

EFFECT OF ANIMAL TYPE OR TREATMENT ON THE EFFICIENCY OF LEAN MEAT PRODUCTION AND THE FATTY ACID COMPOSITION OF MEAT

THESIS SUBMITTED FOR THE DEGREE OF MASTER OF AGRICULTURAL SCIENCE

ΒY

ABLA ZEHOUR CUTHBERTSON NEE BENHAMMOUCHE

INGENIEUR AGRONOME (ZOOTECHNIE) INSTITUT NATIONAL AGRONOMIQUE, EL HARRACH, ALGIERS

GRAD. DIP. AG. (R.A.C.)

Department of Animal Sciences Waite Agricultural Research Institute The University of Adelaide

1988

STATEMENT

k

I certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in any University and that, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except when due reference is made in the text. DEDICATION

I WISH TO DEDICATE THIS WORK TO

A Mamam, a Papa, a Dene et a tous ceux qui me sont chers, je dedis ce modeste ouvrage

(To my Mother, Father, Dene and all those that are dear to me, I dedicate this modest work

SUMMARY

The consumption of saturated fat is known to be related to the incidence of coronary heart disease in humans. Part of the daily intake of fat by Australians arises from the consumption of red meat from sheep and cattle, but it could be reduced by producing leaner animals than those raised at present. In addition to the advantages of human health, there may be agricultural advantages also in terms of efficiency of production.

The study reported in the thesis examines:

- (a) the effect of various breed types (x4) on the growth, body composition (fat content), feed intake and efficiency of conversion of feed to live weight and lean body of grazing sheep.
- (b) the effect of androgenic and androgenic plus oestrogenic agents on the growth and body composition of sheep grazing or pen fed roughage or oil seed diets.
- (c) the effect of the consumption of lean meat or meat with a modified fatty acid composition on the plasma lipids of other experimental animals.

It was necessary to employ and validate a number of methods and techniques in the study and to analyse a number of markers or metabolites in determining body pool, rates of digesta flow and tissue concentrations. These included:

- (a) tritiated water space and calculation of body fat;
- (b) azeotropic distillation of hydrogen isotopes;
- (c) B-counting of isotopes;
- (d) field use of chromic oxide slow release capsules
 (SRC);
- (e) validation of use of SRCs in pen experiments;
- (f) analysis of chromium by atomic absorption
 spectrometry;
- (g) muscle biopsy of lambs by needle technique;
- (h) thin layer and gas liquid chromatography of muscle lipids.

Following an introduction, the thesis presents a literature review which considers the background of the methods and findings of previous studies carried out on growth, body composition, feed intake of grazing animals, the use of anabolic agents, fatty acid composition of ruminants fats and the effect of saturated fat on human health. The results are presented in three chapters, each with its own discussion. A general discussion follows.

The experiments carried out in the present study demonstrated a number of points. They were:

- (i) The lamb breeds used showed differences in growth rate and body composition under field conditions.
- (ii) The most common lamb used in meat production in Australia (Dorset cross breds) deposited fat at an earlier age than the other breeds, while Suffolk cross breds produced the most lean meat.
- (iii) The practice of crossing British breeds with common wool producing Merinos lessens the amount of fat in the carcass by slowing down by body growth rate, not by lessening <u>per se</u> fat content at the same body weight.
- (iv) Anabolic agents altered the natural composition of a particular breed; an oestrogenic agent implanted in wethers increased growth while an oestrogenic plus androgenic agent increased growth also but lessened fat deposition.

- (v) Meat from animals of different fat content when incorporated into an omnivore diet, brought about cholesterol levels that were related to fat intake but were unaffected by meat intake.
- (vi) When lambs were fed oil seed that altered their structural lipid to a different fatty acid type, an additional decrease in omnivore cholesterol occurred.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr B.D. Siebert for his guidance and support in the carrying out of the experimental work and preparation of the thesis. Also I wish to thank Dr J.R. Sabine for his interest in the work.

In addition I wish to thank Beth Howard for her continuous support and training in the estimation of body water in animals.

Dr Phil Hynd kindly gave friendly advice and helped with surgical procedures. My thanks are extended to Misses B. Applebee and D. Cox on Dr Hynd's staff, for being so helpful and pleasant. I also wish to acknowledge Mr B. Cowan for his assistance in the field with special thanks to his sheep dog "Chester".

I must thank David Bohen also for helping me with the gas chromatography.

Dr Ray Correll of the CSIRO Division of Mathematics and Statistics kindly assisted me. His friendly guidance was of great help. To John Dighton of the CSIRO Division of Soils go my thanks for introducing me to the azeotropic distillation.

Mr G. Lewis kindly provided skillful technical asistance in a lipid laboratory. I wish to thank Ms C. Ween for helping with the care of the animals.

-T also wish to acknowledge the general assistance given by Rex Connolly, Tony Weatherly, Henrik Bozik of the Department of Animal Sciences for their continual support and friendship. Mr Ray Norton and the farm staff of the Waite Agricultural Research Institute are gratefully acknowledged for their help.

I also wish to acknowledge the assistance of the Department of Agricultural Biochemistry who assisted me in the completion of my thesis. In this regard the support and friendship of Peter and Ursula Langdrige and Sally Smith is gratefully acknowledged.

I would like to express my deepest gratitude to the Squires family (Vic, Shirley, Courtney and Logan) for acting as my Australian family and supporting me in my absence from my original homeland. Frank Seppelt also supported me in this regard.

I wish to thank Peter Hawryszkiewycz for his help with the printing and Patricia Young for her competent typing.

Finally my special thanks go to my family in Algeria and to

my husband, Dene, for being so supportive and understanding.

TABLE OF CONTENTS

CHAPTER 1	INTRODUCTION	1
CHAPTER 2	REVIEW OF THE LITERATURE	3
SECTION 2.1 2.1.1 2.1.2 2.1.2.1	Prime Lamb Production Introduction Production Production Systems	3 3 5 5
SECTION 2.2 2.2.1 2.2.2 2.2.2.1 2.2.2.2 2.2.2.3 2.2.3 2.2.4 2.2.4.1 2.2.4.2 2.2.4.2.1 2.2.4.2.1 2.2.4.2.1.1 2.2.4.2.1.2 2.2.4.2.2 2.2.4.2.2 2.2.4.2.3 2.2.4.2.4		9 9 10 10 11 11 15 16 18 19 19 20 23 30 35 36
SECTION 2.3 2.3.1 2.3.2 2.3.3 2.3.3.1	Feed Intake In Growing Animals/ Efficiency Of Growth Introduction Mechanisms Of Intake Control Effect of Diet On The Voluntary Feed Intake Gastrointestinal Tract Limitation To Feed Intake	38 38 39 43 45

	2.3.3.2 2.3.3.3 2.3.3.4 2.3.3.5 2.3.3.6	Feed Intake Limitations Due To Ruminant Metabolic Functions Feed Intake Limitations Associated With The Environment Control Of Food Intake In The Regulation of Energy Balance Fats In The Ruminant Diet Efficiency Of Production	49 53 53 56 58
SECTION 2	2.4 2.4.1 2.4.2 2.4.2.1 2.4.2.2 2.4.2.3 2.4.3 2.4.3 2.4.3.1 2.4.3.2 2.4.3.3 2.4.3.3	Anabolic Agents Introduction Engogenous Hormones Pituitary Hormones Insulin Gonadol Steroids Exogenous Hormones, Steroid Implants Testosterone Trenbolone Acetate (TBA) Trenbolone Acetate And Oestradiol Anabolic Agents and Their Use in Sheep	65 65 67 67 68 69 69 70 71
SECTION 2	2.5 2.5.1 2.5.2 2.5.3 2.5.3.1 2.5.3.2 2.5.3.3	Fat Type Introduction Fatty Acids Biosynthesis Of Fatty Acids Triglycerides Phospholipids Cholesterol	73 73 74 75 81 82 83
SECTION	2.6 2.6.1 2.6.2 2.6.3 2.6.3.1 2.6.3.2	Meat As Food Introduction Meat Consumption In Australia Animal Fats And Human Health "Hard" Fat Or Storage Fat "Soft" Fat Or Structural Fat	85 85 86 87 88 88
CHAPTER	3	MATERIALS AND METHODS	91
SECTION	3.1 3.1.1 3.1.1.1 3.1.1.2 3.1.2 3.1.3	Body Composition Extraction Of Tritiated Water Lyophilization Method Azeotropic Distillation Method Tritium Assay Prediction Of Body Composition	91 91 92 93 93

SECTION		Feed Intake	96
	3.2.1	Estimation Of Faecal Dry Matter Output Of Grazing Sheep	97
	3.2.1.1	Measured Dry Matter Faecal	_
		Outputs Versus Estimated Dry	100
	3.2.1.2	Matter Outputs Determination Of Chromium In	100
	J•Z•I•Z	Faeces Samples	102
	3.2.3	In Vitro Dry Matter	100
	2 2 2 1	Digestibility Analysis Procedure	$\begin{array}{c} 106 \\ 107 \end{array}$
	3.2.3.1	Procedure	107
SECTION	3.3	Fatty Acid Extraction From	
		Muscle Samples	108
	3.3.1	Sampling Procedure	108
	3.3.2	Procedure Of Fatty Acid	109
3			
CHAPTER	4	EXPERIMENT 1 : EFFECT OF BREED	111
		TYPE ON GROWTH AND LEAN MEAT	
		PRODUCTION IN GRAZING LAMBS	
	4.1	Introduction	111
	4.2	Experimental Procedure	113
	4.2.1	Site	113
	4.2.2	Animals	113
	4.2.3	Measurements	114
	4.3	Results	115
	4.3.1	Live Weight	115
	4.3.2	Body Composition	120
	4.4	Feed Intake And Efficiency Of	
		Feed Conversion	122
	4.4.1	Voluntary Feed Intake And	
		Metabolizable Energy Intake	122
	4.4.2	Efficiences Of Feed Conversion	123
	4.4.2.1	Efficiency Of Feed Conversion	
		Into Growth	126
	4.4.2.2	Efficiency Of Feed Conversion	100
		Into Lean Tissues	129
	4.4.2.3	Gross Efficiency	130
	4.5	Discussion	131

CHAPTER	5	EXPERIMENT 2 : EFFECT OF ANDROGENIC AND ANDROGENIC PLUS OESTROGENIC AGENTS ON THE GROWTH AND BODY COMPOSITION OF SHEEP GRAZING OR PEN-FED ROUGHAGE OR OIL SEED DIETS	136
	5.1 5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.3 5.3.3.1 5.3.3.1 5.3.3.2	Introduction Experimental Procedure Diets Measurements Results Live Weight Body Composition Feed Intake And Efficiency Of Feed Conversion Feed Intake Efficiency Of Feed Conversion And Gross Efficiency Discussion	136 137 138 139 140 140 144 145 145 145 150 156
CHAPTER	6	EXPERIMENT 3 : THE EFFECTS OF THE FATS OF RED MEAT ON PLASMA CHOLESTEROL	163
	6.1 6.2	Introduction Experiment 3a : Effects Of Meat Of Different Fat Content	163
	$\begin{array}{c} 6.2.1 \\ 6.2.1.1 \\ 6.2.1.2 \\ 6.2.1.3 \\ 6.2.2 \\ 6.2.2.1 \\ 6.2.2.1 \\ 6.2.2.2 \end{array}$	On The Plasma Lipids Experimental Procedure Diets Animals Measurements Results Carcass And Fat Depth Fatty Acid Composition Of	165 165 166 167 167 168 168
	6.2.2.3	Intramuscular Lipid Total Cholesterol And High Density Lipoprotein (HDL) Cholesterol Of Pigs Fed Meat	170
	6.2.3 6.3	Diets Of Different Fat Content Discussion Experiment 3b : Effects Of W-3 And W-6 Meats On The Plasma	173 175
		Cholesterol Of Pigs	178

С

	6.3.1 6.3.1.1	Experimental Procedure Fatty Acid Composition of Muscle Samples Of Sheep Fed	178
		Linseed/Lucerne Diet And Lucerne/Oat Diet Diets Animals Measurements	178 178 179 179 180
	6.3.2 6.3.2.1	Results Fatty Acid Composition Of Sheep Fed Different	
	6.3.2.2	Diets Total Plasma Cholesterol Of Pigs Fed Different	180
	6.3.2.3	Diets Total Plasma Cholesterol And Fat Intake	183 185
	6.4	Discussion	187
CHAPTER	7	GENERAL DISCUSSION	190
CHAPTER	8	BIBLIOGRAPHY	196

INDEX OF TABLES

TABLE	1	Effect Of Maturation On The Composition And On Voluntary Intake Of Phalaris And Sub-Clover When Offered To Adult Merino Wethers	48
TABLE	2	Mean Values Of Total Body Water Of Each Sheep Determined By Dilution Of Tritiated Water Extracted By Either Azeotropic Distillation Or Lyophilisation	98
TABLE	3	Relationship Between Estimated And Measured Faecal Dry Matter Outputs Of Sheep Fitted With Chromic Oxyde Slow Release Device And Individually Pen Fed	103
TABLE	4	Dry Matter Digestibilities Of Pasture Samples Taken From Oesophageal Fistulated Sheep	110
TABLE	5	Live Weight And Body Composition Of The Different Breeds	116
TABLE	6	Voluntary Feed Intake And Efficiencies Of Feed Conversion	125
TABLE	7	Live Weight and Liveweight Gains Of Torelor, Finaplix Treated Wethers And Control Wethers	141
TABLE	8	Body Composition Of Torelor, Finaplix Treated And Control Wethers	146

TABLE	9	Feed Intake And Efficiences Of Feed Conversion Of Torelor, Finaplix And Control Wethers	149
TABLE		The Composition Of Low And High Fat Meat Based Diets And A Low Fat Cereal Diet Fed To Pigs (g/50kg Liveweight/Day)	169
TABLE		Carcass Weights And Fat Depths Of Dorset X Romeny Merino And South Australian Merino Breeds	170
TABLE	12	Body Composition Data And Intramuscular Lipid Of Dorset Cross Bred And South Australian Merino Breeds Prior to Slaughter	172
TABLE	13	Means Of Cholesterol And High Density Lipoprotein Cholesterol In Plasma Of Pigs Fed Diets Based On Lean Or Fat Or Cereal Diets	174
TABLE	14	Fat Intake Of Pigs Fed Different Diets (a) And Major Fatty Acids Of W-3 Meat Based Diets And W-6 Meat Based Diets (b)	181
TABLE	15	Fatty Acid Composition Of Muscle Samples Taken From Wethers Fed Linseed/Lucerne Diet And Lucerne/Oat Diet	182
TABLE	16	Total Plasma Cholesterol Of Pigs Fed Different Diets	184

INDEX OF FIGURES

FIGURE	1	Tissue Growth Patterns In Steers	25
FIGURE	2	Comparison Of The Physiological And Metabolic Changes That Accompany Destructive Lesions Of The Ventro-Medial Hypothalamus (V.M-H) And Lateral Hypothalamus (LH)	44
FIGURE	3	Relationship Between The Digestible Energy (DE) Content Of The Diet and DE Intake, Feed Intake And Faeces Output For Concentrate Based Diets	46
FIGURE	4	Predicted Voluntary Intakes Of Three Feeds By Fattening Mature Sheep, a) Predicted Empty Body Weights, and b) Food Intake	52
FIGURE	5	Relationship Of The Measured Counts Of Radioactivity Of Various Concentrations Of Tritium When Extracted By Distillation (.) Or Sublimation (X) Technique	99
FIGURE	6	Relationship Between Estimated Faecal Dry Matter Output And Measured Faecal Dry Matter Output	104
FIGURE	7	Live Weight And Body Composition Of South Australian Merino, Peppin Merino, Dorset Cross and Suffolk Cross Animals, a) Live Weight (kg); b) Fat (kg); c) Lean Body Mass, and d) Energy (MJ)	117
FIGURE	8	Voluntary Feed Intake Of The Four Experimental Breeds Over Three Experimental Periods, a) Voluntary Feed Intake, and b) Metabolizable Energy Intake (MJ/Day)	124

0

PAGE	
------	--

FIGURE	9	Efficiency Of Feed Conversion, a) Liveweight Gain/Feed Intake; b) Lean Body Mass Gain/Feed Intake, and c) Gross Efficiency (ME Gain/ME Intake)	127
FIGURE	10	Live Weight (kg),(a) and Liveweight Gains (g/Day), (b) Of Torelor, Finaplix Treated And Control Wethers	142
FIGURE	11	Body Composition Of Torelor And Finaplix Treated And Control Wethers, a) Lean Body Mass (kg); b) Fat (kg), and c) Energy (MJ)	147
FIGURE	12	Feed Intake Of Torelor, Finaplix Treated And Control Wethers, a) Feed Intake (kg/Day), and b) Metabolizable Energy Intake (MJ/Day)	152
FIGURE	13	Efficiency Of Feed Conversion Of Torelor, Finaplix Treated And Control Wethers, Expressed In Terms Of, a) Liveweight Gain/Feed Intake; b) Lean Body Mass Gain/Feed Intake, and c) Gross Efficiency ME Gain/ME Intake	153
FIGURE	14	Carcass Weight And Fat Depths Of Dorset Cross Breds And South Australian Merino Lambs At Slaughter, a) Carcass Weight (kg), and b) Fat Depth (mm)	171
FIGURE	15	The Plasma Cholesterol Of Pigs Fed Meat Diets From Animals Fed W-6 Or W-3 Fatty Acids	186