10 + 10 = u2(e�θ

′)+ v2

max
(
u2

(
f (θ′)�θ

)
�u2

(
f (θ)�θ

)) + vmax
2 = 3 + 5 < 0 + 10 = u1(e�θ)+ v2�

We have the necessary preference reversals in the first period and, therefore, the social
choice function is dynamic monotonic.

The final remark states that in finitely repeated settings the set of social choice func-
tions that are dynamic monotonic is weakly increasing in T .

Remark 6. Suppose T < ∞ and f is dynamic monotonic over T periods. Then f is also
dynamic monotonic over T + 1 periods.13

5. Main results

This section presents our main results, stating that dynamic monotonicity is necessary
and almost sufficient for repeated Nash implementation. We begin with necessity.

Theorem 1 (Necessity). If the social choice function f is repeatedly implementable, then
it is dynamic monotonic.

The intuition for Theorem 1 is simple and analogous to the intuition for the neces-
sity of Maskin monotonicity in static implementation problems. If the social choice

13We thank an anonymous referee for asking us to verify whether this claim holds.
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function f is implementable, there must exist a mechanism and an equilibrium such
that f (θt) is implemented at period t and state θt , and the continuation payoff to any

agent i is v
f
i (t), for any t ∈ T . Moreover, for any realized profile of states θt , all de-

viations at period t and state θt must give to agent i an alternative x and a contin-

uation payoff vi in L
f
i�θt

(f (θt)� θt). Consider a deception π and a “collusive” equilib-
rium in which agents follow the deception (on the equilibrium path) and revert to the
original equilibrium after unilateral deviations. In particular, agents pretend that the
state is πt(θ

t� θ∗
t ) = θt when the realized state at period t is θ∗

t and the history of real-
ized states up to period t is θt . As a result, f (θt) = f (πt(θ

t� θ∗
t )) is implemented at t in

state θ∗
t , and the expected payoff of agent i is (1 −βt�T )ui(f (θt)� θ

∗
t )+βt�T v

fπ
i (θt� θ∗

t ). If

L
f
i�t(f (θt)� θt) ⊆ L

fπ
i�θt

(f (θt)� θ
∗
t ), then agent i has no profitable deviation from the collu-

sive equilibrium. For otherwise, he would have had a profitable deviation at state θt from
the original equilibrium. Hence, for f to be implemented, it must be that f (θ∗

t ) = f (θt);
that is, f must be dynamic monotonic.

We now consider sufficient conditions. As in static implementation problems, we
distinguish between the case of two and more than two agents. We need to introduce
some additional definitions.

For each Y ⊆ X , define maxθi Y = {x ∈ Y : ui(x�θ) ≥ ui(y�θ) for all y ∈ Y } as agent i’s
maximal set in Y at state θ. A social choice function f satisfies no-veto power if, for all
θ ∈ �, x ∈ maxθi X for all i ∈ I∗ with |I∗| ≥ I − 1 implies f (θ) = x. Maskin monotonicity
and no-veto power are sufficient for static Nash implementation when there are at least
three agents. A similar results holds in the repeated setting once we replace Maskin
monotonicity with dynamic monotonicity.

Theorem 2 (Sufficiency I ≥ 3). Let I ≥ 3. If the social choice function f is dynamic
monotonic and satisfies no-veto power, then it is repeatedly implementable.

The proof is constructive. The main building block of our construction is the static
mechanism G∗, a close relative to Maskin’s (1999) canonical mechanism. The mech-
anism G∗ requires the agents to report a state, an alternative, a continuation payoff,

and an integer. At period t, “unanimous” reports (θt� f (θt)� v
f
i (t)�0) result in the realiza-

tion of f (θt) and in the adoption of G∗ in the next period. A unilateral deviation from
unanimity by agent j at t, (θj�t � xj�t � vj�t � nj�t), results in the realization of xj�t at t and

in the continuation payoff vjt thereafter, if (xj�t � vj�t) is in agent j’s dynamic contour set

L
f
j�t(f (θt)� θt) (where θt is the common state report of all agents but agent j). Alterna-

tively, the deviation results in the realization of f (θt) at period t and in the continuation

payoff vfj (t) thereafter. To guarantee that agent j obtains vj�t (or vfj (t)) in the future, the
regime appropriately randomizes between adopting a mechanism where agent j is dic-
tatorial (i.e., chooses the alternative), which would guarantee he receives vj , and a pun-

ishment mechanism where agent j would get less than vj�t (or vfj (t)). Any other report
profile at t leads to the agent reporting the highest integer at t being dictatorial at t and
in all future periods. Notice that the mechanism G∗ is equivalent to Maskin’s canonical
mechanism when T = 1, and indeed guarantees the implementation of f for very sim-
ilar arguments as in Maskin (1999). As the canonical Maskin mechanism with T = 1,
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our mechanism regime does not rule out undesirable mixed strategy equilibria. As we
discuss in Section 6, under a mild additional assumption we can eliminate them.14

The dynamic mechanism regime we construct only uses stage mechanisms that are
deterministic functions of the agents’ messages, but permits random transitions be-
tween these mechanisms. Without making further assumptions, it seems impossible to
prove Theorem 2 without the help of stochastic transitions or, alternatively, stochastic
stage mechanisms.15 Yet, in environments with transfers and quasi-linear preferences,
there is no need for stochastic transitions; we can always adjust the transfers to guaran-
tee that the agent obtains the appropriate continuation payoff.

As Maskin’s (1999) theorem for static Nash implementation, Theorem 2 requires no-
veto power. We can weaken the no-veto power requirement. For instance, Theorem 2
remains valid if we replace no-veto power with Assumption A, stated below, which is
closely related to the conditions μ(ii) and μ(iii) of Moore and Repullo.16 We first need
some additional notation. Let ϕt : {t + 1� � � � �T } × � → X be a time-dependent social
choice function and write v

ϕt
i the continuation payoff of implementing ϕt from period

t + 1 onward, that is,

v
ϕt
i := 1 − δ

1 − δT−t

T∑
τ=t+1

δτ−t−1ui
(
ϕt(τ�θ)�θ

)
p(θ)�

For any vi ∈ Vi(t), define λ(vi) = (vi − vi)/(vi − vi). We are now ready to state Assump-
tion A.

Assumption A. A social choice function f satisfies Assumption A if the following state-
ments hold:

(i) For all (x� vi(t)) ∈ Li�t(f (θ)�θ) with i ∈ I , θ ∈ � and t ∈ T and for all pairs (ϕt�ϕt)

such that

(a1) either λ(vi(t)) = 0 or ϕt(τ�θ) ∈ ⋂
j maxθj X for all θ ∈�, for all τ > t17

(a2) ϕt(τ�θ) ∈ ⋂
j 
=i maxθj X for all θ ∈�, for all τ > t

(b) x ∈ ⋂
j 
=i maxθ

∗
j X

(c) βt�T ui(x�θ
∗)+ (1−βt�T )[λ(vi(t))vϕt

i + (1−λ(vi(t)))v
ϕt
i ] ≥ βt�T ui(y�θ

∗)+ (1−
βt�T )vi for all (y� vi) ∈Li�t(f (θ)�θ),

we have that x= f (θ∗), and ϕt(τ� ·) = ϕt(τ� ·) = f for all τ > t.

(ii) For all x such that x ∈ ⋂
j maxθ

∗
j X , we have that x= f (θ∗).

14See Mezzetti and Renou (2012) for an alternative definition of static implementation in mixed Nash
equilibrium.

15Āzacis and Vida (2015) use random mechanisms and random transitions in their analysis of infinitely
repeated implementation problems.

16We prove this and the following claim in footnotes 22 and 23.
17We thank Helmuts Azacis and Peter Vida for pointing out the need to add λ(vi(t)) = 0 as a special case.
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Condition (i) is similar to condition μ(ii) of Moore and Repullo. It states that if x
maximizes the payoff of all agents but agent i at state θ∗, if ϕt maximizes the contin-
uation payoff of all agents while ϕt maximize the continuation payoff of all agents but
agent i, and if the pair (x�λ(vi(t))v

ϕt
i +(1−λ(vi(t)))v

ϕt
i ) is maximal in the dynamic lower

contour set Li�t(f (θ)�θ) at state θ∗, then not only alternative x must coincide with f (θ∗)
at state θ∗, but also ϕt(τ� ·) and ϕt(τ� ·) must coincide with f for all τ > t. Note that
condition (i) is weaker than no-veto power and is almost identical to condition μ(ii) at
period T , when T <∞. Condition (ii) is a unanimity condition.

We now consider the two-agent case. As shown by Dutta and Sen (1991) and Moore
and Repullo (1988), for the static case with two agents, self-selection is a necessary
condition for Nash implementation.18 Our sufficiency result for two agents requires a
strengthening of self-selection.19

Assumption B. There exists an alternative w such that ui(w�θ) < ui(f (θ
′)�θ) for all

(θ′� θ) ∈�×�, for all i ∈ {1�2}.

Assumption B requires that there exists a bad outcome (relative to f ) for both agents.
For instance, in pure exchange economies with strictly monotone preferences, the zero
consumption bundle is a bad outcome relative to any social choice function that gives
positive consumption to each consumer in at least one state of the world. Other exam-
ples satisfying Assumption B include environments with transferable utilities, like our
two examples in Section 3. We have the following theorem.

Theorem 3 (Sufficiency I = 2). Let I = 2. Suppose Assumptions A and B hold. If a social
choice function f is dynamic monotonic, then it is repeatedly implementable.

We now briefly return to Examples 1 and 2.

Example 1 (revisited). The set V (f ) of expected (ex ante) payoff vectors that the two
parties would obtain with an scf whose range is a subset of {(1�10�10)� (1�14�14)}, the
range of f , is {(u(4)/2�10)� (0�12)� ((u(−4)+ u(4))/2�12)� (u(−4)/2�14)}. Thus f , which

yields expected payoffs (vfB� v
f
S)= (0�12), is strictly efficient and an extreme point in the

convex hull of V (f ). By Remark 1, f is dynamic monotonic. Since Assumptions A and
B hold, f is repeatedly implementable in Nash equilibrium irrespective of the discount
factor, as long as there are at least two periods. ♦

Example 2 (revisited). Consider an infinitely repeated setting. To show under which
condition f is dynamic monotonic when T = ∞, we can use the sufficient condition

provided after Definition 3. Observe that vfi = 0 for all i ∈ I and that the best possible
collusive deception is πt(θ

t� θA) = θB and πt(θ
t� θB) = θA for all θt , for all t ∈ T . Under

such a deception, vfπi (θt� θ) = v
fπ
i = 1 for all i ∈ I . (This corresponds to vmax

i .) Given the

18In Proposition 1 in the Appendix, we show that a weaker condition, dynamic self-selection, is necessary
for repeated Nash implementation.

19Self-selection: Let I = 2. There exists x(θ2� θ1) ∈ L1(f (θ2)�θ2)∩L2(f (θ1)�θ1) for all pairs (θ2� θ1).
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symmetry of the setup, we only need to consider the pairs (θA�θB) with πt(θ
t� θB) = θA.

Since f (θB) 
= f (θA), dynamic monotonicity (DMB) requires that there exist i ∈ I , x ∈X ,
and vi ∈ Vi(t) such that

(1 − δ)
[
ui

(
f (θA)�θA

) − ui(x�θA)
] + δ[0 − vi] ≥ 0

0 > (1 − δ)
[
ui

(
f (θA)�θB

) − ui(x�θB)
] + δ[1 − vi]�

This is equivalent to

−(1 − δ)ui(x�θA) ≥ δvi > 1 − (1 − δ)ui(x�θB)� (1)

By symmetry, we may take i to be any agent, say agent 1. The only alternatives x that
may satisfy (1) for agent 1 assign agent 1 to task A and agent 2 to task B. Letting
x = (A�B�w1�w2), (1) becomes (1 − δ)(3 − w1) ≥ δvi > 1 − (1 − δ)w1, which holds if
and only if δ < 2/3. This shows that f satisfies dynamic monotonicity if the discount
factor is less than 2/3. Thus, dynamic monotonicity does not imply weak efficiency in
infinite horizon problems when the discount factor is not too large. Since the setting
of the example satisfies Assumptions A and B, with an infinite time horizon, f can be
repeatedly implemented, and collusion among the agents avoided, as long as δ < 2/3. ♦

6. Discussion

This section discusses some important aspect of our analysis.
Mixed strategies. The proof of Theorem 2 does not rule out undesirable mixed strat-

egy equilibria. We now show that the theorem extends to mixed strategies under the
mild additional assumption of no indifference, which states that no agent is totally indif-
ferent between all alternatives at all states.

We say that a scf f is repeatedly implementable in mixed Nash equilibrium if it it
is repeatedly implementable in Nash equilibrium and, in addition, there are no mixed
strategy Nash equilibria that yield in some period t an outcome y /∈ f (θ) with positive
probability, when the state is θ.

Theorem 4. Let I ≥ 3. Assume no indifference holds. If the social choice function f is
dynamic monotonic and satisfies no-veto power, then it is repeatedly implementable in
mixed Nash equilibrium.

Two obstacles must be overcome when dealing with mixing by agents. First, the best
message for an agent to send depends on the messages sent by the other agents, but
the agent has no certainty over such messages when the other agents mix. For instance,
announcing a large integer so as to become a dictator entails the risk of being the odd
man out when others play unanimously. Second, we need to consider distributions over
deceptions so as to account for mixed strategies, i.e., distributions over pure strategies.
In the proof, we overcome these difficulties by introducing random stage mechanisms.
This guarantees that mixing only occurs in the last period in all equilibria (if there is
a last period). Moreover, the last-period mechanism is a version of the mechanism in
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Maskin and Sjöström (2002), which allows agents to propose alternatives contingent on
the state report of their opponents. This guarantees that no undesirable equilibria exist.

Subgame perfection. The solution concept adopted in this paper is Nash equilib-
rium. All our results extend straightforwardly to subgame perfection. First, it is easy to
check that the Nash equilibrium sE constructed in the proof of Theorem 2 (and The-
orem 3) is subgame perfect. Since there are no undesirable Nash equilibria, hence no
undesirable subgame-perfect Nash equilibria, this implies that dynamic monotonic-
ity together with no-veto power (or Assumption A) are sufficient for subgame-perfect
implementation. Dynamic monotonicity is also necessary as long as the mechanism
adopted in each period is a static mechanism. To see this, suppose that f is repeat-
edly implementable in subgame-perfect Nash equilibrium, and let s be an implement-
ing equilibrium. Assume that there exists a deception π such that for all t ∈ T , for all

θt ∈ �t , for all pairs (θt� θ
∗
t ) with πt(θ

t� θ∗
t ) = θt , we have L

f
i�t(f (θt)� θt) ⊆ L

fπ
i�θt

(f (θt)� θ
∗
t )

for all i ∈ I . As in the proof of Theorem 1, we can construct a Nash equilibrium s′ that
implements f (πt(θ

t� ·)) at all periods t and at all profiles θt of realized states up to period
t. Moreover, off the equilibrium path, s′ agrees with s, so that s′ is also a subgame-perfect
equilibrium and hence f must be dynamic monotonic.20

Time-dependent social choice functions. We have assumed that the designer wants
to implement the same social choice function f in each period. A more general objec-
tive would be to implement a sequence (ft)t∈T of social choice functions. It is straight-
forward to modify the definitions of continuation payoffs, dynamic lower contour sets,
and dynamic monotonicity to account for time-dependent social choice functions. With
these modifications, dynamic monotonicity remains necessary and almost sufficient for
repeated Nash implementation.

Social choice correspondences. The analysis extends to the implementation of social
choice correspondences. Let F : � → 2X \ {∅} be a social choice correspondence; de-
note by F the set of all possible social choice functions that are selections of F . A social
choice correspondence is implementable if there exists a dynamic mechanism such that
for every selection f ∈ F, there exists a Nash equilibrium that repeatedly implements f ,
and every Nash equilibrium repeatedly implements a selection f ∈ F. A social choice
correspondence F is dynamic monotonic when it satisfies the following criterion:

(DMA
C ) For all f ∈ F, for all π ∈�T , for all θT ∈ �T ,

[∀(i ∈ I� t ∈ T )�L
f
i�t

(
f
(
πt(θ

t� θt)
)
�πt(θ

t� θt)
) ⊆L

fπ
i�θt

(
f
(
πt(θ

t� θt)
)
� θt

)]
⇒ [∃f ∗ ∈ F : ∀t ∈ T � f

(
πt(θ

t� θt)
) = f ∗(θt)

]
�

Note that the concept of dynamic monotonicity (for correspondences) is equiva-
lent to Maskin monotonicity (for correspondences) in static implementation problems,
and clearly equivalent to Definition 3 when F is single-valued. To see the necessity of

20It is important to stress that the restriction to static mechanisms within a period rules out the mech-
anisms used by Moore and Repullo (1988) and Abreu and Sen (1990) to show that, in single-shot environ-
ments, subgame-perfect implementation is substantially more permissive than Nash implementation.
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the modified condition of dynamic monotonicity, suppose that F is repeatedly imple-
mentable and assume that there exist a selection f ∈ F, a deception π such that for all
t ∈ T , for all θt ∈ �t , for all pairs (θt� θ

∗
t ) with πt(θ

t� θ∗
t ) = θt , we have L

f
i�t(f (θt)� θt) ⊆

L
fπ
i�θt

(f (θt)� θ
∗
t ) for all i ∈ I . As in the proof of Theorem 1, we can construct an equilib-

rium that implements f (πt(θ
t� ·)) at all periods t and at all profiles θt of realized states

up to period t. Consequently, there must exist f ∗ ∈ F such that f (πt(θ
t� ·)) = f ∗ for all

θt ∈�t , for all t ∈ T , i.e., F must be dynamic monotonic. To show sufficiency, we need to
augment the dynamic mechanism regime in the proof of Theorem 2 with an initial stage
(period t = 0) in which all agents announce a selection f ∈ F. If all agents announce
the same selection f ∈ F at period t = 0, then our dynamic mechanism regime takes ef-
fect from t = 1 with f the social choice function adopted in the canonical mechanism
G∗

t . If not all agents make the same announcement at t = 0, then our dynamic mecha-
nism regime takes effect from t = 1 with an arbitrary f ∗ ∈ F as the social choice function
adopted in G∗

t .

7. Conclusions

Our main contribution is to introduce the condition of dynamic monotonicity, a natural
but nontrivial dynamic extension of Maskin monotonicity, and to show, in Theorems
1–4, that dynamic monotonicity is necessary and almost sufficient for repeated Nash
implementation of social choice functions, regardless of whether the horizon is finite or
infinite and whether the discount factor is large or small.21

Many economic applications of implementation theory, for example most of the
contracting literature (e.g., see Aghion et al., 2012 or Maskin and Tirole 1999), focus on
static problems. One of the main insights of our paper is that the (finitely) repeated im-
plementation of desirable social choice functions is easier than static implementation,
as last-period, or late periods, planned deviations from truth-telling can be avoided by
rewarding defection in early periods. For instance, we can implement full surplus ex-
traction by a seller as long as there are at least two periods, while full surplus extraction
is not implementable in static problems (see Example 1).

Appendix

This appendix contains the proofs of all our results and the reduced strategic-form
games associated with Example 1.

Example 1 (The strategic-form games). Conditional on a realized first-period quality,
the buyer and the seller have 64 strategies each. An agent is active at the initial history
as well as at the histories (θH�θH) and (θL�θL). At the initial history, the agent has four
actions. At histories (θH�θH) and (θL�θL), an agent has two actions for each realization
of the second-period quality. All strategies where an agent plays NθL in the first period

21Indeed, Theorem 1 also remains true if we adopt a different criterion than the discounting criterion to
evaluate streams of payoff, e.g., the overtaking criterion or the limit of the means criterion (naturally, with
a modification in the definition of dynamic monotonicity to account for these changes).
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are payoff equivalent (there are 16 strategies of that form), and similarly, for all strategies
where an agent plays NθH in the first period. We write NθL and NθH for those strategies.
If the first-period reports do not match, then the game essentially ends. Thus, all strate-
gies where an agent reports θL at the initial history, reports θL at the history (θL�θL)

conditional on second-period quality θL, and reports θL at the history (θL�θL) condi-
tional on second-period quality θH are payoff-equivalent. We write θLθLθL for those
strategies. Similarly, for all other strategies. For instance, θHθHθL represents all strate-
gies where an agent reports θH at the initial history, reports θH at the history (θH�θH)

conditional on second-period quality θL, and reports θL at the history (θH�θH) condi-
tional on second-period quality θH . Each reduced strategic-form game has therefore 10
“strategies.” Tables 6 and 7 represent the two reduced strategic-form games associated
with each first-period quality θL and θH . The buyer is the row player, while the seller is
the column player. In each cell, the top payoff is the buyer’s payoff, while the bottom
payoff is the seller’s payoff. ♦

Throughout the proofs, we use the following observation. For any deception π̃ ∈ �T

and state history θ̃T ∈ �T such that for all i ∈ I and t ∈ T , Lf
i�t(f (π̃t(θ̃

t � θ̃t))� π̃t(θ̃
t � θ̃t)) ⊆

L
fπ̃
i�θ̃t

(f (π̃t(θ̃
t � θ̃t))� θ̃t), there exists a deception π ∈ �T such that for all i ∈ I , t ∈ T and,

importantly, for all (θt� θt) ∈ �t × �, Lf
i�t(f (πt(θ

t� θt))�πt(θ
t� θt)) ⊆ L

fπ
i�θt

(f (πt(θ
t� θt))�

θt). The deception π agrees with π̃ at θ̃T and with π∗ at all other state histories. Thus, if
f is dynamic monotonic, then f (πt(θ

t� θt)) = f (θt) for all t ∈ T and (θt� θt) ∈ �t ×�. As
the converse is also true, we have an equivalent formulation of dynamic monotonicity.

Proof of Remark 1. Note that since f is strictly efficient in the range, for each v ∈
co(V (f )) such that v 
= vf = (v

f
i )i∈I , there exists i∗ ∈ I such that vi∗ < v

f
i∗ . Moreover,

since v = ∑
f ′∈F(f ) α

f ′
vf

′
with

∑
f ′∈F(f ) α

f ′ = 1 and αf ′ ≥ 0 for all f ′ ∈ F(f ), it follows

from strict efficiency of f and the fact that vf is an extreme point of co(V (f )) that αf =
1 whenever v = vf , i.e., v corresponds to the implementation of f . Consequently, for
any deception π such that πt(θ

t� θ∗
t ) = θt 
= θ∗

t , vfπ ∈ co(V (f )) and vfπ 
= vf . Therefore,

for some i∗ we have v
fπ
i∗ < v

f
i∗ and hence (f (θt)� v

f
i∗) ∈ L

f
i∗�t(f (θt)� θt), but (f (θt)� v

f
i∗) /∈

L
fπ
i∗�θt (f (θt)� θ

∗
t ). �

Proof of Remark 2. Suppose that f is Maskin monotonic and assume that there
exists a deception π such that for all t ∈ T , for all θt ∈ �t , for all pairs (θt� θ

∗
t ) with

πt(θ
t� θ∗

t ) = θt , we have L
f
i�t(f (θt)� θt) ⊆ L

fπ
i�θt

(f (θt)� θ
∗
t ) for all i ∈ I . We need to show

that f (θ∗
t ) = f (θt) for all θt ∈ �t , for all t ∈ T . The argument is by induction. Consider

the last period T , any θT , and pairs (θT �θ∗
T ) with πT (θ

T �θ∗
T ) = θT . Since Vi(T) = {0}, the

nestedness of the dynamic lower contour sets, i.e., Lf

i�θT
(f (θT )�θT ) ⊆ L

fπ
i�θT

(f (θT )�θ
∗
T ),

is equivalent to the nestedness of the static lower contour sets, i.e., Li(f (θT )�θT ) ⊆
Li(f (θT )�θ

∗
T ). From Maskin monotonicity, it follows that f (θ∗

T ) = f (θT ), as required. To
complete the induction argument, consider period t < T and suppose that for all τ > t,
for all θτ, for all (θτ�θ∗

τ) ∈ � × �, and for all deceptions π such that πτ(θ
τ�θ∗

τ) = θτ , we
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θLθLθH θLθLθL θLθHθL θLθHθH NθL θHθLθH θHθLθL θHθHθL θHθHθH NθH

θLθLθH
0 0 0 0 δu(−1)+δu(3)

2 u(−1) u(−1) u(−1) u(−1) u(−1)
10 + 12δ 10 + 5δ 10 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθLθL
0 δu(4)

2
δu(4)

2 0 δu(−1)+δu(3)
2 u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 5δ 10 + 10δ 10 + 5δ 10 10 + 11δ 1 1 1 1 1

θLθHθL
0 δu(4)

2
δu(4)+δu(−4)

2
δu(−4)

2
δu(−1)+δu(3)

2 u(−1) u(−1) u(−1) u(−1) u(−1)
10 10 + 5δ 10 + 12δ 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθHθH
0 0 δu(−4)

2
δu(−4)

2
δu(−1)+δu(3)

2 u(−1) u(−1) u(−1) u(−1) u(−1)
10 + 7δ 10 10 + 7δ 10 + 14δ 10 + 11δ 1 1 1 1 1

NθL
u(−4)+ δu(y) u(−4)+ δu(y) u(−4)+ δu(y) u(−4)+ δu(y) (2+δ)u(−4)

2 u(−1) u(−1) u(−1) u(−1) (2+δ)u(10)+δu(14)
2

10 10 10 10 14 + 14δ 1 1 1 1 0

θHθLθH
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) u(−4) u(−4) u(−4) 2u(−4)+δu(−1)+δu(3)

2
1 1 1 1 1 14 + 12δ 14 + 5δ 14 14 + 7δ 14 + 11δ

θHθLθL
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) 2u(−4)+δu(4)

2
2u(−4)+δu(4)

2 u(−4) 2u(−4)+δu(−1)+δu(3)
2

1 1 1 1 1 14 + 5δ 14 + 10δ 14 + 5δ 14 14 + 11δ

θHθHθL
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) 2u(−4)+δu(4)

2
(2+δ)u(−4)+δu(4)

2
(2+δ)u(−4)

2
2u(−4)+δu(−1)+δu(3)

2
1 1 1 1 1 14 14 + 5δ 14 + 12δ 14 + 7δ 14 + 11δ

θHθHθH
u(−1) u(−1) u(−1) u(−1) u(−1) u(−4) u(−4) (2+δ)u(−4)

2
(2+δ)u(−4)

2
2u(−4)+δu(−1)+δu(3)

2
1 1 1 1 1 14 + 7δ 14 14 + 7δ 14 + 14δ 14 + 11δ

NθH
u(−1) u(−1) u(−1) u(−1) (2+δ)u(10)+δu(14)

2 u(−4) u(−4) u(−4) u(−4) (2+δ)u(−4)
2

1 1 1 1 0 10 10 10 10 14 + 14δ

Table 6. The reduced strategic-form game: first-period quality θL.
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θLθLθH θLθLθL θLθHθL θLθHθH NθL θHθLθH θHθLθL θHθHθL θHθHθH NθH

θLθLθH
u(4) u(4) u(4) u(4) 2u(4)+δu(−1)+δu(3)

2 u(−1) u(−1) u(−1) u(−1) u(−1)
10 + 12δ 10 + 5δ 10 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθLθL
u(4) (2+δ)u(4)

2
(2+δ)u(4)

2 u(4) 2u(4)+δu(−1)+δu(3)
2 u(−1) u(−1) u(−1) u(−1) u(−1)

10 + 5δ 10 + 10δ 10 + 5δ 10 10 + 11δ 1 1 1 1 1

θLθHθL
u(4) (2+δ)u(4)

2
(2+δ)u(4)+δu(−4)

2
2u(4)+δu(−4)

2
2u(4)+δu(−1)+δu(3)

2 u(−1) u(−1) u(−1) u(−1) u(−1)
10 10 + 5δ 10 + 12δ 10 + 7δ 10 + 11δ 1 1 1 1 1

θLθHθH
u(4) u(4) 2u(4)+δu(−4)

2
2u(4)+δu(−4)

2
2u(4)+δu(−1)+δu(3)

2 u(−1) u(−1) u(−1) u(−1) u(−1)
10 + 7δ 10 10 + 7δ 10 + 14δ 10 + 11δ 1 1 1 1 1

NθL
δu(y) δu(y) δu(y) δu(y) δu(−4)

2 u(−1) u(−1) u(−1) u(−1) (2+δ)u(14)+δu(10)
2

10 10 10 10 14 + 14δ 1 1 1 1 0

θHθLθH
u(−1) u(−1) u(−1) u(−1) u(−1) 0 0 0 0 δu(−1)+δu(3)

2
1 1 1 1 1 14 + 12δ 14 + 5δ 14 14 + 7δ 14 + 11δ

θHθLθL
u(−1) u(−1) u(−1) u(−1) u(−1) 0 δu(4)

2
δu(4)

2 0 δu(−1)+δu(3)
2

1 1 1 1 1 14 + 5δ 14 + 10δ 14 + 5δ 14 14 + 11δ

θHθHθL
u(−1) u(−1) u(−1) u(−1) u(−1) 0 δu(4)

2
δu(−4)+δu(4)

2
δu(−4)

2
δu(−1)+δu(3)

2
1 1 1 1 1 14 14 + 5δ 14 + 12δ 14 + 7δ 14 + 11δ

θHθHθH
u(−1) u(−1) u(−1) u(−1) u(−1) 0 0 δu(−4)

2
δu(−4)

2
δu(−1)+δu(3)

2
1 1 1 1 1 14 + 7δ 14 14 + 7δ 14 + 14δ 14 + 11δ

NθH
u(−1) u(−1) u(−1) u(−1) (2+δ)u(14)+δu(10)

2 0 0 0 0 δu(−4)
2

1 1 1 1 0 10 10 10 10 14 + 14δ

Table 7. The reduced strategic-form game: first-period quality θH .
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have that f (θ∗
τ) = f (θτ). It follows that in period t the continuation payoff vfπi (θt� θt) is

equal to v
f
i (t) for all agents i, for all (θt� θt) and, thus, Lfπ

i�θt
(f (θt)� θ

∗
t ) =L

f
i�t(f (θt)� θ

∗
t ) for

all (θt� θt� θ∗
t ). As a result, Lf

i�t(f (θt)� θt) ⊆L
fπ
i�θt

(f (θt)� θ
∗
t ) is equivalent to L

f
i�t(f (θt)� θt) ⊆

L
f
i�t(f (θt)� θ

∗
t ). In turn, this is equivalent to the nestedness of the static lower contour

sets, i.e., Li(f (θt)� θt) ⊆ Li(f (θt)� θ
∗
t ). Maskin monotonicity then implies f (θ∗

t ) = f (θt).
This concludes the proof. �

Proof of Remark 3. Assume to the contrary that f is dynamic monotonic but not
weakly efficient in the range; that is, there exists ε > 0 and a payoff profile (vi)i∈I ∈
co(V (f )) such that vi > v

f
i + 2ε for all i ∈ I . Using a standard argument about convexi-

fying the set of payoffs without public randomization (e.g., see Lemma 3.7.2 in Mailath
and Samuelson 2006), it follows that there exists δH2 such that for all δ ∈ (δH2�1) there
exists an infinite sequence of social choice functions {f1� f2� � � �} with ft ∈ F(f ) for all in-
tegers t (i.e., the range of ft is a subset of the range of f ), and (1−δ)

∑∞
τ=t δ

τ−tv
fτ
i > vi−ε,

for all i ∈ I , for all t. Since ft ∈ F(f ), there exist mappings π ′
t : � → � such that

f ◦ π′
t = ft . Consider the deception π such that πt(θ

t� θ∗
t ) = π′

t(θ
∗
t ) for all θ∗

t , for all θt ,

for all t. It follows that vfπi (θt� θ∗
t ) = (1 − δ)

∑∞
τ=t+1 δ

τ−t−1v
fτ
i > vi − ε > v

f
i + ε for all i.

Let ρ = maxi∈I�θ�θ∗∈� |ui(f (θ)�θ)−ui(f (θ)�θ
∗)|, and let δH = max(ρ/(ρ+ ε)�δH2). Then,

for δ ∈ (δH�1), for all i, for all pairs (θt� θ
∗
t ) with πt(θ

t� θ∗
t ) = θt , for all θt ∈ �t , for all

t ∈ T , it is (1 − δ)ui(f (θt)� θ
∗
t )+ δv

fπ
i (θt� θ∗

t ) ≥ (1 − δ)ui(f (θt)� θt)+ δv
f
i or, equivalently,

L
f
i�t(f (θt)� θt) ⊆L

fπ
i�θt

(f (θt)� θ
∗
t ). Dynamic monotonicity then implies that f ◦π ′

t = ft = f

for all t, contradicting the assumed weak inefficiency of f . �

Proof of Remark 4. Assume f is Maskin monotonic and efficient in the range, and
suppose that there exists a deception π such that for all t ∈ T , for all θt ∈ �t , for all
pairs (θt� θ

∗
t ) with πt(θ

t� θ∗
t ) = θt , we have L

f
i�t(f (θt)� θt) ⊆ L

fπ
i�θt

(f (θt)� θ
∗
t ) for all i ∈ I .

Recall that v
fπ
i (θt� θt) is the (normalized) expected discounted continuation payoff of

agent i from following the deception π from the history induced by π and (θt� θt).

Thus, v
fπ
i (θt� θt) is an element of the convex hull of V (f ), the set of payoff profiles

of social choice functions with a range contained in the range of f . First, suppose

that (vfπi (θt� θt))i∈I 
= (v
f
i )i∈I . Since f is efficient in the range, it follows that there ex-

ists an agent i∗ such that v
fπ
i∗ (θ

t� θt) < v
f
i∗ . Consequently, we have that (f (θt)� v

f
i∗) ∈

L
f
i∗�t(f (θt)� θt) (by definition) and (f (θt)� v

f
i∗) /∈ L

fπ
i∗�θt (f (θt)� θ

∗
t ), a contradiction. So it

must be that vfπi (θt� θt) = v
f
i for all i ∈ I . It then immediately follows that the nested-

ness of the dynamic lower contour sets (i.e., Lf
i�t(f (θt)� θt) ⊆L

fπ
i�θt

(f (θt)� θ
∗
t )) implies the

nestedness of the static lower contour sets (i.e., Li(f (θt)� θt) ⊆ Li(f (θt)� θ
∗
t )). Maskin

monotonicity then implies that f (θ∗
t ) = f (θt). This shows that f (πt(θ

t� ·)) = f for all
θt ∈�t , for all t ∈ T , and hence f must be dynamic monotonic. �

Proof of Remark 6. By contradiction, suppose that f is dynamic monotonic over T

periods, but not over T +1 periods. Since f is not dynamic monotonic over T +1 periods,
there exist a profile of states θT+1 ∈ �T+1 and a deception π ∈ �T+1 with f (πt(θ

t� θt)) 
=
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f (θt) for at least one t ∈ {1� � � � �T + 1}, while the dynamic lower contour sets are nested,
i.e., for all i ∈ I , for all t ∈ T ,

L
f
i�t

(
f
(
πt(θ

t� θt)
)
�πt(θ

t� θt)
) ⊆ L

fπ
i�θt

(
f
(
πt(θ

t� θt)
)
� θt

)
� (2)

We first argue that f (πt(θ
t� θt)) = f (θt) for all t ∈ {2� � � � �T + 1}. Fix the first-period

state θ1 in the profile θT+1 and consider any deception π∗∗ ∈ �T such that π∗∗
t (θt� θt) =

πt+1((θ1� θ
t)� θt) for all t ∈ {1� � � � �T }. In words, π∗∗ mirrors the last T periods of π, given

that the first-period state was θ1.
By (2) and βt�T = βt+1�T+1, for all i ∈ I and t ∈ {1� � � � �T },

L
f
i�t

(
f
(
π∗∗
t (θt� θt)

)
�π∗∗

t (θt� θt)
) ⊆L

fπ∗∗
i�θt

(
f
(
π∗∗
t (θt� θt)

)
� θt

)
�

Since f is dynamic monotonic over T periods, this implies that f (π∗∗
t (θt� θt)) = f (θt) for

all t ∈ {1� � � � �T } or, equivalently, f (πt(θ
t� θt)) = f (θt) for all t ∈ {2� � � � �T + 1}. It follows

that vfπi ((θt� θt)) = v
fπ∗∗
i ((θt� θt)) = v

f
i (t) for all t ≥ 1.

Therefore, we must have f (π1(θ1)) 
= f (θ1). We now argue that this cannot be the
case either. Consider any deception π◦ such that π◦

t (θ
t� θt) = πt(θ

t� θt) for all (θt� θt),
that is, π◦ coincides with the first T periods of π.

Since f is dynamic monotonic over T periods (and the fact that f (π◦
1(θ1)) 
= f (θ1)),

there exist i ∈ I , t ∈ {1� � � � �T }, and (x� vi) such that

(1 −βt�T )ui
(
f
(
π◦
t (θ

t� θt)
)
�π◦

t (θ
t� θt)

) +βt�T v
f
i (t) ≥ (1 −βt�T )ui

(
x�π◦

t (θ
t� θt)

) +βt�T vi

and

(1 −βt�T )ui
(
f
(
π◦
t (θ

t� θt)
)
� θt

) +βt�T v
f
i (t) < (1 −βt�T )ui(x�θt)+βt�T vi�

Using the definition of π◦, this is equivalent to (remember that βt�T+1 ∈ (0�1))

(1 −βt�T+1)
[
ui

(
f
(
πt(θ

t� θt)
)
�πt(θ

t� θt)
) − ui

(
x�πt(θ

t� θt)
)]

≥ βt�T

1 −βt�T
(1 −βt�T+1)

[
vi − v

f
i (t)

]
> (1 −βt�T+1)

[
ui

(
f
(
πt(θ

t� θt)
)
� θt

) − ui(x�θt)
]
�

Let v̂i be given by

βt�T

1 −βt�T

1 −βt�T+1

βt�T+1
vi +

(
1 − βt�T

1 −βt�T

1 −βt�T+1

βt�T+1

)
v
f
i (t)�

Since βt�T ≤ βt�T+1, we have that v̂i ∈ [vi� vi]. It follows that there exists (x� v̂i) ∈X ×Vi(t)

such that

(1 −βt�T+1)ui
(
f
(
πt(θ

t� θt)
)
�πt(θ

t� θt)
) +βt�T+1v

f
i (t)

≥ (1 −βt�T+1)ui
(
x�πt(θ

t� θt)
) +βt�T+1v̂i
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and

(1 −βt�T+1)ui
(
f
(
πt(θ

t� θt)
)
� θt

) +βt�T+1v
f
i (t) < (1 −βt�T+1)ui(x�θt)+βt�T+1v̂i�

This is equivalent to L
f
i�t(f (πt(θ

t� θt))�πt(θ
t� θt)) � L

fπ
i�θt

(f (πt(θ
t� θt))� θt), a contradic-

tion with (2). Therefore, f (π1(θ1)) = f (θ1), as required. �

Proof of Theorem 1. Suppose that f is repeatedly implementable by the dynamic
mechanism regime r. Fix an equilibrium s. Consider a history ht and a mechanism
Gt = 〈MGt �gt〉 having positive probability of occurring on the equilibrium path at pe-
riod t; that is, such that q(ht; s) > 0 and r(Gt;ht) > 0. Since the dynamic regime r im-
plements f , the profile of actions s(ht�Gt�θt) at period t must satisfy gt(s(h

t�Gt�θt)) =
f (θt) for each θt ∈ �, and the continuation payoff must be v

f
i (t). Let Qi(h

t�Gt�θt; s)
be the set of current alternative and continuation payoff pairs that agent i is able
to generate by any deviation starting at t, given that all other agents follow s. For-
mally, (x� vi) ∈ X × Vi(t) belongs to Qi(h

t�Gt�θt; s) if there exists mi ∈ MGt
i such that

x = g(mi� s−i(h
t�Gt�θt)) and there exists vi ∈ Vi(t) that corresponds to i’s expected dis-

counted continuation payoff when (starting at t, in state θt , after history ht ) agent i fol-
lows some continuation strategy (which prescribes sending message mi at t), while all
other agents continue to follow s−i.

Since s is an equilibrium, for each i ∈ I , for each θt ∈�, we must have that

(1 −βt�T )ui
(
f (θt)� θt

) +βt�T v
f
i (t) ≥ (1 −βt�T )ui(x�θt)+βt�T vi

for each (x� vi) ∈ Qi(h
t�Gt�θt; s). Consequently, it must be that Qi(h

t�Gt�θt; s) ⊆
L
f
i�t(f (θt)� θt) for all ht�θt , and Gt such that q(ht; s) > 0 and r(Gt;ht) > 0.

Now consider a deception π such that for all t ∈ T , for all θt ∈�t , for all pairs (θt� θ∗
t )

with πt(θ
t� θ∗

t ) = θt , we have L
f
i�t(f (θt)� θt) ⊆ L

fπ
i�θt

(f (θt)� θ
∗
t ) for all i ∈ I . In the remain-

der of the proof, we will show that there exists an equilibrium s′ that implements the
social choice function f (πt(θ

t� ·)) at each period t for each θt . Since the regime r repeat-
edly implements f , it must be that f (πt(θ

t� ·)) = f for all θt ∈ �t , for all t ∈ T . Hence, we
may conclude that f is dynamic monotonic and the theorem holds.

We now construct the strategy profile s′. First, consider the equilibrium path. Let
h1 = h1

π = {∅} and for all θ1, for all G1, for all i, define

s′i(h
1�G1� θ1) = si

(
h1
π�G1�π1(θ1)

)
�

Then assume that the strategy profile s′ and the histories hτ and hτ
π have been defined

up to period τ = t. Let ht+1 = (ht�Gt�θt� s
′(ht�Gt�θt)), with ht = (ht

D�θ
t), be a period

t + 1 history corresponding to the history of realized states θt . Associate the history ht+1

with ht+1
π = (ht

π�Gt�πt(θ
t� θt)� s(h

t
π�Gt�πt(θ

t� θt)), and for all θt+1, for all Gt+1, for all i,
define

s′i(h
t+1�Gt+1� θt+1) = si

(
ht+1
π �Gt+1�πt+1

(
(θt� θt)� θt+1

))
�
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This concludes the definition of s′ on the equilibrium path. Note that it prescribes that
agents behave as s would prescribe if the history of realized states were the one de-
scribed by the deception π instead of the true history.

We now define s′ when agent i unilaterally deviates from the equilibrium path
at period t, history ht = (ht

D�θ
t), and state θt . The history induced by deviating to

mi�t 
= s′i(h
t�Gt�θt) is ht+1|mi�t = (ht�Gt�θt� (mi�t� s

′
−i(h

t�Gt�θt))). Associate ht+1|mi�t

with ht+1
π |mi�t = (ht

π�Gt�πt(θ
t� θt)� (mi�t� s−i(h

t
π�Gt�πt(θ

t� θt)))). For all θt+1, for all Gt+1,
for all i, define

s′i(h
t+1|mi�t �Gt+1� θt+1) = si(h

t+1
π |mi�t �Gt+1� θt+1)�

Decompose history ht+τ into the history up to t + 1, ht+1, and the history after t +
1, ht+1�t+τ, and write ht+τ = (ht+1�ht+1�t+τ). For all τ ≥ 2, for all histories ht+τ =
(ht+1|mi�t � h

t+1�t+τ), define

s′i
(
(ht+1|mi�t � h

t+1�t+τ)�Gt+τ� θt+τ
) = si

(
(ht+1

π |mi�t � h
t+1�t+τ)�Gt+τ� θt+τ

)
for all θt+τ, for all Gt+τ, for all i. Finally, assume that s′ agrees with s at all other histories.
Note that s′ prescribes that following the deviation by agent i, starting from period t + 1,
agents revert to the original equilibrium strategy profile s.

By construction of s′, for any t, any θt , and any θ∗
t , the expected payoff of agent i at

state θ∗
t from period t onward is

(1 −βt�T )ui
(
f
(
πt(θ

t� θ∗
t )

)
� θ∗

t

) +βt�T v
fπ
i (θt� θ∗

t )�

In addition, if agent i deviates from s′ at history ((ht
D�θ

t)�Gt�θ
∗
t ) by announcing mi�t ,

the alternative implemented is x satisfying

x= g
(
mi�t� s

′
−i

(
(ht

D�θ
t)�Gt�θ

∗
t

)) = g(mi�t� s−i

(
ht
π�Gt�πt(θ

t� θ∗
t )

)
�

and i’s continuation payoff vi must satisfy (x� vi) ∈ Qi(h
t
π�Gt�θt; s), where θt =

πt(θ
t� θ∗

t ). Thus, if agent i has a profitable deviation, there exist an alternative x and
a continuation payoff vi such that (x� vi) ∈ Qi(h

t
π�Gt�θt; s) and

(1 −βt�T )ui(x�θ
∗
t )+βt�T vi > (1 −βt�T )ui

(
f
(
πt(θ

t� θ∗
t )

)
� θ∗

t

) +βt�T v
fπ
i (θt� θ∗

t )�

or, since f (πt(θ
t� θ∗

t )) = f (θt), (x� vi) /∈L
fπ
i�θt

(f (θt)� θ
∗
t ).

By construction, the t-period deviation by i is feasible under strategy profile s when

the state is θt = πt(θ
t� θ∗

t ) and the history is ht
π . Since, by assumption, Lf

i�t(f (θt)� θt) ⊆
L
fπ
i�θt

(f (θt)� θ
∗
t ), it must be that (x� vi) /∈L

f
i�t(f (θt)� θt) and hence the deviation from s at t

is profitable. This contradicts the assumption that s is an equilibrium. Hence, it cannot
be (x� vi) ∈ Qi(h

t
π�Gt�θt; s) and (x� vi) /∈ L

fπ
i�θt

(f (θt)� θ
∗
t ); it must be Qi(h

t
π�Gt�θt; s) ⊆

L
fπ
i�θt

(f (θt)� θ
∗
t ). It follows that s′ is an equilibrium (no agent has a profitable deviation

at any point in time). Since the mechanism regime r repeatedly implements f , it must
therefore be that f (πt(θ

t� ·)) = f for all θt ∈ �t , for all t ∈ T . This concludes the proof of
the necessity of dynamic monotonicity. �
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Proof of Theorem 2. Assume that the social choice function f is dynamic monotonic
and satisfies no-veto power. We show that f is repeatedly implementable.

Step 1: Static mechanisms. We present several static mechanisms.
♦ The period t canonical mechanism, G∗

t = 〈M∗
t � g

∗
t 〉. Let N be the set of nonnegative

integers. For each i ∈ I , the message space of agent i is M∗
t�i = � × X × Vi(t) × N, with

mt�i = (θt�i� xt�i� vt�i� nt�i) a generic element. The allocation rule g∗
t is defined as follows:

Rule 1�1. If mt�i = (θt� f (θt)� v
f
i (t)�0) for each i ∈ I , then g∗

t (mt�1� � � � �mt�I) = f (θt).

Rule 1�2. If there exists j such that mt�i = (θt� f (θt)� v
f
i (t)�0) for each i ∈ I \ {j}

and mt�j = (θt�j� xt�j� vt�j� nt�j) 
= (θt� f (θt)� v
f
j (t)�0), then g∗

t (mt�1� � � � �mt�I) = xt�j if

(xt�j� vt�j) ∈L
f
j�t(f (θt)� θt), and g∗

t (mt�1� � � � �mt�I)= f (θt) otherwise.
Rule 1�3. If neither Rule 1�1 nor Rule 1�2 applies, then g∗

t (mt�1� � � � �mt�I) = xt�i∗ with
i∗ = min{i ∈ I : nt�i ≥ nt�j for all j ∈ I}.

♦ Agent i’ s dictatorship, Di = 〈MDi�gDi〉. The agents’ message spaces are M
Di
i = X

and M
Di
j = {∅} for j ∈ I \ {i}. The allocation rule is gDi(mi�m−i) =mi.

♦ The “punishment” mechanism, Pi = 〈MPi�gPi〉. The message space is M
Pi
j = X for

all j ∈ I . If for all j ∈ I∗ with |I∗| ≥ n−1, mj = x, then the allocation rule is gPi((mj)j∈I) =
x; otherwise, gPi((mj)j∈I)= mi+1 (mod I).

Step 2: The dynamic mechanism regime r. We define the transition probability
r(Gt�h

t
D) that, after the designer history ht

D, the mechanism in period t is Gt .
Period 1. At the initial history, the mechanism is G∗

1; that is, r(G∗
1;∅) = 1.

Period t.
(A) Suppose that the history at period t is ht

D = (ht−1
D �G∗

t−1� (mt−1�i)i∈I) (i.e., the
mechanism was G∗

t−1 in period t − 1). The transition to period t is as follows:

– If mt−1�i = (θt−1� f (θt−1)� v
f
i (t − 1)�0) for each i ∈ I and some θt−1 ∈ �, then

r(G∗
t ;ht

D)= 1. In words, if Rule 1�1 of G∗
t−1 applied in period t − 1, then in period t

the mechanism is G∗
t with probability 1.

– If there exists j such that mt−1�i = (θt−1� f (θt−1)� v
f
i (t−1)�0) for each i ∈ I \ {j} and

mt−1�j = (θt−1�j� xt−1�j� vt−1�j� nt−1�j) 
= (θt−1� f (θt−1)� v
f
j (t−1)�0), then r(Pj;ht

D) =
(1 − λ

(t)
j ) and r(Dj;ht

D) = λ
(t)
j . In words, if Rule 1�2 of G∗

t−1 applied in period t − 1
with j as the odd man out, then the mechanism in period t is the “punishment”
mechanism Pj with probability (1 − λ

(t)
j ) and the dictatorial mechanism Dj with

probability λ(t)j (to be defined later). As we shall see in (B) and (C), once either Pj

or Dj is selected at t, it is adopted in all future periods.

– If any other profile of messages is played in period t−1, then r(Di∗;ht
D)= 1; that is,

the period t mechanism is Di∗ with i∗ the lowest indexed agent having announced
the highest integer in period t − 1.

(B) If the designer history at period t is ht
D = (ht−1

D �Dj� (mt−1�i)i∈I) (i.e., the mecha-
nism at period t − 1 was Dj), then r(Dj;ht

D) = 1.
(C) If the designer history at period t is ht

D = (ht−1
D �Pj� (mt−1�i)i∈I) (i.e., the mecha-

nism at period t − 1 was Pj), then r(Pj;ht
D) = 1.
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Step 3: Definition of λ(t)j , t ∈ T \ {1}. We only need to define λ(t)j when Rule 1�2 of G∗
t−1

applied at t − 1 and j was the odd man out. Let (xt−1�j� vt−1�j) be the pair of alternative
and continuation payoff announced by j in period t − 1. Recall that vj and vj are the
lowest and highest expected payoffs agent j can obtain. If vj = vj , we may choose any

λ(t)j ∈ [0�1]. If vj > vj , define λ(t)j ∈ [0�1] as the unique solution of

vt−1�j = λ(t)j vj + (1 − λ(t)j )vj

if (xt−1�j� vt−1�j) ∈L
f
j�t(f (θt−1)�θt−1), and otherwise as the unique solution of

v
f
j = λ(t)j vj + (1 − λ(t)j )vj�

Step 4: Existence of an equilibrium. There exists an equilibrium sE that repeatedly
implements f .

For each agent i, the strategy sEi is defined as follows:

4.1. For all θ1 ∈�, sEi (∅�G∗
1� θ1) = (θ1� f (θ1)� v

f
i (1)�0).

4.2. For all θt ∈ �, if ht is such that for all τ < t, (i) Gτ = G∗
τ and (ii) mτ = (θτ� f (θτ)�

v
f
i (τ)�0)i∈I for some θτ ∈�, then sEi (h

t�G∗
t � θt)= (θt� f (θt)� v

f
i (t)�0).

4.3. For all ht ∈ H, all θt ∈ �, and all i ∈ I , sEi (h
t�Pj� θt) = xθtj , where xθtj ∈

arg minx∈X uj(x�θt).

4.4. For all ht ∈ H and all θt ∈�, sEi (h
t�Dj�θt)= ∅ if i 
= j, and sEj (h

t�Dj�θt)= xθtj with

xθtj ∈ arg maxx∈X uj(x�θt).

According to sEi , in the first period, each agent i announces (θ1� f (θ1)� v
f
i (1)�0)

whenever θ1 is the true state. In period t > 1, there are three cases. First, if the
game being played is G∗

t and all agents have made “unanimous” announcements

(θτ� f (θτ)� v
f
i (τ)�0) in all past periods τ < t, then agent i announces (θt� f (θt)� v

f
i (t)�0)

whenever θt is the true state in period t. Second, if the game being played is Pj , then all
agents announce an alternative that “min-max” agent j. Third, if the game being played
is Dj , then agent j chooses an alternative that maximizes his period t payoff.

Under sE , agent j’s expected payoff at period t when the state is θt is

(1 −βt�T )uj
(
f (θt)� θt

) +βt�T v
f
j (t)�

If agent j deviates and announces (θt�j� xt�j� vt�j� nt�j) 
= (θt� f (θt)� v
f
j (t)�0), the high-

est possible payoff following the deviation is

min
{
(1 −βt�T )uj(xt�j� θt)+βt�T vt�j� (1 −βt�T )uj

(
f (θt)� θt

) +βt�T v
f
j (t)

}
�

so that agent j has no profitable deviation. Note that agent j obtains a continuation
payoff of vt�j if, following the deviation, he announces xτ�j ∈ arg maxx∈X ui(x�θτ) for all
τ > t, for all θτ ∈�, whenever he is dictatorial.



Theoretical Economics 12 (2017) Repeated Nash implementation 277

Step 5: No undesirable equilibria. There are no undesirable equilibria.
Let s be any equilibrium and consider any history ht with q(ht; s) > 0. We want to

show that (i) g(s(ht�G∗
t � θt)) = f (θt) for all θt ∈ � if r(G∗

t ;ht) > 0, (ii) g(s(ht�Di�θt)) =
f (θt) for all θt ∈ � if r(Di;ht) > 0, and (iii) g(s(ht�Pi� θt)) = f (θt) for all θt ∈ � if
r(Pi;ht) > 0.

Statements (ii) and (iii) follow from no-veto power. If Gi ∈ {Di�Pi} is adopted in pe-
riod t with positive probability, then there was a last time t ′ < t when G∗

t ′ was played and
either Rule 1�2 with agent i the odd man out or Rule 1�3 with i the dictator, applied. Ev-
ery agent j other than agent i could have deviated and become the dictator at t ′ and in
all future periods. For such a deviation not to be profitable it must be the case that the
alternative implemented at t and state θt is x ∈ maxθtj X for all j 
= i. No-veto power then

implies x= f (θt), as statements (ii) and (iii) claim.22

Now consider statement (i). Assume that r(G∗
t ;ht) > 0.

Claim 1. If the equilibrium s is such that s(ht�G∗
t � θt) corresponds to Rule 1�2 of

G∗
t , i.e., si(h

t�G∗
t � θt) = (θ̃t� f (θ̃t)� v

f
i (t)�0) for each i ∈ I \ {j} and sj(h

t�G∗
t � θt) =

(θt�j� xt�j� vt�j� nt�j) 
= (θ̃t� f (θ̃t)� v
f
i (t)�0), then the alternative implemented at θt is f (θt).

Proof. Let x be the alternative implemented. Note that since Rule 1�2 of G∗
t applies,

x is either xt�j or f (θ̃t). At the history (ht�G∗
t � θt), any agent i 
= j can deviate and an-

nounce (θt�i� x
θt
i � vt�i� nt�i), with nt�i > nt�j , x

θt
i ∈ maxθti X , and then choose xθτi ∈ maxθτi X

when the mechanism Di is played in period τ and θτ is the realized state, for any τ > t.
Since agent i becomes dictator for all τ ≥ t, the expected payoff starting at t from such a
deviation is (1 − βt�T )ui(x

θt
i � θt) + βt�T vi. For the deviation not to be profitable, it must

be that x ∈ maxθti X for all i ∈ I \ {j}. It follows from no-veto power that x = f (θt).23 �

Claim 2. If the equilibrium s is such that s(ht�G∗
t � θt) corresponds to Rule 1�3 of G∗

t , then
the alternative implemented at θt is f (θt).

22 To prove that (ii) and (iii) hold under Assumption A in place of no-veto power, first consider the case
when Rule 1�2 applies in period t ′. Since each agent j other than i can deviate at t ′ and become dictator in
all subsequent periods τ including t (and also at t ′), for Rule 1�2 at t ′ to be part of an equilibrium it must
be that on the equilibrium path in all periods τ > t ′ and in all states θ, the alternative chosen maximizes
the payoff of each agent j 
= i; that is, it must belong to

⋂
j 
=i maxθj X . Write ϕt′(τ�θ) for the alternative

implemented at τ in state θ if the mechanism is Pi, and write ϕt′(τ�θ) if the mechanism is Di. Clearly, it
must be that ϕt′(τ�θ) ∈ maxθi X for all τ > t ′, for all θ. Let the second and third elements of the message
sent by agent i at t ′ on the equilibrium path be (x� vi(t

′)); at t ′ agent i must not have a profitable devia-
tion (y� vi) ∈ Li�t′(f (θt′)�θt′), where θt′ is the state announced by all agents other than i. The most severe
punishment that the other agents could use when mechanism Pi is played at t > t ′ after a deviation yields
agent i a continuation payoff vi; the highest payoff that agent i could secure himself after a deviation when
mechanism Di is played at t > t ′ is vi . Since λ(vi(t

′)) is the probability that Di is played on the equilib-
rium path and λ(vi) is the probability Di is played after the deviation, for the equilibrium under Rule 1�2
at t ′ to exist it must be that βt′�T ui(x�θ∗

t′) + (1 − βt′�T )[λ(vi(t ′))vϕt′
i + (1 − λ(vi(t

′)))vϕt′
i ] ≥ βt′�T ui(y�θ∗

t′) +
(1 − βt′�T )[λ(vi)vi + (1 − λ(vi))vi] = βt′�T ui(y�θ∗

t′) + (1 − βt′�T )vi for all (y� vi) ∈ Li�t′(f (θt′ � θt′)), where θt′
is the state reported by all agents other than i and θ∗

t′ is the true state at t ′. The result follows from (i) of
Assumption A, since λ(vi(t

′)) 
= 0 implies ϕt′(τ�θ) ∈ ⋂
j maxθj X for all θ ∈ �, τ > t ′.

Second, if Rule 1�3 applies at t ′, the result immediately follows from condition (ii) of Assumption A.
23The proof that Claim 1 holds under Assumption A in place of no-veto power is as in footnote 22.
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The proof is analogous to the proof of Claim 1.

Claim 3. If the equilibrium s is such that si(h
t�G∗

t � θ
∗
t ) = (θt� f (θt)� v

f
i (t)�0) for some

(θ∗
t � θt), for each i ∈ I , then there exists a state history θt and a deception π such that

L
f
i�t(f (θt)� θt) ⊆L

fπ
i�θt

(f (θt)� θ
∗
t ) for all i ∈ I with πt(θ

t� θ∗
t )= θt and dynamic monotonic-

ity implies that the alternative implemented at θ∗
t is f (θt)= f (θ∗

t ).

Proof. Since r(G∗
t ;ht) > 0, it must be r(G∗

t ;ht) = 1 and the mechanism G∗
τ must have

been played in all periods τ < t. Thus, the history ht is uniquely determined by the
strategy s and the history of realized states θt contained in ht . Define πt(θ

t� θ∗
t ) = θt

if si(ht�G∗
t � θ

∗
t ) = (θt� f (θt)� v

f
i (t)�0) for each i ∈ I , and define πt(θ

t� θ∗
t ) = θ∗

t , otherwise.
Now take τ > t and consider any subsequent history hτ of ht (i.e., hτ = (ht�ht�τ) for some
ht�τ) with q(hτ; s) > 0. There are two cases. If r(G∗

τ;hτ) > 0, define πτ as done at t,
using the history of realized states θτ contained in hτ . Alternatively, if r(G∗

τ;hτ) = 0, let
πτ(θ

τ�θτ) = θτ for all θτ, with θτ the history of realized states contained in hτ .24 Note
that the constructed deception corresponds to the truth-telling deception π∗

τ whenever
Rules 1�2 and 1�3 of G∗

τ apply or whenever the mechanism is Pi or Di for some i ∈ I .
From Claims 1 and 2, f is implemented whenever Rule 1�2 or 1�3 of the mechanism G∗

τ

applies for any τ > t. Since f is also implemented whenever the mechanism is Di or
Pi, and recalling that f (πt(θ

t� θ∗
t )) = f (θt), it follows that the expected payoff of agent i

under s when the state is θ∗
t at period t is (1 −βt�T )ui(f (θt)� θ

∗
t )+βt�T v

fπ
i (θt� θ∗

t ).
Now suppose that there exists (i�xt�i� vt�i) ∈ I ×X × Vi(t) such that

(1 −βt�T )ui(xt�i� θt)+βt�T vt�i ≤ (1 −βt�T )ui
(
f (θt)� θt

) +βt�T v
f
i (t)� (3)

(1 −βt�T )ui(xt�i� θ
∗
t )+βt�T vt�i > (1 −βt�T )ui

(
f (θt)� θ

∗
t

) +βt�T v
fπ
i (θt� θ∗

t )� (4)

If agent i deviates at (ht�G∗
t � θ

∗
t ) and announces (θt�i� xt�i� vt�i� nt�i) 
= (θt� f (θt)� v

f
i (t)�0),

then from period t + 1 onward he is dictatorial with probability λ
(t)
i and with prob-

ability (1 − λ
(t)
i ) the mechanism is Pi. Consequently, agent i can guarantee him-

self a continuation payoff of at least vt�i = λ(t)i vi + (1 − λ(t)i )vi, and thus has a prof-
itable deviation. Therefore, for s to be an equilibrium, it must be the case that for all
(i�xt�i� vt�i) ∈ I × X × Vi(t), if (3) holds, then (4) must fail. Equivalently, it must be that

L
f
i�t(f (θt)� θt) ⊆L

fπ
i�θt

(f (θt)� θ
∗
t ). Since πt(θ

t� θ∗
t ; ) = θt , this proves Claim 3.

Since Claims 1–3 are true for any period t, we conclude that s implements f . �

Proof of Theorem 3. We modify the canonical mechanism G∗
t as follows:

Rule 3�1. If mt�i = (θt�xt� vt�0) for all i ∈ {1�2}, then g(m) = f (θt).
Rule 3�2a. If mt�i = (θt�i� xt�i� vt�i�0) and mj�t = (θt�j� xt�j� vt�j�0) 
=mt�i, then g(m) =w.

24To see that the deception is well defined, observe that if there are two histories hτ and ĥτ such that

q(hτ; r� s�p) > 0, q(ĥτ; r� s�p) > 0, r(G∗
τ;hτ) > 0, and r(G∗

τ; ĥτ) = 0, then it must be that the history of real-
ized states θτ contained in hτ is different from the history of realized states θ̂τ contained in ĥτ since hτ is
uniquely determined by s and θτ .
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Rule 3�2b. If mt�i = (θt�i� xt�i� vt�i� nt�i) with nt�i > 0 and mj�t = (θt�j� xt�j� vt�j�0), then

g(m) = xt�i if (xt�i� vt�i) ∈L
f
i�t(f (θt�j)� θt�j) and g(m) =w otherwise.

Rule 3�3. If mt�i = (θt�i� xt�i� vt�i� nt�i) and mj�t = (θt�j� xt�j� vt�j� nt�j) with nt�i > 0 and
nt�j > 0, then g(m) = xt�i∗ with i∗ the agent with the smallest index among the agents
announcing the highest integer.

Let Pw be a mechanism that implements the outcome w, regardless of the messages.
The transition rule of the dynamic mechanism regime is as follows:

– If the messages announced at period t are in Rule 3�1, the next period mechanism
is the canonical mechanism with probability 1.

– If the messages announced at period t are in Rule 3�2a, then the next period mech-
anism is Pw with probability 1.

– If the messages announced at period t are in Rule 3�2b, then the next period mech-
anism is Di (where i is the agent having announced the positive integer) with prob-
ability λ(t)i and Pw with probability 1 − λ(t)i .

– If the messages announced at period t are in Rule 3�3, then the next period mech-
anism is Di∗ with probability 1.

– If the mechanism at period t was Di (resp., Pw), then the next period mechanism
is Di (resp., Pw) with probability 1.

As before, we compute λ(t)i so that (i) the expected continuation payoff is v
f
i (t) if

(xt�i� vt�i) /∈ L
f
i�t(f (θt�j)� θt�j), (ii) the expected continuation payoff is vt�i if (xt�i� vt�i) ∈

L
f
i�t(f (θt�j)� θt�j) and vt�i ≥ vwi = ∑

θ ui(w�θ)p(θ), and (iii) λi�t = 0, otherwise.
To see that f is repeatedly implementable, suppose G∗

t is used at t and make the
following observations:

• There are equilibrium strategies that implement f , with an equilibrium path in

which G∗
t is used and all agents truthfully report (θt� f (θt)� v

f
i (t)�0) when the state

is θt at period t. To see this, suppose that the state is θt = θt�j and agent i deviates

to (θt�i� xt�i� vt�i� nt�i) and either nt�i = 0 or (xt�i� vt�i) /∈ L
f
i�t(f (θt�j)� θt�j). Then the

alternative implemented is w and i’s continuation payoff is vwi . By construction,
this is not a profitable deviation. If i deviates to (θt�i� xt�i� vt�i� nt�i) with nt�i > 0 and

(xt�i� vt�i) ∈ L
f
i�t(f (θt�j)� θt�j), then the alternative adopted is xt�i and the continu-

ation payoff is vt�i; by construction, this is also not a profitable deviation (since j

tells the truth).

• By condition (ii) of Assumption A, any equilibrium with Rule 3�3 applying for some
t must implement f .

• Any equilibrium under Rule 3�2b at t < T or t = T implements f . Let i be the agent
reporting nt�i > 0, let θt be the state reported by j 
= i, and let θ∗

t be the true state
at t.
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Consider t < T . First, if λ(t)i < 1, then with positive probability the outcome in
all future periods is w; agent j can profitably deviate to Rule 3�3 and guarantee
himself a strictly higher continuation payoff. Second, if λ(t)i = 1, then i becomes

a dictator at t ′ > t and selects x(θt ′) ∈ maxθt′i X for all t ′ > t and all θt ′ , thus ob-
taining the continuation payoff vi. Write ϕt(t

′� θ) for the alternative implemented
at state θ in period t ′; we have that ϕt(t

′� θ) ∈ maxθi X for all θ, for all t ′ > t. Ob-
serve that vϕt

i = vi. Let (xi�t � vi(t)) represent the second and third elements of the
message sent by i at t. Agent i must have no profitable deviation, hence it must
be that βt�T ui(xt�i� θ

∗
t ) + (1 − βt�T )vi ≥ βt�T ui(y�θ

∗
t ) + (1 − βt�T )vi for all (y� vi) ∈

Li�t(f (θt)� θt). Agent j can also deviate and become dictator himself from period t.

For such a deviation not to be profitable, first it must be that x(θt ′) ∈ maxθt′j X for
all t ′ > t and all θt ′ (i.e., in all periods after t, the alternative implemented ϕt(τ�θ)

must therefore belong to maxθj X for all τ > t, for all θ); second, it must be that

xt�i ∈ maxθ
∗
t

j X . The result then follows from condition (i) of Assumption A.

Consider t = T ; let the state be θ∗. It must be that xT�i ∈ maxθ
∗

i Li(f (θT�j)� θT�j).
Since agent j may deviate and become dictator at t = T , either the deviation is
profitable or by condition (ii) of Assumption A, xT�i = f (θ∗).

• There are no equilibria under Rule 3�2a. Let vwi (t) = 0 if t = T and vwi (t) = vwi oth-
erwise. Assume that the true state at t is θt = θ∗ and the messages reported are
mt�i = (θt�i� xt�i� vt�i�0) and mt�j = (θt�j� xt�j� vt�j�0). The alternative implemented
is w and the continuation payoff vector is (vw1 � v

w
2 ). Agent i can trigger Rule 3�2b by

announcing (θt�i� f (θt�j)� v
f
i �1). Since f (θt�j) ∈ Li(f (θt�j)� θt�j), it is the case that

(f (θt�j)� v
f
i ) ∈ L

f
i�t(f (θt�j)� θt�j). Thus, the deviation yields agent i a discounted

payoff of (1 −βt�T )ui(f (θt�j)� θ
∗)+βt�T v

f
i (t) > (1 −βt�T )ui(w�θ∗)+βt�T v

w
i (t), and

hence it is profitable.

• It follows from the arguments in the proof of Theorem 2 that if there are equilibria
under Rule 3�1, then the dynamic lower contour sets are nested, as in the original
canonical mechanism, and f is implemented.

�

Definition 4 (Dynamic self-selection). Let I = 2. For all t, all pairs (θt�2� θt�1), and
all θt , there exists a triple (x(θt�2� θt�1)� v1(θt�2� θt�1)� v2(θt�2� θt�1)) such that (x(θt�2� θt�1),

v1(θt�2� θt�1)) ∈L
f
1�t(f (θt�2)�θt�2) and (x(θt�2� θt�1)� v2(θt�2� θt�1)) ∈L

f
2�t(f (θt�1)�θt�1).

Note that self-selection implies dynamic self-selection.

Proposition 1. Let I = 2. If a social choice function f is repeatedly implementable, then
it satisfies dynamic self-selection.

Proof. Suppose that f is repeatedly implementable by the dynamic mechanism
regime r. Fix an equilibrium s. Consider any period t, any history ht , and mecha-
nism 〈MGt �gt〉 having positive probability of occurring on the equilibrium path, that
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is, such that q(ht; s) > 0 and r(Gt;ht) > 0. The profile of actions s(ht�Gt� θ̂t) must satisfy

g(s(ht�Gt� θ̂t)) = f (θ̂t) for each θ̂t ∈ �, and the continuation payoff must be v
f
i (t). This

implies that

(1 −βt�T )u1
(
f (θt�2)�θt�2

) +βt�T v
f
1 (t)

≥ (1 −βt�T )u1
(
g
(
s1(h

t�Gt�θt�1)� s2(h
t�Gt�θt�2)

)
� θt�2

) +βt�T v1(θt�2� θt�1)�

where v1(θt�2� θt�1) is agent 1’s continuation payoff following the deviation, and

(1 −βt�T )u2
(
f (θt�1)�θt�1

) +βt�T v
f
2 (t)

≥ (1 −βt�T )u2
(
g
(
s1(h

t�Gt�θt�1)� s2(h
t�Gt�θt�2)

)
� θt�1

) +βt�T v2(θt�2� θt�1)�

where v2(θt�2� θt�1) is agent 2’s continuation payoff following the deviation. Letting
x(θt�2� θt�1) = g(s1(h

t�Gt�θt�1)� s2(h
t�Gt�θt�2)) completes the proof. �

Proof of Theorem 4. First, assume that there exists a set J of I − 1 agents such
that

⋂
j∈J arg maxx∈X uj(x�θ) 
= ∅ for all θ. By no-veto power, it must be that {f (θ)} =⋂

j∈J arg maxx∈X uj(x�θ) for all θ. (By no-veto power, if there exists {x� y} ⊆⋂
j∈J arg maxx∈X uj(x�θ) for some θ, then f (θ) = x = y, i.e.,

⋂
j∈J arg maxx∈X uj(x�θ)

is a singleton.) The following regime implements f . At t = 1, all agents in J announce
an integer and an alternative (the remaining agent is inactive). The alternative imple-
mented at t = 1 is the one announced by the agent reporting the highest integer (break
ties in favor of the lowest indexed agent). Moreover, the agent reporting the highest in-
teger is dictatorial in all subsequent periods. It is routine to verify that this mechanism
indeed implements f . In particular, by reporting a sufficiently large integer at t = 1, each
agent in J can obtain his highest payoff with arbitrarily large probability. Therefore, it
must be that the alternative implemented at each period is in

⋂
j∈J arg maxx∈X uj(x�θ)

for each θ, i.e., f is implemented.
Second, assume that for every set J of I − 1 agents, there exists θ and (i� j) ∈ J × J

such that arg maxx∈X ui(x�θ) ∩ arg maxx∈X uj(x�θ) = ∅. We make three changes to the
mechanism regime adopted in the proof of Theorem 2.

First, if T < ∞, we replace the canonical mechanism GT for the last period T with
a slightly modified version G∗

T of the static mechanism introduced by Maskin and
Sjöström (2002, p. 274). The mechanism G∗

T is Mi =�×X×N+ ×{α :�→ X; (α(θ)�0) ∈
L
f
i�T (f (θ)�θ)}, where N+ is the set of positive integers. There are three rules:

Rule 4�1. If mj = (θ�x�1� ·) for all j 
= i and mi = (θi�xi�1� ·), then g(m) = f (θ).
Rule 4�2. If mj = (θ�x�1� ·) for all j 
= i and mi = (θi�xi� zi� ·) with zi > 1, then g(m) =

αi(θ).
Rule 4�3. In all other cases, g(m) = xi∗ , where i∗ is the lowest index agent among

those announcing the highest integer.
Second, by no indifference for each agent i there exist θ and ŷi such that

maxx ui(x�θ) > ui(ŷi� θ).25 We use this and modify the dictatorial mechanism Di as

25Since p(θ) > 0 for all θ ∈ �, it follows that
∑

θ maxx ui(x�θ)p(θ) = vi > v̂i := ∑
θ ui(ŷi� θ)p(θ).
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Mi = X × N+, Mj = {∅} for all j 
= i, and g(xi�ni) = (1 − 1/ni)1xi + (1/ni)1ŷi ; that is,
the outcome is ŷi with probability 1/ni and is xi with the complementary probability.

Third, we modify the punishment mechanism Pi as Mi = {∅}, Mj =X ×N+ for all j ∈
I \ {i}, and g(m) = xj∗ , where j∗ is the lowest indexed agent that announced the highest
integer. In all other aspects, the mechanism regime remains the same.

The proof that there exists an equilibrium that repeatedly implements f is essentially
the same as in the proof of Theorem 2; the only small change is that if G∗

T is played in
the last period and the state is θT , then all agents report (θT � f (θT )�1� ·).

To show that there are no undesirable equilibria, begin by noting that there cannot
exist an equilibrium where a dictatorial regime Di is played with positive probability
on the equilibrium path; if there were, then agent i could always increase his expected
payoff by announcing a higher integer, a contradiction. It follows that Rule 4�3 of G∗

t

for all t < T cannot be in the support of any equilibrium. In addition, for Rule 4�2 of
G∗

t , t < T , to be in the support of an equilibrium, it must be that λ(t)i = 0 with agent i
the odd man out, i.e., the mechanism transitions to Pi with probability 1 when Rule 4�2
applies. However, there exists a state θ for which the mechanism Pi has no equilibrium
(since there is a pair of agents with a nonempty message space who disagree on their
most preferred alternatives). It follows that any equilibrium of the game induced by the
regime transitions to Di or Pi with zero probability; that is, it corresponds to Rule 4�1 of
G∗

t for all t < T and thus must be in pure strategies until the last period (if T < ∞). This
implies that if T < ∞, then G∗

T is played with probability 1 on the equilibrium path and
hence the outcome at T must correspond to a (mixed strategy) Nash equilibrium of G∗

T .
As argued by Maskin and Sjöström (2002), in G∗

T an “agent i has nothing to loose
from setting” (i) αi(θ) equal to his favorite outcome in the lower contour set of f (θ)

at θ, (ii) xi ∈ arg maxx∈X ui(x�θ
∗
T ), where θ∗

T is the true state, and (iii) “zi larger than
any integer announced with positive probability by any other agent.” First, this im-
plies that when Rule 4�2 or Rule 4�3 of G∗

T applies at state θ∗
T , then by no-veto power

it must be that the alternative implemented is f (θ∗
T ). Second, it implies that when

Rule 4�1 applies at θ∗
T , it must be that the state reported by I − 1 agents is the same,

denote it by πT (·� θ∗
T ), the alternative implemented is f (πT (·� θ∗

T )), and there is no alter-

native in L
f
i�T (f (πT (·� θ∗

T ))�πT (·� θ∗
T )) that is preferred by agent i to f (πT (·� θ∗

T )); that is,

L
f
i�T (f (πT (·� θ∗

T ))�πT (·� θ∗
T )) ⊆ L

f
i�T (f (πT (·� θ∗

T ))�θ
∗
T ).26

Now consider any equilibrium σ in behavioral strategies. From the above argument,
the mechanism adopted is G∗

t at any t. In addition, at all t < T , histories ht , and states
θt , the mixed action σ(ht�G∗

t � θt) is pure and corresponds to Rule 4�1 of G∗
t . It follows

that we can associate with any state profile θt a unique public history ht
D(θ

t) over mech-
anisms, messages reported, and alternatives implemented. We now define the decep-
tions induced by σ .

For any t < T , for any (θt� θt), we simply define the map πt(θ
t� θt) = θ′

t , where θ′
t

is the common state reported by at least I − 1 agents at the history (ht
D(θ

t)� θt�G∗
t � θt)

under σ . For any (θT �θT ), we define a distribution q(θT �θT ) ∈ �(�) over maps

26Hence, if we assumed Maskin monotonicity, f would also be implemented at T when Rule 4�1 applies,
but dynamic monotonicity does not imply Maskin monotonicity, as shown by Example 1.
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πT (θ
T �θT ) ∈ � such that (i) πT (θ

T �θT ) = θT with probability q(θT �θT )[θT ] given by
the sum of σ(hT

D(θ
T )�θT �G∗

T �θT )[m] over all messages m such that either Rule 4�2 or
4�3 applies or Rule 4�1 applies with θT being the common state reported by at least
I − 1 agents, and (ii) πT (θ

T �θT ) = θ′
T with probability q(θT �θT )[θ′

T ] given by the sum of
σ(hT

D(θ
T )�θT �G∗

T �θT )[m] over all messages m such that Rule 4�1 applies with θ′
T being

the common state reported by at least I − 1 agents, for all θ′
T 
= θT .

We have thus defined a distribution over a set of dynamic deceptions, where decep-
tion πk, k ∈ K, has probability qk. For instance, if πk is such that πk

T (θ
T �θT ) = θT for all

(θT �θT ), the probability qk is ×(θT �θT )
q(θT �θT )[θT ].

The expected payoff of agent i at t < T , when the state is θ∗
t and i selects the

pure strategy si in the support of σi while all other agents follow their behavioral
strategies σ−i (and hence report state πt(θ

t� θ∗
t )), is (1 − βt�T )ui(f (πt(θ

t� θ∗
t ))� θ

∗
t ) +

βt�T
∑

k∈K qkv
f
πk

i (θt� θ∗
t ). Suppose there exists (i�xt�i� vt�i) ∈ I ×X × Vi(t) such that

(1 −βt�T )ui
(
xt�i�πt(θ

t� θ∗
t )

) +βt�T vt�i
(5)

≤ (1 −βt�T )ui
(
f
(
πt(θ

t� θ∗
t )

)
�πt(θ

t� θ∗
t )

) +βt�T v
f
i (t)

(1 −βt�T )ui(xt�i� θ
∗
t )+βt�T vt�i

(6)
> (1 −βt�T )ui

(
f
(
πt(θ

t� θ∗
t )

)
� θ∗

t

) +βt�T

∑
k∈K

qkv
f
πk

i (θt� θ∗
t )�

If agent i deviates at (ht�G∗
t � θ

∗
t ), t < T , and sends the message (θt�i� xt�i� vt�i� nt�i) 
=

(πt(θ
t� θ∗

t )� f (πt(θ
t� θ∗

t ))� v
f
i (t)�0), then from period t + 1 onward he is dictatorial with

probability λ(t)i and with probability (1 − λ(t)i ) the mechanism is Pi. By selecting an
arbitrarily large integer when the mechanism is Di, agent i obtains at least a continu-
ation payoff arbitrarily close to vt�i = λ

(t)
i vi + (1 − λ

(t)
i )vi, and thus has a profitable de-

viation. Hence, for σ to be an equilibrium, it must be that for all (i�xt�i� vt�i) ∈ I × X ×
Vi(t), if (5) holds, then (6) fails; that is, it must be that L

f
i�t(f (πt(θ

t� θ∗
t ))�πt(θ

t� θ∗
t )) ⊆

L
f
πk

i�θt
(f (πt(θ

t� θ∗
t ))� θ

∗
t ) for at least one deception πk, for all t < T . We have already estab-

lished that it must also be L
f
i�T (f (πT (θ

T �θ∗
T ))�πT (θ

T �θ∗
T )) ⊆ L

f
i�T (f (π(θ

T �θ∗
T ))�θ

∗
T ) =

L
f
πk

i�θT
(f (πT (θ

T �θ∗
T ))�θ

∗
T ). Dynamic monotonicity then implies f (πt(θ

t� θ∗
t )) = f (θ∗

t ) for
all t ∈ T . This concludes the proof of the theorem. �
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