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ABSTRACT: We demonstrated a cytokine detection device based on gold
nanoparticle modified silica optical fiber for the monitoring of locally variable
cytokine interleukin-6 (IL-6) concentrations using a sandwich immunoassay
scheme. The fiber is designed to be introduced into an intrathecal catheter with
micrometer-sized holes drilled along its length to enable fluid exchange between
the outside and inside of the catheter. An exposed optical fiber (diameter 125
μm) modified with a layer of gold nanoparticles was functionalized with the IL-6
capture antibody to form the sensing interface. The immunocapture device was
incubated with a cytokine solution to capture the analyte. The device was then
exposed to the IL-6 detection antibody which was loaded on the fluorescently
labeled magnetic nanoparticles, making it possible to quantify the cytokine
concentration based on the intensity of fluorescence. A reliable method for
quantifying the fluorescent signal on a 3D structure was developed. This device
was applied to the detection of cytokine IL-6 with the low limit of detection of 1
pg mL−1 in a sample volume of 1 μL. The device has the linear detection range of 1−400 pg mL−1 and spatial resolution on the
order of 200−450 μm, and it is capable of detecting localized IL-6 secreted by live BV2 cells following their liposaccharide
stimulation. This biological detection system is suitable for monitoring multiple health conditions.

KEYWORDS: optical fiber, cytokines, localized and spatially resolved detection, IL-6, immunosensors, cytokine test strip

Cytokines are small proteins (∼6−70 kDa) secreted by
cells, with broad biological importance, in particular for

cellular signaling.1 Certain pro-inflammatory cytokines such as
IL-1β, IL-6, and TNF-α in the spinal cord, dorsal root ganglions
(DRG), injured nerves, or skin are known to be involved with
abnormal spontaneous activity in injured nerve fibers or
compressed/inflamed DRG neurons2 and in the process of
pathological pain.3 Current cytokine detection methods are
applicable to body fluids such as blood plasma. However, the
cytokines are locally released and measurements of their
average content in body fluids provide only a limited insight
into the underpinning processes. Thus, in order to understand
the role of the immune system in pain or multiple other health
conditions which lead to immunoreactivity and the expression
of cytokines, it would be useful to be able to monitor spatially
localized concentration of cytokine in specific locations of the
body, such as the spinal cord, reproductive tract, cancer stroma,
and so forth. This is challenging because the cytokine
concentration in body fluids is low, normally in the pM
range,4 and cytokine assays may suffer interference from
heterophilic antibodies, rheumatoid factors, and specific or
nonspecific cytokine binding proteins.5

Benefiting from cost-effective and simple parallel array-type
operation, and relatively high sensitivity, conventional enzyme-

linked immunosorbent assay (ELISA) has become the most
common cytokine quantification tool, used, for example, for
clinical diagnosis of the “cytokine storm” in patients.6−8

However, ELISA typically requires long incubation time
(several hours) and suffers from the complicated sample
labeling process. Moreover, a large amount of sample must be
available to achieve a sufficient signal-to-background ratio for
detection. Thus, broad interest exists in developing simple,
sensitive, and rapid cytokine analysis platforms for compre-
hensive characterization and quantitative analysis of cytokines
secreted from immune cells.9−22 Recently, a microfluidic
microsphere-based biosensor for quasi real-time detection of
TNF-α was reported by Konry and co-workers.23 A label-free
localized surface plasmon resonance (LSPR) biosensing
technique to detect cell-secreted tumor necrosis factor
(TNF)-α cytokines in clinical blood samples was also
reported.24 This technology can detect cytokines with a
blood sample volume of 3 μL and a total assay time 3 times
shorter than that of ELISA (5−6 h). Revzin and co-workers
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have reported a microscale device for detecting local release of
interferon gamma (IFN-γ) from primary human leukocytes in
real time.15 However, this device is not suitable for measuring
localized cytokines in vivo.
Optical fibers are chemically passive, have small physical

dimensions (diameters in the range of tens to few hundred
μm), and are able to access challenging environments.25,26

Configured as fiber-optics sensors, they offer an advantage of
long interaction length which, in some situations, can yield
enhanced signals. Moreover, optical fiber biosensors can be
used in combination with different types of spectroscopic
techniques, e.g., absorption, fluorescence, phosphorescence,
Raman, and surface plasmon resonance (SPR).27 Optical fibers
have also been explored as a promising platform for cytokine
detection.11,28−30 A recent report describes a fiber-optics SPR
sensor for the detection of IL-1, IL-6, and TNF-α in a buffered
saline solution and a spiked cell culture medium.31 In this study,
the detection limit of IL-6 of 0.44 ng mL−1 was achieved. The
optical fiber-based sensors have also been applied to the
monitoring of biologically relevant molecules in real time. For
example, a label-free fiber-optic localized SPR sensor for the
detection of IFN-γ was fabricated using spherical gold
nanoparticles (AuNPs) on a polished end-face of the optical
fiber.12 This label-free immunoassay sensor was characterized
by a short detection time (5 min), high resolution, and
sensitivity (2 pg mL−1 for IFN-γ) due to the signal
amplification from AuNPs. A recently reported photonic lab-
on-a-chip sensor allowed rapid determination of IL-2 levels
secreted by lymphocytes based on the measurement of optical
absorbance.32 However, none of these devices is capable of
spatially localized cytokine detection along the fiber length
based on the quantification of the fluorescent signal on the
sensing interface.
In this study we designed an immunosening device (similar

to a cytokine test strip) for monitoring of localized cytokine IL-
6 concentration (Scheme 1). This cytokine capture device
comprises a de-cladded optical fiber modified with a layer of
AuNPs which are functionalized with the cytokine IL-6 capture
antibody to form the sensing interface. This cytokine capture

device can be inserted into a catheter with microscale holes
drilled along its length to enable fluid exchange between the
outside and inside of the catheter. It can be removed from a
catheter at any stage and a new capture device may be then
reintroduced for a second or subsequent measurement. The
difference between the diameter of the catheter and the fiber is
155 μm resulting in very low friction between the fiber and the
catheter. The removed capture device carries the analytes
(cytokine IL-6) which are then detected. To achieve that, the
fiber device is exposed to the IL-6 detection antibody which is
loaded on the fluorescent nanoparticles. After a period of
incubation and a washing step, the level of cytokines can be
determined by quantifying the intensity of fluorescence from
nanoparticle-labeled detection antibodies on the 3D fiber
surface. This approach is different from the evanescent wave-
based signal quantification in the traditional optical fiber
sensors.11 In this work, this variant of spatially resolved ELISA
was successfully used for the detection of spatially localized
cytokine IL-6 with the low limit of detection of 1 pg mL−1, a
sample volume of 1 μL, and the linear range of 1−400 pg mL−1.
The detection system also demonstrated high spatial resolution
on the order of 200−450 μm for detecting localized IL-6
secreted by liposaccharide stimulated BV2 cells. The ability to
reintroduce a new capture device into the catheter makes our
design attractive for clinical applications, and this approach has
the potential for the development of the point-of-care cytokine
detection devices for neuroscience and other biomedical
research.

■ EXPERIMENTAL SECTION
Chemicals. Aminopropyltriethoxysilane (APTES), concentrated

sulfuric acid, hydrogen peroxidase (30%), toluene, ethanol, 6-
mercaptohexanoic acid, bovine serum albumin (BSA), 1-ethyl-3-(3-
(dimethylamino)propyl)carbodiimide hydrochloride (EDC), N-hy-
droxysuccinimide (NHS), 2-(N-morpholino) ethanesulfonic acid
(MES), and lipopolysaccharide were purchased from Sigma-Aldrich.
Mouse interleukin-6 (IL-6), anti-mouse IL-6 polyclonal antibody
(capture antibody), anti-mouse IL-6 monoclonal antibody (detection
antibody), and donkey anti-Goat IgG NorthernLights NL493-
conjugated antibody were purchased from R&D Systems. Carboxy-

Scheme 1. Scheme of the Preparation of the Cytokine Test Strip Based on the Optical Fiber for Detection of the Localized
Analyte IL-6
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lated superparamagnetic iron oxide particles (SPIO, 1% solid, 10 mg
mL−1, ∼0.9 μm, labeled with Dragon Green fluorophores (excitation
480 nm, emission 520 nm)) were obtained from Bangs Laboratories,
USA. The optical fiber is a standard telecommunication silica fiber
62.5-μm-diameter core/125 μm acrylate cladding (LNF(TM) product
from Pirelli, now Prysmian). The circular glass coverslips (diameter of
12 mm, thickness of 0.13 mm) were purchased from Fisher Scientific,
Australia. Aqueous solutions were prepared using Milli-Q water. The
phosphate buffer solution used in this work contained 0.1 M sodium
phosphate, 0.15 M sodium chloride, adjusted to pH 7.2 with NaOH or
HCl solution.
Protocol for Drilling Holes in Catheter by a Laser. The

protocol for drilling holes by laser has been detailed in earlier
literature.33 The laser machining system is a Microstruct-C from 3D
MicroMac, Germany with the 266 nm picosecond laser (Lumera/
Coherent SuperRapid HE). A scanner with an F = 56 mm optics to
drill an array of 50 of 100 μm holes was used and holes were drilled
with 1 μJ pulses at 20 kHz pulse repetition frequency (80 holes along 1
cm length of fiber with 2 holes at each circumference).
Fabrication of the Sensing Interface. As shown in Scheme 1,

the sensing interface was fabricated in several steps. First, the de-
cladded optical fiber (or the glass coverslip used in preliminary
characterizations) was immersed in a piranha solution (H2SO4 95%
and H2O2 30% mixed at a volume ratio of 4:1) for 12 h in order to
clean the glass and to form hydroxyl groups on its surface. After rinsing
with deionized H2O and ethanol and drying under N2 stream, the
cleaned optical fiber/coverslip was immersed in aminopropyltriethox-
ysilane (5% v/v) in toluene for 6 h to form an amine-terminated self-
assembled monolayer. The fiber/coverslip was then rinsed with
toluene and ethanol to remove the unbound monomers from the
surface. The aminopropyltriethoxysilane-modified optical fiber was
subsequently immersed into a 1 mL of AuNP (10 nm) solution for 5
h. Upon removal, the fiber/coverslip was copiously rinsed with
deionized H2O and finally blown dry with N2. The AuNP modified
optical fiber/coverslip thus prepared was then incubated in 0.1 mM 6-
mercaptohexanoic acid solution overnight, and finally washed three
times, in ethanol and deionized H2O, respectively. To activate the
carboxylic acid on the optical fiber/coverslip, the prepared fiber was
incubated in the 25 mM MES buffer (pH 6.0) solution containing
EDC (10 mg mL−1)/NHS (10 mg mL−1) for 30 min. Then the fiber/
coverslip was washed in the MES buffer twice. Finally, the fabricated
optical fiber/coverslip was immersed in the anti-IL-6 capture antibody
solution (50 μg mL−1) in the MES buffer (pH = 6.0) at room
temperature for 3 h and washed twice in deionized H2O.
Subsequently, the fiber/coverslip surface was blocked in a 0.25%
BSA solution for 3 h to complete the preparation of the sensing
interface. In order to confirm the presence of the capture antibody, the
sensing interface was incubated with the anti-IL-6 secondary antibody
(labeled with green fluorophores) solution (1:100) in PBS for 2 h.
Then the interface was washed three times by PBS and deionized
H2O, respectively, and finally dried and imaged by confocal
microscopy.
Cytokine Measurement. After modification of the optical fiber/

coverslip surface with the anti-IL-6 capture antibodies, the optical
fiber/coverslip was incubated in PBS solution or serum containing IL-

6 in different concentrations for 2 h. Then the fiber/coverslip was
washed with a wash buffer (PBS, 0.1% Tween-20) and dried by N2
stream. Finally the optical fiber/coverslip was exposed to Dragon
Green magnetic nanoparticles loaded with IL-6 detection antibody
(DG_SPIO_IL-6_Ab; see the details of making DG_SPIO_IL-6_Ab
in the Supporting Information) for 1 h by washing with wash buffer
(PBS, 0.1% Tween-20) and deionized H2O before fluorescence
measurements described below.

Confocal Laser Scanning Microscopy Imaging and Fluo-
rescent Signal Quantification. The fluorescence spectra for the
fiber/coverslip based cytokine assay were collected at excitation
wavelengths of 493 nm for green dye (NL493) with the emission
range of 510−650 nm, and 480 nm for Dragon Green with the
emission range of 500−650 nm using a Fluorolog Tau3 system (JY
Horiba, Edison, NJ) in 10 mm quartz cuvettes at room temperature.
The spectral band passes were 0.5 nm in both excitation and emission.
The PMT voltage was adjusted to 950 V. The optical fiber samples
were imaged using a SP2 (Leica) confocal microscope with objective
HC PL FLUOTAR, magnification 10×, NA 0.3, xy-resolution 651 nm,
pinhole 1× Airy disc, and field of view 1500 × 1500 μm2. The z-stack
of 10 z-planes over 125 μm height were collected, with the separation
of around 12.5 μm between planes. All ten images were then
processed, to calculate the maximum pixel value from these 10 planes.
This maximum pixel value was then assigned as the pixel value in the
combined image (Z-projection in ImageJ). For every concentration of
IL-6, two different locations were imaged so that 3 mm fiber length in
total was imaged for each cytokine measurement. The intensity of the
green dots representing the Dragon Green fluorescent labels was
quantified by integrating over a spatial window of 450 μm using
ImageJ and Matlab software. In this way the spatial resolution of 450
μm was realized.

■ RESULTS AND DISCUSSION
Evaluation of the IL-6 Immunosensor Performance on

the Glass Surface. The sensing interface in Scheme 1 was first
produced on a glass coverslip instead of the optical fiber for
ease of characterization. The self-assembled AuNPs deposited
on a glass coverslip were characterized by UV−vis spectropho-
tometry (Figure 1). The spectrum of the AuNP colloid solution
has a characteristic plasmon peak at 519 nm. This peak is
absent for the glass surface after modification of APTES;
however, a similar feature at 602 nm appears after modification
of glass with AuNP, which confirms the successful attachment
of AuNP. This modified spectral characteristics suggests that
the Au colloids self-assembled on glass are close enough to
affect the coupling of plasmons of individual particles resulting
in an increased absorbance at wavelengths >600 nm when
compared to that of the original AuNP in solution.34 The
plasmon peak showed a further redshift (622 nm) after the
attachment of IL-6 capture antibody due to the change of the
surrounding environment of AuNPs.35 Fluorimetry was used to
monitor surface modifications of the glass surface after the
attachment of detection antibodies (Figure S1). The back-

Figure 1. UV−vis absorbance of (a) gold colloid solution and (b) glass surface after stepwise modification with APTES, AuNP, and IL-6 capture
antibody.
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ground fluorescence signal for the blank glass surface was
observed around 530 and 600 nm, respectively; it disappeared
after modification of the glass surface with APTES, due to the
formation of a layer of amine groups on the surface. After
further stepwise modification of the glass surface with 6-
mercaptohexanoic acid, AuNP, incubation with the anti-IL-6
capture antibody followed by the incubation with IL-6 (100 pg
mL−1) and the fluorescent detection antibody (DG_SPIO_IL-
6_Ab), the characteristic fluorescence peak of the Dragon
Green beads appeared at about 518 nm, indicating a successful
attachment of the detection antibody. Thus, this fabricated
system is capable of detection of IL-6.
The sensing interface fabricated on the glass coverslip was

used to detect IL-6 at different concentrations. Figure 2a shows
the relationship between fluorescence intensity and the
concentration of IL-6, and the fluorescence signal of the
detection antibodies conjugated to Dragon Green beads
increased linearly with the concentration of IL-6. The
calibration curve of this sensing interface for IL-6 is plotted
in Figure 2b. The lowest detectable concentration was 1 pg
mL−1 with the linear range of 1−100 pg mL−1 which is within
the physiological concentration range of IL-6 in the body.4

Thus, this assay can be used to quantify the IL-6 concentration

in vitro. This immunosensor scheme has been further applied
to the optical fiber, as described in the following sections.

Performance of the Fabricated Sensor on Optical
Fiber Surface. In order to realize the localized detection of
cytokines, in the next stage the ELISA surface detailed
previously was fabricated on an optical fiber, to be able to
carry out a cytokine assay for the detection of Il-6. A stepwise
modification of optical fiber was carried out, as previously
described and the resulting fiber surface was characterized by
confocal microscopy (Figure 3). The original de-cladded optical
fiber showed a smooth and clean surface. After the fabrication
of AuNPs on the fiber surface, some small black dots could be
observed, suggesting the presence of AuNPs clusters resulting
in an increased surface area for binding the IL-6 capture
antibody. The SEM image of AuNP was included in Figure S2,
further suggesting the presence of AuNP with the size of about
10 nm. No significant change could be seen in the confocal
images after the attachment of capture antibody on the fiber
surface. After the incubation of the sensing interface with the
analyte IL-6 and the IL-6 detection antibodies (DG_SPIO_IL-
6_Ab), very bright green dots were observed (Figure 3c),
suggesting that the DG_SPIO_IL-6_Abs were attached to the
sensing interface to form a sandwich structure with the IL-6 and
IL-6 capture antibodies. The intensity of this green fluorescence

Figure 2. (a) Relationship between fluorescence intensity and the concentration of IL-6. (b) Calibration curve of IL-6 based on the sensing interface
fabricated on a glass coverslip.

Figure 3. Confocal images for the stepwise modification of optical fiber: (a) original optical fiber, (b) AuNP modified optical fiber, and (c) IL-6
capture antibody modified optical fiber for determination of IL-6 after incubation with DG_SPIO_IL-6_Ab; (d) fiber surface without modification
of IL-6 capture antibody; and (e) IL-6 capture antibody modified optical fiber after exposure to green dye (NL493) labeled secondary antibody,
respectively.
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could be used to quantify the analyte. To further confirm the
presence of capture antibody, the green dye (NL493) labeled
secondary antibody was applied on the capture antibody
modified sensing interface and the fiber surface without the
attachment of IL-6 capture antibody. Negligible levels of
fluorescence on the fiber surface were detected after the
incubation with a green dye-labeled secondary antibody (Figure
3e). However, the sensing interface demonstrated bright green
fluorescence (Figure 3d), indicating the presence of the green
dye-labeled secondary antibody and the capture antibody with a
homogeneous distribution.
To maximize the amount of IL-6 capture antibody on the

sensing interface required for high sensitivity, its concentration
was optimized by quantifying the fluorescence intensity of the
green dye-labeled secondary antibody (Figure 4a). The
fluorescence signal on the 3D optical fiber was quantified
using ImageJ and MatLab software. This signal increased with
the concentration of IL-6 capture antibody used for fabrication
of the sensing interface, and a maximum fluorescence signal was
obtained when the concentration of capture antibody was 50 μg
mL−1. In addition, the stability of the capture antibody was
investigated by leaving the fabricated sensing interface in PBS
for extended periods of time followed by monitoring the
concentration of IL-6 capture antibody using the green dye
labeled secondary antibody (Figure 4b). The fluorescence
signal was stable for the first 9 days, indicating that the capture

antibody was still attached on the fiber surface. The
fluorescence signal then continued to decrease to less 50% of
the original intensity after 20 days, which might be due to
limited stability of C−Au bonds between alkanethiols and
AuNPs36 resulting in a progressive release of the capture
antibodies from the glass surface.

Detection of IL-6 Using the Fabricated Cytokine
Immunosensing Device. After verifying the performance of
the cytokine capture surface on glass slides we fabricated an
identical capture surface on a glass fiber 125 μm in diameter. In
order to quantify the fluorescence signal reporting on the
presence of analyte molecules captured on fiber surface we
developed a tailored approach. Drawing on the capability of
laser scanning confocal microscope to reject out-of-focus signal
and its depth of field that is much smaller than the fiber
diameter, we recorded multiple images at different axial planes
(Z-stack), around 12.5 μm apart, in order to image the total
visible fiber area. This Z-stack was further processed to select
the maximum pixel value from each image. This maximum
value was then assigned to the corresponding pixel (maximum
Z-projection in Image-J). This final composite image produced
from a Z-stack was taken as a representation of the total
fluorescence signal of a section of the fiber and it was used for
further quantification of the signal. These data are shown in
Figure 5a.

Figure 4. (a) Change in fluorescence signal of green dye with increasing concentration of IL-6 capture antibody. (b) Stability of the capture antibody
modified sensing interface. F0 and F are the fluorescence signals from the secondary antibody for the freshly prepared fiber and the same fiber after
being stored in PBS for different periods of time.

Figure 5. (a) Z-stack maximum intensity projection images of the optical fiber after its exposure to different concentration of IL-6 followed by the
incubation of DG_SPIO_IL-6_Ab (27.5 μg mL−1). (b) Calibration curve of IL-6 based on the fluorescence signal and IL-6 concentration obtained
from (a).
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The nonspecific protein adsorption of this sensing device was
investigated using BSA as the blocking reagent (Figure S3). In
the absence of BSA blocking, a significant nonspecific
DG_SPIO_IL-6_Ab absorption was observed on the capture
antibody-modified interface after the exposure to the detection
antibody solution, likely due to physical adsorption of
DG_SPIO_IL-6_Ab on surface defects. However, when the
capture antibody-modified sensing interface was blocked with
0.25% BSA, only a few green dots were observed in the
confocal image, suggesting negligible nonspecific absorption (5
orders of magnitude lower than the signal for 100 pg mL−1 IL-
6). Such low nonspecific adsorption is required to achieve high
detection specificity of IL-6. The capture antibody-modified
sensing interface (with 0.25% BSA blocking) was further used
for detection of IL-6 in the PBS solution. As shown in the Z-
stack maximum intensity projection images (Figure 5a), the
Dragon Green intensity increased with increasing IL-6
concentration, indicating that IL-6 could be quantified by
integrating Dragon Green fluorescence by Image-J and Matlab
software. A linear relationship between the fluorescence
intensity and the concentration of IL-6 in the range 1−400
pg mL−1 was obtained (Figure 5b), which is within the
physiologically relevant range.4 The lowest detectable concen-
tration of IL-6 was 1 pg mL−1, which is similar to that of an
electrochemical immunosensor based on ferrocene-loaded
porous polyelectrolyte nanoparticles as labels (1 pg mL−1).37

The lowest detection limit is lower than the value reported in a
recently developed liquid-gated field-effect transistor sensor
based on horizontally aligned single-walled carbon nanotubes
for detection of IL-6 (1.37 pg mL−1),38 and it is 1 order of
magnitude lower than a fluorescence-based immunoassay (20
pg mL−1).39 The application of AuNPs on the sensing interface
for loading large amounts of capture antibodies and the

brightness of the nanoparticles labeled with detection antibody
have contributed to high sensitivity achieved in this work. The
reproducibility of the fabricated cytokine assay was evaluated by
fabricating 10 separate pieces of optical fibers used for the
detection of 60 pg mL−1 IL-6 (Figure S4). The relative standard
deviation of these ten immunosensors was ±3.6%, indicating
that the fabricated assay was closely reproducible in our test
conditions.
The feasibility of the fabricated cytokine assay for the

spatially localized detection of IL-6 was studied by placing
single drops (∼1 μL) of the serum sample containing 10 pg
mL−1 and 200 pg mL−1 IL-6 onto various locations of the
fabricated optical fiber surfaces (Figure 6), followed by
incubation with the detection antibody. Subsequently, the
optical fiber exposed to two different concentrations of IL-6 in
two close locations was imaged (3 mm length in total) and
signal quantification carried out. The intensity of the green dots
representing the Dragon Green fluorescent labels were
quantified by integrating over a spatial window of specific
width (typically 100−500 μm) using ImageJ and Matlab
software. This spatial window was chosen to ensure enough
Dragon Green beads are imaged for the fluorescence
quantification, even for the lowest cytokine concentration.
The width of the spatial window is one of the factors
determining the achievable spatial resolution. We found that
the fluorescence in the fiber area exposed to 200 pg mL−1 IL-6
was significantly higher (5 times) than the fluorescence
produced with 10 pg mL−1 IL-6, suggesting that the fabricated
sensing interface was capable of differentiating IL-6 at different
concentrations from the sample volume of 1 μL. Thus, the
cytokine immunosensing device developed here requires
minimal sample consumption and offers excellent assay
performance, making it highly suitable for analyzing biomarkers

Figure 6. (a) Results of spatially localized cytokine detection experiments using our device. We simultaneously placed 1 μL of serum containing 10
and 200 pg mL−1 IL-6 on the fabricated sensing interface, respectively, followed by incubation with detection antibody and signal quantification. (b)
Relationship between fluorescence signal in the 200 and 450 μm windows along the imaged length of the fiber. (c) Relationship between the
fluorescence signal and the response time of the immunosensing device for the determination of IL-6 with the concentrations of 25 and 200 pg
mL−1.
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and cytokines in precious biological samples. Moreover, our
fiber has the capability of spatially resolving detection of
localized IL-6 with resolution on the order of 200 to 450 μm.
To our knowledge, so far only the Olink Bioscience’s Proseek
protein assay enables sensitive detection and quantification of
proteins in a 1 μL sample volume,40 but it does not offer spatial
resolution. We also determined the response time of the
immunosensing device for the detections of IL-6 at the
concentrations of 25 and 200 pg mL−1, respectively. The
fluorescence signal of the SPIO-Ab (Figure 6c) increased
dramatically with increasing incubation time for IL-6 (200 pg
mL−1) and it saturated around 30 min. In the case of lower
concentration of IL-6 (25 pg mL−1), the fluorescence signal
increased about 1 order of magnitude more slowly than that for
the high concentration of IL-6 (200 pg mL−1). This more rapid
transition toward the equilibrium is as expected by the basic
laws of chemical kinetics.41 We emphasize that for the
concentration of 200 pg mL−1, a measurable signal increase
was observed already after 5 min incubation in the cytokine-
containing medium.
Finally, the optical fiber sensor with the catheter on was

applied for the detection of IL-6 secreted by live BV2 cells
(Figure 7). Figure 7a shows the device which we used for the
measurements in the medium. The concentration of IL-6
secreted into the medium increased with the LPS stimulation
time and the maximum concentration was obtained after 6 h
LPS stimulation. A similar IL-6 secretion pattern for BV2 cells
was obtained by conventional ELISA but the lowest detection
limit of our fiber device (1 pg mL−1) was 1 order of magnitude
lower than that in the conventional ELISA Kit from R&D
System for IL-6 (10 pg mL−1). Critically, in these experiments
no media need to be removed from the culture; instead,
repeated sampling can be achieved by replacing the fiber.
Therefore, the cytokine assay device presented here is capable
of monitoring cytokines ex vivo.

■ CONCLUSIONS

We fabricated and characterized a sensitive cytokine assay based
on the optical fiber, which could be used for monitoring the
localized cytokine concentration ex vivo. A spatially resolved
ELISA sandwich assay was built on the optical fiber surface so
that the fiber could be inserted into a perforated catheter. After
exposure of the device to the cytokine-containing solution for a
period of time, the optical fiber forming a cytokine test strip
was removed from the catheter which could be inserted into the
body. The fiber was then exposed to the solution of the
detection antibody conjugated to fluorescent Dragon Green

beads and washed, followed by quantification of cytokines
based on the intensity of fluorescence by laser scanning
microscopy. This variant of spatial ELISA was successfully used
for the detection of cytokine IL-6 with the low limit of
detection of 1 pg mL−1 and sample volume of 1 μL, and it
showed high specificity to IL-6. The sensor interface was stable
for up to 9 days in PBS solution, and it was capable of detecting
localized IL-6 secreted by BV2 cells with liposaccharide
stimulation. This technology provides a new strategy for
monitoring spatially varying concentration of cell secreting
products, and it has the potential to be developed as a point-of-
care device for multiple health conditions.
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Figure 7. (a) Image of the optical fiber based cytokine assay (with catheter on) under bright field microscopy. (b) IL-6 secretion profile of BV2 cells
after LPS stimulation for the commercial ELISA and the herein fabricated spatial fiber based cytokine assay.
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