
PUBLISHED VERSION  

http://hdl.handle.net/2440/109324 

 

Thomas R. Sullivan, Katherine J. Lee, Philip Ryan and Amy B. Salter 
Multiple imputation for handling missing outcome data when estimating the relative risk 
BMC Medical Research Methodology, 2017; 17(1):134-1-134-10 

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver 
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this 
article, unless otherwise stated. 

Originally published at: 
http://doi.org/10.1186/s12874-017-0414-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERMISSIONS 

http://creativecommons.org/licenses/by/4.0/ 

 

6 November 2017 

 

 

 

http://hdl.handle.net/2440/109324
http://doi.org/10.1186/s12874-017-0414-5
http://creativecommons.org/licenses/by/4.0/


RESEARCH ARTICLE Open Access

Multiple imputation for handling missing
outcome data when estimating the relative
risk
Thomas R. Sullivan1*, Katherine J. Lee2,3, Philip Ryan1 and Amy B. Salter1

Abstract

Background: Multiple imputation is a popular approach to handling missing data in medical research, yet little is
known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary
outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically
estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting
could lead to biased parameter estimates.

Methods: Using simulated data, we evaluated the performance of multiple imputation for handling missing data
prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We
considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced
under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation,
missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic
imputation model for the outcome.

Results: Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates
of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully
conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome
prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the
performance of fully conditional specification.

Conclusions: Both multivariate normal imputation and fully conditional specification produced biased estimates of
the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we
recommend researchers use fully conditional specification rather than multivariate normal imputation and retain
imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not
without its shortcomings, and so further research is needed to identify optimal approaches for relative risk
estimation within the multiple imputation framework.
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Background
The relative risk is a summary measure of effect for binary
outcomes that is often of interest in medical research [1–4].
Unlike the odds ratio, the relative risk is simple to interpret
and collapsible across covariate strata [5]. For rare out-
comes, relative risks may be estimated from logistic regres-
sion models, since the odds ratio approximates the relative
risk in this case [4]. For more common outcomes, the odds
ratio overestimates the relative risk and so alternatives to
logistic regression are required to estimate the relative risk.
A standard approach to estimating the relative risk directly
is to fit a generalized linear model with a binomial error
distribution and a log link, known as the log binomial
model [6, 7]. Since the log link allows predicted probabil-
ities greater than one, convergence problems with this
model are not uncommon, particularly for models contain-
ing continuous covariates or outcomes with high preva-
lence [6, 7]. Several alternative approaches to relative risk
estimation have been proposed to address failed conver-
gence with the log binomial model, with modified Poisson
regression using a log link and a robust error variance [8]
one of the more commonly used methods.
A common feature of epidemiologic investigations is

the occurrence of missing data, which can result in
biased and inefficient parameter estimates if inad-
equately handled during the statistical analysis. Among
the more rigorous approaches to handling missing data,
multiple imputation (MI) [9] has been widely adopted
due to its flexibility and availability in statistical software
packages [10]. MI involves fitting a statistical model to
the observed data to estimate values for the missing
data. To incorporate missing data uncertainty, multiple
values are imputed for each missing observation, produ-
cing multiple complete datasets. Following analysis, par-
ameter estimates from the multiple datasets are
appropriately combined to give a single MI estimate.
Standard implementations of MI assume that data are
missing at random (MAR), which occurs when the prob-
ability of missing data depends only on observed data
[11]. Provided this assumption is met and statistical
models used for imputation and analysis are correctly
specified, MI produces consistent and asymptotically ef-
ficient parameter estimates [9].
For arbitrary patterns of missing data (i.e. missing data

occurring in any variable, in any pattern across variables),
the two standard model-based methods of MI are fully
conditional specification (FCS) [12–14], also known as
chained equations, and multivariate normal imputation
(MVNI) [15]. FCS involves specifying a series of univariate
imputation models, one for each variable with missing
data. Standard software uses logistic regression to impute
incomplete binary outcomes, which assumes a linear rela-
tionship between the log odds of the risk and other vari-
ables in the imputation model. Incomplete covariates can

similarly be imputed using appropriate univariate models
(e.g. linear regression for continuous covariates). In con-
trast, MVNI assumes that all variables in the imputation
model follow a multivariate normal distribution. For in-
complete binary outcomes, an additional rounding step is
also required following MVNI to convert continuous im-
puted values to binary values suitable for analysis [16]. Al-
though FCS and MVNI have been evaluated in settings
where the goal is to estimate the odds ratio using logistic
regression [12, 16, 17], little is known about their perform-
ance when the aim is to estimate the relative risk. Import-
antly, it is unclear whether imputing outcomes using
logistic regression in FCS or under a multivariate normal
assumption in MVNI could lead to biased or inefficient es-
timation when the analysis involves a log binomial model.
A popular alternative to the standard implementation

of MI for handling missing data in both outcome and
exposure variables is the “multiple imputation, then de-
letion” approach (MID), where observations with im-
puted outcomes are excluded from the analysis [18].
Although MID is not advisable when the imputation
model contains auxiliary variables for the outcome (i.e.
variables that are not part of the analysis but which help
to predict missing outcome values) [19], the approach
can offer small efficiency gains over standard MI when
imputation and analysis models are the same. Of rele-
vance to the estimation of relative risks, it has been ar-
gued that removing imputed outcomes prior to analysis
can help to minimize the bias introduced by a misspeci-
fied imputation model for the outcome [18]. Should the
imputation of incomplete binary outcomes using FCS or
MVNI lead to biased estimation of the relative risk, this
claimed strength of MID could lessen this bias.
This article aims to (i) evaluate the performance of

FCS and MVNI for handling missing outcome data
when estimating the relative risk, and (ii) investigate
whether deleting imputed outcomes prior to analysis im-
proves the performance of FCS and MVNI in this set-
ting. The rest of the article is set out as follows. In the
next section, we describe the methods of FCS and MVNI
in more detail, drawing attention to potential limitations.
This is followed by an outline of the simulation methods
used to address the article aims, and a summary of the
simulation results. Finally, we conclude the article by
discussing key findings and providing recommendations
for practice.

Methods
Fully conditional specification
FCS involves specifying a series of univariate imputation
models, one for each variable with missing data [12–14],
with models tailored according to the distribution of the
variable being imputed. For each variable with missing
data, the FCS algorithm begins by replacing missing
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values with randomly selected observed values or the
mean value for the same variable. Imputations are then
generated by estimating each univariate model in turn,
restricted to participants with observed values for the
variable being considered and using imputed values for
other variables; at each stage missing values are replaced
by draws from their posterior predictive distribution.
This process continues until all incomplete variables
have been imputed and is repeated several times in order
to stabilise results, leading to the generation of a single
imputed dataset. Additional imputed datasets are ob-
tained by independently repeating this process.
Despite its flexibility, FCS is not without limitations.

One concern with the approach is the possibility of spe-
cifying univariate imputation models where the condi-
tional distributions implied do not correspond to a valid
joint distribution. A potential consequence of this is that
results could vary according to the ordering of univariate
imputation models within the FCS procedure. Fortu-
nately this issue appears to have little impact on results
in practice [12, 13, 17, 20]. Another drawback of FCS is
that it can be time consuming to implement in settings
containing a large number of incomplete variables, since
univariate imputation models need to be specified for
each incomplete variable in the imputation model.

Multivariate normal imputation
MVNI is a joint modelling approach to imputation where
all variables in the imputation model are assumed to fol-
low a multivariate normal distribution. First implemented
by Schafer [15], MVNI uses a Markov chain Monte Carlo
algorithm (known as data augmentation) for imputation.
Initially, missing values are imputed based on assumed
starting parameter values for the multivariate normal dis-
tribution. These are typically obtained from available data
using the expectation-maximisation algorithm. Next, up-
dated parameter values for the multivariate normal distri-
bution are drawn from their posterior distribution based
on the observed and imputed data. This iterative process
of imputing missing values and drawing updated param-
eter values continues until these values converge to a sta-
tionary distribution [15, 21]. Following these “burn-in”
iterations, a set of imputed values is taken. In order to re-
duce dependence between imputations, additional itera-
tions are performed before the next set of imputed values
is obtained.
Due to its strong theoretical underpinnings, MVNI is

an appealing method when multivariate normality
holds, but such an assumption is not always realistic,
particularly when the imputation model contains binary
variables. Although several authors have reported good
performance with MVNI for binary variables [15, 16,
20, 22], it remains difficult to make global statements
about the robustness of this approach to violations of

multivariate normality, whether in the specific case of
binary variables or more generally.

Simulation study
The performance of FCS and MVNI for handling miss-
ing outcome data when estimating the relative risk was
evaluated using data simulation. In order to attribute
any deficiencies in performance to the method of MI, ra-
ther than getting caught up in complexities of the data,
we focused on relatively simple simulation scenarios. In
each simulation scenario, 2000 datasets of size n = 1000
were generated from the log binomial model logP(Y = 1)
= β0 + β1X1 + β2X2, where X1 and X2 were binary or nor-
mally distributed exposure variables and Y was the bin-
ary outcome. A relatively large sample size was chosen
to avoid zero cells in cross-tabulations involving the out-
come. Following generation of complete datasets, values
in X2 and Y were set to missing according to a specified
MAR mechanism to produce an arbitrary pattern of
missing data in these two variables. Missing values were
then multiply imputed using FCS or MVNI with m = 20
imputations. For FCS, missing values in Y were imputed
using a logistic regression model, while imputations for
binary or normally distributed X2 were generated from a
logistic or linear regression model respectively. A total
of 20 cycles were used for each imputation, with the out-
come imputed last. For MVNI, missing values were im-
puted using a Markov chain Monte Carlo algorithm
with a burn-in of 200 iterations. Following imputation
with MVNI, imputed values in the outcome were rounded
to binary values using adaptive rounding, which has been
recommended over alternative rounding techniques [16].
Finally, complete datasets either retaining or deleting im-
puted outcomes were analyzed using log binomial models
(or modified Poisson regression as appropriate), with par-
ameter estimates for β1 and β2 combined across datasets
using Rubin’s rules [9]. Since the outcome Y was gener-
ated under the analysis model, any deficiencies in per-
formance could be attributed to the method of MI. For
reference, a complete case analysis (CCA) restricted to
participants with complete data on both Y and X2 was also
performed in each simulation scenario.

Simulation study 1: Categorical exposures
In simulation study 1, X1 and X2 were generated as bin-
ary variables with a prevalence of 0.50 and a relative risk
for their association (RR(X1, X2)) of 2 or 3, to induce
moderate or strong confounding respectively. In simulat-
ing values for the outcome Y, β1 and β2 were both set to
log(2) or log(3) to give conditional relative risks (i.e.
RR(Y, X1| X2) and RR(Y, X2| X1)) of 2 or 3. Lastly the
intercept β0 was chosen to give an overall outcome
prevalence of 0.10 or 0.30. Following generation of
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complete datasets, values in Y and X2 were set to missing
according to one of two MAR mechanisms:

1) Coordinated: logit P(Y missing) = logit P(X2 missing)
= α + λX1.

2) Opposite: logit P(Y missing) = α + λX1 ,
logit P(X2 missing) = α + λ(1 − X1).

Under the coordinated mechanism, participants with
missing data were often missing both Y and X2, whereas
under the opposite mechanism, participants with miss-
ing data tended to be missing either Y or X2 (but not
both). For both mechanisms, the parameter λ was set to
1 or 2 to indicate a moderate or strong missing data
mechanism respectively, while α was chosen to produce
30% missing data in Y and X2. Collectively this resulted
in 4 missing data patterns and 32 simulation scenarios.
Following imputation, complete datasets were analyzed
using log binomial models. Provided MVNI was applied
with adaptive rounding for imputed values in X2 (in
addition to Y), there were no convergence issues with
the log binomial model in this setting.

Simulation study 2: Continuous exposures
For simulation study 2, X1 and X2 were generated from a
bivariate normal distribution with mean 0, variance 0.20
and correlation (corr(X1,X2)) 0.30 or 0.70. Again β1 and β2
were set to log(2) or log(3) to give conditional relative risks
of 2 or 3, while β0 was chosen to give an outcome preva-
lence of 0.10 or 0.30. One concern when simulating data
under a log binomial model with unbounded continuous
covariates is the possibility of generating ‘success’ probabil-
ities greater than one. In choosing the variance for X1 and
X2, we sought to maximize the size of standardized condi-
tional relative risks while minimizing the occurrence of in-
valid success probabilities. With a variance of 0.20, invalid
success probabilities were rare, except in settings involving
an outcome prevalence of 0.30 and conditional relative risks
of 3 (where 5.4% of success probabilities exceeded one).
Following previous simulation studies exploring the relative
risk (e.g. [23]), X1 and X2 were resampled in these instances
to ensure valid success probabilities.

Letting Z1 ¼ X1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var X1ð Þp

, the coordinated and op-
posite missing data mechanisms were adapted for the
continuous setting as follows:

1) Coordinated: logit P(Y missing) = logit P(X2 missing)
= α + λZ1.

2) Opposite: logit P(Y missing) = α + λZ1 ,
logit P(X2 missing) = α − λZ1.

In line with simulation study 1, λ was set to 1 or 2 and
α was chosen to produce 30% missing data in Y and X2.

Again this resulted in 4 missing data patterns and 32
simulation scenarios. As non-convergence with the log
binomial model was a considerable problem in this set-
ting, often occurring for some but not all imputed data-
sets within a single simulation, we elected to analyze all
complete datasets using modified Poisson regression.

Comparisons
The performance of the MI approaches in estimating pa-
rameters β1 and β2 was evaluated in terms of bias (average
difference between estimate and true value) and the cover-
age of estimated 95% confidence intervals (proportion of
95% confidence intervals containing the true value). With
2000 simulated datasets per simulation scenario, on 95%
of occasions the coverage is expected to lie between 0.94
and 0.96 for a true coverage of 0.95. For each parameter,
the average within-simulation estimated standard error
(denoted the average standard error), the standard error
of parameter estimates across simulated datasets (denoted
the empirical standard error), and the mean square error
(average squared difference between the estimate and the
true value) were also derived. All analyses were performed
in SAS version 9.4 (SAS Institute, Inc., Cary, North
Carolina). Multiple imputation was carried out using the
MI procedure, while analysis was performed using the
GENMOD and MIANALYZE procedures. The SAS code
for implementing the simulation study is available in the
Additional file 1: Web Appendix.

Results
Simulation study 1: Categorical exposures
Table 1 displays results for the categorical exposure set-
ting in scenarios with a strong missing data mechanism
(λ = 2), where RR(X1, X2) = 2 and β1 = β2 = log(3). Similar
results were observed for RR(X1, X2) = 3, while absolute
biases of the imputation approaches were smaller in
magnitude when λ = 1 and β1 = β2 = log(2). Full results
for all simulation scenarios are available in the Add-
itional file 1: Web Appendix. MVNI performed poorly
across the 32 simulation scenarios, consistently produ-
cing estimates of β2 that were biased towards the null
(bias range − 0.32 to −0.10). The bias of −0.32 shown in
Table 1 for an outcome prevalence of 0.30 under the co-
ordinated mechanism equates to a relative risk estimate
of 2.19 compared with the true value of 3; coverage was
just 0.55 in this scenario. Bias was less of a concern for
β1 (bias range − 0.08 to 0.07). Deleting imputed out-
comes following MVNI led to some reduction in abso-
lute bias for β2, although estimates for β1 were
moderately biased away from the null with this approach
(bias range 0.02 to 0.11). Interestingly, average and em-
pirical standard errors were noticeably increased by the
deletion of imputed outcomes following MVNI. Com-
pared to MVNI (without deletion), MVNI with deletion
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led to small increases in the mean square error for β1,
but tended to decrease the mean square error for β2.
In contrast to MVNI, FCS performed fairly well for

categorical exposures, with absolute bias only exceed-
ing 0.10 for the coefficient β2 in scenarios involving a
strong coordinated mechanism, an outcome preva-
lence of 0.30 and where β1 = β2 = log(3). Excluding
simulation scenarios where the bias for β2 exceeded
0.10, the coverage of estimated 95% confidence inter-
vals for β1 and β2 remained close to nominal levels
(range 0.93 to 0.96). Compared to FCS (without dele-
tion), FCS with deletion led to small reductions in ab-
solute bias for β2 under the coordinated mechanism
for an outcome prevalence of 0.30, but slight in-
creases in absolute bias under the opposite mechan-
ism for the same outcome prevalence. There was
little difference in average standard errors, empirical
standard errors, and mean square errors between FCS
and FCS with deletion, although both approaches
were less precise than MVNI.
Interestingly, CCA exhibited little bias in simulation

scenarios involving categorical exposures, with a max-
imum absolute bias of 0.06 for both β1 and β2. As ex-
pected, in discarding information from partially
observed cases, CCA was noticeably less efficient than

the MI approaches, especially for the coefficient β1 for
the fully observed exposure X1.

Simulation study 2: Continuous exposures
To ensure that any deficiencies in performance in the
continuous exposure setting could be attributed to the
method of MI and not the use of modified Poisson re-
gression for estimating relative risks, the accuracy of this
method was first verified in complete datasets (i.e. before
values in Y and X2 were set to missing). Reassuringly,
unbiased estimates for β1 and β2 were observed across
all simulation scenarios (absolute bias ≤0.01), with
estimated 95% confidence intervals demonstrating ap-
propriate coverage (i.e. within the range 0.94 to 0.96)
(results not shown).
The performance deficits of MI were more pro-

nounced in the presence of continuous exposures than
categorical exposures. Table 2 shows results for scenar-
ios with a strong missing data mechanism (λ = 2), where
corr(X1, X2) = 0.70 and β1 = β2 = log(3). A similar pattern
of results was observed in other simulation scenarios, al-
though absolute biases were smaller in magnitude for λ
= 1 and β1 = β2 = log(2). As shown in Table 2, MVNI
produced estimates for β1 and β2 that were biased to-
wards the null, with the largest absolute bias observed

Table 1 Results for X1 and X2 Binary, λ = 2, RR(X1, X2) = 2 and β1 = β2 = log(3)

Simulation scenario Method β1 β2
Bias Avg SE Emp SE Coverage MSE Bias Avg SE Emp SE Coverage MSE

Coordinated, prevalence =0.10 MVNI −0.08 0.30 0.28 0.951 0.08 −0.28 0.35 0.28 0.896 0.15

MVNI + deletion 0.06 0.30 0.31 0.955 0.10 −0.09 0.39 0.35 0.956 0.13

FCS 0.02 0.30 0.31 0.955 0.10 0.00 0.40 0.40 0.962 0.16

FCS + deletion 0.02 0.30 0.31 0.948 0.09 0.01 0.40 0.40 0.962 0.16

CCA 0.01 0.34 0.34 0.953 0.12 0.03 0.40 0.40 0.964 0.16

Coordinated, prevalence =0.30 MVNI 0.03 0.16 0.15 0.952 0.02 −0.32 0.17 0.16 0.547 0.13

MVNI + deletion 0.05 0.16 0.16 0.948 0.03 −0.15 0.20 0.19 0.872 0.06

FCS 0.03 0.16 0.16 0.951 0.03 −0.11 0.20 0.21 0.893 0.05

FCS + deletion 0.02 0.16 0.16 0.955 0.02 −0.06 0.21 0.21 0.932 0.05

CCA 0.01 0.17 0.17 0.953 0.03 0.01 0.21 0.22 0.949 0.05

Opposite, prevalence =0.10 MVNI −0.08 0.29 0.28 0.949 0.08 −0.26 0.34 0.26 0.908 0.13

MVNI + deletion 0.05 0.30 0.30 0.955 0.09 −0.07 0.37 0.33 0.964 0.11

FCS 0.01 0.30 0.31 0.952 0.10 0.03 0.39 0.39 0.963 0.16

FCS + deletion 0.01 0.30 0.31 0.950 0.09 0.05 0.39 0.40 0.964 0.16

CCA 0.03 0.39 0.41 0.956 0.17 0.03 0.39 0.39 0.965 0.15

Opposite, prevalence =0.30 MVNI 0.00 0.00 0.15 0.961 0.02 −0.20 0.18 0.16 0.805 0.06

MVNI + deletion 0.03 0.16 0.15 0.961 0.02 −0.02 0.20 0.19 0.952 0.03

FCS 0.00 0.16 0.16 0.951 0.02 0.01 0.20 0.20 0.948 0.04

FCS + deletion −0.02 0.16 0.15 0.949 0.02 0.07 0.21 0.21 0.947 0.05

CCA 0.01 0.20 0.20 0.952 0.04 0.02 0.20 0.20 0.952 0.04

Abbreviations: MVNI multivariate normal imputation, FCS fully conditional specification, CCA complete case analysis, Avg SE average standard error, Emp SE
empirical standard error, MSE mean square error
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for β1 under the opposite mechanism with an outcome
prevalence of 0.10 (relative risk estimate of 1.68 com-
pared with the true value of 3). Across all 32 simulation
scenarios, the median bias of MVNI was −0.21 for β1
(range − 0.58 to −0.10) and −0.12 for β2 (range − 0.27 to
−0.06). Deleting imputed outcomes following MVNI re-
duced the bias of this imputation method, although
moderate bias remained for β2 in scenarios with an out-
come prevalence of 0.30. The cost of this bias reduction
was substantially larger average standard errors in com-
parison to MVNI. In terms of accuracy, deleting imputed
outcomes following MVNI led to reductions in the mean
square error relative to MVNI without deletion in 26/32
and 12/32 simulation scenarios for β1 and β2 respectively.
FCS also produced estimates of β1 and β2 that were

biased towards the null, albeit to a lesser degree than
MVNI. The bias of −0.24 shown in Table 2 for an out-
come prevalence of 0.30 under the coordinated mechan-
ism translates to a relative risk estimate of just 2.37
versus the true value of 3. In addition to the more ex-
treme simulation scenarios, noticeable bias for β2 (abso-
lute bias >0.10) was apparent in simulation scenarios
with an outcome prevalence of 0.10, a moderate missing
data mechanism or where β1 = β2 = log(2). Deleting im-
puted outcomes following FCS tended to decrease the

bias of this imputation approach, with absolute bias re-
duced in 28/32 and 26/32 simulation scenarios for β1
and β2 respectively. The trade-off for this bias reduction
was a substantial loss in precision. Across the 32 simula-
tion scenarios, average standard errors were 14.4% larger
for β1 and 8.1% larger for β2 with the deletion of im-
puted outcomes following FCS compared to FCS alone.
A consequence of the substantial loss in precision with
the deletion of imputed outcomes following FCS was a
loss in overall accuracy, with the mean square error in-
creased relative to FCS without deletion in 30/32 and
26/32 simulation scenarios for β1 and β2 respectively.
Another noteworthy result from the continuous ex-

posure setting was that average standard errors were
consistently larger than empirical standard errors. Aver-
aged across the 32 simulation scenarios, average stand-
ard errors for β1 and β2 were 25.8% and 17.9% larger
than empirical standard errors respectively for MVNI,
14.4% and 11.9% larger for MVNI with deletion, 10.4%
and 9.5% larger for FCS, and 14.3% and 12.1% larger for
FCS with deletion. Discrepancies were most prominent
in simulation scenarios with an outcome prevalence of
0.30. In scenarios where β1 and β2 were estimated with
little bias, coverage probabilities also tended to be much
higher than the nominal level of 0.95. Collectively these

Table 2 Results for X1 and X2 Continuous, λ = 2, Corr(X1, X2) = 0.70 and β1 = β2 = log(3)

Simulation scenario Method β1 β2
Bias Avg SE Emp SE Coverage MSE Bias Avg SE Emp SE Coverage MSE

Coordinated, prevalence =0.10 MVNI −0.56 0.48 0.39 0.838 0.47 −0.22 0.50 0.43 0.958 0.24

MVNI + deletion 0.01 0.58 0.55 0.965 0.30 −0.03 0.55 0.53 0.959 0.28

FCS −0.08 0.51 0.49 0.961 0.25 −0.14 0.50 0.48 0.950 0.25

FCS + deletion 0.02 0.58 0.55 0.964 0.30 −0.04 0.55 0.53 0.961 0.28

CCA 0.01 0.66 0.67 0.943 0.45 0.01 0.53 0.55 0.936 0.30

Coordinated, prevalence =0.30 MVNI −0.26 0.26 0.20 0.890 0.11 −0.27 0.25 0.20 0.859 0.11

MVNI + deletion 0.01 0.31 0.26 0.978 0.07 −0.11 0.28 0.23 0.963 0.07

FCS −0.09 0.26 0.22 0.962 0.06 −0.24 0.24 0.21 0.878 0.10

FCS + deletion 0.02 0.31 0.26 0.980 0.07 −0.12 0.28 0.23 0.963 0.07

CCA 0.02 0.32 0.32 0.951 0.11 0.00 0.25 0.26 0.950 0.07

Opposite, prevalence =0.10 MVNI −0.58 0.47 0.37 0.830 0.47 −0.17 0.48 0.42 0.961 0.21

MVNI + deletion 0.00 0.56 0.52 0.966 0.28 0.02 0.53 0.51 0.959 0.26

FCS −0.08 0.48 0.46 0.961 0.22 −0.07 0.49 0.47 0.959 0.22

FCS + deletion 0.01 0.56 0.52 0.971 0.27 0.01 0.53 0.51 0.962 0.26

CCA 0.00 0.60 0.62 0.939 0.39 0.01 0.48 0.50 0.938 0.25

Opposite, prevalence =0.30 MVNI −0.25 0.24 0.19 0.886 0.10 −0.07 0.26 0.20 0.981 0.05

MVNI + deletion 0.01 0.30 0.25 0.983 0.06 0.06 0.29 0.23 0.980 0.06

FCS −0.07 0.24 0.21 0.974 0.05 −0.02 0.26 0.22 0.980 0.05

FCS + deletion 0.02 0.29 0.25 0.983 0.06 0.05 0.29 0.23 0.982 0.06

CCA 0.00 0.29 0.29 0.945 0.08 0.01 0.23 0.22 0.949 0.05

Abbreviations: MVNI multivariate normal imputation, FCS fully conditional specification, CCA complete case analysis, Avg SE average standard error, Emp SE
empirical standard error, MSE mean square error
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results suggest that estimated confidence intervals were
too wide.
As observed for categorical exposures, CCA exhibited

little bias but tended to produce inefficient estimates of
β1 in scenarios involving continuous exposures. Interest-
ingly, CCA produced more precise estimates of β2 than
the two MID approaches; across the 32 simulation sce-
narios, average standard errors for β2 were 9.3% smaller
with CCA relative to both deletion approaches.

Sensitivity analyses
In light of the relatively poor performance of the MI ap-
proaches for relative risk estimation, we undertook add-
itional analyses to explore whether findings were
sensitive to choices made during the fitting of imput-
ation models or to the simulation parameters consid-
ered. First, we investigated the performance of simple
rounding following MVNI as an alternative to adaptive
rounding. While differences were minimal in most sce-
narios, MVNI introduced slightly more bias in both cat-
egorical and continuous exposure settings when simple
rounding was used in place of adaptive rounding (results
not shown). Next, we investigated the performance of
FCS with the outcome imputed before rather than after
the incomplete covariate X2. This modification made lit-
tle difference to results (also not shown). We then ex-
plored the performance of the four MI approaches in
scenarios involving n = 250 rather than n = 1000 obser-
vations. Excluding simulation scenarios with binary X1

and X2 where the reduced sample size resulted in zero
cells in cross-tabulations involving the outcome (i.e.
where log binomial analysis models would not con-
verge), this change made little difference to the bias and
coverage of parameter estimates (results not shown).
To investigate whether biased estimation would persist

if the exposures were independent of one another, if the

outcome was unrelated to one or both exposures, or if
data were missing completely at random (i.e. probability
of missing data unrelated to observed or unobserved
data), several “null-case” simulation settings were con-
sidered. Table 3 shows results for continuous X1 and X2

under the coordinated missing data mechanism for an
outcome prevalence of 0.30. The reference case for com-
parisons in this table was the previously considered
simulation scenario involving a strong missing data
mechanism (λ = 2), where corr(X1, X2) = 0.70 and β1 = β2
= log(3). As shown in the table, the four MI approaches
continued to produce biased parameter estimates when
the exposures were independent of one another (i.e.
corr(X1, X2) = 0). When the outcome was unrelated to
one of the exposures, parameter estimates remained
biased only for the exposure that was predictive of the
outcome; little bias was observed with any of the MI ap-
proaches when both exposures were unrelated to the
outcome. Lastly, bias was reduced but still evident when
data were missing completely at random. A similar pat-
tern of results was observed with binary X1 and X2, and
for an outcome prevalence of 0.10. Full results for these
sensitivity analyses are available in the Additional file 1:
Web Appendix.
Lastly, to evaluate whether the performance deficiencies

of FCS could be attributed solely to the misspecified logis-
tic imputation model for the outcome, we considered add-
itional simulation scenarios where missing data were
restricted to either Y or X2 only (with logit P(missing) = α
+ λX1). Since data were missing in a single variable, miss-
ing values were imputed 20 times using logistic or linear
regression as appropriate. Table 4 shows results for an
outcome prevalence of 0.30, λ = 2 and β1 = β2 = log(3) for
categorical exposures with RR(X1, X2) = 2 or continuous
exposures with corr(X1, X2) = 0.70. The results for the ori-
ginal simulation scenario for FCS under the coordinated

Table 3 Bias in Scenarios with X1 and X2 Continuous, Coordinated Missing Data Mechanism and Outcome Prevalence = 0.30

Simulation scenario Parameter MVNI MVNI + deletion FCS FCS + deletion

1. Corr(X1, X2) = 0.70, β1 = β2 = log(3), λ = 2 β1 −0.26 0.01 −0.09 0.02

β2 −0.27 −0.11 −0.24 −0.12

2. As in (1.), but with Corr(X1, X2) = 0 β1 −0.27 −0.05 −0.15 −0.05

β2 −0.21 −0.06 −0.16 −0.06

3. As in (1.), but with β1 = 0 β1 −0.04 0.02 0.01 0.02

β2 −0.17 −0.03 −0.10 −0.03

4. As in (1.), but with β2 = 0 β1 −0.24 0.00 −0.10 0.00

β2 0.00 0.00 0.00 0.00

5. As in (1.), but with β1 = β2 = 0 β1 −0.01 −0.01 −0.01 −0.01

β2 0.01 0.01 0.01 0.01

6. As in (1.), but with λ = 0 (MCAR) β1 −0.11 0.00 0.00 0.00

β2 −0.17 −0.08 −0.08 −0.08

Abbreviations: Corr correlation, MCAR missing completely at random, MVNI multivariate normal imputation, FCS fully conditional specification
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mechanism are also presented for comparison. As shown
in the table, estimation remained biased when missing
data were restricted to X2. Indeed for continuous expo-
sures, the bias for β2 was larger when missing data were
restricted to X2 compared to when missing data were re-
stricted to Y. Thus it seems that the shortcomings of FCS
were at least partly attributable to the choice of condi-
tional imputation model for the incomplete covariate X2.
It is worth noting that the bias following the imputation
of continuous X2 with a univariate linear model, as shown
in Table 4, also suggests that the performance deficits seen
with MVNI in the continuous exposure setting were
partly due to inappropriate imputed values in the ex-
posure (and not just the outcome).

Discussion
Given the widespread use of MI and the popularity of
the relative risk, the lack of research on the application
of MI for estimating the relative risk is surprising. In this
study we demonstrated that standard model-based
methods of MI can produce biased estimates of the rela-
tive risk with overly wide confidence intervals when data
are MAR. Performance deficits were particularly evident
when the analysis included continuous exposures, and in
settings with larger relative risks, stronger missing data
mechanisms and higher outcome prevalences. These
findings raise concerns about the use of standard MI
methods for relative risk estimation.
The primary aim of this study was to contrast the per-

formance of MVNI and FCS for handling missing out-
come data when estimating the relative risk. MVNI
performed more poorly than FCS, producing relative risk
estimates that were often substantially biased towards
the null, both for categorical and continuous exposures.
Although MVNI has been shown to be robust to viola-
tions of the multivariate normal assumption across a
range of other settings, for example in estimating odds
ratios or dealing with non-normal exposure variables
[16, 20], such robustness to imputation model misspeci-
fication was not evident here. In contrast, FCS per-
formed well when the analysis involved categorical
exposures, only introducing noticeable bias for an out-
come prevalence of 0.30, a strong missing data mechan-
ism and large relative risks. Performance was less
satisfactory in the presence of continuous exposures,

with noticeable bias towards the null also evident in set-
tings involving moderate relative risks or an outcome
prevalence of 0.10. Even when relative risks for continu-
ous exposures were estimated with little bias, FCS pro-
duced confidence intervals that were too wide. While we
would recommend FCS over MVNI for relative risk esti-
mation based on the simulation results presented here,
clearly the approach is not without its shortcomings.
The secondary aim of this study was to evaluate

whether deleting imputed outcomes improves the per-
formance of MI for relative risk estimation. Focusing on
FCS as the better performed method of MI, we observed
little difference between FCS with and without deletion
of imputed outcomes for analysis models involving cat-
egorical exposures. In the presence of continuous expo-
sures, deleting imputed outcomes following FCS was
associated with partial decreases in absolute bias at the
expense of large increases in average standard errors; an
interesting finding given that deletion improves the pre-
cision of estimation in settings where analysis and im-
putation models are the same [18]. The lost precision
with MID in the continuous exposure settings suggests
that imputed values in the outcome contained informa-
tion that was useful for analysis, which may be due to
inconsistencies between the imputation and analysis
models. Of course, since the imputation model was mis-
specified, this additional information (from the imputed
outcome values) could also result in increased bias in a
conventional MI analysis. In any case, we find it difficult
to recommend MID for relative risk estimation based on
these results, particularly since the approach is only ad-
visable in settings where auxiliary variables for the out-
come are unavailable [19].
Although logistic regression is the standard choice for

imputing binary outcomes in software for implementing
FCS, evidently this model is not optimal for relative risk
estimation. Since controlling for confounding differs be-
tween the odds ratio and the relative risk [24], it is perhaps
unsurprising that performance deficits were observed with
FCS in this simulation study. This raises the question of
whether an alternative conditional imputation model for
the outcome should be adopted with FCS when relative
risk estimation of interest. Assuming the analysis model is
appropriately specified, an obvious candidate to minimise
the problems of imputation model misspecification is the

Table 4 Bias in Scenarios with λ = 2, Outcome Prevalence = 0.30 and β1 = β2 = log(3)

Simulation scenario Parameter Coordinated missing data in Y and X2 (FCS) Missing data in Y only Missing data in X2 only

Binary X1 and X2, RR(X1, X2) = 2 β1 0.03 0.02 0.02

β2 −0.11 −0.06 −0.05

Continuous X1 and X2, Corr(X1, X2) = 0.70 β1 −0.09 −0.08 −0.03

β2 −0.24 −0.07 −0.22

Abbreviations: RR relative risk, Corr correlation, FCS fully conditional specification
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log binomial model, however issues with non-convergence
could be a significant limitation in the context of FCS. As
relative risks are often estimated using modified Poisson
regression, another possibility would be to impute out-
comes using Poisson regression. One difficulty with this
approach is that imputed outcome values would be counts
and would thus entail the use of modified Poisson regres-
sion in the analysis or the use of a rounding method prior
to analysis with a log binomial model. Rounding methods
have not been developed for this purpose. Another im-
portant challenge would be to incorporate a robust esti-
mate of the error variance within the imputation model,
since ordinary Poisson regression tends to overestimate
the standard error for the relative risk [8]. Although other
approaches have been proposed to estimate relative risks
(e.g. Cox regression with constant time at risk [25]), like
Poisson regression, they typically require the use of a ro-
bust error variance which would need to be accounted for
during imputation. This is difficult to achieve with current
MI software.
In addition to the misspecified logistic model for im-

puting the outcome, sensitivity analyses revealed that the
bias introduced by FCS could also be attributed to the
conditional models used to impute the covariates. Im-
puting the continuous covariate using linear regression
in FCS assumed a linear relationship between the covari-
ate and the outcome, which was inconsistent with the
data generation model. A similar argument applies for
the imputation of binary covariates using logistic regres-
sion. In a recent article, Bartlett and colleagues [26] pro-
posed a modification to the standard FCS algorithm such
that incomplete covariates are imputed from models that
are compatible with the intended analysis model. While
the approach seems promising in this context, further re-
search is needed to understand its properties and suitabil-
ity for relative risk estimation.
Due to convergence problems with the log binomial

model in the continuous exposure setting, we elected to
analyze all imputed datasets using the popular modified
Poisson regression approach. Simulation results demon-
strated that this method performed well in the absence
of missing data, which is consistent with previous inves-
tigations of the method [8, 23, 25]. An interesting con-
sideration that arose following imputation was whether
to use modified Poisson regression to analyze all im-
puted datasets or only those datasets where the log bino-
mial model failed to converge. We chose the former
approach, as this was simpler to implement and seemed
more in keeping with Rubin’s rules, however the latter
could also be considered in future work.
Given the missing data mechanisms considered in the

simulation study, it is not surprising that CCA produced
parameter estimates with little bias. For missing data in a
univariate outcome, CCA is known to produce unbiased

and fully efficient estimates of regression coefficients when
the probability of missing data depends only on fully ob-
served covariates [27–29]. For missing data restricted to a
covariate, CCA is known to be unbiased (but not fully effi-
cient) if the probability of missing data is independent of
the outcome conditional on the other covariates in the
model [30]. Both of these conditions were satisfied in the
simulation study, where the probability of missing data in
Y and X2 depended only on the fully observed covariate
X1. Clearly these conditions do not always hold in more
complex practical settings, and CCA can introduce con-
siderable bias when data are MAR. Taking into account
the potential bias and inefficiency of CCA, we do not ad-
vocate its use over MI for handling arbitrary patterns of
missing data when estimating the relative risk.
Although we anticipate similar deficits with MVNI

and FCS in more complex practical settings, it is diffi-
cult to draw definitive conclusions from a restricted set
of simulation scenarios. Further exploration of the per-
formance of these MI methods in real datasets (where
the missing data mechanism is unknown) and in simu-
lation scenarios with different covariate characteristics,
outcome prevalences and missing data mechanisms
would certainly be useful. A further limitation of the
current study is that we did not evaluate alternatives to
standard model-based methods of MI for handling
missing data. Most notably we did not consider inverse
probability weighting, a method that involves weighting
complete cases in the analysis according to the inverse
of the probability of being a complete case [31]. We
chose to focus on MI as it known to be more efficient
than inverse probability weighting, particularly in the
presence of auxiliary variables and for arbitrary patterns
of missing data. However in light of the performance
deficits of MI, further research could explore the use of
inverse probability weighting in this setting. Within the
MI framework, we did not consider less widely used
model-based methods such as the general location
model for mixtures of continuous and categorical vari-
ables, or non-parametric methods such as hot deck im-
putation. Again further research might consider the use
of these approaches for relative risk estimation.

Conclusions
In summary, standard model-based methods of MI
can produce biased and inefficient estimates of the
relative risk due to misspecification of the imputation
model. Should MI be chosen to handle missing data,
we recommend researchers avoid MVNI and instead
use FCS without deletion for estimating relative risks.
However, further research is needed to identify opti-
mal approaches for relative risk estimation within the
MI framework.
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