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Abstract

The Migidae are a family of austral trapdoor spiders known to show a highly restricted and

disjunct distribution pattern. Here, we aim to investigate the phylogeny and historical bioge-

ography of the group, which was previously thought to be vicariant in origin, and examine

the biogeographic origins of the genus Moggridgea using a dated multi-gene phylogeny.

Moggridgea specimens were sampled from southern Australia and Africa, and Bertmainus

was sampled from Western Australia. Sanger sequencing methods were used to generate a

robust six marker molecular dataset consisting of the nuclear genes 18S rRNA, 28S rRNA,

ITS rRNA, XPNPEP3 and H3 and the mitochondrial gene COI. Bayesian and Maximum

Likelihood methods were used to analyse the dataset, and the key dispersal nodes were

dated using BEAST. Based on our data, we demonstrate that Moggridgea rainbowi from

Kangaroo Island, Australia is a valid member of the otherwise African genus Moggridgea.

Molecular clock dating analyses show that the inter-specific divergence of M. rainbowi from

African congeners is between 2.27–16.02 million years ago (Mya). This divergence date sig-

nificantly post-dates the separation of Africa from Gondwana (95 Mya) and therefore does

not support a vicariant origin for Australian Moggridgea. It also pre-dates human colonisa-

tion of Kangaroo Island, a result which is further supported by the intra-specific divergence

date of 1.10–6.39 Mya between separate populations on Kangaroo Island. These analyses

provide strong support for the hypothesis that Moggridgea colonised Australia via long-dis-

tance trans-Indian Ocean dispersal, representing the first such documented case in a myga-

lomorph spider.

Introduction

The historical view of the biogeographical history of the Southern Hemisphere postulated that

the terrestrial biota had largely vicariant origins [1], and that dispersal played a relatively
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limited role in taxa with southern-temperate or ‘Gondwanan’ ranges [2]. The sequential sepa-

ration of the southern continental blocks since the Mesozoic [3] has led to lineages on multiple

post-Gondwanan land fragments forming independent clades. In contrast, oceanic dispersal

[1] was often discarded a priori as a primary explanation of distribution patterns in the South-

ern Hemisphere [3]. The idea that seemingly remarkable feats of long-distance dispersal were

needed to explain the evolutionary history of many groups of organisms was first postulated

by Darwin [4], but the concept has often been considered speculative and difficult to test–“a

science of the improbable, the rare, the mysterious and the miraculous” [5]. The apparent poor

suitability of many austral groups for oceanic dispersal (e.g. marsupials and ratite birds) ap-

peared to further support vicariance as the more likely biogeographical scenario [3]. Indeed,

the idea that vicariance was the key theory to explain the Gondwanan distribution of many

southern-temperate groups proved difficult to challenge for many decades [6].

Over the past 20 years, new discoveries and more advanced methods, particularly molecular

phylogenetic and dating methods, have brought the dispersal-vicariance debate full-circle.

Using the fossil record and/or gene-specific rates of nucleotide evolution, molecular phyloge-

nies with dated nodes now provide new perspectives on the evolutionary history of the flora

and fauna of the Southern Hemisphere [6, 7]. Most importantly, molecular divergence dating

provides the temporal perspective necessary to test and, where appropriate, reject vicariant

biogeographic hypotheses [7]. Calculating the probability of a successful dispersal requires tak-

ing into account the number of dispersers, their probability of survival, their likelihood of

establishing upon landing, and also the presence of prevailing winds, oceanic currents, hosts,

vectors or any other underlying mechanisms that may affect movement and survival (any or

all of which may include rafting as a plausible hypothesis) [8]. Recent molecular studies have

shown that successful long-distance dispersal events have occurred in many groups of taxa,

such as monkeys [9], lemurs [10] and geckos [11], a previously counter-intuitive conclusion

without accessible dated molecular phylogenies.

The now well-documented occurrence of long-distance dispersal via rafting in a large range

of taxa [8], highlights that trans-oceanic dispersal is not only restricted to organisms capable of

flight [12], aerial dispersal (e.g. ballooning spiders [13]) or oceanic buoyancy (e.g. floating

seeds [14]). Rafting generally involves large chunks of land and/or vegetation being washed

out to sea, with rafting events being implicated in the colonisation of numerous isolated land

masses including Australia [3], Madagascar [10,15], South America [7, 9,11], New Zealand

[16] and newly formed Darwinian Islands such as the Galapagos islands, Canary Islands and

Hawaii [17]. A case in point, and not surprising, is the coastal araneomorph spider genus

Amaurobioides, which is hypothesised to have undergone several long distance, transoceanic

dispersal events, facilitated by rafting [18].Spiders of the infraorder Mygalomorphae are well

featured in vicariance biogeography literature (e.g. [19–22]) and more recently in molecular

studies of phylogeography and species delimitation [23]. Mygalomorphs are a monophyletic

group with a worldwide distribution [24–26]. They have unusually long life cycles, with some

species living up to 30 years and requiring 5–8 years to reach reproductive maturity [27]. They

are univoltine [28] with females and juveniles leading sedentary lifestyles [29]. Although bal-

looning of spiderlings has been documented in several genera (e.g. [30–33]) most mygalo-

morphs do not disperse aerially and are known to be relatively non-vagile, with juveniles often

moving only a few metres from the maternal site (e.g. [25,31,34,35]). These life-history traits

predispose mygalomorph spiders to geographic isolation through mechanisms such as conti-

nental drift, glaciation, orogenic activity and habitat fragmentation, resulting in a large num-

ber of taxa that have small geographical distributions [36–38]. It is the poor vagility, sedentary

habits and patterns of fine-scale genetic structuring characteristic of many mygalomorph spi-

ders [28] that make this group especially amenable to testing the vicariance paradigm [25].

Oceanic dispersal in Moggridgea
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The Migidae are a family of Mygalomorphae previously assumed to have a vicariant austral

distribution. Eleven named genera occur in Africa, Madagascar, New Zealand, New Caledonia,

South America and Australia [22,38]. The Australian migid fauna includes four genera: Migas
L. Koch, 1873 and Heteromigas Hogg, 1902 from eastern Australia [39]; Moggridgea O. P.-

Cambridge, 1904 from Kangaroo Island (KI), South Australia [40]; and Bertmainius Harvey

et al., 2015 from south-western Australia [38]. Although displaying a putatively Gondwanan

distribution, a cladistic study based on morphology suggested that the evolutionary history of

the family cannot be explained by vicariance alone, with Australia appearing three times in the

cladogram [22]. Recent molecular [35,38] and morphological [40] data suggest the only Aus-

tralian Moggridgea species, Moggridgea rainbowi (Pulleine, 1919), groups with African Mog-
gridgea, where all other congeneric species occur. The existence of an ‘African’ Moggridgea
lineage in Australia immediately poses a number of tantalising biogeographic questions, and

these form the basis of this study.

Here we test three alternative biogeographic hypotheses for the presence of Moggridgea in

southern Australia, using a dated phylogenetic approach based on a comprehensive multi-

gene dataset. The first (null) hypothesis is Gondwanan vicariance, which would be evidenced

by a deep and very old divergence date from African congeners, consistent with the age of sep-

aration of Africa from the rest of Gondwana. This hypothesis was first suggested by Main [41]

to explain the presence of Moggridgea (now treated as Bertmanius) in Western Australia. An

alternative hypothesis (H1) is a human-mediated introduction from Africa during the Euro-

pean colonisation of KI. This would be evidenced by a recent, extremely shallow (among con-

specific) or low divergence date (among sister species) and, equally importantly, by a lack of

phylogeographic structure on KI itself. The second alternative hypothesis (H2) is trans-oceanic

dispersal, which would be evidenced by both recent divergence from African species (relative

to ancient African vicariance) and by demonstrable phylogeographic structuring among popu-

lations on KI. The implications of our results are discussed in regard to their broader impact,

as an inability to reject H2 would provide the first dated molecular evidence of long-distance

oceanic dispersal in a mygalomorph spider, and would be an invaluable insight into the history

and origins of southern hemisphere mygalomorph spider diversity. Our rejection of H0 and

H2 provide the first solid evidence for long-distance oceanic dispersal in a mygalomorph spi-

der, and has broader implications for better understanding the history and origins of southern

hemisphere mygalomorph spider diversity.

Methods

Specimen sampling

Our dataset comprised seven specimens of M. rainbowi from two populations on KI separated

by approximately 80 km (Western River [three specimens] and American River [four speci-

mens]); five exemplar species of Moggridgea from South Africa; and seven species of Bert-
mainius from south-western Australia (see Table 1). The American River specimens were

excavated from burrows above the high tide mark in May 2013, and initially preserved in

100% ethanol. These specimens were collected under permit number E26155-3 issued by the

South Australian Department of Environment, Water and Natural Resources. All M. rainbow
specimens from Western River, Bertmainius species from Western Australian and Moggridgea
specimens from Africa were obtained from archived DNS samples stored in the Australian

Biological Tissue Collection, provided with permission from the South Australian Museum.

These DNA samples had been previously collected under annual collection permits issued to

scientists from the Western or South Australian museums or donated by overseas colleagues.

Legs 3 and 4 from the left side of each specimen were then kept in 100% ethanol, while the rest

Oceanic dispersal in Moggridgea
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Table 1. Registration numbers, locality data, and Genbank accession numbers for specimens used in the study.

Species Registration

numbers

Locality Coordinates Genbank

accession

numbers

COI

Genbank

accession

numbers

ITS1-ITS2

Genbank

accession

numbers

XPNPEP3

Genbank

accession

numbers

18S

Genbank

accession

numbers

28S

Genbank

accession

numbers H3

SCORPIONES

Urodacus

planimanus

T129654 WA:

Bedfordale

32˚10’05"S,

116˚04’06"E

KY295225 - KY295718 KY294838 KY294961 KY295099

ARANEAE

Latrodectus

hasseltii

T129059 WA:

Welshpool

31˚59’08"S,

115˚55’57"E

KY295226 - KY295719 KY294839 KY294962 KY295100

Aganippe sp. T129362 WA:

Serpentine NP

32˚22’05"S,

116˚00’26"E

KY295228 KY294976 KY295723 KY294841 KY294965 KY295103

Euoplos sp. T129363 WA:

Serpentine NP

32˚22’05"S,

116˚00’26"E

KY598258 KY294983 KY295725 KY294843 KY294970 KY295108

Cethegus

fugax

T129260 WA: John

Forrest NP

31˚53’54"S,

116˚05’49"E

KY295227 - KY295722 KY294840 KY294963 KY295101

Moggridgea

rainbowi

ABTC110307 SA: Western

River,

Kangaroo

Island

35˚41’46”S,

136˚54’34”E

JF749924 JF749981 MF169599 MF169538 MF169569 MF169628

Moggridgea

rainbowi

ABTC110308 SA: Western

River,

Kangaroo

Island

35˚41’46”S,

136˚54’34”E

JF749924 JF749982 MF169600 MF169539 MF169570 MF169629

Moggridgea

rainbowi

ABTC110309 SA: Western

River,

Kangaroo

Island

35˚41’46”S,

136˚54’34”E

JF749924 JF749983 MF169601 MF169540 MF169571

Moggridgea

rainbowi

SAM

NN28257

SA: American

River,

Kangaroo

Island

35˚46’35”S,

35˚46’35”S

MF169531 MF169535 MF169607 MF169547 MF169577 MF169632

Moggridgea

rainbowi

SAM

NN28345

SA: American

River,

Kangaroo

Island

35˚46’36.5"S,

137˚46’33"E

MF169532 MF169536 MF169608 MF169548 MF169578 MF169633

Moggridgea

rainbowi

SAM

NN25429

SA: American

River,

Kangaroo

Island

35˚46’37”S,

137˚46’3"E

MF169530 MF169534 - MF169546 MF169576 MF169631

Moggridgea

rainbowi

SAM

NN28346.1

SA: American

River

35˚46’36.5"S,

137˚46’33"E

MF169533 MF169537 - MF169549 MF169579 MF169634

Moggridgea

terrestris

MY357 South Africa:

Eastern Cape

Province

33˚07’31”S,

26˚36’40”E

JF749926 JF749986 MF169602 MF169541 MF169572 -

Moggridgea

rupicoloides

MY360 South Africa:

Eastern Cape

Province

33˚23’26”S,

26˚26’11”E

JF749925 - MF169603 MF169642 MF169573 -

Moggridgea

intermedia

MY361 South Africa:

Western Cape

Province

33˚58’13”S,

23˚32’20”E

JF749928 JF749984 MF169604 MF169543 - MF169630

Moggridgea

mordax

MY371 South Africa:

Northern Cape

Province Hwy

N14

28˚01’30”S,

22˚39’48”E

JF749929 - MF169605 MF169544 MF169574 -

(Continued )
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Table 1. (Continued)

Species Registration

numbers

Locality Coordinates Genbank

accession

numbers

COI

Genbank

accession

numbers

ITS1-ITS2

Genbank

accession

numbers

XPNPEP3

Genbank

accession

numbers

18S

Genbank

accession

numbers

28S

Genbank

accession

numbers H3

Moggridgea

peringueyi

MY372 South Africa:

Northern Cape

Province Hwy

N14

28˚01’30”S,

22˚39’48”E

JF749927 JF749985 MF169606 MF169545 MF169575 -

Bertmainius

monachus

WAM T57952 WA: Stirling

Range NP,

Talyuberlup

34˚24’51”S,

117˚57’22”E

JF749911 JF749976 MF169609 MF169550 MF169580 MF169635

Bertmainius

monachus

WAM T63124 WA: Stirling

Range NP,

Talyuberlup

34˚24’51”S,

117˚57’22”E

JF749891 JF749948 MF169624 MF169565 MF169595 MF169645

Bertmainius

monachus

WAM T63125 WA: Stirling

Range NP,

Talyuberlup

34˚24’51”S,

117˚57’22”E

JF749891 JF749972 MF169625 MF169566 MF169596 MF169646

Bertmainius

pandus

WAM T57954 WA: Stirling

Range NP,

Toolbrunup

34˚23’27”S,

118˚03’31”E

JF749912 JF749975 MF169610 MF169551 MF169581 MF169636

Bertmainius

pandus

WAM T57955 WA: Stirling

Range NP,

Toolbrunup

34˚23’27”S,

118˚03’31”E

JF749912 JF749973 MF169611 MF169552 MF169582 MF169637

Bertmainius

colonus

WAM T57976 WA: Stirling

Range NP,

Ellen Creek

34˚22054”S,

118˚17’25”E

JF749906 JF749951 MF169613 MF169554 MF169584 MF169648

Bertmainius

colonus

WAM T63126 WA: Stirling

Range NP,

Isongerup

Track

34˚22’25”S,

118˚16’59”E

JF749907 JF749955 MF169626 MF169567 MF169597 MF169647

Bertmainius

colonus

WAM T58045 WA: Stirling

Range NP,

Wedge Hill

34˚25’12”S,

118˚10058”E

JF749909 JF749931 MF169614 MF169555 MF169585 MF169639

Bertmainius

tumidus

WAM T57961 WA:

Porongurup

NP

34˚40’57”S,

117˚50’56”E

JF749892 JF749937 MF169612 MF169553 MF169583 MF169638

Bertmainius

tumidus

WAM T63106 WA:

Waychinicup

Nature

Reserve

34˚54’29”S,

118˚15’56”E

JF749923 JF749964 MF169621 MF169562 MF169592 -

Bertmainius

mysticus

WAM T60315 WA: Keystone

State Forest

34˚58’59”S,

116˚37’53”E,

JF749901 JF749978 MF169615 MF169556 MF169586 MF169640

Bertmainius

mysticus

WAM T60316 WA: Keystone

State Forest

34˚58’59”S,

116˚37’53”E

JF749915 JF749977 MF169616 MF169557 MF169587 -

Bertmainius

mysticus

WAM T63096 WA: Walpole–

Nornalup NP

35˚00’23”S,

116˚38’37”E

JF749896 JF749961 MF169617 MF169558 MF169588 -

Bertmainius

tingle

WAM T63102 WA: Walpole-

Nornalup NP,

Valley of the

Giants

34˚58’47”S,

116˚52’44”E

JF749921 JF749958 MF169618 MF169559 MF169589 -

Bertmainius

tingle

WAM T63103 WA: Walpole-

Nornalup NP,

Valley of the

Giants

34˚58’47”S,

116˚52’44”E

JF749921 JF749956 MF169619 MF169560 MF169590 MF169641

Bertmainius

tingle

WAM T63104 WA: Walpole-

Nornalup NP,

Valley of the

Giants

34˚58’47”S,

116˚52’44”E

JF749921 JF749957 MF169620 MF169561 MF169591 MF169642

(Continued )
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of the body was transferred to 75% to allow for easier manipulation for morphological study.

Cytochrome oxidase subunit I (COI) and internal transcribed spacer (ITS) sequences for M.

rainbowi from Western River (KI), along with the Moggridgea species from South Africa and

the Bertmainius species from Western Australia were taken from [35] and [38]. DNA from

these specimens was sequenced for four additional genes: XPNPEP3, 28S, 18S and H3 (see

below).

Molecular methods

Approximately 3 mm3 of muscle tissue was removed from the leg femora for DNA extraction.

DNA was extracted using the Gentra DNA extraction PURE-GENE DNA Purification Kit

(Gentra Systems, Minnepolis, MN, USA).

A 715 bp fragment of nuclear 18S rRNA was amplified using the primers 18S_ai (5’-
CCTGAGAAACGGCTACCACATC) and 18S_b0.5(5’-GTTTCAGCTTTGCAACCAT-3’)
[42]. PCR was performed under the following conditions: an initial denaturation step of 95˚C

for 5 mins, followed by 35 cycles of 95˚C for 20 s, annealing temperature of 50˚C for 35 s, then

72˚C for 2 mins, with a final elongation step of 72˚C for 10 mins.

An 852 bp fragment of nuclear 28S rDNA was amplified using the primers 28Sa (5’-GAC
CCGTCTTGAAACACGGA-3’)and LSUR (5’-GCTACTACCACCAAGATCTGCA-3’) [42].

PCR was performed under the following conditions: an initial denaturation step of 95˚C for 5

mins, followed by 35 cycles of 95˚C for 20 s, annealing temperature of 50˚C for 35 s, then 72˚C

for 2 mins, with a final elongation step of 72˚C for 10 mins.

A 658 bp fragment of mitochondrial COI was amplified using the universal COI primers

LCO1490 (5’-GGTCAACAAATCATAAAGATATTG-3’)and HC02198(3’-TAAACTTCA
GGGTGACCAAAAAATCA-5’)[43]. PCR was performed under the following conditions: an

initial denaturation step of 94˚C for 5 mins, followed by 34 cycles of 94˚C for 45 s, annealing

temperature of 48˚C for 45 s, then 72˚C for 1 min, with a final elongation step of 72˚C for

10 mins.

A 738 bp fragment of nuclear Xaa-Pro aminopeptidase 3 (XPNPEP3) was amplified using

the primers XPNPEP3_f2 (5’-GAAAGAAGATTAAAACTAATGGAAC-3’)and (5’-XPNP
EP3_Ar_r1CCAGCATCCATYAANACCA-3’)[44]. PCR was performed under the following

conditions: an initial denaturation step of 95˚C for 5 mins, followed by 35 cycles of 95˚C for

20 s, annealing temperature dropping from 55˚C to 45˚C for 35 s, then 72˚C for 1 min, with a

final elongation step of 72˚C for 10 mins.

An 838 bp fragment of nuclear ITS rRNA (including ITS1, 5.8S rRNA, ITS2) was amplified

using the primers G923 (5’-CGTAACAAGGTTTCCGTAGGTGA-3’)and G925 (5’AGAGA
ACTCGCGAATTCCACGG-3’)(see [35]). PCR was performed under the following conditions:

Table 1. (Continued)

Species Registration

numbers

Locality Coordinates Genbank

accession

numbers

COI

Genbank

accession

numbers

ITS1-ITS2

Genbank

accession

numbers

XPNPEP3

Genbank

accession

numbers

18S

Genbank

accession

numbers

28S

Genbank

accession

numbers H3

Bertmainius

opimus

WAM T63108 WA: S. of

Gracetown

33˚54’32”S,

115˚00’24”E

JF749900 JF749966 MF169622 MF169563 MF169593 MF169643

Bertmainius

opimus

WAM T63179 WA: Shannon

NP

34˚42’47”S,

116˚21’47”E

JF749920 JF749971 MF169627 MF169568 MF169598 -

Bertmainius

opimus

WAM T63111 WA:

Wellington Mill

33˚27’04”S,

115˚55’42”E

JF749917 JF749941 MF169623 MF169564 MF169594 MF169644

https://doi.org/10.1371/journal.pone.0180139.t001
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an initial denaturation step of 94˚C for 9 mins, followed by six cycles of 94˚C for 45 s, anneal-

ing 68˚C for 45 s (-1˚C each cycle); 72˚C 60 s, then 28 cycles of 94˚C for 45 s, annealing 62˚C

for 45 s, 72˚C for 60 s, with a final elongation step of 72˚C for 6 min. The enzyme used was

AmpliTaq Gold DNA polymerase.

A 327 bp fragment of nuclear histone H3 was amplified using the primers H3aF (5’-ATG
GCTCGTACCAAGCAGACVGC-3’) and H3aR (5’-ATATCCTTRGGCATRATRGTGAC-3’)
[45]. PCR was performed under the following conditions: an initial denaturation step of 95˚C

for 5 mins, followed by 35 cycles of 95˚C for 20 s, annealing 48˚C for 35 s, then 72˚C for 2

mins, with a final elongation step of 72˚C for 2 mins. The enzyme used was MyTaq DNA

polymerase.

The genes 18S, 28S,XPNPEP3 and H3 were amplified following [44], using MyTaq DNA

Polymerase (Bioline, Taunton, MA), in a Bio-Rad T100 Thermal Cycler. For each 25 μL PCR

reaction, 2 μL of template DNA, 5 μL of MyTaq buffer, 5 pm of each primer and 0.2 μL of

MyTaq DNA polymerase were used. PCR products were visualised on 1.5% agarose gels using

standard procedures, and PCR clean-up plus bi-directional sequencing was performed by the

Australian Genome Research Facility (AGRF, Nedlands, WA). COI and ITSwere amplified

using Eppendorf Amplitaq Gold (Eppendorf, Westbury, NY, USA). For each 25 µL reaction, 2

µL of template DNA, 2.5 µL of PCR Gold Buffer, 3.5 µL of MgCl, 2.0 µL of deoxyribonucleotide

triphosphate (dNTP), 10 pm of each primer, and 0.1µL Amplitaq Gold DNA polymerase was

used. PCR products were verified by agarose gel electrophoresis (1% agarose), and PCR clean-

up plus bi-directional Sanger sequencing was performed by AGRF (Waite Campus, Adelaide,

S.A.). Sequences were submitted to GenBank (see Table 1 for accession numbers).

Phylogenetic analyses

Five non-migid outgroups were sourced from [44]: the scorpion Urodacus planimanus Pocock,

1893, the red-back spider Latrodectus hasseltii Thorell, 1870, the curtain-web mygalomorph

spider Cethegus fugax Simon, 1908, and the idiopid trapdoor spiders Aganippe sp. O. P.-Cam-

bridge, 1877 and Euoplos sp. (Table 1). All newly obtained sequences were edited with refer-

ence to chromatograms using Geneious [46]. Forward and reverse sequences were assembled,

and the resulting consensus sequences were then aligned using the ‘Geneious Alignment’ func-

tion of Geneious. PartitionFinder [47] was used to select the model that best fit each gene, with

the protein coding genes being divided into three codon positions. For COI, the General Time

Reversible (GTR) [48] + gamma (G) [49] model was selected for the first codon position, the

Felstein 81 (F81) [50] + invariant (I) I+G for the second codon position, and the Hasegawa,

Kishino and Yano (HKY) [51] +I+G for the third. For ITS1, ITS2 and 18S, the model Kimura

80 (K80) [52] +G was chosen. For 5.8S and 28S, the GTR+I+G model was chosen. For H3, the

GTR+I+G model was chosen for codon position one and the K80+G model was chosen for

positions two and three. For XPNPEP3, the HKY+G model was chosen for all positions.

Phylogenetic reconstruction was undertaken using MrBayes 3.2.6 [53] employing the

CIPRES Science Gateway [54]. In the Bayesian analysis, each codon position was modelled

separately using the models listed above. All parameters were unlinked and the rates were

allowed to vary over the partitions. For all reconstructions, two runs with four chains each

were run simultaneously for 100 million generations, with every 1,000th tree sampled. A

burnin of 1,000, chosen using the program Tracer 1.6 [55], was set for building the maximum

clade credibility tree. The resulting tree was viewed using FigTree v1.3.1 [56] (Fig 1). A maxi-

mum likelihood analysis was also undertaken using RAxML [57] on the BlackBox server [58]

with COI, H3 and XPNPEP3 partitioned by codons and ITS1, 5.8S, ITS2 and 28S partitioned

individually, with the GTR + G model used for all genes.
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Molecular clock analyses

Divergence dating analysis was performed using BEAST 1.8.0 [59] to determine the time of

divergence of M. rainbowi from its African relatives. The program BEAUti 1.8.0 (part of the

BEAST software package) was used to create.xml files to input into BEAST. Given the robust-

ness of phylogenetic analyses placing M. rainbowi within the African Moggridgea clade (see Fig

1), we focused on the Moggridgea taxa only for our molecular clock analyses. Exclusion of dis-

tantly related taxa, such as Bertmainius, avoided potential issues with saturation of the third

codon positions of COI. This still enabled us to effectively date the nodes of most interest, i.e.

the divergence time between the closest African sister to M. rainbowi, M. intermedia (see [40]),

and the divergence between the two KI M. rainbowi populations. We included only the speci-

mens for which we had a complete set of sequence data; this allowed us to link the trees and

resulted in a single tree for analysis. The gene H3 had a larger proportion of missing data than

the other genes, so was not included in the dating analysis. 28Swas also not included as it

could not be sequenced for M. intermedia, which was found to be the closest relative to M.

rainbowi.

Fig 1. Combined COI, ITS, H3, 18S, 28S and XPNPEP3 tree constructed using MrBayes and mixed models. Numbers on nodes

represent posterior probabilities followed by maximum likelihood bootstrap values.

https://doi.org/10.1371/journal.pone.0180139.g001
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Six separate BEAST analyses were carried out using different clock models, including a

strict clock, uncorrelated lognormal clock and exponential relaxed clock, and both the GTR +

G + I and HKY nucleotide substitution modes. Each analysis was run for 20 million genera-

tions with a burnin of 1 million generations (i.e. 10%), and the program Tracer 1.6 [55] was

used to analyse the parameter distributions estimated from BEAST and check for convergence

of the chains. Stationarity was checked for, and no evidence of non-stationarity was found in

all BEAST runs. As fossil calibrations were unavailable to date nodes of the Moggridgea phylog-

eny, the mean COI substitution rate was fixed at 0.02 substitutions per site per million years,

based on the estimates of 4% divergence between lineages per million years [by 34] for the

trapdoor spider Aptostichus simus Chamberlin 1917. Rates for all other genes were estimated.

Site models and clock models were unlinked and trees were linked. The tree priors selected for

separate analyses were Speciation: Yule Process and Birth-Death Process, as both are suitable

for inter-species relationships. Priors on the ucld.mean for each gene were defined as uniform

with an initial value of 0.00115, an upper value of 0.0115 and a minimum value of 0.0001. The

universal substitution rate estimated for arthropod mtDNA [60] was used to define the upper

value. Due to the average slower pace of nuclear genes compared with mitochondrial ones, the

initial value was one order of magnitude slower (as per [61]). TreeAnnotator [59] was used to

produce a single “target” tree which was then visualised using FigTree v1.3.1 [56].

Results

Phylogenetic analysis

A maximum clade credibility tree was generated for the MrBayes analysis of the combined six

gene, 4118 character, 36 taxa dataset (Fig 1). This analysis resolved the genera Moggridgea and

Bertmainius as reciprocally monophyletic, with M. rainbowi from KI clearly embedded within

the African Moggridgea lineage and sister to M. intermedia (posterior probability = 1, bootstrap

value 100) (Fig 1). Furthermore, M. rainbowi formed a monophyletic group, but showed phy-

logeographic structure, with haplotypes reflecting the two geographic locations (Western

River and American River). The Maximum Likelihood analysis of the same dataset produced a

completely concordant tree (see Dryad digital repository, doi:10.5061/dryad.9cp00).

Molecular clock analyses

The time to most recent common ancestor (TMRCA) estimate for the African M. intermedia
and KI M. rainbowi, the TMRCA of the KI Western River and American River populations of

M. rainbowi, and the Posterior Mean and Posterior ESS values for all three clocks with GTR,

HKY and PartitionFinder models, using both Speciation: Yule Process and Speciation: Birth-

Death Process tree priors are summarised in Table 2. All analyses performed using the GTR+I

+G models failed to achieve adequate convergence for many of the parameter estimates (i.e.

posterior statistics with effective sample sizes <10 after 20 million generations). Analyses per-

formed using the HKY model had posterior ESS values of>1400 for every clock model used.

Combinations of clocks and models gave TMRCA estimates ranging between 2.27 Mya (strict

clock, HKY model, Speciation: Yule Process, 95% Highest Posterior Density [HPD] 1.89–2.65)

to 16.02 Mya (strict clock, GTR model, Speciation: Yule Process, 95% HPD 8.97–25.60) be-

tween the African M. intermedia and M. rainbowi from KI. The TMRCA values for the diver-

gence time between the two separate KI populations ranged between 1.10 Mya (Strict clock,

HKY model, Speciation: Birth-Death Process, 95% HPD 0.86–1.34) to 6.39 Mya (strict clock,

GTR models, Speciation: Yule Process, 3.48–10.23).
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Discussion

Our analyses show that M. rainbowi from KI is unequivocally related to African Moggridgea,

with KI populations rendering the latter paraphyletic–a result consistent with previous mor-

phological findings [40]. Our six-gene Bayesian analysis is also concordant with previous

molecular results [35], with a deep and reciprocally-monophyletic separation between true

Moggridgea and Australian Bertmainius, although the latter study was limited in its taxon and

gene sampling and appropriate outgroups to confirm the exact relationships, compared with

the current study.

But how did an otherwise African spider lineage end up on KI in southern Australia? To

address this question we used two lines of evidence: divergence dating between African and

Australian exemplars; and divergence dating between both the KI populations of Moggridgea.

The (null) hypothesis of Gondwanan vicariance requires a very old divergence date of 110

+ Mya between African and Australian Moggridgea to be consistent with the vicariant breakup

of Gondwana [3]. The inferred split between M. rainbowi and African M. intermedia ranged

from 2.27–16.02 Mya (Table 2), and the inferred age for the divergence of the two KI popula-

tions of M. rainbowi ranged from 1.10–6.39 Mya. Although there may be considerable uncer-

tainty in the use of a ‘borrowed’ rate for COI to estimate divergence times, even if the HPD

error margins for our dating estimate were doubled or tripled, it is clear that the dates for these

Table 2. Estimates of time (in millions of years) to most recent common ancestors (TMRCA) and 95% highest posterior density (HPD) intervals for

key nodes and posterior mean and effective sample size [ESS] values, generated using BEAST.

Parameters TMRCA Node 1

(Moggridgea Dispersal)

+ 95% Highest Posterior

Density

TMRCA Node 2 (KI Population Divergence)

+ 95% Highest Posterior Density

Posterior

Mean

Posterior

ESS

Strict Clock, GTR Models, Speciation:

Yule Process

16.02 6.39 -6059.22 20.04

8.87–25.60 3.48–10.23

Strict Clock, HKY Models, Speciation:

Yule Process

2.27 1.10 -6478.87 1449.97

1.89–2.65 0.87–1.34

Strict Clock, GTR Models, Speciation:

Birth-Death Process

15.98 6.35 -5813.92 8.93

8.63–25.96 3.55–10.37

Strict Clock, HKY Models, Speciation:

Birth-Death Process

2.27 1.10 -6259.82 1672.67

1.91–2.67 0.86–1.34

Exponential Clock, GTR Models,

Speciation: Yule Process

10.59 4.06 -6021.34 5.93

4.01–19.94 1.59–7.66

Exponential Clock, HKY Models,

Speciation: Yule Process

3.54 1.75 -6155.69 2310.32

2.35–4.96 1.17–2.45

Exponential Clock, GTR Models,

Speciation: Birth-Death Process

10.49 3.69 -5789.97 7.62

3.97–19.71 1.60–7.45

Exponential Clock, HKY Models,

Speciation: Birth-Death Process

3.54 1.73 -5936.87 1607.35

2.36–4.92 1.16–2.40

Lognormal Clock, GTR Models,

Speciation: Yule Process

15.44 5.96 -6035.79 9.76

5.36–27.15 1.62–11.13

Lognormal Clock, HKY Models,

Speciation: Yule Process

8.48 3.56 -6172.48 1701.01

3.33–13.97 1.25–6.53

Lognormal Clock, GTR Models,

Speciation: Birth-Death Process

15.40 5.77 -5821.38 10.17

5.41–27.32 1.51–10.63

Lognormal Clock, HKY Models,

Speciation: Birth-Death Process

8.48 3.47 -5953.30 1825.83

3.32–14.12 1.22–6.37

https://doi.org/10.1371/journal.pone.0180139.t002
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nodes are relatively recent, and not concordant with Africa’s long isolation from the rest of

Gondwana. Therefore, vicariance must be rejected as a plausible hypothesis for the presence of

Moggridgea on KI.

The first of two alternative hypotheses (H1) is that Moggridgea was accidentally introduced

from Africa to KI by humans, such as explorers, sealers or European settlers who arrived in

1802 [62]. The sealers came from North America, and settled at what is now American River

[63]. If humans brought Moggridgea to KI at any time from 1802 onwards (assuming a single

introduction), intra-specific phylogeographic structure and genetic divergence equating to

1.10–6.39 Mya of isolation in different regions of KI would be highly unlikely.

While we cannot disprove more than one introduction of the same species, each with diver-

gent mtDNA, to different locations on KI, the probability of two successful dispersal events for

the same African species must be very low. Similarly, this hypothesis cannot be rejected on the

basis of the divergence of M. rainbowi from M. intermedia alone, given our incomplete sam-

pling of African taxa and the possibility of another unknown species in Africa being a closer rel-

ative to M. rainbowi. There is also the possibility of putatively unsampled littoral zone lineages

from Africa, which would be more likely to be carried by explorers or oceanic vessels. However,

no littoral species are so far known, although concentrated fieldwork would be required to con-

firm this. More than one introduction also seems highly unlikely due to the significant level of

genetic differentiation between M. rainbowi populations at American River and Western River,

which is consistent with Moggridgea arriving well before humans colonised the island.

The final hypothesis (H2) predicts that Moggridgea is present in Australia due to long-dis-

tance dispersal from southern Africa. This proposition, which best fits the estimated diver-

gence date of 2.27–16.02 Mya, cannot be rejected given current morphological and molecular

evidence, and is our preferred explanation for the data. Long-distance dispersal of 10,000 km

may be improbable for a sedentary trapdoor spider such as Moggridgea, but oceanic dispersal

is not unprecedented for this genus, at least over shorter distances. Most species occur on

mainland Africa, but three species are known from offshore islands. These include M. occidua
(Simon, 1907) from Prı́ncipe, M. nesiota Griswold, 1987 from Comoros, and M. socotra Gris-

wold, 1987 from Socotra [64,40]. Prı́ncipe and Socotra are both continental fragments of main-

land Africa, and therefore their fauna may have originated by vicariance and not dispersal.

However, the Comoros are volcanic in origin and were formed between 0.1 and 7.7 Mya [65].

Moggridgea nesiota Griswold 1987b is found on the island of Moheli, which was formed 5.5

Mya, suggesting that the presence of this species there can only be explained by dispersal from

mainland Africa (approximately 340 km away). Although only a small fraction of the distance

between the south-western Cape and KI, this distribution does suggest that Moggridgea is

capable of oceanic dispersal, most likely facilitated by rafting given their burrow-dwelling exis-

tence. Colonisation by individuals who have arrived via rafting will inevitably occur in the lit-

toral zone [66] which is consistent with the habitat of M. rainbowi at American River, where

their burrows have only been found in vertical banks just above the high tide mark [40]. This

habitat also provides further evidence of an unusual, possibly high degree of salt tolerance.

While this study represents the first robust evidence of long-distance trans-oceanic dis-

persal in a mygalomorph spider, oceanic dispersal at a smaller scale (e.g. as for M. nesiota) can

be inferred for several other mygalomorphs. This is especially so for those species that occur

on newly formed islands of volcanic origin (e.g. Galapagos Islands and Hawaii), and those that

were once connected to a continental landmass, such as the Seychelles, the latter of which are

part of the granitic Mascarene Plateau which broke off from the Indian Plate about 66 Mya)

[17]. While some mygalomorphs found on non-continental islands are capable of ballooning

(e.g. Ummidia Thorell, 1878 which is present on the volcanic island Saint Vincent in the

Caribbean [67]; and Conothele Thorell, 1878 which occurs on some Pacific Islands and the
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Seychelles [68,69]), there are also other mygalomorphs that cannot disperse this way, and yet

are present on young, isolated landforms. The barychelid Nihoa hawaiiensis (Raven, 1988)

[70] occurs on the Leeward Islands [71] which form part of the Society islands and has a very

recent age progression of 1–4.5 Mya [72]. Species of a second barychelid genus, Idioctis L.

Koch, 1874 inhabit numerous islands (i.e. Fiji, Western Samoa, Madagascar, the Seychelles,

Christmas Island, and Caroline and Marshall Islands), as well as the intertidal or littoral zones

of northern Australia, New Caledonia and the Solomon Islands [71]. Their habitat and distri-

bution suggests oceanic dispersal may be the most plausible hypothesis to explain their distri-

bution patterns [70]. A third barychelid genus, Sason Simon, 1887, occurs in the Seychelles,

the Andaman and Mariana Islands, southern India, Ceylon, northern Australia and New

Guinea [73]. Their arboreal nests may render them more amenable to oceanic travel; if an

entire log or tree was dislodged and became oceanic flotsam, survival of a trans-oceanic jour-

ney may have been possible [19,20]. However, while the evidence supporting these hypothe-

sised oceanic dispersals is compelling, none are yet supported by dated molecular phylogenies.

The direction of dispersal events can help draw conclusions about the origin of taxa. For

example, taxa in Hawaii which rely on wind dispersal, such as birds and spiders, come primar-

ily from the east [66], as predicted by storm patterns. However, taxa that disperse via rafting

come mostly from the west, as predicted by oceanic currents. For dispersal via rafting, these

currents may assist in the movement of buoyant objects, such as seed pods, over long distances

[14]. Similarly, these currents could also be a driving force in the movement of a large vegeta-

tion rafts and other debris from Africa to Australia.

The origin of much of Australia’s mygalomorph fauna has been attributed to invasion from

the north and south of the continent [74], however the potential mechanisms of dispersal are

not known [see 73]. The main difficulties with trans-oceanic dispersal for mygalomorphs have

been discussed for ground spiders [75], and include prolonged exposure to desiccating atmo-

sphere, lack of non-saline water, and the extremely small probability of juveniles settling in a

suitable habitat, maturing, and mating [20]. However, dispersal via rafting cannot be ruled out

for migids [22]. There are a number of other factors worth considering which may lead trap-

door spiders to be suited to oceanic dispersal, such as their low metabolic rate [76]. The use of

silk-lined burrows with a snugly fitting trapdoor provides a relatively stable microhabitat,

enabling trapdoor spiders to regulate temperature and humidity [77]. If a rafting event was

facilitated by the movement of a large mass of earth or whole trees, it is plausible that spider

burrows may remain intact for long periods. Nest building, defined as thickened silk placed in

a pre-existing niche or cavity (requiring minimal excavation) has been well documented in

African Moggridgea, and is more prevalent than true burrow building [64]. This method allows

spiders to colonise arboreal habitats, which may aid their dispersal. Dispersal by a gravid

female capable of producing numerous juveniles, would enhance the chance of a successful

dispersal event and subsequent mating [20]. In addition, the ability of mygalomorph spiders to

resist drowning and use stored oxygen is a critical survival tactic in terrestrial environments

when burrows are temporarily flooded [78], and the same is likely to be true on oceanic rafts.

While there is no doubt that large expanses of seawater pose a significant challenge to oceanic

dispersal, they are clearly not insurmountable barriers, given enough time. With their low

food intake requirements, protective burrows, and ability to ‘hold their breath’, small trapdoor

spiders may be even better equipped for dispersal than previously realised.
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