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Abstract 

The presence of flexible timber diaphragms in many existing unreinforced masonry buildings poses a 

significant challenge for the assessment of their seismic vulnerability. When diaphragms are flexible, 

different parts of a structure can interact with each other dynamically, in a way not typically encountered 

in modern structures with rigid diaphragms. As a result, the seismic analysis methods developed for 

buildings with rigid diaphragms, as well as our basic understanding of the dynamic behaviours of 

buildings under earthquake excitations, cannot be applied directly for buildings with flexible diaphragms. 

This thesis addresses two issues that require immediate attention in improving the seismic analysis of 

unreinforced masonry buildings with flexible diaphragms, namely (1) to enhance our understanding of the 

dynamic response characteristics of low-rise buildings with flexible diaphragms, and (2) to investigate the 

applicability of an array of existing analysis methods developed for rigid diaphragm structures. 

The research work presented in this thesis begins with a basic analysis of the elastic behaviour of 

symmetric buildings with flexible diaphragms. Through an analytical study of their modal properties, it is 

shown that at least two dominant modes are present in the dynamic responses of buildings with flexible 

diaphragms. Using the results of modal analysis, an improvement to the linear static analysis method is 

proposed. 

The inelastic behaviours of symmetric- and asymmetric-plan building systems with flexible diaphragms 

are then investigated through a systematic parametric analysis. It is shown that the effect of diaphragm 

flexibility varies depending on the level of stiffness- and strength-eccentricity of the system. A general 

diaphragm classification is developed to explain the influence of diaphragm flexibility on the global 

building response.  
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A simple numerical modelling technique to incorporate the dynamic behaviours of flexible diaphragms in 

a three-dimensional equivalent frame modelling approach is also investigated, and validated against shake 

table test data. 

Finally, the applicability of nonlinear static procedures utilising single-mode, multi-mode and adaptive 

pushover analyses are investigated. Practical recommendations are provided for the use of various 

pushover analysis methods for unreinforced masonry buildings with flexible diaphragms.  
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CHAPTER 1  

 

INTRODUCTION 

 

The poor performance of unreinforced masonry (URM) buildings during strong earthquake events is well 

recognised. Throughout history, and across different regions of the world, earthquake damages to URM 

buildings have led to countless number of fatalities, sometimes resulting in complete devastations of 

communities (Figure 1). Recognising the high vulnerability of URM buildings, New Zealand and 

California, two of the most seismically active regions with large representations of URM buildings, 

prohibited new URM building constructions in the 1930’s after devastating earthquakes (i.e. 1931 Napier 

earthquake in New Zealand and 1933 Long Beach earthquake in California). Since then, the ban on URM 

buildings has spread throughout the seismically active areas of the western United States and Canada 

(Bruneau 1995). However, URM buildings still represent large proportions of total building stock in 

many parts of the world, and they continue to pose significant seismic risk, as evidenced by the 

successive earthquakes in the recent decades, including in Iran (2003), Pakistan (2005), Peru (2007), 

China (2008) and Nepal (2015). Even in those regions where the URM has become an archaic 

construction material, extensive damages to existing URM buildings still occur, as observed during the 

Christchurch earthquake sequence of 2011/2012 in New Zealand (Dizhur et al. 2011; Ingham and Griffith 

2011; Griffith et al. 2013). Furthermore, the vulnerability of URM buildings is not confined to high-

seismicity regions; the poor performances of URM buildings have been reported consistently in Australia 

(Griffith 1991; Edwards et al. 2010), where the seismicity is low to moderate. 

 

Figure 1. View of Emerson Street after the 1931 Napier earthquake. With permission from Christchurch 

City Libraries (CCL PhotoCD 4, IMG0041). 
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The high seismic vulnerability of URM buildings is not surprising, given that many existing buildings 

were built before the introduction of seismic codes and guidelines (Russel 2010), when the awareness of 

the importance of aseismic design was virtually non-existent. As a result, URM buildings contain several 

undesirable construction details in view of the modern seismic design principles, including:  

 Brittle masonry material used for lateral load-resisting elements, which result in limited ductility 

and energy dissipation capacities; 

 Lack of positive connections between floor/roof diaphragms and masonry walls, which can lead 

to the instability of out-of-plane loaded walls; and 

 Use of timber floor and roof systems that have large in-plane flexibility, and the resulting lack of 

“box” type building behaviour.  

Of the several weaknesses listed above, the present research focuses on the role of flexible diaphragms on 

the overall dynamic responses of URM buildings. The specific objectives addressed in this research are: 

1. To develop a comprehensive understanding of the seismic behaviour of URM buildings with 

flexible diaphragms; 

2. To investigate the accuracies of existing seismic analysis methods; and 

3. To contribute towards the improvement of existing seismic analysis methods for URM 

buildings with flexible diaphragms. 

The research needs as reflected in the above objectives are identified in the review of literature presented 

in Chapter 2. The literature review also contains a concise summary of the theoretical bases of nonlinear 

static analysis methods that are referenced in the subsequent chapters of this thesis. 

The remaining chapters are a collection of manuscripts that are either in preparation, submitted, accepted 

or published in recognised journals. Each chapter takes the following format: an introduction explaining 

the background to the papers, the list of papers contained in the chapter, followed by the presentation of 

the papers. 

In Chapter 3, the elastic behaviour of symmetric multistorey buildings with flexible diaphragms is firstly 

investigated using modal analysis to obtain a basic understanding of their dynamic response 

characteristics. It is shown analytically that at least two modes are typically required to capture the 



 

3 

 

majority of mass participation for buildings with flexible diaphragms. From the results of modal analysis, 

simplified expressions are developed to account for diaphragm flexibility in the context of the linear static 

analysis method. This chapter addresses research objectives 1 and 3. 

In Chapter 4, a case study on the accuracy of the numerical model used throughout the present research is 

discussed. The investigated modelling approach is a minor extension of the equivalent frame analysis 

approach utilised in the TREMURI software, with the novelty of using multiple diaphragm elements to 

capture the dynamic behaviours of timber floors and roofs. The accuracy of the modelling approach is 

compared against existing shake table test results of a two-storey stone masonry building. This chapter 

addresses research objective 3. 

In Chapter 5, the results of a comprehensive parametric study carried out using single-storey structural 

systems with inelastic in-plane loaded walls supporting flexible diaphragms are presented. The dynamic 

response characteristics, considering a wide range of diaphragm flexibility, are identified and 

characterised. This chapter addresses research objective 1. 

In Chapter 6, the applicability of single-mode, multi-mode and adaptive nonlinear static procedures are 

evaluated for URM buildings with flexible diaphragms. The most suitable manner in which to apply each 

nonlinear static procedure for URM buildings with flexible diaphragms is identified. A measure of 

diaphragm flexibility developed in Chapter 4 is adapted for identifying the range of diaphragm stiffness 

values for which the single-mode nonlinear static method gives reasonable results. The accuracies of 

various analysis methods are discussed and recommendations are presented. This chapter addresses 

research objectives 2 and 3.  

Chapter 7 summarises the results of the research, highlighting key findings, providing recommendations 

and identifying future research areas. 
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CHAPTER 2  

 

PREVIOUS RESEARCH ON BUILDINGS WITH FLEIXBLE 

DIAPHRAGMS 

 

The seismic responses of buildings with flexible diaphragms are known to differ from those of rigid 

diaphragm structures. The role of diaphragm flexibility is reviewed in this chapter, focusing on 

unreinforced masonry (URM) buildings with timber diaphragms. This chapter also presents the review of 

seismic analysis methods commonly used in practice, namely the linear static and nonlinear static analysis 

procedures. In particular, the theoretical bases of single-mode and multi-mode nonlinear static procedures 

are outlined, providing background information for the subsequent chapters of this thesis. Problems 

associated with the application of the nonlinear static method for URM buildings with flexible 

diaphragms are discussed. 

1. EXPERIMENTAL STUDIES ON BUILDING RESPONSE 

The actual seismic behaviour of URM buildings with flexible diaphragms was reported by Tena-Colunga 

and Abrams (1992), who analysed the measured response of a two-storey unreinforced masonry building 

with timber floor and roof during the Loma Prieta earthquake of 1989. This heritage building, a former 

firehouse in Gilroy California (Figure 1), was constructed in 1890 and was instrumented with six 

accelerometers prior to the 1989 earthquake as part of the California Strong Motion Instrumentation 

Program. The construction system of the building comprised of the load bearing brick masonry walls with 

the first floor diaphragms consisting of timber joists anchored to the perimeter walls by 20 mm diameter 

steel rods, with diagonal sheathing boards and plywood overlay. The roof was also constructed of timber 

joists and boards, with layers of asphalt sheeting for waterproofing. Despite the large magnitude 

earthquake, the limited extent of cracking indicated that the structure responded more or less elastically 

during the earthquake. 
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Figure 1. Gilroy Firehouse (Tena-Colunga & Abrams 1992) 

The records from the accelerometers indicated large amplifications of acceleration and displacement at 

the centre of the roof diaphragm. In the east-west direction, the peak acceleration at the top of the internal 

wall was measured to be 0.41 g, while the peak acceleration at the mid-pan of the roof diaphragm reached 

0.71 g. The normalised Fourier spectra indicated that the frequency content of the in-plane loaded wall 

was similar to the ground motion (Figure 2a), reflecting the stiff nature of masonry. In contrast, the 

normalised Fourier spectra of the roof diaphragm mid-span showed the dominant frequency occurring 

around the natural period of the diaphragm of approximately 0.5 s and filtering out of other frequency 

component (Figure 2b), leading the authors to concluded that, once excited, the diaphragms tended to 

respond independently from the in-plane loaded walls and the ground. 

  

(a) Ground and wall (b) Ground and diaphragm 

Figure 2. Normalised Fourier amplitudes of ground acceleration against the accelerations measured at the 

top of wall and diaphragm (Tena-Colunga & Abrams 1992) 
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The large amplifications of acceleration and displacement of the diaphragms were also observed in a 

subsequent experimental study by Costely and Abrams (1995). They tested two scaled brick masonry 

building models under the unidirectional input of Nahanni earthquake of 1985. To represent flexible 

diaphragms in a scaled model, steel beams with stiffnesses similar to timber diaphragms were used to 

construct the floor and the roof. Their experimental work confirmed the large amplifications and 

independent excitations of the diaphragms when the masonry walls remained elastic. However, when the 

walls cracked and started to rock, the diaphragm amplification reduced and in some cases became 

negligible. The post-cracking behaviour was dominated by the rocking of the in-plane loaded walls, as 

opposed to the excitation of the diaphragms. 

Several experimental studies were also carried out in Europe during the 1990's and early 2000's, focusing 

on improving the seismic capacity of URM buildings with timber floors (Tomaževič et al. 1992; 

Tomaževič et al. 1996; Benedetti et al. 1998). These studies consistently found that when timber 

diaphragms were present without sufficient measures to maintain the integrity of the walls (such as 

anchor connections between the floor and walls, and tie rods between the walls), URM buildings tended 

to fail by the partial out-of-plane collapses of the walls. However, when the partial collapses were 

prevented, buildings with flexible diaphragms have been observed to perform satisfactorily.  

By testing four different scaled models, Model A to Model D with different floor configurations under 

shake table excitations, Tomaževič et al. (1996) showed that the load-deformation capacity of flexible 

diaphragm structures could be comparable to that of an equivalent building with rigid diaphragms. In their 

experiment, Model A had timber diaphragms simply bearing onto the in-plane loaded walls without any 

positive connections. Model B had rigid reinforced concrete floors with tie beams around the perimeter of 

the walls. Models C and D had timber diaphragms identical to that of Model A, but the walls were tied 

around the perimeter by prestressed steel rods, or connected by internal struts (Figure 3). For Model A, 

failure occurred due to the partial collapse of the upper corner of the building. All other models with some 

form of strengthening activated global response mechanisms, with failures occurring in the in-plane 

loaded walls in the first storey. When such global response mechanism was achieved, the plots of base 

shear coefficients against the first storey drifts (Figure 4) showed good performances of timber floor 

systems, when compared to the reinforced concrete floor model. 
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Figure 3. Plan view of models with wall ties, (a) Model C and (b) Model D. Model A is similar but 

without any wall ties (Tomaževič et al. 1996) 

 

Figure 4. Plots of base shear normalised to the weight of the structure for timber diaphragms with no 

connections to the walls (A), reinforced concrete floor (B), and timber diaphragms with tied 

walls (C and D) (Tomaževič et al. 1996) 

Paquette and Bruneau (2003) carried out pseudo-dynamic testing of a single-story brick masonry building 

with a timber diaphragm. The diaphragm was anchored to the perimeter walls by steel rods, and the loads 

were applied by hydraulic jacks to the mid-span of the diaphragm. The test results showed that the 

diaphragms remained essentially elastic even when extensive damage occurred to the in-plane loaded 

walls. As the observed damages consisted of stable rocking and sliding mechanisms, their study also 
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indicated that URM buildings with flexible diaphragms could undergo stable global responses under 

seismic excitations. 

Cohen et al. (2003) conducted shake table testing of long and narrow single-storey scaled reinforced 

masonry buildings with timber and steel deck roofs. Similar to the findings by Costely and Abrams 

(1995), the test results showed high accelerations of the diaphragms in comparison to those of in-plane 

loaded walls (Figure 5). The results also showed that the responses of the stiff in-plane loaded walls 

contained noticeable participation of higher modes (shown by the arrows in Figure 5), while the response 

of the diaphragm appeared to be governed predominantly by a single mode. 

 

Figure 5. Acceleration response of diaphragm mid-span and the top of in-plane loaded walls (Cohen et al. 

2003). 

Yi et al. (2006) conducted a quasi-static testing of a full scale two-storey brick masonry building with 

timber diaphragms. Their experimental results indicated little coupling of the in-plane loaded walls 

because of diaphragm flexibility. However, the test results also showed that despite the weak diaphragm 

coupling, the global response of the building was achieved, as characterised by the variation in the 

vertical stresses in piers due to the overturning moments and the presence of flange effects where an 

additional rocking capacity could be attributed to the axial stresses developed in the out-of-plane walls 

acting as flanges (Figure 6). 
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Figure 6. Vertical stress distribution at base of wall. The tensile and compressive stresses in the out-of-

plane loaded walls A and B indicate flange effect (Yi et al. 2006). With permission from 

ASCE. 

An extensive experimental investigation was recently conducted at the European Centre for Training and 

Research in Earthquake Engineering (EUCENTRE), aimed at understanding the dynamic behaviour of 

stone masonry buildings and to evaluate the effectiveness of retrofit strategies related to diaphragm 

stiffness (Magenes et al. 2014; Sinaldi et al. 2014). Three full scale two-storey buildings with different 

diaphragm materials (timber and concrete) and diaphragm to wall connection details were tested under 

shake table excitations. In general, the results were consistent with previous experimental observations, 

namely: 

 out-of-plane wall failure occurred when flexible timber diaphragms were not positively anchored 

to the perimeter walls, and the in-plane capacities of the load bearing walls could not be 

exploited; 

 even when diaphragms were not rigid, the seismic resistance of the building could be comparable 

to that of the rigid diaphragm condition, provided that the out-of-plane wall failure was prevented 

with sufficient connections between the walls and the diaphragm; and 

 The flexible diaphragm provided limited coupling of in-plane loaded walls, and the walls tended 

to respond as independent components (Penna 2015). 

A recent experimental study by Vintzileou et al. (2015) also confirmed the above response characteristics 

of URM buildings with flexible diaphragms.  
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2. ANALYTICAL STUDIES ON BUILDING RESPONSE 

Analytical studies of the effects of diaphragm flexibility on the dynamic responses of buildings were 

carried out as early as in the 1960s by Shephard and Donald (1967). They proposed a lumped mass model 

with beam elements to capture the dynamic behaviour of flexible diaphragms. The application of this 

model to simple frame buildings (Figure 7) showed that the deformation of the diaphragm appeared only 

in higher modes. Based on this observation, the authors concluded that while flexible diaphragms may 

modify the higher mode shapes, they are likely to have little effect on the final loading of the lateral load-

resisting elements. 

 

Figure 7. Early lumped mass and beam model (Shepherd & Donald 1967). 

Jain and Jennings (1985) developed a mathematical model of symmetric long-span buildings with end 

shear walls by idealising the diaphragms as Timoshenko beams. Using the derived expressions, the modal 

properties of the Administrative Building of Arvin High School were investigated (Figure 8). In contrast 

to the conclusion of Shepherd and Donald (1967), the model showed that the largest contribution to the 

base shear resulted from the first two modes, which comprised mainly of the vibrations of the floor and 

the roof. It was postulated that for multistorey buildings with flexible diaphragms, lower modes may 

comprise of the independent vibrations of the floor diaphrams. 
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Figure 8. Modal properties of Administrative Building of Arvin High School (Jain & Jennings 1985). 

Tena-Colunga and Abrams (1992) (see also Tena-Colunga 1992) developed discrete multi-degree of 

freedom (MDOF) linear models of the Gilroy firehouse (Figure 1), which had been instrumented before 

the Loma Prieta earthquake. The in-plane loaded walls and the timber diaphragms were represented by 

shear springs as shown in Figure 9. The out-of-plane loaded walls were not modelled, while the soil 

compliance was included. The calibration of the material parameters enabled the model to produce results 

compatible with the measured data. The sensitivity analyses on the calibrated model showed that: 

 In agreement with Jain and Jannings (1985), the lower modes were governed by the independent 

vibrations of the diaphragms, while the higher modes contained the almost independent vibrations 

of the in-plane loaded walls (Figure 10). This result also supported the experimental observations 

of Costley and Abrams (1995) that in the elastic range, the diaphragms and the walls tended to 

respond independently. 

 The distribution of the in-plane wall accelerations and displacements were uneven. The more 

flexible wall tended to experience larger accelerations and displacements compared to the stiffer 

wall. 

 When compared to the same building model but with rigid diaphragms, in the presence of soil 

compliance the flexible diaphragms increased both the drifts and the accelerations of the walls. 

For a fixed-based model, the drifts increased but the accelerations reduced. Both the drifts and the 
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accelerations at the diaphragms' mid-spans, however, increased due to diaphragm flexibility 

regardless of the base fixity of the model. 

 

Figure 9. Lumped parameter model of Gilroy Firehouse in the east-west direction (Tena-Colunga & 

Abrams 1992). 

 

Figure 10. Mode shapes of Gilroy Firehouse in the east-west direction (Tena-Colunga & Abrams 1992) 

The apparent contradictory finding of the earlier study by Shepherd and Donald (1967) that the flexible 

diaphragms did not significantly affect the dynamic response of the structure was explained by a study 

carried out by Saffarini and Qudaimat (1992), which focused on the relative stiffness of the diaphragm 

with respect to the stiffness of the lateral load-resisting elements. They conducted elastic static analyses 
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on 37 reinforced concrete (RC) buildings with varying storey heights, number of storeys, floor slab 

system, type of lateral load-resisting system and openings in slab. The results showed that even when the 

diaphragms were flexible, if the relative stiffness of the diaphragms in comparison to the stiffness of the 

lateral load-resisting elements was large, the response of the structure was similar to the rigid diaphragm 

case. In particular, the diaphragm flexibility was found to have more significant effects on shear wall 

structures when (1) storey height was reduced, (2) number of storey was reduced, and (3) plan aspect ratio 

of the building was increased. When the lateral load-resisting system was composed only of frames, as in 

the case of the study conducted by Shepherd and Donald (1967), the differences in the seismic base shear 

between flexible diaphragm system and the rigid diaphragm system were less than 1%. 

Kim and White (2004a) developed a nonlinear MDOF discrete model with a diaphragm macroelement 

specifically developed for low-rise shear wall buildings with flexible diaphragms. In contrast to the 

similar model previously used by Tena-Colunga and Abrams (1992), the MDOF model of Kim and White 

(2004a) allowed the nonlinear hysteretic behaviours of the walls and the diaphragms, as well as the three-

dimensional effects of the building response, to be captured.  The in-plane and the out-of-plane walls 

were represented by shear springs with appropriate hysteretic properties. In order to model typical 

deformation modes of flexible diaphragms, a custom macroelement was developed as shown in Figure 11. 

The kinematics of the element was defined by six degrees of freedom, which could express the rigid body 

movements, shear and bending deformation modes. The authors applied the modelling approach to a 

single-storey half-scale reinforced masonry building previously tested by Cohen et al. (2004), with the 

element behaviours determined through model calibration against the test data. 

 

Figure 11. Discrete nonlinear model (Kim & White 2004a). 

The calibration of the nonlinear MDOF model allowed the simulations of the peak responses that matched 

well with the experimental results, even at large damage levels. Using the calibrated element properties as 
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the reference values, sensitivity analyses were conducted by varying the stiffnesses and the strengths of 

the diaphragm, in-plane loaded walls and the out-of-plane loaded walls. In the sensitivity analysis, the 

stiffness and strength were considered to be inter-related; increasing the initial stiffness also increased the 

yield strength. The sensitivity analyses showed that 

 Increasing the diaphragm stiffness reduced the drift demands on the out-of-plane loaded walls. 

However, the drift of the in-plane loaded walls increased initially, before reducing asymptotically 

to the rigid diaphragm condition (Figure 12); 

 Increasing the in-plane wall stiffness reduced the drifts of both the in-plane and out-of-plane 

loaded walls; and 

 Increasing the out-of-plane wall stiffness reduced the drifts of the out-of-plane loaded wall, but 

had limited effects on the response of the in-plane loaded wall. 

 

Figure 12. Peak drift ratio of in-plane loaded wall as a function of the normalised diaphragm stiffness 

(Kim & White 2003). 

Sadashiva et al. (2012) conducted linear and nonlinear time-history analyses on one- to five-storey 

symmetric building systems with flexible diaphragms. Single- and two-bay structures were investigated. 

The diaphragm stiffness was expressed by the static flexibility ratio defined as 

𝛾𝑠 =
𝛿𝑑_𝑓𝑙𝑒𝑥

𝛿𝑤_𝑓𝑙𝑒𝑥
 

(1) 
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where 𝛿𝑑_𝑓𝑙𝑒𝑥 was the mid-span deflection of the diaphragm subjected to a uniform static force, and 

𝛿𝑤_𝑓𝑙𝑒𝑥 was the average displacement of the supporting walls below the diaphragm. The value of 𝛾𝑠 

between 0 and 5 (increasing levels of diaphragm flexibility) were used in the study. Due to the large 

number of variables involved in the responses of buildings with flexible diaphragms, a number of 

constraints were imposed. These were: 

 Equal amount of total mass at each floor level; 

 Equal interstorey stiffness at all storeys; 

 All diaphragms in a building to have the same static flexibility ratio; and 

 For the two-span structures, the central wall to have twice the stiffness of the end walls. 

The analyses showed that the fundamental period of the buildings increased with the diaphragm 

flexibility. The increase in the fundamental period was found to be most prominent for buildings with the 

reduction in the number storeys, which agreed with the previous findings by Saffarini and Qudaimat 

(1992). In general, the increase in the diaphragm flexibility resulted in the increased diaphragm 

displacements, but reduced forces and displacements of the in-plane loaded walls. The exception was the 

short period structures with the period 𝑇𝑟𝑖𝑔 (defined as the fundamental period of the rigid diaphragm 

system) of 0.1 s. For these structures, a tendency for increased displacements and forces of in-plane 

loaded walls were observed as the diaphragms were made flexible. The dependency of the effect of 

diaphragm flexibility on the natural period of the building suggested certain sensitivity to the input 

motion characteristics. The authors also proposed simple correction formulae for estimating the total mid-

span displacement of the flexible diaphragms in a single-storey structure from the displacement of the 

corresponding rigid diaphragm system.  

The effects of diaphragm flexibility on torsionally unbalanced buildings have also been investigated by 

several researchers. 

Tena-Colunga and Abrams (1996) used three-dimensional elastic finite element models to show that the 

torsional behaviour reduced when diaphragm flexibility was increased. 

De-La-Colina (1999) conducted nonlinear time-history analyses of simple torsionally unbalanced models 

(Figure 13) with stiffness eccentricity. The in-plane stiffness of the diaphragm was varied between values 

typical of timber floors to RC slabs. The lateral load-resisting elements were modelled with Clough-Otani 
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hysteresis. The yield forces of the elements were determined based on a rigid diaphragm configuration 

using a linear static design procedure typically used in seismic codes. The translational period of the rigid 

diaphragm system was varied between 0.2 s to 2 s, with the yield force reduction factor (𝑅𝑦) between 1 

and 6. In general, the peak displacements of the in-plane loaded walls (both the stiff and the flexible 

sides) reduced with the increase in diaphragm flexibility. However, large amplifications were observed 

when the period of the building (with a rigid diaphragm) was less than 0.4 s. The author explained that 

such difference in the effects of diaphragm flexibility was due to the shape of the input acceleration 

spectrum in relation to the elongation in the period of the system as the diaphragm flexibility increases. 

 

Figure 13. Stiffness eccentric model with flexible diaphragm (De-La-Colina 1999) 

3. SEISMIC ANALYSIS METHODS 

3.1 Overview of Analysis Methods 

In general, seismic analysis methods can be classified into the linear elastic, linear dynamic, nonlinear 

static and nonlinear dynamic methods. Due to the low tensile strength of unreinforced masonry, the 

applicability of linear analysis methods are limited, even for low levels of loading. The need to consider 

the nonlinear behaviour of URM buildings has been long recognised, particularly after the Friuli 

earthquake of 1976 in Italy and Slovenia (Magenes & Penna 2009). However, in practice, engineers are 

still most familiar with the linear static analysis method and several specialised linear static analysis 

procedures have been developed for URM buildings with flexible diaphragms. These methods are 



 

18 

 

reviewed first. The remainder of this section is devoted to the review of the nonlinear static procedures, 

which are considered to be a viable alternative to the computationally intensive nonlinear time-history 

analysis. 

3.2 Linear Static Method 

A special procedure for the assessment and retrofit of existing URM buildings with flexible diaphragms 

was developed by ABK (1984) and described in detail by Bruneau (1994). This procedure is essentially 

empirical and contains the seismic capacity evaluation of the in-plane and out-of-plane loaded walls as 

well as the diaphragms. The method requires that the walls are adequately connected to the diaphragms so 

that partial out-of-plane wall failures are not expected to occur. To ensure the global behaviour, the span  

length and the strength of the diaphragms are firstly checked to be within an acceptable range to limit the 

amplification of the excitation applied onto the out-of-plane loaded wall. With the diaphragms so verified, 

the height-to-thickness (slenderness) ratio of the out-of-plane loaded walls are checked to ensure that 

stable dynamic rocking response can take place. The linear static method is then used to obtain the shear 

forces imposed on the in-plane loaded walls. In the linear static method, it is assumed that the in-plane 

walls are essentially rigid, so that the unamplified ground motion is transmitted to the diaphragms (Figure 

14). 

 

Figure 14. Rigid in-plane loaded wall assumption in ABK methodology (Bruneau 1994) 

Based on this assumption, the maximum load applied on each in-plane loaded wall at any level is the 

tributary mass multiplied by the peak ground acceleration, 
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𝐹𝑤𝑥 =
𝑎𝑔

𝑔
(𝑊𝑤𝑥 +

𝑊𝑑

2
) 

(2) 

where 𝑎𝑔 is the peak ground acceleration, 𝑊𝑤𝑥 is the weight of the wall in the direction of loading and 

𝑊𝑑 is the weight attributed to the diaphragm. If the diaphragm yields, the force resisted by the in-plane 

loaded walls is limited to 

𝐹𝑤𝑥 =
𝑎𝑔

𝑔
𝑊𝑤𝑥 + 𝜐𝑢𝐷 

(3) 

where 𝜐𝑢 and 𝐷 are respectively the yield strength per unit length and the width of the diaphragm. 

Kim and White (2004b) proposed an alternative method for calculating the in-plane loaded wall forces, 

recognising that the stiff walls and the flexible diaphragms tend to respond independently. In their 

method, a diaphragm subassembly consisting of a diaphragm span at any level and its supporting walls of 

the storey below (Figure 15) is considered to be subjected to the ground motion. The calculated 

diaphragm force is then distributed to the walls in proportion to their relative stiffnesses. The in-plane 

loaded walls are considered to be rigid, and their peak accelerations are set equal to the peak ground 

acceleration. The total storey force is then obtained as a direct sum of the forces from the diaphragm and 

the in-plane wall. Kim and White (2004b) reported good estimations of the peak base shear predictions of 

experimental data for single- and two-storey buildings. 
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Figure 15. Diaphragm subassembly (Kim & White 2004b). 

Knox (2012) proposed another approach, also based on the concept of the independent responses of the 

in-plane loaded walls and the diaphragms. In this method, the fundamental periods of the in-plane loaded 

wall and the diaphragms are calculated separately, and the individual components are considered to be 

subjected to the ground motion. The in-plane wall forces are then obtained by the square-root-of-sum-of-

squares (SRSS) combination of the inertial forces from the diaphragm and the in-plane loaded walls at 

each level. In order to account for the possible response correlations resulting from the closely spaced 

diaphragm periods, the complete-quadratic-combination (CQC) rule is used to compute the total base 

shear. If the base shear obtained by summing the storey forces calculated using SRSS is smaller than the 

CQC value, the storey forces are scaled up accordingly. Knox (2012) also provided some discussions on 

the use of force reduction factors in the linear static analysis method. 

3.3 Nonlinear Static Method 

In the last decades, the development of performance-based seismic design and assessment has resulted in 

a series of nonlinear static procedures, starting with the Capacity Spectrum Method or CSM (Freeman et 
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al. 1975). Nonlinear static procedures are approximate methods for estimating the peak inelastic seismic 

responses through static analysis, and are designed to fill the gap between the simplistic linear analysis 

methods and the rigorous nonlinear time-history analysis. In the following sections, the N2 method 

developed by Fajfar and Gašperšič (1996) (considered to be representative of conventional nonlinear 

static procedure) contained in Eurocode 8 (CEN 2004) is firstly reviewed. Improved nonlinear static 

procedures including the multi-mode and adaptive methods are then described. The problems encountered 

in the application of nonlinear static procedures for unreinforced masonry buildings with flexible 

diaphragms are discussed. 

3.4 N2 Method 

The basic philosophy of the N2 method is that (1) the global behaviour of the building under seismic 

excitation can be characterised as an equivalent single-degree-of-freedom (SDOF) system, and (2) the 

properties of the equivalent SDOF system can be obtained from the static (and monotonic) pushover 

analysis of the nonlinear structural model. Once the equivalent SDOF system has been defined, the peak 

inelastic displacement demand can be obtained from the inelastic response spectrum appropriate for the 

site of interest. 

The N2 method assumes that the displaced shape of the building can be approximated by an invariant 

shape 𝝓, and the pushover analysis is carried out using lateral forces proportional to mass multiplied by 

the assumed displacement shape (Fajfar 2002) 

𝒑𝒔 = 𝒎𝝓𝜆 (4) 

where 𝒑𝒔 is the vector of pushover forces, 𝒎 is the mass matrix of the building model and 𝜆 is the 

increment in the applied forces. 

Considering the equation of motion of a MDOF system (damping omitted for simplicity), 

𝒎�̈� + 𝒇𝑠 = −𝒎𝜾�̈�𝑔 (5) 

where 𝒖 is the nodal displacements of the building relative to the ground, 𝒇𝑠 is the (nonlinear) restoring 

forces, 𝜾 is the static transmission vector of the ground motion, and �̈�𝑔 is the ground acceleration. 

Differentiation with respect to time is denoted by over-script dots. As stated previously, the N2 method 

approximates the displacement response by 

𝒖 = 𝝓𝑢𝑟 (6) 
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where 𝑢𝑟 is the displacement time-history at a particular location (control node) of the building, and 𝝓 is 

scaled to the displacement of the control node. 

Substituting Eq. 6 in Eq. 5 and pre-multiplying both sides by 𝝓T gives 

𝝓T𝒎𝝓�̈�𝑟 + 𝝓T𝒇𝑠 = −𝝓T𝒎𝜾�̈�𝑔 (7) 

The nonlinear restoring forces are considered to be approximated by the pushover analysis, such that 

𝒇𝑠 = 𝒑𝒔 = 𝒎𝝓𝜆 (8) 

Substituting Eq. 8 into Eq. 7 and performing simple mathematical operations gives the equation of motion 

of an equivalent SDOF system, 

𝑚∗𝑑∗̈ +
𝑉𝑏

Γ
= −𝑚∗�̈�𝑔 

(9) 

Where with the equivalent mass is defined by 

𝑚∗ = 𝝓T𝒎𝜾 (10) 

the equivalent displacement by 

𝑑∗ =
𝑢𝑟

Γ
 

(11) 

and the equivalent force by 

𝑓∗ =
𝑉𝑏

Γ
 

(12) 

where Γ = 𝝓T𝒎𝜾 𝝓T𝒎𝝓⁄ . 

As illustrated in Eq. 11 and Eq. 12, the relationship 𝑓∗- 𝑑∗ (termed capacity curve) is computed from the 

pushover analysis by (1) subjecting the nonlinear structural model to the increasing lateral forces 𝒑𝒔, (2) 

monitoring the base shear, 𝑉𝑏, and the displacement of the control node 𝑢𝑟 (pushover curve), and (3) 

dividing both 𝑉𝑏 and 𝑢𝑟 by Γ. By bilinearising the capacity curve, the properties of the equivalent SDOF 

system can be obtained, i.e. the yield strength 𝑓𝑦
∗, yield displacement 𝑑𝑦

∗ , initial stiffness 𝑘∗ = 𝑓𝑦
∗ 𝑑𝑦

∗⁄ , the 

post yield stiffness and the initial period 𝑇∗ = 2𝜋√𝑚∗ 𝑘∗⁄ . 
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Once the equivalent SDOF system is defined, the peak inelastic displacement (termed target 

displacement) is estimated through the inelastic spectrum derived by Vidic et al. (1994) in the N2 method. 

In general, however, the inelastic spectra used to estimate peak displacement should be appropriate for the 

site of interest and the structural system concerned, and numerous studies exist on this topic (e.g Mahin & 

Bertero 1981; Miranda 2000; Borzi et al. 2001; Ruiz-Garcia & Miranda 2003; Chopra & Chintanapakde 

2004a; Chenouda & Ayoub 2008).  

Once the target displacement of the SDOF system is obtained, the Eq. 11 is inverted to obtain the target 

displacement at the control node location. The result of the pushover analysis at that target displacement 

is considered to give a reasonable approximation to the actual dynamic response of the structure. The 

peak demands estimated from the pushover analysis (e.g. interstorey drifts, plastic hinge rotations) can 

then be compared against the required performance levels. Figure 16 provides a summary of the N2 

method. 
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(a) Define structural model, input spectrum 

 

(b) Conduct pushover analysis 

 

(c) Convert pushover curve to capacity curve and bilinearise 

  

(d) Read off the peak displacemetn demand of the 

equivalent SDOF system 

(e) Read off the pushover analysis result at the 

target displacement, evaluate the 

performance level 

Figure 16. N2 method steps (Fajfar and Gašperšič 1996) 
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The conventional nonlinear static procedures such as the N2 method makes the critical assumptions that 

the building responds in a single displacement shape that remains constant throughout the excitation, and 

that such displacement shape can be determined a priori. These assumptions are clearly approximate, 

however, studies have shown adequate accuracies of the conventional nonlinear static procedures in 

predicting the peak inelastic responses of MDOF structures, provided that the response is governed by a 

single mode (Krawinker & Seneviratna 1998). 

3.5 Multi-mode Nonlinear Static Methods 

The single-mode nonlinear static procedures cannot account for (1) multi-mode behaviour where there is 

significant higher mode participation, and (2) changes in the inertial force distribution after the onset of 

inelastic response. Several multi-mode methods have been proposed to address the first shortcoming of 

the conventional method by conducting a series of separate pushover analyses with the lateral forces 

corresponding to a number of mode shapes (Paret et al. 1996; Sasaki et al. 1998; Chopra & Goel 2002). In 

this section, the Modal Pushover Analysis (MPA) formalised by Chopra and Goel (2002) is described. 

The MPA has been developed as a direct extension of the response spectrum analysis method for linearly 

elastic structures. If the nonlinear MDOF structure is subjected to the nth effective earthquake force, and 

the resulting displacements are assumed be contained within the same mode with the mode shape 𝝓𝑛, the 

nonlinear MDOF equation of motion may also be written as uncoupled equation of motion in each mode 

n, 

�̈�𝑛 + 2휁𝑛𝜔𝑛�̇�𝑛 +
𝐹𝑠𝑛

𝐿𝑛
= −�̈�𝑔 

(13) 

where 𝐷𝑛 is the modal displacement, 휁𝑛 is the critical damping ratio and 𝜔𝑛 is the frequency in the nth 

mode, 𝐹𝑠𝑛 = 𝝓𝑛
𝑇𝒇𝑠 and 𝐿𝑛 = 𝝓𝑛

𝑇𝒎𝜾.  

Eq. 13 is approximately valid if the modal coordinates are only weakly coupled during the inelastic 

response of the structure. Using a 9-storey steel building subjected to the El Centro record, Chopra and 

Goel (2002) showed that this uncoupled assumption can be appropriate for frame buildings (Figure 17). 
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Figure 17. Participation of modal responses when the loading is imposed in (a) first mode, (b) second 

mode (Chopra & Goel 2002). 

Based on the uncoupled equation of motion, the pushover analysis is conducted for each mode, using the 

force distribution 𝒔𝑛
∗ = 𝒎𝝓𝑛. The pushover curve is constructed, and the equivalent SDOF system is 

obtained by  

𝐹𝑠𝑛

𝐿𝑛
=

𝑉𝑏𝑛

𝑀𝑛
∗  

(14) 

𝐷𝑛 =
𝑢𝑟𝑛

Γ𝑛𝜙𝑟𝑛
 

(15) 

where 𝑉𝑏𝑛 is the base shear and 𝑢𝑟𝑛 is the displacement of the control node from the pushover analysis 

with the lateral load profile 𝒔𝑛
∗ , 𝜙𝑟𝑛 is the magnitude of mode shape at the control node and 𝑀𝑛

∗ = Γ𝑛𝐿𝑛 is 

the effective modal mass in the nth mode. 

Following an approach similar to the N2 method, the peak inelastic responses are obtained for each modal 

pushover analysis. The peak total responses are then combined using an appropriate mode combination 

rule (SRSS or CQC). 
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The accuracy of the MPA was tested in an extensive parametric analysis by Chintanapakdee & Chopra 

(2003) using 3 to 18 storey frame models. The analyses showed that MPA provided similar variations of 

storey drifts to the nonlinear time-history results when two or more modes were included. The 

comparison with the conventional method of FEMA 356 (ASCE 2000) also showed the superior 

predictions of MPA (Chopra & Chintanapakdee 2004b). The MPA has also been extended to assess the 

transverse response of bridges (Isakovič & Fischinger 2006; Paraskeva et al. 2006; Paraskeva & Kappos 

2010). However, several issues have also been identified with the MPA. Firstly, it is difficult to quantify 

the error involved in the uncoupled modal assumption used in simplifying the nonlinear (inelastic) 

equation of motion. Secondly, as point out by Aydinoğlu (2003), the independent pushover analyses 

cannot account for the influence of all modes in the formulations of plastic hinges.  

3.6 Adaptive Pushover Analysis 

Several adaptive procedures have been proposed to address the inability of the single-mode nonlinear 

static methods in capturing the changes in the inertial force distribution after the onset of inelastic 

deformation. The development of the adaptive pushover methods have been broadly based on the idea 

that better predictions of the actual responses would be obtained if the pushover force is modified 

according to the current damage state of the structure. 

Bracci et al. (1997) proposed the following procedure for modifying the pushover force distribution 

Δ𝐹𝑖
𝑗+1

= 𝑉𝑗 (
𝐹𝑖

𝑗

𝑉𝑗
−

𝐹𝑖
𝑗−1

𝑉𝑗−1
) + Δ𝑃𝑗+1 (

𝐹𝑖
𝑗

𝑉𝑗
) 

(16) 

where Δ𝐹𝑖
𝑗+1

 is the incremental pushover force of the ith floor, 𝑉𝑗 is the base shear at the jth step, 𝐹𝑖
𝑗
 is the 

resisting force of the ith storey at the jth step, and Δ𝑃𝑗+1 is the increment in the base shear force. The 

pushover analysis could commence with any reasonable initial force profile, 𝐹𝑖
0. 

Antoniou and Pinho (2004a) proposed an adaptive procedure incorporating the higher modes and ground 

motion characteristics in an approximate manner. In their procedure, an eigenvalue analysis is conducted 

using the tangent stiffness matrix at each pushover step. The instantaneous inertial force is then obtained 

from 

𝐹𝑖𝑗 = Γ𝑗𝜙𝑖𝑗𝑀𝑖𝑆𝑎,𝑗 (17) 
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where 𝐹𝑖𝑗 is the jth mode inertial force at the ith floor, Γ𝑗 and 𝜙𝑖𝑗 are the mode participation factor and 

mode shape respectively, 𝑀𝑖 is the mass of the ith floor and 𝑆𝑎,𝑗 is the (elastic) pseudo-acceleration of the 

jth mode.  

The modal inertial forces of Eq. 17 is combined using the SRSS combination rule, 

𝐹𝑖 = √∑ 𝐹𝑖𝑗
2

𝑁

𝑗=1

 

(18) 

The combined inertial force at the ith floor is then normaised as �̅�𝑖 = 𝐹𝑖 ∑ 𝐹𝑖⁄ , and the pushover force is 

applied either by the "total updating" (Eq. 19) or by the "incremental updating" (Eq. 20). 

𝑃𝑖 = 𝜆𝑖 �̅�𝑖𝑃0 (19) 

𝑃𝑖 = 𝑃𝑖−1 + 𝜆𝑖�̅�𝑖𝑃0 (20) 

In these equations, 𝜆𝑖 is the increment magnitude and 𝑃0 is a reference force profile, taken to be uniform. 

In their procedure, Antoniou & Pinho (2004a) did not derive a method to calculate the target 

displacement. Instead, the pushover curves and response parameters (drifts, shear forces etc.) obtained 

from the adaptive pushover analysis were compared against nonlinear time-history analysis results to 

validate the proposed algorithm. A similar adaptive procedure but applying displacements directly instead 

of pushover forces was also proposed (Antoniou & Pinho 2004b).  

Several researchers have also investigated more complex analysis methods, such as the multi-mode 

adaptive procedures (Gupta & Kunnath 2000; Aydinoğlu 2003; Kalkan & Kunnath 2006). In these 

methods, multi-mode pushover analyses are conducted using mode properties based on the tangent or 

secant stiffness matrix at each analysis step. The modal response of the structure is then combined at each 

analysis step to update the stiffness matrix. 

3.7 Problems with Pushover Analysis Method for Buildings with Flexible Diaphragms 

Several issues have been identified when applying the nonlinear static analysis method to URM buildings 

with flexible diaphragms. Galasco et al. (2006) noted the following issues: 
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 There is no logical location for the control node to be used in the pushover analysis when 

diaphragm are flexible. Pushover curves obtained using different control node locations show 

significant differences in the deformation capacities of the structure (Figure 18); and 

 The initial stiffness, strength and deformation capacities of the structure can be sensitive to the 

pushover force distribution (Figure 19). 

 

Figure 18. Control node sensitivity (Galasco et al. 2006) 

 

Figure 19. Pushover force profile sensitivity (Galasco et al. 2006) 

In order to address the sensitivity of the pushover analysis to the assumed force distribution, Galasco et al. 

(2006) proposed an adaptive pushover algorithm. The proposed adaptive method applies the lateral force 

proportional to the displacement shape of the structure in the previous step, 
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𝒑𝑖 = 𝜆𝒎𝝍𝑖−1 (21) 

where 𝒑𝑖 is the pushover force at the ith step and 𝝍𝑖−1 is the deformed shape of the structure in the 

previous step. The initial application of the pushover analysis showed that limitations had to be placed on 

the force distribution for reasonable results to be obtained. 

Mendes & Lourenço (2009) investigated the applicability of single-mode and adaptive pushover analyses 

using a calibrated finite element model of a 5 storey URM building with timber floors. The comparisons 

of the pushover curves with the envelopes of the peak nonlinear time-history analysis results showed that 

none of the pushover analyses could accurately predict the time-history analysis results. They also 

reported differences in the failure mechanisms between the pushover and dynamic analysis results. 

Due to the difficulties associated with the used of nonlinear static procedures for URM buildings with 

flexible diaphragms, Magenes and Penna (2009) presented an interim solution, in which each in-plane 

loaded wall may be analysed separately with its own tributary mass. 

4. SUMMARY AND RESEARCH GAP 

The measured data and experimental studies on URM buildings with flexible diaphragms have indicated 

the tendency for the diaphragms to respond independently of the in-plane loaded walls. In addition, the 

large amplifications of accelerations and displacements have also been consistently reported, especially in 

the elastic range of building behaviour. Experimental investigations have shown that the global behaviour 

could be attained only when the partial out-of-plane wall collapses could be prevented by means of 

sufficient connections between the diaphragms and the walls, as well as potentially tying the walls 

together. Once the global behaviour was triggered, however, the strength and deformation capacities of 

buildings with flexible diaphragm have been observed to be comparable to those of rigid diaphragm 

systems. 

Early analytical studies on the behaviour of buildings with flexible diaphragms have focused on the 

elastic behaviour. In contrast, studies into the inelastic behavior have been limited. However, a number of 

studies have shown that the inelastic behaviour are significantly different to the elastic behaviour, and the 

present review has highlighted the need to characterise the inelastic behaviour of URM buildings with 

flexible diaphragm. 
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Several linear static analysis methods have been developed specifically for buildings with flexible 

diaphragms. However, it was found that none of the existing methods directly consider the dynamic 

interactions of the in-plane loaded walls and the diaphragms.  

The theoretical bases of nonlinear static methods were summarised, and the assumptions inherent in 

various methods were detailed. It was found that the applicability of the nonlinear static methods to URM 

buildings with flexible diaphragms have not yet been fully investigated. Several problems have been 

identified when applying the nonlinear static procedures to URM buildings with flexible diaphragms, 

which are yet to be addressed. 
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CHAPTER 3  

 

ELASTIC ANALYSIS 

 

Background 

This chapter contains the paper “Seismic analysis of in-plane loaded walls in unreinforced masonry 

buildings with flexible diaphragms”, which investigates the modal properties of buildings with flexible 

diaphragms. The analytical consideration of modal properties reveals that two important modes generally 

exist when diaphragms are flexible. Mathematical formulae for such mode shapes and frequencies are 

derived, and expressions are proposed to modify the peak base shear force in the context of the linear 

static analysis method to account for diaphragm flexibility. An example application of the proposed 

expressions is provided. 
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Seismic Analysis of In-plane Loaded Walls in Unreinforced Masonry 

Buildings with Flexible Diaphragms 

ABSTRACT 

It is well recognised that the dynamic response of unreinforced masonry buildings with flexible timber 

diaphragms typically contains multiple dominant modes associated with the excitations of the diaphragms 

and the in-plane walls. Existing linear analysis methods for this type of structure commonly account for 

the multi-mode behaviour by assuming the independent vibrations of the in-plane loaded walls (in-plane 

walls) and the diaphragms. Specifically, the in-plane walls are considered to be rigid and the unmodified 

ground motion is assumed to be transmitted up the walls to the diaphragm ends. While this assumption 

may be appropriate for many low-rise unreinforced masonry buildings, neglecting the dynamic interaction 

between the diaphragms and the in-plane walls can lead to unreliable predictions of seismic demands. An 

alternative analysis approach is proposed in this paper, based on the mode properties of a system in which 

(1) the mass ratios between the diaphragms and the in-plane wall are the same at all levels, and (2) the 

periods of the diaphragms are the same at all levels. It is proposed that under these conditions, two modes 

are typically sufficient to obtain the peak seismic demands of the in-plane walls in elastically responding 

low-rise regular buildings. The applicability of the two-mode analysis approach is assessed for more 

general diaphragm configurations by sensitivity analysis, and the limitations are identified. The two-mode 

approach is then used to derive a response modification factor, which may be used in conjunction with a 

linear static procedure in the seismic assessment of buildings with flexible diaphragms. 

1. INTRODUCTION 

In older unreinforced masonry (URM) buildings, the floor and roof diaphragms are often constructed of 

flexible timber systems. The flexibility of the diaphragms introduce two dynamic effects that are absent in 

rigid diaphragm structures. Firstly, the non-rigid diaphragms lead to an intermediate coupling of the 

adjacent in-plane loaded walls (in-plane walls), resulting in a limited redistribution of inertial forces 

amongst the lateral-load resisting elements. Secondly, the excitations of the diaphragms themselves 

provide feed-back effects on the in-plane walls, potentially modifying the behaviour of the walls. As these 

older structures are highly vulnerable to seismic action, there is a need for a practical procedure to 

evaluate the seismic demand imposed on the in-plane walls for the global assessment of URM buildings 

with flexible diaphragms.  
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The simplest seismic analysis procedure, and likely the first choice of analysis in practice for typical low-

rise regular URM buildings, is the linear static method. In the context of the performance-based 

assessment guideline of ASCE 41-13 (ASCE 2014), the equivalent static base shear is determined using a 

corresponding linear system, 

𝑉 = 𝐶1𝐶2𝐶𝑚𝑆𝑎𝑊 (1) 

where 𝑉 is the elastic base shear, 𝐶1 is a modification factor relating maximum inelastic displacement to 

the elastic displacement, 𝐶2 expresses the modification for the effect of stiffness and strength 

degradations, 𝐶𝑚 accounts for higher mode mass participation (taken to be 1.0 for URM), 𝑆𝑎 is the 

spectral acceleration at the fundamental period of the structure, and 𝑊 is the seismic weight of the 

structure. The elastic base shear in Equation 1 is not the actual base shear that the building would 

experience, but rather an equivalent force that would induce the expected inelastic displacement on the 

elastic system (Abrams 2001). The demand so calculated is compared against the component capacities to 

ensure, 

𝜅𝑄𝐶𝐸 ≥ 𝑄𝑈𝐷/𝑚 (2) 

where κ is the knowledge factor, 𝑄𝐶𝐸 is the expected component strength (i.e. rocking or shear strength), 

𝑄𝑈𝐷 is the elastic demand (i.e. moments or shear forces) calculated based on Equation 1. 𝑚 is the 

modification factor that accounts for the ductility of the component for a particular performance level 

(Abrams, 2001).  

Several studies have been conducted to incorporate the effect of diaphragm flexibility in the demand 

estimation (Equation 1) of the linear static procedure. ASCE 41-13 and NZSEE (NZSEE 2006) stipulate 

that the fundamental period of unreinforced masonry buildings of less than six storeys in height, with 

single-span flexible diaphragms may be calculated as 

𝑇 = √3.07∆𝑑 (3) 

where ∆𝑑 in metres is the maximum diaphragm deformation due to a lateral load of 1.0 g. Equation 3 has 

been shown to be the fundamental period of a fix-ended flexural beam (Wilson et al. 2013). Therefore, the 

expression considers the in-plane walls to remain rigid and the diaphragm to vibrate independent of the 

in-plane walls. An alternative procedure was proposed by Kim and White (2004). In their method, a 

subassembly consisting of the two adjacent in-plane walls at a given storey and the supported diaphragm 

is initially separated from the rest of the structure. The peak elastic demand of the subassembly is then 
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determined, considering the subassembly to be subjected to ground acceleration. Hence in this procedure, 

parts of the structure are assumed to remain rigid for the estimation of demand on each subassembly. The 

peak forces of the subassemblies are then combined together by direct summation to estimate the peak 

seismic demand of the actual structure. Recently, Knox (2012) proposed a method in which the equivalent 

seismic force of the in-plane wall and the diaphragms are firstly determined separately. The possible 

correlations in the responses are subsequently considered through the use of a modal combination rule to 

obtain the total demand. A set of modification factors similar to Equation 1 was also suggested to account 

for the inelastic behaviour. 

For symmetric (or almost symmetric) structures, the coupling effect of the diaphragms may be considered 

negligible and the diaphragms can be idealised as single-degree-of-freedom (SDOF) systems mounted on 

a primary structure (in-plane wall) at floor levels (Fleischman & Farrow 2001; Lee et al. 2007). In this 

idealisation, the diaphragms can be viewed as heavy secondary systems. It is well recognised that heavy 

secondary systems have the potential to modify the dynamic behaviour of the primary structure (Chen & 

Soong 1988), and the response of the primary structure can only be evaluated accurately by considering 

the dynamics of the combined system. However, the foregoing review of the existing analysis methods 

incorporating the effects of diaphragm flexibility revealed that the interactions between the in-plane walls 

and the diaphragms are not explicitly considered. Therefore, the existing methods are strictly applicable 

when the following two conditions are met: 

 the period of the diaphragm is sufficiently larger than the period of the in-plane walls (so that the 

in-plane walls may be considered as providing essentially rigid support conditions at diaphragm 

ends); and 

 the period of the in-plane walls is sufficiently smaller than the dominant period of the ground 

motion (so that the important frequency content of the ground motion is not filtered out by the in-

plane walls). 

For many low-rise unreinforced masonry buildings, these conditions are satisfied. However, there are 

cases in which they may not be appropriate, including: 

 long and narrow buildings with loading perpendicular to the narrow end; 

 flexible in-plane walls with large openings; and 

 stiffened/retrofitted diaphragms. 
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This study proposes an alternative, and more rational, method to account for diaphragm flexibility by 

explicitly considering the interaction between the elastically responding in-plane walls and the 

diaphragms.  

In the first part of the paper, the modal properties of structures with an idealised diaphragm configuration 

are derived to show that two modes of the combined system are closely related to a given mode of the 

uncoupled in-plane wall. These two modes are further shown to retain the same proportion of the mass 

participation as the associated mode of the uncoupled in-plane wall, leading to the concept of the two-

mode analysis in capturing the effect of diaphragm flexibility. The applicability of the two-mode analysis 

for more general diaphragm configurations is evaluated by sensitivity analysis, and the limitation of the 

approach is identified. In the second part of the paper, the two-mode approach is used to derive an 

expression for the modification of the peak base shear to account for flexible diaphragms in the context of 

the linear static method. A numerical validation is provided to demonstrate that the proposed method 

gives more consistent results in comparison to dynamic analyses than existing procedures for a wide 

range of diaphragm stiffnesses. 

2. STRUCTURAL IDEALISATION 

It is considered that symmetric, or essentially symmetric, unreinforced masonry buildings with flexible 

diaphragms can be idealised as planar discrete multi-degree-of-freedom (MDOF) systems as shown in 

Figure 1. In the idealisation, the out-of-plane walls are assumed to be cracked and their stiffness 

contributions are neglected, while their masses are appropriately distributed to the diaphragm and in-plane 

wall degrees of freedom. 

 

Figure 1. Idealisation of symmetric structures 

Even though the in-plane walls are conceptually represented in a discrete manner, the difficulty associated 

with the derivation of storey stiffnesses of perforated walls (Tena-Colunga & Abrams 1992; Kim & 
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White 2003) is avoided in the analysis that follows, by characterising their elastic properties by the 

uncoupled wall’s periods and mode shapes. 

The SDOF idealisation of the diaphragm at each level requires the definitions of the equivalent mass and 

the period. The idealisation adopted in this study follows a similar approach to Sadashiva et al. (2012), in 

which the equivalent SDOF system is constructed such that it produces (1) the same period, and (2) the 

same total resisting force, of the diaphragm when it deforms in an assumed displacement shape. The first 

condition has been investigated by Wilson et al. (2013), who showed that the shear beam idealisation best 

approximates the deformed shape of single straight-sheathing diaphragms typically found in older URM 

buildings. By the generalised SDOF analysis (Chopra 2007), the period of the diaphragms deforming in 

shear has been shown to be 

𝑇𝑑 = 0.7√
𝑊𝐷𝐿

𝐺𝑑𝐵
 (4) 

where WD is the total tributary weight of the diaphragm including any tributary weight of the out-of-plane 

walls, L and B are the dimensions of the diaphragms perpendicular and parallel to the direction of loading 

respectively, and Gd is the stiffness of the diaphragm. Using the consistent shear beam idealisation, the 

equivalent mass satisfying the second condition can also be derived by the generalised SDOF analysis as 

𝑚𝑑 =
126

155

𝑊𝐷

𝑔
 (5) 

The equivalent SDOF idealisation of the diaphragm is hence defined by Equations 4 and 5 and the 

equivalent stiffness may also be obtained from these expressions. The mass and the stiffness of the 

combined structure (m and k) can then be written in terms of the uncoupled component matrices, mw and 

kw for the in-plane wall and md and kd for the diaphragms, 

𝒎 = [
𝒎𝑤 𝟎

𝟎 𝒎𝑑
] , 𝒌 =  [

𝒌𝑤 + 𝒌𝑑 −𝒌𝑑

−𝒌𝑑 𝒌𝑑
] (6) 

As an example, for the two-storey model of Figure 1, the uncoupled matrices can be written as 

𝒎𝑤 = [
𝑚𝑤1 0

0 𝑚𝑤2
] , 𝒌𝑤 =  [

𝑘𝑤1 + 𝑘𝑤2 −𝑘𝑤2

−𝑘𝑤2 𝑘𝑤2
] 

𝒎𝑑 = [
𝑚𝑑1 0

0 𝑚𝑑2
] , 𝒌𝑑 =  [

𝑘𝑑1 0
0 𝑘𝑑2

] 

(7) 
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3. MODAL ANALYSIS 

3.1 Modal Properties of Idealised Diaphragm Configuration 

The modal properties of the planar model in Figure 1 can be shown to be functions of the uncoupled in-

plane wall’s normal modes under a particular diaphragm condition. 

Consider the undamped free vibration of the planar model 

[
𝒎𝑤 𝟎

𝟎 𝒎𝑑
] [

�̈�𝑤

�̈�𝑑
] + ([

𝒌𝑤 𝟎
𝟎 𝟎

] + [
𝒌𝑑 −𝒌𝑑

−𝒌𝑑 𝒌𝑑
]) [

𝒖𝑤

𝒖𝑑
] = 𝟎 (8) 

where uw and ud are the relative displacement vectors (with respect to the ground) of the in-plane wall and 

the diaphragms respectively, of size equal to the number of floors. Differentiation with respect to time is 

denoted by over-script dots. The dynamic properties of the combined structure can be related to the modal 

properties of the uncoupled components by the transformation (Suarez & Singh 1987), 

[
𝒖𝑤

𝒖𝑑
] = [

𝚽𝑤
′ 𝟎

𝟎 𝚽𝑑
′ ] [

𝒒𝑤

𝒒𝑑
] = 𝚲𝒒 (9) 

where the columns of the matrices Φw' and Φd' contain the eigenvectors of the uncoupled in-plane wall 

and the diaphragms respectively, normalised such that 

𝚽𝑤
′T𝒎𝑤𝚽𝑤

′ = 𝐈 (10) 

𝚽𝑑
′T𝒎𝑑𝚽𝑑

′ = 𝐈 (11) 

where I is the identity matrix. Substituting Equation 9 in Equation 8 and pre-multiplying by ΛT gives 

𝒎∗�̈� + 𝒌∗𝒒 = 𝟎 (12) 

where 

𝒎∗ = [
𝚽𝑤

′T 𝟎

𝟎 𝚽𝑑
′T] [

𝒎𝑤 𝟎
𝟎 𝒎𝑑

] [
𝚽𝑤

′ 𝟎

𝟎 𝚽𝑑
′ ] = 𝐈 (13) 

𝒌∗ = [𝛀𝑤
2 0

0 0
] + [

𝚽𝑤
′T𝒌𝑑𝚽𝑤

′ −𝚽𝑤
′T𝒌𝑑𝚽𝑑

′

−𝚽𝑑
′T𝒌𝑑𝚽𝑤

′ 𝛀𝑑
2 ] (14) 
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The diagonal matrices Ωw and Ωd contain the modal frequencies of the uncoupled in-plane wall and 

diaphragms respectively. The eigenvalue problem of the transformed Equation 12 is 

(𝒌∗ − 𝜔𝑗
2𝐈)𝝓𝑗

∗ = 𝟎 (15) 

where ωj is the jth frequency and ϕj
* is the jth mode shape (in the transformed coordinate) of the combined 

structure. Note that the size of ϕj
* is twice the number of floor levels as it contains both the in-plane wall’s 

and the diaphragms’ degrees of freedom. Closed-form solutions are readily obtained, if the following 

conditions are imposed on the diaphragms configuration: 

 the equivalent mass of the diaphragm at any floor level is a constant fraction Rm of the tributary 

mass of the in-plane wall at the same level; and 

 the periods of the diaphragms are equal at all levels. 

These conditions are expressed mathematically as 

𝒎𝑑 = 𝑅𝑚𝒎𝑤 (16) 

𝛀𝑑 = 𝜔𝑑𝐈 (17) 

By the dynamics of a SDOF system, it also follows that 

𝒌𝑑 = 𝜔𝑑
2𝒎𝑑 (18) 

By substituting Equations 16 to 18 in Equation 15 and writing out the equations corresponding to the in-

plane wall and the diaphragms separately, ϕj
* = [ϕwj

*  ϕdj
*]T, yields the following simultaneous equations 

(𝛀𝑤
2 − 𝜔𝑗

2𝐈)𝝓𝑤𝑗
∗ = −𝜔𝑑

2(𝑅𝑚𝝓𝑤𝑗
∗ − 𝚽𝑤

′T𝒎𝑑𝚽𝑑
′ 𝝓𝑑𝑗

∗ ) (19) 

−𝜔𝑗
2𝝓𝑑𝑗

∗ = −𝜔𝑑
2(−𝚽𝑑

′T𝒎𝑑𝚽𝑤
′ 𝝓𝑤𝑗

∗ + 𝝓𝑑𝑗
∗ ) (20) 

Equation 20 can be re-arranged to give the expression for the diaphragms’ mode shape in terms of the 

mode shape of the in-plane wall 

𝝓𝑑𝑗
∗ =

𝜔𝑑
2

𝜔𝑑
2 − 𝜔𝑗

2 (𝚽𝑑
′T𝒎𝑑𝚽𝑤

′ )𝝓𝑤𝑗
∗  

(21) 
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Substituting Equation 21 in Equation 19 and applying the mass orthonormal condition (Equations 10 and 

11) gives a diagonalised equation with the unknowns ωj and ϕwj
* 

[𝜔𝑗
4𝐈 − 𝜔𝑗

2(𝛀𝑤
2 + 𝜔𝑑

2(1 + 𝑅𝑚)𝐈) + 𝜔𝑑
2𝛀𝑤

2 ]𝝓𝑤𝑗
∗ = 𝟎 (22) 

For a nontrivial solution, 

𝑑𝑒𝑡[𝜔𝑗
4𝐈 − 𝜔𝑗

2(𝛀𝑤
2 + 𝜔𝑑

2(1 + 𝑅𝑚)𝐈) + 𝜔𝑑
2𝛀𝑤

2 ] = 0 (23) 

Because the matrices in Equation 23 are triangular (more specifically, diagonal), the determinant is the 

product of the diagonal entries (Lay 2003). For the determinant to equal zero, each term of the product 

must equal zero, hence 

𝜔𝑗
4 − 𝜔𝑗

2[𝜔𝑤𝑛
2 + 𝜔𝑑

2(1 + 𝑅𝑚)] + 𝜔𝑑
2𝜔𝑤𝑛

2 = 0 (24) 

where ωwn denotes the nth diagonal entry of Ωw. As Equation 24 is a quadratic in ωj
2, two solutions exist 

for ωj
2 for each nth mode of the uncoupled in-plane wall. Denoting these by ωn,L

2 and ωn,U
2 (L for lower 

and U for upper eigenvalues), 

𝜔𝑛,𝐿
2 =

𝜔𝑤𝑛
2 + 𝜔𝑑

2(1 + 𝑅𝑚) − √[𝜔𝑤𝑛
2 + 𝜔𝑑

2(1 + 𝑅𝑚)]2 − 4𝜔𝑑
2𝜔𝑤𝑛

2

2
 

(25) 

𝜔𝑛,𝑈
2 =

𝜔𝑤𝑛
2 + 𝜔𝑑

2(1 + 𝑅𝑚) + √[𝜔𝑤𝑛
2 + 𝜔𝑑

2(1 + 𝑅𝑚)]2 − 4𝜔𝑑
2𝜔𝑤𝑛

2

2
 

(26) 

Equations 25 and 26 show that two modes of the combined system can be attributed to each mode of the 

uncoupled in-plane wall. The normal mode of the uncoupled in-plane wall is herein referred to as the 

“original mode”. The two modes of the combined structure attributed to the nth original mode are referred 

to collectively as the nth “mode pair”. 

In Figure 2, the frequencies of the mode pair are plotted as normalised to the frequency of the original 

mode. When the diaphragm is overly flexible, the higher mode approaches the frequency of the 

uncoupled in-plane wall while the lower mode’s frequency tends to zero. In addition, the frequencies of 

the mode pair become independent of the mass ratio. These observations suggest that the interactions 

between the diaphragms and the in-plane wall become negligible as the diaphragm becomes completely 

flexible. Conversely, when the diaphragm is very stiff, the higher mode increases exponentially, while the 
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lower mode approaches a frequency somewhat smaller than that of the uncoupled in-plane wall. This 

reduction in the lower mode’s frequency depends on the mass ratio; in fact, the frequency approaches that 

of the rigid diaphragm condition, with the reduction in the frequency proportional to 1/√(1+Rm). 

 

Figure 2. Frequencies of mode pair 

The correspondence between the original mode and the mode pair can be further illustrated by their mode 

shapes. By substituting Equation 25 or 26 in the transformed Equation 22, it can be seen the standard 

basis vectors provide the required solution for ϕwn,L
* and ϕwn,U

* 

𝝓𝑤1,〈.〉
∗ = [1 0 ⋯ ]T, 𝝓𝑤2,〈.〉

∗ = [0 1 0 ⋯ ]T 𝑒𝑡𝑐. (27) 

To simplify the notation, ‹.› is used to replace the subscripts L or U in the above and the following 

expressions. Where ‹.› appears multiple times in an equation, they refer to the consistent component (L or 

U) of the mode pair. Applying the transformation back to the physical coordinate (Equation 9) yields 

𝝓𝑤𝑛,〈.〉 = 𝚽𝑤
′ 𝝓𝑤𝑛,〈.〉

∗ = 𝝓𝑤𝑛
′  (28) 

where ϕwn' is the nth column vector of Φw' and ϕwn,‹.› is the eigenvector corresponding to the in-plane 

wall’s degree of freedom of the nth mode pair. The expression shows that the in-plane wall’s mode shape 

(of the nth mode pair) is proportional to the original, uncoupled in-plane wall’s mode shape. The mode 

shape of the diaphragms in the nth mode pair can be calculated from Equations 21, 28 and 9 as 
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𝝓𝑑𝑛,〈.〉 =
𝜔𝑑

2

𝜔𝑑
2 − 𝜔𝑛,〈.〉

2 𝝓𝑤n
′  

(29) 

In this expression, the displacement vector ϕdn,‹.› is expressed as relative to the ground. Equation 29 also 

indicates that the mode shapes of the diaphragms are proportional to that of the original mode. Figure 3 

shows the plot of the normalised mode shapes of the combined structure. The in-plane wall and the 

diaphragms are in-phase in the lower mode pair, and are out-of-phase in the higher mode pair. 

 

Figure 3. Mode shapes of mode pair 

The properties of the mode pair derived in this section are specific to the diaphragm conditions of 

Equations 16 and 17. Under these conditions, a correspondence between the mode properties of the 

combined system and those of the uncoupled in-plane wall has been identified. Specifically, two modes 

(mode pair) of the combined system arise from each mode of the uncoupled in-plane wall (original 

mode). The mode shapes of the mode pair are proportional to that of the original mode. The in-plane wall 

and diaphragms are in-phase in the lower mode pair, and are out-of-phase in the higher mode pair. The 

significance of the mode pair is described in the next section. 

3.2 Significance of Mode Pair for Seismic Analysis 

In the seismic analysis of linearly elastic structures, it is usually sufficient to include only the first few 

modes to calculate the peak response quantities. A common parameter used to determine the number of 

modes to include, as typically specified in seismic codes, is the proportion of the effective modal mass to 
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the total seismic mass of the structure. The effective modal mass Mn may be obtained as the sum of the 

effective earthquake force distribution sn (Chopra 2007), 

𝑀𝑛 = 𝟏T𝒔𝑛 (30) 

where 

𝒔𝑛 = Γ𝑛𝒎𝝓𝑛 =
𝝓𝑛

T𝒎𝟏

𝝓𝑛
T𝒎𝝓𝑛

𝒎𝝓𝑛 
(31) 

For the diaphragm configuration specified in Equations 16 and 17, Equation 31 for the mode pair can be 

evaluated as  

𝒔𝑛,〈.〉 = [
𝑓𝑤𝑛,〈.〉𝒔𝑤𝑛

𝑓𝑑𝑛,〈.〉𝒔𝑤𝑛
] (32) 

where swn is the effective earthquake force distribution of the original mode defined analogously to 

Equation 31. The coefficients fwn,‹.› and fdn,‹.› may be thought of as scaling factors applied to the in-plane 

wall and the diaphragms respectively, 

𝑓𝑤𝑛,〈.〉 =

1 + 𝑅𝑚 (
𝜔𝑑

2

𝜔𝑑
2 − 𝜔𝑛,〈.〉

2 )

1 + 𝑅𝑚 (
𝜔𝑑

2

𝜔𝑑
2 − 𝜔𝑛,〈.〉

2 )

2 , 𝑓𝑑𝑛,〈.〉 = 𝑅𝑚 (
𝜔𝑑

2

𝜔𝑑
2 − 𝜔𝑛,〈.〉

2 ) 𝑓𝑤𝑛,〈.〉 (33) 

The plots of fwn,‹.› and fdn,‹.› are shown in Figure 4 for the mode pair. The sum of fwn,‹.› of the mode pair, 

also indicated in Figure 4, is always 1, while the sum of fdn,‹.› is Rm. The total effective mass included in 

the analysis, if both modes of the mode pair are used (denoted by Mn,LU), can hence be given by 

𝑀𝑛,𝐿𝑈 = ∑ 𝟏T𝒔𝑛,〈.〉 = 𝟏T𝒔𝑤𝑛 ∑(𝑓𝑤𝑛,〈.〉 + 𝑓𝑑𝑛,〈.〉) = (1 + 𝑅𝑚)𝑀𝑤𝑛 (34) 

where the summation is taken over the nth mode pair and Mwn =1Tswn is the effective modal mass of the 

original mode. The ratio of the modal mass included in the analysis to the total seismic mass of the 

structure is 

𝑀𝑛,𝐿𝑈

𝟏T(𝒎𝑤 + 𝒎𝑑)𝟏
=

(1 + 𝑅𝑚)𝑀𝑤𝑛

𝟏T𝒎𝑤(1 + 𝑅𝑚)𝟏
=

𝑀𝑤𝑛

𝟏T𝒎𝑤𝟏
 (35) 
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The significance of Equation 35 becomes clear by recognising that the right hand side of the equation 

expresses the proportion of the nth modal mass of the uncoupled in-plane wall to its total seismic mass. 

Equation 35 therefore states that the mode pair retains the same proportion of the modal mass of the 

combined structure as that of the original mode. This property is particularly attractive for low-rise URM 

buildings, for which the uncoupled in-plane wall’s behaviour is likely to be dominated by its fundamental 

mode. This leads to the concept of the two-mode analysis, whereby the response of the structure is 

approximated by the mode pair (defined by Equations 25, 26, 28 and 29) corresponding to the 

fundamental mode of the uncoupled in-plane wall. The applicability of this two-mode analysis concept is 

evaluated for more general diaphragm configurations in the next section. 

 

(a) In-plane walls 
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(b) Diaphragms 

Figure 4. Scaling factors applied to the equivalent static force of uncoupled in-plane wall 

4. SENSITIVITY ANALYSIS 

4.1 Parameters Investigated 

The validity of the assumptions and the errors inherent in the two-mode analysis approach is evaluated 

through a sensitivity analysis, by varying the number of storeys, characteristics of the input excitation, the 

reference mass ratio and the period of the diaphragms, as well as the variations introduced in the 

diaphragm configuration. 

Two, three and four storey models are considered, with the reference fundamental periods of the 

uncoupled in-plane wall (Tw) corresponding to 0.178 s, 0.241 s and 0.3 s respectively. These period values 

are calculated based on the empirical period formula of AS 1170.4 (Standards Australia 2007), 

𝑇𝑟𝑖𝑔 = 0.0625ℎ0.75 (36) 

where h is the height of the building, calculated assuming all storey heights to be 3.2 m. As Trig applies to 

rigid diaphragm structures, Tw is obtained by eliminating the mass attributed to the diaphragms. For 

simplicity, it is considered that an equal amount of mass is attributed to the diaphragms (representing the 

mass of the out-of-plane loaded walls) and the in-plane wall, such that 
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𝑇𝑤 =
𝑇𝑟𝑖𝑔

√2
 

(37) 

The tributary mass of the in-plane wall is set to 10 tons at all levels except at the roof, where it is halved 

to approximate the reduction in the tributary height. The stiffnesses of the in-plane walls are adjusted so 

that the fundamental mode shape of the uncoupled in-plane wall is linear in all cases. 

The reference diaphragm condition consistent with Equations 16 and 17 is determined by the reference 

mass ratio Rm and the reference diaphragm period Td. The variations in these parameters are 

independently controlled by εm and εT respectively. Four different variation profiles are considered, as 

shown in Figure 5. The figure shows the profiles for the positive εm variation as applied to a three storey 

model. Similar variations are investigated for the diaphragm periods, by the parameter εT. For the linear 

and the alternating profiles, the reference values equal the average configurations of the diaphragms. For 

the top variation and the bottom variation profiles, all but one level have the reference values. The 

parameters εm and εT are varied independently from −0.5 to 0.5. The reference mass ratio Rm is varied 

from 0.5 to 2, and the diaphragm period Td from 0.1 s to 2 s. These values are considered to encompass 

the likely range of parameters for typical existing URM buildings with timber diaphragms. 

 

Figure 5. Variation in the reference mass ratio (for variation in reference period, replace Rm by Td and εm 

by εT) 
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4.2 Acceleration Records 

The sensitivity of the two-mode analysis to the input spectral shape is assessed by considering two sets of 

acceleration records. The first set consists of six natural accelerograms selected from the CUREE testing 

protocol (Krawinkler et al. 2000) as scaled by Christopoulos et al. (2002). As listed in Table 1, these 

records were measured in California on stiff soil (NEHRP site class C and D). The second set consists of 

artificial accelerograms compatible with AS 1170.4 on rock sites (Lam et al. 2005), which exhibit the 

dominance of high frequency content typical of intraplate regions. The mean pseudo-acceleration spectra 

of the two sets of records are shown normalised to their peak ground accelerations in Figure 6. 

Table 1. List of natural accelerograms 

Event Station Year Mw Closest 

distance 

(km) 

NEHRP site 

class 

Scaling 

factor 

Superstition 

Hills 

Plaster City 1987 6.7 21 D 2.2 

Northridge Canoga Park - 

Topanga Can 

1994 6.7 15.8 D 1.2 

Northridge N. Hollywood - 

Colwater Can 

1994 6.7 14.6 C 1.7 

Loma Prieta Gilroy Array # 4 1989 6.9 16.1 D 1.3 

Cape 

Mendocino 

Rio Dell Overpass 

- FF 

1992 7.1 18.5 C 1.2 

Landers Yermo Fire 

Station 

1992 7.2 24.9 D 2.2 
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Figure 6. Comparison of the mean spectra of two sets of records 

4.3 Analysis Procedure 

For each parameter combination, two analyses are conducted. The first analysis is performed with the 

actual configuration of the diaphragms, including the variations in the mass ratio and the period. The 

time-history responses are calculated by Newmark’s constant average acceleration method (γ = 0.5 and β 

= 0.25), with a constant damping ratio of 5% applied to all modes. The second analysis is carried out by 

using the reference values of diaphragms, Rm and Td, and the mode pair corresponding to the fundamental 

mode of the uncoupled in-plane wall. For each mode, modal time-history displacements are solved and 

are superimposed to obtain the combined response of the mode pair. A constant damping ratio of 5% is 

also used in the second set of analyses to eliminate the influence of damping in the comparison of results. 

4.4 Response Parameters 

The two-mode analysis is evaluated based on the mean peak base shear and the interstorey drift of the in-

plane wall. These are considered to represent the global and the local parameters most applicable in 

assessing the response of a building. Furthermore, the results are reported by the ratios of the mean peak 

responses (denoted generically as r) from the two-mode analysis (rest) to the complete analysis (ract) 

𝑟 =
𝑟𝑒𝑠𝑡

𝑟𝑎𝑐𝑡

 (38) 
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4.5 Error in Base Shear Estimation 

The accuracy of the base shear estimation is found to depend on the flexibility of the diaphragms. In 

Figure 7, the range of the base shear ratios (Equation 38) for the four-storey model with εT of −0.3 is 

shown as a function of the period ratio, RT = Td / Tw. The plot shows the typical sensitivity characteristics 

observed, and includes all variation profiles. As shown in the figure, the two-mode analysis produces 

accurate results when the diaphragms become very flexible. The negligible influence of the very flexible 

diaphragms implies the in-plane wall to respond independent of the diaphragms. The largest error is 

generally observed when RT is between 1 and 4, suggesting that the diaphragms have the most potential to 

modify the response of the in-plane wall when they are neither very stiff nor overly flexible. 

 

(a) Natural accelerograms 
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(b) Artificial accelerograms 

Figure 7. Ratio of mean peak base shear of the two-mode analysis to the actual results for four-storey 

model with εT of −0.3 

The reference mass ratio shows no consistent influence on the maximum error in the estimation of the 

base shear. However, larger Rm typically results in larger errors in the flexible diaphragm range, 

approximately for RT > 4. 

No significant differences in the maximum error are observed for the two sets of input accelerograms. 

However, the natural accelerograms tend to result in larger errors in the range RT > 4. 

The envelopes of the maximum and the minimum base shear ratios are shown in Figure 8 for the top 

variation and in Figure 9 for the linear εT variation profiles for the natural accelerogram records. While 

not shown, similar results are obtained for the artificial accelerograms. The errors resulting from the 

variations in εm are also found to be similar to those of εT. Furthermore, results for the bottom variation 

and the alternating variation profiles are similar to those obtained for the top variation profile. As Figure 8 

and Figure 9 show, the linear variation results in the largest error of the two-mode analysis. While the 

errors in the other variation profiles are insensitive to the number of storeys, the error for the linear 

variation grows with the number of storeys. 

For the top, bottom and alternating variation profiles, the error in the base shear estimation using the two-

mode analysis can be limited to ±20% if εm and εT are within ±30% of the reference values. For the linear 

variation, up to +40% error can be observed for the four-storey structures by keeping εm and εT to within 



 

56 

 

±30% of the reference values. In general, there is a tendency for the two-mode analysis to overestimate 

the actual base shear. This may be attributed to the assumption of the equal diaphragm period inherent in 

the two-mode analysis, as this assumption results in the perfect correlation of the inertial forces 

transferred from the diaphragms to the in-plane wall. 

 

(a) Two-storey model 

 

(b) Four-storey model 

Figure 8. Envelope of mean peak base shear ratio of top variation in εT for natural accelerograms 
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(a) Two-storey model 

 

(b) Four-storey model 

Figure 9. Envelope of mean peak base shear ratio of linear variation in εT for natural accelerograms 

4.6 Error in Interstorey Drift Estimation 

The two-mode analysis generally results in larger errors in the interstorey drift estimation in comparison 

to the base shear. 
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For the top and the linear variation profiles, the variation in εm results in larger errors than the variation in 

εT, while for the bottom and the alternating variation profiles, εm and εT lead to similar levels of errors. 

This finding is shown in the ratios of the interstorey drifts of the bottom and linear variation profiles for 

the four-storey model, corresponding to εT  (Figure 10) and εm (Figure 11). While not shown, the 

maximum error envelope of the top variation profile is similar to that of the linear variation profile, while 

the alternating variation profile tends to be between the bottom and the top variation profiles. 

 

(a) Bottom variation profile 
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(b) Linear variation profile 

Figure 10. Envelope of ratios of mean peak interstorey drift for four-storey model with variation in εT for 

natural accelerograms 

 

(a) Bottom variation profile 
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(b) Linear variation profile 

Figure 11. Envelope of ratios of mean peak interstorey drift for four-storey model with variation in εm for 

natural accelerograms 

From Figure 11, the two-mode analysis can be seen to produce conservative results when the mass ratio 

of the top level is less than the reference value (εm < 0), while noticeable underestimations may result 

when the top level has larger mass ratio (εm > 0). These observations have been consistently found for the 

top and the linear variation profiles, for both sets of accelerograms. 

The estimation of the interstorey drift can also be somewhat sensitive to the spectral shape of the 

excitation. The artificial accelerograms appear to induce larger participation of higher modes that are not 

considered in the mode pair analysis. This is seen in Figure 12, in which a constant level of error persists 

even for very flexible diaphragms. 
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Figure 12. Ratio of mean interstorey drifts of the two-mode analysis to the actual results for four-storey 

mode with εT of −0.3 

For buildings of up to three storeys, the error can be limited to between approximately −20% and +40% if 

εT is within ±30% of the reference value. For the four-storey models, an error of up to +60% may be 

obtained under the same condition. The variation in εm leads to even larger errors. For buildings of up to 

three storeys, errors between −20% and +60% are obtained for the bottom and the alternating variation 

profiles, if εm is within ±30% of the reference value. For the top and the linear variation profiles, the 

upper-bound errors increase to +90%. When the four-storey models are considered, significant 

overestimations (>100%) and underestimations (−60%) may be obtained. 

The two-mode analysis appears to be appropriate in estimating the mean peak base shear of a structure 

with flexible diaphragms within the range of parameters investigated. However, the estimations of the 

local parameters, such as interstorey drifts, can become rather poor. It is envisaged that improved 

predictions of local demands can be achieved by modifying the mode shape assumed in the two-mode 

analysis. 

4.7 Recommended Use of Two-Mode Analysis 

From the sensitivity analysis, the following criteria are suggested for application of the two-mode 

analysis: 

 the number of storey to be limited to three; 
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 the variation profile should be selected so that εm and εT are minimised, and within approximately 

±0.3; 

 the bottom variation profile is the most favourable for both εm and εT, followed by the alternating, 

top and linear profiles; and 

 for conservative estimates, the mass ratio of the topmost level to be smaller than the reference 

value Rm, if the top or the linear variation profile is used. 

These condition are aimed at limiting the error in the mean peak base shear estimations to ±20%, while 

eliminating the excessive errors observed for the interstorey drift predictions. 

5. APPLICATION TO LINEAR STATIC PROCEDURE 

An improvement to the linear static procedure is proposed by utilising the finding that the two-mode 

analysis can generally provide reasonable predictions of the mean peak base shear. Expressions for the 

mode pair to be used in the method are firstly summarised. A coefficient that captures the effect of 

diaphragm flexibility on the base shear (base shear modification factor) is then derived analytically.  

5.1 Formulae for Mode Pair 

The mode pair corresponding to the fundamental mode is used in the linear static method. For the 

uncoupled in-plane wall with the fundamental period Tw, the periods of the mode pair (from Equations 25 

and 26) can be written as 

𝑇1 = 𝑇𝑤 (
2𝑅𝑇

2

𝑅𝑇
2 + (1 + 𝑅𝑚) − √[𝑅𝑇

2 + (1 + 𝑅𝑚)]2 − 4𝑅𝑇
2

)

0.5

 (39) 

𝑇2 = 𝑇𝑤 (
2𝑅𝑇

2

𝑅𝑇
2 + (1 + 𝑅𝑚) + √[𝑅𝑇

2 + (1 + 𝑅𝑚)]2 − 4𝑅𝑇
2

)

0.5

 (40) 

where RT = Td / Tw is the reference period ratio and Rm is the reference mass ratio. The scaling factors 

(Equation 33) of the effective earthquake force distribution are also given in an alternative dimensionless 

form as 

𝑓𝑤𝑖 =
1 + 𝑅𝑚𝛽𝑖

1 + 𝑅𝑚𝛽𝑖
2 , 𝑓𝑑𝑖 = 𝑅𝑚𝛽𝑖𝑓𝑤𝑖 , 𝑖 = 1,2 (41) 
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where 

𝛽𝑖 =
𝑇𝑖

2

𝑇𝑖
2 − (𝑅𝑇𝑇𝑤)2

, 𝑖 = 1,2 (42) 

5.2 Base Shear Modification Factor 

The base shear modification factor, that expresses the effect of the flexible diaphragms on the peak base 

shear of the uncoupled in-plane wall, is herein derived analytically. Firstly considering the uncoupled in-

plane wall, any peak response in the fundamental mode (denoted by rw' ) can be written as (Chopra 2007) 

𝑟𝑤
′ = 𝑟𝑤

′𝑠𝑡𝑆𝑎(𝑇𝑤) (43) 

where rw' st is the static response of the wall subjected to sw, as defined in Equation 31 for the uncoupled 

in-plane wall, and Sa is the ordinate of the pseudo-acceleration spectrum at the fundamental period of the 

uncoupled in-plane wall. 

For linearly elastic structures, a proportionality exists between the applied force and the response, 

𝑟𝑤
′𝑠𝑡 ∝ 𝒔𝑤 (44) 

Using the expression of Equation 32, similar proportionality can also be written for the in-plane wall in 

the combined structure 

𝑟𝑤𝑖
𝑠𝑡 ∝ (𝑓𝑤𝑖 + 𝑓𝑑𝑖)𝒔𝑤, 𝑖 = 1,2 (45) 

where  fwi and  fdi can be obtained from Equation 41. Because the proportionality in Equations 44 and 45 

is governed by the stiffness of the in-plane wall, which is identical in the uncoupled and the combined 

systems, the two expressions imply 

𝑟𝑤𝑖
𝑠𝑡 = (𝑓𝑤𝑖 + 𝑓𝑑𝑖)𝑟𝑤

′𝑠𝑡 , 𝑖 = 1,2 (46) 

The peak dynamic in-plane wall’s response in the combined structure rw can then be approximated by the 

square-root-of-sum-of-squares (SRSS) combination of the mode pair, because the modes are widely 

spaced (see Figure 2), 
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𝑟𝑤 = 𝑟𝑤
′𝑠𝑡√∑[(𝑓𝑤𝑖 + 𝑓𝑑𝑖)𝑆𝑎(𝑇𝑖)]2

2

𝑖=1

 (47) 

where Ti is obtained from Equations 39 and 40. By specialising the response parameter to the base shear, 

the base shear modification factor is defined by 

𝐶𝐵 =
𝑉𝑏

𝑉𝑏
′ =

√∑ [(𝑓𝑤𝑖 + 𝑓𝑑𝑖)𝑆𝑎(𝑇𝑖)]22
𝑖=1

𝑆𝑎(𝑇𝑤)
 (48) 

where Vb is the approximated base shear of the combined structure and Vb' is the base shear of the 

uncoupled in-plane wall. Hence by knowing the base shear of the uncoupled in-plane wall, the base shear 

of the combined structure accounting for the diaphragm vibration is given by 

𝑉𝑏 = 𝐶𝐵𝑉𝑏
′ (49) 

5.3 Calculation of Tw 

In evaluating Equations 39 and 40, the fundamental period of the in-plane wall is required. Several 

options are available to calculate Tw: 

 The in-plane wall may be modelled using frame elements with rigid offsets at nodal regions. 

Eigenvalue analysis can then be conducted. This approach option requires the use of software. 

 The stiffness of the solid walls may be calculated using the mechanics for homogeneous 

materials, considering both the shear and the flexural deformations. For walls with openings, the 

wall stiffness may be obtained from the individual stiffnesses of piers by assuming appropriate 

boundary conditions. The typical common assumptions on the boundary condition are (1) strong 

pier - weak spandrel (i.e. cantilever piers), or (2) weak pier - strong spandrel (i.e. each pier in 

double bending). Once the wall stiffness is calculated, the Rayleigh’s method (ASCE 2014) may 

be used to obtain the fundamental period. 

Alternatively, the estimation of Tw may be avoided completely if a simplified analysis method is used, as 

described in the following section. 
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5.4 Simplified Method 

The calculation of Tw admittedly involves a large approximation, especially if a wall stiffness is estimated 

from the individual pier stiffnesses. The sensitivity of the modified base shear (Equation 49) to variations 

in Tw is therefore investigated. Figure 14 shows a contour plot of VB (as normalised to the weight of the 

structure), against the uncoupled in-plane wall period and the diaphragm period. The plot is generated 

from the expressions in Equations 39 to 49, using the design spectrum of NZS 1170.5 (New Zealand 

Standard 2004a) on site subsoil class B (Figure 13), with the peak ground acceleration of 0.22 g. The 

mass ratio is set to 1. The transition periods of the design spectra are denoted as TB and TC as shown in 

Figure 13. These periods are also indicated in Figure 14. It can be observed that for a given value of Td, 

the base shear is rather insensitive to variations in Tw. Furthermore, a reasonable conservative estimate 

can be made by setting Tw = TB for the typical period range of interest for URM buildings with flexible 

diaphragms (small Tw and moderate to large Td). Consistent observations were made for other soil types 

and mass ratios. Hence a simplification is suggested for a practical application, by setting Tw = TB.  

In order to facilitate the use of the simplified method, the values of base shear modification factor (CB) 

corresponding to Tw = TB are provided in Appendix B for the design spectra of NZS 1170.5. It is notable 

that CB reduces with the increasing diaphragm flexibility. This suggests that the multi-mode behaviour 

associated with diaphragm flexibility leads to a general reduction in the base shear. 

Note that the charts are developed using design spectra corresponding to the modal and time-history 

analyses (as opposed to the equivalent static analysis). This is because the spectra corresponding to the 

modal and time-history analyses reflect the hazard spectra, while those of the equivalent static analysis 

contain a cut-off period associated with the uncertainty involved in the estimation of short fundamental 

periods (New Zealand Standard, 2004b). However, accounting for such uncertainty does not seem 

appropriate in the proposed method.  

Once Td  and Rm are calculated, these charts can be read off to obtain the value of the modification factor 

corresponding to the site subsoil class of interest. This avoids the need to calculate Tw. The base shear of 

the uncoupled in-plane wall can be obtained using the peak ordinate of the design spectra. It should be 

noted, however, that this simplified method is to be used only in conjunction with smooth design spectra, 

and not with individual earthquake records. 
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Figure 13. Design spectral shape factor of NZS 1170.5 for site subsoil class B 

 

Figure 14.  Contour plot of VB (Equation 49) 

5.5 Analysis Step 

The proposed linear static method consists of the following steps, applicable to essentially symmetric 

structures of up to three storeys in height: 

1. Calculate the tributary masses of the in-plane wall and the diaphragms. 
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2. Multiply the tributary masses of the diaphragms by 126/155 (Equation 5) to obtain the effective 

masses of the diaphragms. Calculate the mass ratio by dividing the effective diaphragm mass by 

the tributary mass of the in-plane wall at each level. Calculate the reference diaphragm mass 

ratio, Rm by selecting an appropriate variation profile of Figure 5, ensuring that εm is within ±0.3. 

3. Calculate the periods of the diaphragms (Equation 4, also refer Wilson et al. (2013) and Giongo et 

al. (2014)) and the reference diaphragm period Td by selecting an appropriate variation profile of 

Figure 5 (by replacing Rm and εm of Figure 5 by Td and εT respectively), ensuring that εT is within 

±0.3. Note that the variation in Td does not need to assume the same profile as that of Rm. 

4. Calculate the fundamental period (Tw) and the mode shape (ϕ) of the uncoupled in-plane wall. 

Alternatively, the simplified method can be used, by assuming Tw = TB. 

5. Calculate CB from Equation 48, using the associated expressions in Equations 39 to 42. If the 

simplified method is used, CB may be read off from one of the charts provided in Appendix B. 

6. Calculate the peak base shear of the uncoupled in-plane wall (VB'), by multiplying the seismic 

mass of the in-plane wall by Sa(Tw), where Sa is the ordinate of the pseudo-acceleration spectrum. 

If the simplified method is used, the peak ordinate of the spectrum should be used. 

7. In order to account for the inelastic deformation, the base shear may be further modified, for 

example, by C1, C2 and Cm of Equation 1. However, further studies are needed to confirm the 

validity of these coefficients for structures with flexible diaphragms.  

8. The equivalent lateral forces on the in-plane walls are obtained by distributing the modified base 

shear in proportion to mj ϕj /∑ mi ϕi for the jth level. If the simplified method is used, ϕ may be 

approximated by the floor heights from the ground (linear variation), as typically specified in 

codes (New Zealand Standard 2004a; Standards Australia 2007; ASCE 2014). This 

approximation is consistent with the assumption of the first-mode dominance of the in-plane wall 

used in the two-mode analysis.  

9. The resulting member forces (which can be evaluated using an equivalent frame model, or 

determined on the basis of the relative stiffnesses of the piers and spandrels) are compared to their 

capacities, for example using Equation 2. 
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5.6 Analysis Effort 

The effort needed to carry out the proposed method is comparable to existing methods. This section 

provides the comparison of the analysis procedures of two existing methods, ASCE 41-13 and a method 

by Knox (2012), and the approach proposed in this study. The overview of the existing methods is 

provided in Appendix A. The following can be noted: 

 All methods require the calculations of tributary masses and the diaphragm period of each span at 

each floor level. Hence the analysis steps 1 and 3 of the preceding section are identical for all 

methods. 

 Analysis step 2 is unique to the proposed method. However, this step requires minimal effort. 

 The calculation of the uncoupled in-plane wall period (step 4) is required in the rigorous version 

of the proposed method and in the method by Knox. However, as described previously, the 

simplified approach can be used to eliminate the need to compute the fundamental period of the 

wall. 

 The calculation of CB in step 5 is unique to the proposed method. However, this step requires 

minimal effort, especially if the simplified approach is used. 

 ASCE 41-13 and Knox’s methods require the computation of the equivalent static force for each 

diaphragm, while the proposed method requires the equivalent static force of the in-plane wall 

only. 

 Knox’s method requires the calculation of base shear by complete quadratic combination (CQC) 

of the diaphragm forces and the in-plane wall force to avoid the potential underestimation of 

storey forces obtained by SRSS. This may require certain additional effort in calculating the 

correlation coefficients. 

The steps 7 onwards are identical in all methods. The foregoing discussion confirms that the effort needed 

to conduct the proposed method is comparable to the existing methods. 

5.7 Numerical Validation 

A two-storey symmetric building shown in Figure 15 is analysed using the proposed method. In addition, 

ASCE 41-13 and the method by Knox are also evaluated for comparison. In this validation, the rigorous 
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version of the method is used with the “actual” uncoupled in-plane wall period obtained from the modal 

analysis of the wall modelled by frame elements and rigid offsets. In addition, only the elastic response is 

evaluated, because the modification for the inelastic response is in principle identical for all methods. 

 

Figure 15. Example structure 

In the analysis, the loading is considered in the direction parallel to walls 1 and 2, and perpendicular to 

the floor and roof joists. The out-of-plane walls (walls 3 and 4) are solid with no openings. The 

thicknesses of the walls are 350 mm in the first storey and 230 mm in the higher levels. The density of 

masonry is 1800 kg/m3 and the Young's modulus is 2750 MPa. The shear modulus is assumed to be 40% 

of the Young's modulus.  

Using an equivalent frame model, the fundamental period of the in-plane wall is calculated to be 0.097 s. 

The mode shape is 0.478 at the first floor and 1.0 at the roof level, indicating an almost linear profile. The 

effective mass of the fundamental mode is 85% of the total mass of the in-plane wall. 

Three different diaphragm constructions are considered. The diaphragm stiffnesses of the first two cases 

are calculated using the procedure outlined in Giongo et al. (2014). The third case represents more heavily 

loaded stiff timber diaphragms.  



 

70 

 

In the first case (case 1), the first level diaphragm is considered to be in a “fair” condition and sheathed 

with single straight floor board, while the roof has single diagonal sheathing and is in a “poor” condition 

(see Giongo et al. (2014)). Using the procedure of Giongo et al. (2014), and neglecting for simplicity the 

effects of floor opening and additional stiffness of the out-of-plane wall, the diaphragm stiffness Gd  is 

calculated to be 215 kN/m at the first floor and 340 kN/m at the roof. Assuming 18 mm thick sheathing 

and 55 mm by 240 mm deep joists spaced at 405 mm centres, with the timber density of 610 kg/m3, the 

self-weight of the floor is calculated to be 0.3 kPa. The self-weight of the roof is considered to be 0.6 kPa, 

accounting for an additional 0.3 kPa for the roofing. The floor is also subjected to an additional 0.9 kPa (3 

kPa imposed load multiplied by the seismic load factor of 0.3) imposed load. 

In the second case (case 2), the floor diaphragm is considered to have been strengthened with blocked 9 

mm plywood overlay (unchorded), increasing Gd to 1460 kN/m. The roof is also strengthened with an 

additional layer of diagonal sheathing, resulting in Gd of 2385 kN/m. In addition, the self-weight of the 

floor and the roof increase to 0.36 kPa and 0.72 kPa respectively, due to the additional strengthening 

material. 

The third case (case 3) represents a more heavily stiffened case in which the floor and the roof 

diaphragms have the same stiffness Gd of 3150 kN/m. This value represents the upper-bound expected 

stiffness of timber diaphragms in ASCE 41-13. The dead load of the floor and the roof are considered to 

be 1.5 kPa, taken as an average value reported for a two-storey building by Bruneau (1994), which 

contains large mass contributions from the ceiling and wood partitions. In addition, a 1.5 kPa imposed 

load is considered for the floor (5 kPa live load with the seismic load factor of 0.3). 

The calculated diaphragm mass ratio and periods are shown in Table 2 for the three cases. In this 

example, the linear profile has been chosen for both parameters, resulting in the reference parameters Rm 

and Td being the average values of the mass ratios and the diaphragm periods. The values of εm and εT can 

then be calculated from Figure 5. For example, using the first floor mass ratio of 0.425 and the reference 

Rm of 0.457 for case 1 (see Table 2), the value of εm is obtained by substituting the above values in the 

expression given in Figure 5 for the linear profile; i.e. 0.457(1 − 휀𝑚) = 0.425, resulting in εm of 0.07.  
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Table 2. Diaphragm configuration (case 1: as-built; case 2: plywood overlay; case 3: heavily stiffened) 

The calculated values of εm are 0.071, 0.089 and 0.029 respectively for the first, second and the third 

cases. Similarly, the values of εT are −0.22, −0.21 and −0.12 respectively for the three cases. It is noted 

that all εm and εT values are within the suggested limit of ±0.3. 

The structures are analysed with the proposed method using the mean spectrum of the natural records 

listed in Table 1. In order to assess the accuracy of the method, linear dynamic analyses are conducted in 

SAP2000 (CSI 2012) using the six accelerograms. The in-plane walls are modelled as equivalent frames 

with rigid offsets, while the diaphragms are modelled by beam elements with artificially large bending 

stiffness to simulate the shear deformation compatible with Equation 4. In addition, the existing linear 

static method by Knox, as well as the method contained in ASCE 41-13 for URM buildings with flexible 

diaphragms, are also evaluated. In the ASCE 41-13 method, the updated diaphragm period expression of 

Equation 4 by Wilson et al. (2013) is used. In all analyses, a constant modal damping ratio of 5% is used. 

The results from the three linear static methods are compared against the time-history results. 

Table 3 shows the predicted mean peak moments of the in-plane wall elements, indicated in Figure 15 for 

the first storey, as normalised to the dynamic analysis results for case 1. Similar results are shown in 

Table 4 and Table 5 for case 2 and 3 respectively. The comparison shows that the proposed and the 

Knox’s methods produce comparably good predictions of the dynamic results for the flexible diaphragms 

in case 1. The method of ASCE 41-13, however, results in large overestimations. When the diaphragm 

stiffness is increased in case 2, the proposed method reports the same level of accuracy as in case 1, while 

Knox’s method results in some underestimations. The overestimation of ASCE 41-13 reduces, although 

the method is still overly conservative. For the most stiff and heavy diaphragms of case 3, the proposed 

method provides reasonably consistent results with the dynamic analysis, while Knox’s method results in 

further underestimations. The method in ASCE 41-13, on the other hand, provides a comparable level of 

accuracy to that as the proposed method. 

Level 

Mass ratio 

(effective diaphragm mass / in-plane wall 

mass) 

Diaphragm period 

(from Equation 4) 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

1 0.425 0.432 0.639 0.45 s 0.17 s 0.14 s 

2 0.490 0.515 0.678 0.29 s 0.11 s 0.11 s 

Average 0.457 0.474 0.658 0.37 s 0.14 s 0.13 s 
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It appears that the ASCE 41-13 is more suited to the analysis of structures when the diaphragms are 

relatively stiff, as this method assumes the total tributary mass to respond in a single period. Conversely, 

the method of Knox appears more suitable when the diaphragms are relatively flexible, as it treats the in-

plane wall and the diaphragms to vibrate independently. In comparison to these existing procedures, the 

proposed method is capable of providing consistent predictions of seismic demand for a wide range of 

diaphragm stiffnesses. 

Table 3. Peak moments from linear static methods normalised to mean peak dynamic results for case 1 

Element Location 
Proposed method Method by Knox ASCE 41-13 

Storey 1 Storey 2 Storey 1 Storey 2 Storey 1 Storey 2 

Pier 
Exterior 1.13 1.29 1.25 1.08 2.41 1.99 

Interior 1.07 1.24 1.16 1.08 2.25 2.00 

Spandrel 
Exterior 1.27 1.26 1.33 1.11 2.54 2.04 

Interior 1.16 1.24 1.19 1.10 2.89 2.04 

Table 4. Peak moments from linear static methods normalised to mean peak dynamic results for case 1 

Element Location 
Proposed method Method by Knox ASCE 41-13 

Storey 1 Storey 2 Storey 1 Storey 2 Storey 1 Storey 2 

Pier 
Exterior 1.08 1.29 0.91 0.77 1.54 1.14 

Interior 1.03 1.23 0.85 0.78 1.45 1.14 

Spandrel 
Exterior 1.24 1.25 0.98 0.79 1.63 1.16 

Interior 1.14 1.22 0.87 0.79 1.43 1.17 

Table 5. Peak moments from linear static methods normalised to mean peak dynamic results for case 3 

Element Location 
Proposed method Method by Knox ASCE 41-13 

Storey 1 Storey 2 Storey 1 Storey 2 Storey 1 Storey 2 

Pier 
Exterior 0.95 1.22 0.69 0.63 1.11 0.92 

Interior 0.90 1.15 0.64 0.62 1.03 0.91 

Spandrel 
Exterior 1.07 1.19 0.73 0.64 1.16 0.94 

Interior 0.98 1.12 0.65 0.62 1.01 0.91 

5.8 Discussions on Inelastic Behaviour 

The basic premise of the linear static procedure, when used in the performance-based assessment, is that 

the peak inelastic displacement can be estimated from the displacement of the corresponding elastic 

system. For example, the modification factor C1 in Equation 1 accounts for the presumed difference 
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between the peak inelastic displacement and the elastic displacements. In FEMA 356 (FEMA 2000) (and 

adopted by Knox), C1 is given as 1.0 if the period of the structure is larger than the characteristic 

earthquake period (TC) and as 1.5 if the building period is less than 0.1 s. Linear interpolation is allowed 

between these period values. In ASCE 41-13, a more elaborate expression is provided 

𝐶1 = 1 +
𝜇𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ−1

𝑎𝑇2           (50) 

where a is a factor that depends on the site subsoil classification, T is the fundamental period of the 

structure, and μstrength is the strength ratio defined by 

𝜇𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑆𝑎

𝑉𝑦 𝑊⁄
          (51) 

where Vy is the base shear capacity. 

These expressions were derived from analytical and experimental investigations of earthquake response 

of yielding systems (ASCE 2014), considering the diaphragm to be rigid. It is beyond the scope of this 

paper to assess the adequacy of these expressions for structures with flexible diaphragms, which is an 

ongoing area of research activity at the University of Adelaide and the University of Auckland. 

6. CONCLUSIONS 

A method for the seismic analysis of in-plane loaded walls in a symmetric, low-rise building with flexible 

diaphragms has been presented. The method approximates the peak response of the in-plane walls using 

two modes of the structure assuming (1) equal ratio of diaphragm mass to the in-plane wall mass at all 

levels, and (2) equal diaphragm period at all levels. Under these conditions, the modal analysis has shown 

that two modes are typically sufficient to capture the majority of mass participation for regular low-rise 

buildings. Sensitivity analysis has been conducted to show that the two-mode analysis gives reasonable 

predictions of the base shear, even when the diaphragm configurations deviate from the assumed 

conditions. However, the predictions of interstorey drifts were less accurate, as the variations in the mass 

ratio and the period of the diaphragms resulted in modified mode shapes from those assumed in the two-

mode analysis. Further studies are envisaged to address this issue. 

An improvement to the linear static method has been proposed by utilising the two-mode analysis. Simple 

expressions are provided to capture the effect of flexible diaphragms. A simplified version of the method 

is also proposed to facilitate a rapid use of the procedure in practice. The proposed method provides an 
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improvement to the existing procedures, as it explicitly considers the dynamic interaction between the in-

plane wall and the diaphragms. The method has been shown to produce results consistent with dynamic 

analysis for a wide range of diaphragm stiffness values in the elastic range of building behaviour. Further 

studies are needed to assess the general suitability of the linear static procedure for URM buildings, and 

how the inelastic displacement should be obtained from the corresponding elastic system response when 

flexible diaphragms are present. 
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Appendix A - Overview of Existing Methods 

ASCE 41-13 

ASCE 41-13 contains a linear static procedure for unreinforced masonry buildings with single-span 

flexible diaphragms with six stories or less in height. In this procedure, the fundamental period is 

calculated as given in Equation 3. The peak static force for each diaphragm is then obtained as in 

Equation 1. The static force calculated for each diaphragm is then distributed to the in-plane walls in 

accordance with their tributary masses, and the design actions in each component is evaluated. 

Knox 

The method by Knox considers the uncoupled fundamental periods of the in-plane wall (Tw) and 

diaphragms (Ti) separately. Tw may be evaluated by modelling the wall using frame elements, and Ti is 

evaluated from Equation 4. Using the calculated period, the diaphragm force is evaluated as 

𝑉𝑑𝑖 = 𝐶1𝐶3𝑆𝑎(𝑇𝑖)𝑊𝐷          (A3) 

where WD is the tributary weight of the diaphragm. The in-plane wall base shear is calculated by 

𝑉𝑤 = 𝐶1𝐶3𝑆𝑎(𝑇𝑤)𝑊𝑤          (A4) 

where Ww is the total weight of the in-plane wall. The coefficients C1 and C3 have been adopted from 

FEMA 356, and account for the inelastic behaviour and P-delta effects respectively. The in-plane wall’s 

base shear from Equation A4 is distributed up the height of the wall in proportion to the tributary wall 

mass at the ith level. The equivalent static force at the ith level is then approximated by the SRSS 

combination of the diaphragm and in-plane wall forces, 

𝑉𝑠𝑖 = √(
𝑉𝑑𝑖

2
)

2
+ (𝑉𝑤𝑖)2         (A5) 

where Vwi is the distributed in-plane wall’s base shear. 

In order to account for closely spaced modes, the total base shear is also evaluated by combining Vdi and 

Vw using the complete quadratic combination (CQC) rule. If the sum of equivalent static forces calculated 

from Equation A5 is smaller than the base shear obtained using CQC, they are scaled up accordingly. 
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Note that while the SRSS estimation may be carried out without calculating Tw, the CQC base shear check 

requires the periods of all components.  
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Appendix B - Plots of CB for Simplified Approach 

The plots of base shear modification factor CB generated for the design spectra of NZS 1170.5 are 

provided in Figure B1 for different site subsoil classes. The plots correspond to Tw= TB and can be used to 

simplify the proposed method. 

 

(a) CB for site subsoil class A or B 

 

(b) CB for site subsoil class C 
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(c) CB for site subsoil class D 

 

(e)  CB for site subsoil class E 

Figure B1: Values of CB for different site subsoil classes 
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CHAPTER 4  

 

EQUIVALENT FRAME MODELLING 

 

Background 

This chapter presents a case study of a simplified numerical modelling of unreinforced masonry buildings 

that is used throughout the remaining sections of this thesis. The investigated modelling approach is a 

minor extension of the existing three-dimensional modelling used in the TREMURI software, in which 

several membrane elements are used to model the dynamic behaviour of the flexible diaphragms. The 

development of the model is described and the shortcomings/limitations are identified. A preliminary 

parametric study on the effect of diaphragm flexibility on the global building behaviour is presented. 

List of Manuscripts 

Nakamura, Y., Derakhshan, H., Sheikh, A. H., Ingham, J. and Griffith, M. C. (2016) “Equivalent frame 

modelling of an unreinforced masonry building with flexible diaphragms - a case study”, Bulletin of New 

Zealand Society for Earthquake Engineering, 49(3), 234 – 244. 
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Equivalent Frame Modelling of an Unreinforced Masonry Building with 

Flexible Diaphragms – A Case Study 

ABSTRACT 

A case study was conducted to investigate the applicability of the equivalent frame modelling for the 

nonlinear time-history analysis of unreinforced masonry buildings with flexible diaphragms. The dynamic 

responses calculated from the equivalent frame models were compared against shake table test results of a 

full-scale two-storey stone masonry building. The investigated modelling approach reflected the 

simplifications commonly assumed for the global analysis of buildings; namely, considering the 

diaphragms to behave elastically and neglecting the stiffness and strength contributions of the out-of-

plane responding walls. The sensitivity of the analysis to different idealisations of the equivalent frame, as 

well as to the diaphragm stiffness values, were also investigated. Discussions are provided on the 

accuracies and limitations of the investigated modelling approach, which may serve as a useful guidance 

for practical application. 

1. INTRODUCTION 

Unreinforced masonry (URM) buildings make up a substantial proportion of existing building stock, and 

continue to pose large seismic risk in many parts of the world. In evaluating their seismic vulnerability, 

efficient numerical models are required, that are capable of simulating the inelastic building behaviour. 

The equivalent frame modelling procedure (Magenes & Della Fontana 1998) has been shown to be a 

promising practical approach capable of simulating the salient response mechanisms of URM buildings, 

without incurring the large computational penalty of finite element analysis. 

The equivalent frame idealisation considers the in-plane response of a wall as comprising of deformable 

pier and spandrel elements connected to nodes, which may have rigid offsets (Figure 1(a)). The minimum 

deformable length of the piers (spandrels) is commonly assumed to be dictated by the smallest height 

(width) of adjacent openings. Alternatively, to account for the deformability of the node panels, the 

deformable length of piers may be extended making use of 30° lines emanating from the corners of the 

door or window openings as shown in Figure 1(a). The piers and spandrels are conceptually represented 

as elastic frame members with lumped nonlinearity capturing the shear or rocking failure modes (Figure 

1(b)). The initial validation of the equivalent frame modelling procedure was focused on individual in-

plane loaded walls in isolation (Magenes & Della Fontana 1998; Kappos et al. 2002; Salonikios et al. 

2003). 
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Figure 1. Equivalent frame idealisation and typical failure modes  

Subsequent developments have explored the feasibility of modelling the global three-dimensional 

response of buildings by assembling two-dimensional equivalent frames coupled by diaphragms 

(Lagomarsino et al. 2013). 

In such three-dimensional models, floor and roof diaphragms are often treated as stiffness contributing 

elements but do not have dynamic or vibration characteristics (Lagomarsino et al. 2013). However, it is 

well recognised that the in-plane motions of flexible timber diaphragms, which commonly exist in URM 

buildings, can dominate the response of these buildings. This recognition is reflected in some guidelines 

(ASCE 2014) where the natural frequency of a building is considered to be approximately equal to the 

frequency of the diaphragm itself. Measurements taken from an instrumented URM building with timber 

diaphragms during the Loma Prieta earthquake (Tena-Colunga & Abrams 1992) showed that the flexible 

diaphragms have the tendency of vibrating almost independently of the supporting walls, with amplified 

displacements and accelerations at their mid-spans. Similar behaviours were also observed in shake table 

tests by Costely and Abrams (1995). Evidence of significant diaphragm deformation was also found in at 

least one building during the 22 February 2011 Christchurch earthquake (Dizhur et al. 2011) where 

excessive in-plane diaphragm deformation was believed to have led to the out-of-plane collapse of a wall 

(Figure 2).  
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Figure 2. Out-of-plane wall failure caused by excessive diaphragm deformation (Dizhur et al. 2011) 

Despite the importance of the dynamic characteristics of flexible diaphragms, the accuracy of an 

equivalent frame analysis incorporating such behaviour has not been investigated in detail so far. A 

notable exception is found in a recent study undertaken by Aleman et al. (2015) who developed a 

numerical model of a typology of URM buildings commonly found in New York City. In their model, the 

in-plane walls were represented by equivalent frames and the timber floor joists and sheathing were 

represented as elastic beam elements that were connected through nonlinear springs to capture nail-slip 

behaviour, together with calibrated rotational springs representing the one-way vertically spanning out-of-

plane loaded walls.  

Such detailed nonlinear modelling, however, poses several problems in practice. The modelling of a 

timber diaphragm requires an individual nail force-slip relationship, which is typically not available in 

seismic codes and guidelines. The actual nonlinear behaviour of diaphragms also depends on the specific 

locations of the nail connections and on the spacing of the nail couple, which may be difficult to capture. 

The inclusion of one-way vertical bending corresponding to the out-of-plane deformation of walls, as 

done in Aleman et al. (2015), increases computational demand but does not necessarily enhance the 

analysis accuracy; recent research (Derakhshan et al. 2015) has suggested that even for one-way 

(vertically) spanning wall modelling, an additional failure mode needs to be considered due to diaphragm 

flexibility. Such detailed modelling for the out-of-plane loaded wall is considered to be impractical. 

The aim of this paper is to explore the applicability of the equivalent frame modelling approach for the 

prediction of global response of URM buildings with flexible diaphragms, considering the above 

limitations currently faced by practising engineers. To this end, a relatively simple modelling approach 

based on commonly accepted assumptions is investigated. Specifically, the diaphragms are represented by 

elastic membrane elements, while the out-of-plane wall stiffness and strength contributions are neglected. 

Dynamic test data of a full-scale stone masonry building with strengthened timber floor and roof 

(Magenes et al. 2014) is used to verify the potential, and to identify the limitations, of the modelling 
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approach. The sensitivity of the analysis for different choices of modelling are also explored through two 

different equivalent frame idealisations and diaphragm stiffness values. While the analyses are conducted 

using TREMURI (Lagomarsino et al. 2013) with certain modelling concepts specific to that program, 

results reported in this paper have general applicability. 

2. CASE STUDY BUILDING 

A two-storey stone masonry building with a timber floor and a timber roof diaphragm tested at the 

EUCENTRE (Magenes et al. 2014) is analysed in this study. This is a retrofitted building (Figure 3), 

whose diaphragms had been strengthened with a layer of diagonal timber boards nailed to the original 

single straight sheathing. In addition, the connections between the floor/roof diaphragms and the walls 

were also strengthened. At the floor level, 140 mm x 140 mm x 10 mm steel sections were attached to the 

interior faces of the walls, and bolted through the thickness of the wall using 14mm diameter threaded 

bars. At the roof level, a continuously reinforced masonry ring beam was constructed using solid brick 

exterior layers and a cement grouted core. Two 12mm or 16mm diameter longitudinal reinforcements 

were placed in the central core, with horizontal truss reinforcements connecting the two brick faces at 

each bed joint. These strengthening measures ensured the global building behaviour to take place, while 

still allowing some level of diaphragm flexibility.  
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Figure 3. Construction details of tested building, dimensions in cm (Magenes et al. 2014) 

The building was tested under shake table excitations using the motions of the 15 April 1979 Montenegro 

earthquake measured at the Ulcinj-Hotel Albatros station with some scaling (Figure 4). The nominal peak 

ground acceleration (PGA) was gradually increased from 0.05g to 0.7g, for which the actual acceleration 

(peak) of the table motion varied from 0.06g to 1.16g. In this paper, the excitation levels are referred to by 

the nominal PGA. 

 

Figure 4. Table acceleration for the 0.6 g test 

The building suffered some damage during its transportation to the testing facility. Thus, the initial 

stiffness of the building would have been smaller than if the building had remained undamaged at the start 

of testing. The response of the building was almost elastic up until the 0.5g excitation. Significant 
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cracking appeared during the 0.6g test sequence, followed by the near-collapse state with the 0.7g 

excitation. A detailed description of the response characteristics of the building can be found in Magenes 

et al. (2014). 

3. MODELLING APPROACH 

3.1 General Descriptions of Numerical Model 

Figure 5 schematically shows a three-dimensional building model built up as an assemblage of two 

dimensional components. Each wall is idealised as equivalent plane (2D) frame members consisting of 

piers and spandrels. These members are connected to nodes (2D wall nodes) at their two ends, with each 

node having in-plane local degrees of freedom 𝑢𝑙𝑜𝑐, 𝑢𝑧 and 𝜙𝑟𝑜𝑡 (e.g. 𝑢𝑙𝑜𝑐 = 𝑢𝑥 for a wall laying in the 

x-z plane). Three-dimension nodes (3D wall nodes) are used at the intersections of walls, for example at 

corners of a building, with the global degrees of freedom 𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝜙𝑥 and 𝜙𝑦. These degrees of 

freedom are obtained by projecting the local degrees of freedom of the intersecting 2D walls onto the 

global coordinates. As the contributions of out-of-plane stiffness and strength of a wall are usually small 

compared to its in-plane stiffness and strength, the out-of-plane degrees of freedoms are neglected. 

Furthermore, the compatibility of the two intersecting walls is strictly satisfied for the vertical translation, 

but not for the horizontal translational or the rotational components. This modelling concept allows the 

direct adoption of the 2D equivalent frame idealisation developed for the individual walls in isolation. In 

this way, flange effects at wall intersections associated to normal deformations are captured in an 

approximate way, allowing free warping of the flanged section, whereas no flange effect is captured for 

shear deformation. 
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Figure 5. Modelling concept 

The diaphragms are modelled with plane stress or membrane elastic elements where the element node 

(2D diaphragm node) consists of two in-plane (horizontal) translational degrees of freedom, which permit 

a linear variation of displacements within an element. These elements are defined by the Young's 

modulus, shear modulus, and the thickness of the diaphragms. In this study, four elements are used to 

model a single diaphragm, which is the simplest possible idealisation that can capture the vibration 

characteristics of the diaphragms. 

The masses are assigned by considering simple tributary areas for inertial (horizontal) loading, as shown 

in Figure 6 and Figure 7 respectively for the floor and wall masses. It should be noted that distributing the 

mass in this manner does not provide the correct internal force distribution under gravity loading. Thus, 

additional static nodal forces (vertical forces and moments) are applied in order to obtain the correct 

gravity forces prior to the dynamic analysis.  
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Figure 6. Tributary areas for the distribution of the floor mass 

 

Figure 7. Tributary areas for the distribution of the wall mass 
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3.2 Limitations of Diaphragm Modelling 

The model used for the diaphragms in this study has several limitations, which warrant clarification. 

Specifically: (1) the diaphragms are considered to be elastic even though the actual behaviour of a timber 

diaphragm can exhibit highly nonlinear material behaviour, (2) full compatibility between the walls and 

diaphragms is assumed, and (3) only four elements are used to model the diaphragm. These issues are 

discussed in this section. 

Considering the first limitation, even though flexible timber diaphragms can exhibit large deformations, 

the amount of energy dissipation due to inelastic deformation is usually limited, and the strength 

degradation is typically not detected for the conceivable range of deformation (Giongo et al. 2014). For 

these reasons, the elastic representation of flexible diaphragms in URM buildings can be considered 

appropriate. 

The second assumption related to the full compatibility condition between the walls and diaphragms may 

not always be appropriate for existing buildings, where floor joists may simply rest within a recess 

created in the walls without having any strong connection. However, buildings with such poor 

connections tend to undergo local collapses, before the in-plane wall capacities can be reached. The 

global building response governed by the in-plane wall resistances can occur only if the wall-diaphragm 

connections are improved and the local failures are prevented. Hence, assumption of full compatibility 

between the diaphragms and walls can also be considered as an appropriate simplification when the 

analysis concerns the global response of the building. Nevertheless, it is possible to include connection 

flexibility in the stiffness calculation of the diaphragm elements, as suggested by some researchers 

(Brignola et al. 2012). 

The lumped mass modelling of a diaphragm using four membrane elements introduces some inaccuracy. 

In particular, the peak inertial force of the diaphragm may be reduced to 60% of the more realistic, 

distributed mass idealisation, due to the smaller effective mass (Appendix A). Despite this discrepancy, 

lumped mass idealisations have been used successfully in past studies (Tena-Colunga & Abrams 1992; 

Kim & White 2004). The reason for this success may be that the discrepancy becomes more significant 

when the diaphragm flexibility increases, but the natural periods of such flexible diaphragms typically fall 

in the velocity- or displacement-sensitive region of the response spectra associated with small spectral 

accelerations, or force demands, compared to those of the stiff masonry walls. Hence, the discrepancy of 

the lumped mass diaphragm idealisation may not significantly affect the overall computed building 
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responses. In this study, lumped mass idealisation of the diaphragm is considered to be an acceptable 

simplification, given the simplified nature of the overall model. 

3.3 Macroelement Definition 

The inelastic behaviours of the piers and spandrels are simulated using the macroelement definition of 

TREMURI (Penna et al. 2014). Each macroelement (pier or spandrel) consists of three segments (Figure 

8) with eight in-plane degrees of freedom. The degrees of freedom consists of axial (wi and wj) and lateral 

(ui and uj) translations and a rotation (ϕi and ϕj) at element ends i and j, with two rigid-body displacements 

defined in the middle segment (we and ϕe). The top and the bottom interfaces capture the combined axial-

rocking interaction and the shear behaviour is concentrated in the middle segment. The axial-rocking 

behaviour accounts for the limited compressive capacity, while the strength and stiffness degradations 

occur under shear deformation, as governed by an internal damage parameter. The material properties 

used in the present analyses (Table 1) were obtained from the results of complementary component tests 

as part of the experimental campaign (Magenes et al. 2010).  

Table 1. Masonry material properties from component tests 

Young’s modulus  

(MPa) 

Shear modulus 

(MPa) 

Compressive 

strength fm (MPa) 

Cohesion fv0 

(MPa) 

Friction 

coefficient μ 

2537 841 3.28 0.14 0.14 

 

Figure 8. Kinematics of macroelement (Penna et al. 2014) 
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3.4 Analysis Cases 

In order to explore the uncertainties associated with the choice of modelling, four different analysis cases 

were considered. These cases corresponded to two different idealisations of the equivalent frame 

definitions, and diaphragm stiffness values calculated using two different approaches. 

The two equivalent frame idealisations of the walls oriented in the direction of loading are shown in 

Figure 9. The first idealisation corresponds to the “full” rigid offsets of the nodes where the rigid zones 

extend across the full width or the depth of pier and spandrel. The second pattern more accurately reflects 

the actual crack patterns of the tested building, capturing both the initial damage suffered during the 

transportation of the building as well as the crack pattern observed from the final stage of testing 

(reported in a subsequent section of this paper). The second idealisation was developed considering the 

following: 

 the rigid nodes on the upper storey of the West wall were removed to reflect the cracking 

occurred during the transportation of the tested building, which separated the reinforced masonry 

beam from the wall; 

 the effective heights of the exterior piers were increased to account for the diagonal crack lines 

observed in the final run of the test; and 

 the thickness of the timber lintels were omitted from the spandrel depth. 

Figure 10 shows the two equivalent frame idealisation (of Figure 9) superimposed on the final crack 

patterns observed from the shake table tests. The consideration of the diagonal crack patterns resulted in 

the increase in the effective (or deformable) heights of the exterior piers of approximately 1.1 to 1.3 times 

the “full” rigid offset case. In practice, the effective heights reflecting the likely crack patterns may be 

determined, for example, by making use of assumed 30º crack lines (Figure 1(a)) or by using empirical 

effective heights derived by Dolce (1989).  
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Figure 9. Equivalent frame idealisation of longitudinal walls 

 

Figure 10. Equivalent frame idealisations superimposed on the final crack patterns 

The two diaphragm stiffness values considered in the present analyses are summarised in Table 2, where 

the stiffness values (𝐺𝑑) are defined as the material shear modulus multiplied by the thickness of 
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diaphragm. The first value (D1) corresponds to the expected diaphragm stiffness suggested by ASCE 41-

13 (ASCE 2014). The second stiffness value (D2) was calculated more rigorously using the procedure 

proposed by Brignola et al. (2012), by considering the timber joists to act as flexural beams in parallel. In 

the latter approach, the interior joists were assumed to be pinned at wall connections, while the end joists 

were fixed, with the fixity provided by the perimeter steel beams. In addition, the steel beam and the 

uncracked portion of the masonry wall, as observed from the final test run, were also considered to 

provide additional stiffness for the floor diaphragm. For the roof diaphragm, the perimeter reinforced 

masonry beam was included in the stiffness calculation.  

The four models analysed were: 

 Case 1: full rigid offset with D1 

 Case 2: full rigid offset with D2 

 Case 3: cracked pattern with D1 

 Case 4: cracked pattern with D2 

Table 2. Diaphragm stiffness values corresponding to retrofitted floor and roof with large joist cross 

sections 

Type 
Diaphragm stiffness 𝐺𝑑 (kN/m) 

Floor Roof 

D1 3150 3150 

D2 7036 5189 

4. ANALYSIS RESULTS AND DISCUSSIONS 

The accuracies of the numerical models were assessed by comparing the results predicted by these models 

with the experimental data in terms of the modal properties (frequencies and mode shapes), peak 

displacements and the distribution of damage. 

The modal properties are presented in Figure 11 and Figure 12 for the experiment and numerical results 

respectively. The experimental mode properties reported by Magenes et al. (2014) were identified from 

the signal analysis of the ambient and random vibrations with peak table accelerations ranging between ± 

0.03g. The mode shapes and frequencies of Figure 11 were obtained prior to the 0.05g test run, and hence 

represent the initial (elastic) mode properties of the experimentally tested building. 
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The same number of significant modes in the direction of excitation were identified from the 

experimental results and the numerical analysis. The fundamental mode of vibration in the direction of 

excitation is reasonably well captured by all analysis models. It can be seen that the increase in the 

displacement value up the height of the building is better captured when the diaphragm stiffnesses are 

calculated using the more refined procedure (Cases 2 and 4). In particular, the closest fundamental mode 

shape is achieved by Case 4, where the mid-span deformations of the diaphragms relative to the 

supporting walls are the smallest. In general, the numerical models exhibit larger deformations of the 

diaphragms relative to the walls, and underestimate the fundamental frequency in comparison to the 

experimental result. 

 

Figure 11. Mode shapes and frequencies identified from ambient and random vibrations (Magenes et al. 

2014) 

In contrast to the fundamental mode, the displacement shapes of the higher modes are not captured so 

well. The out-of-phase vibration of the floor and the roof diaphragms is more pronounced in the 

numerical analysis compared to that observed experimentally (2nd significant mode). The 3rd 

experimentally observed mode resembling the rotation of the diaphragms as a rigid-body could not be 

identified by the numerical models. The highest significant mode shape found in the experiment appears 

to be a mixture of the two highest modes predicted by the numerical models.  

The larger diaphragm displacements and the reduced torsional rotation are due to the lack of coupling 

between the diaphragms at adjacent levels, as well as a lack of coupling between diaphragms and the in-
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plane loaded walls. This coupling is provided by the out-of-plane deformations of walls, which were 

neglected in the analysis. The implication is that the out-of-plane walls may play an important role 

(particularly if the height-to-thickness ratio of the wall is not large, as in the tested building), at least 

within the elastic range of the building response. 

The notion that the out-of-plane walls affect the elastic building response can also be inferred from the 

normalised Fourier amplitudes of displacements calculated at the diaphragm mid-spans (Figure 13). For 

the 0.4g excitation (when the building remains almost elastic), the numerical analyses show large 

responses occurring near 10 Hz, which corresponds to the natural frequency of the diaphragm. In contrast, 

the experimental data do not show significant peaks corresponding to those frequencies. This discrepancy 

may be due to the effect of out-of-plane motions of walls, which act to “restrain” the independent motions 

of the diaphragms. 

 

Figure 12. Significant mode shapes and frequencies from numerical analysis 
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The importance of the out-of-plane loaded walls to the global building response appears to become less 

significant as the building becomes inelastic, which is reflected in the form of increased consistency of 

the Fourier amplitude for the 0.6g excitation. However, Figure 13 shows that this increased consistency is 

due to the reduced diaphragm motion as the in-plane loaded walls become inelastic, and may not 

necessarily be due to the reduced effect of the out-of-plane responding walls. Nevertheless, neglecting the 

out-of-plane wall appears to be generally more appropriate in the inelastic range of the building response. 

 

Figure 13. Normalised Fourier amplitudes of displacements at (a) floor mid-span, (b) roof mid-span for 

Case 4. 

The peak displacement envelopes found experimentally, as well as numerically, are compared in Figure 

14 for the West and East walls as well as at the diaphragm mid-spans. The results corresponding to 0.4g, 

0.5g, 0.6g and 0.7g excitation intensities are shown for the four analysis cases. The general trends of the 

experimental results show that the peak displacements of the walls and the diaphragms approach towards 

each other as the excitation intensity increases. This trend is captured by all numerical models also. In 

general, the sensitivity of the analysis to the diaphragm stiffness is small, although the elastic response 

(0.4g and 0.5g intensities) is affected to some degree. The discretisation of the equivalent frame appears 

to have more importance. The upper storey displacements of the West wall are better captured by Cases 3 

and 4 in the elastic range, implying that the equivalent frame idealisation based on the cracked pattern 

provides a better correlation with the experimental data. However, when significant inelastic response 

occurs during the 0.7g excitations, no significant differences of these responses predicted by the four 
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different models are found, and all models exhibit soft-storey behaviour with damage concentration in the 

ground storey.  

 

Figure 14. Comparisons of peak displacement envelopes 
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The distribution of damage is assessed using the ratios between the rotations due to rocking and drifts due 

to shear (𝛿𝑏 and 𝛿𝑠) and their corresponding ultimate capacities (𝛿𝑏,𝑢𝑙𝑡 and 𝛿𝑠,𝑢𝑙𝑡) for a given 

macroelement. The rocking rotations and shear drifts are expressed as the flexural and the shear 

components of chord rotation (Penna et al. 2014) (Figure 8), which may be expressed as 

𝛿𝑏 =
𝜙𝑖 + 𝜙𝑗

2
+ 𝜙𝑒 (1) 

𝛿𝑠 =
𝑢𝑗 − 𝑢𝑖

ℎ
+ 𝜙𝑒 

(2) 

where ℎ is the deformable height of the pier or length of the spandrel. The definitions of the other 

variables are given in Figure 8. 

The ultimate rocking and drift capacities obtained from the component tests (Magenes et al. 2010) were 

𝛿𝑏,𝑢𝑙𝑡 = 0.6 % and 𝛿𝑠,𝑢𝑙𝑡= 0.3 %, which were used in the present study. These values corresponded to the 

deformations of the statically tested piers when the lateral resistance reduced to 80% of the peak value. 

The damage ratios are hence defined as 𝐷𝐿𝑏 = 𝛿𝑏 𝛿𝑏,𝑢𝑙𝑡⁄  and 𝐷𝐿𝑠 = 𝛿𝑠 𝛿𝑠,𝑢𝑙𝑡⁄  for rocking and shear 

respectively. Ratios greater than 1 indicate the notional failure of that component under the considered 

failure mechanism for the purpose of seismic assessment.  

The damage ratios estimated for the 0.6g and 0.7g excitations are compared against the experimental 

crack patterns in Figures 15 and 16 respectively. The top and bottom values for each element of the 

figures indicate 𝐷𝐿𝑏 and 𝐷𝐿𝑠, respectively. Results for the analysis Cases 2 and 4 are shown, and where 

the damage ratios exceed 1, indicative failure patterns are also shown (straight lines at the element ends 

indicate the rocking failure, and the diagonal lines across the element indicate the shear failure). For the 

0.6g excitation intensity, the analysis based on Case 4 predicted rocking-dominant behaviour of the West 

wall, which is consistent with the experimental observation. In contrast, Case 2 predicted predominant 

shear damage. Hence, the damage mechanism is also better captured when the equivalent frame 

idealisation is based on the actual crack patterns. For the 0.7g excitation, however, both models show 

qualitatively identical damage distribution, which indicated that they generated almost identical 

displacements. At this near-collapse state, however, the predicted failure patterns are not in good 

agreement with the experimental results. In particular, for the West wall, the numerical analysis shows a 

failure governed by shear damage, while the experimental crack patterns actually indicate predominantly 

rocking failure. 
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Comparing the peak displacement shapes (Figure 14) and the damage distributions for the 0.7g excitation, 

the rocking responses of the upper storey piers of the West wall are found to be generally underestimated 

by the numerical analyses. A number of variations of the material properties were investigated with the 

aim of achieving larger upper storey (rocking) deformations for the final test run. However, in all 

simulations, initial flexural-rocking behaviour of the bottom storey piers was followed by significant 

shear damage. Once shear damage occurred, the models underwent soft-storey collapse, and the increased 

deformation of the upper-storey could not be attained. To some extent, this outcome may be considered as 

the limitation of the equivalent frame approach in capturing the dynamics of extensively damaged URM 

buildings. 

 

Figure 15. Comparison of (a) experimental crack patterns, (b) damage ratios predicted by Case 2, and (c) 

damage ratios predicted by Case4, for 0.6 g excitation.  
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Figure 16. Comparison of (a) experimental crack patterns, (b) damage ratios predicted by Case 2, and (c) 

damage ratios predicted by Case4, for 0.7 g excitation.  

5. INFLUENCE OF DIAPHRAGM FLEXIBILITY 

The sensitivity of the building response due to relatively large diaphragm flexibility was investigated 

numerically. Using the analysis Case 4, the stiffnesses of the floor and the roof diaphragms were reduced 

from their original values (D2 in Table 2) to 0.005 times these original values. The stiffness values of 

0.005 times the original values are likely to be unrealistically low for the test building, but were analysed 

to observe the general trends of the responses. Figure 17 shows the peak displacement variations of the 

West and the East walls at the roof level (𝑢𝑤𝑒𝑠𝑡
𝑟  and 𝑢𝑒𝑎𝑠𝑡

𝑟  respectively) as well as the peak deformation of 

the roof diaphragm mid-span relative to the walls (Δ𝑑
𝑟 ). Note that Δ𝑑

𝑟  is the diaphragm displacement 

relative to the average displacement of the in-plane loaded walls, and not to the ground. The peak 

deformations of the floor diaphragm showed similar trends to those of the roof diaphragm and are not 
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shown for clarity. The results correspond to the 0.6g excitation, and are plotted against the average 

diaphragm period (𝑇𝑑) of the floor and the roof (the two diaphragms had almost identical period values). 

The diaphragm periods approximately corresponding to the diaphragm stiffness D1 (Table 2) and the 

lower-bound stiffness suggested by ASCE 41-13 (ASCE 2014) are also indicated, which represents single 

straight sheathing diaphragms. It can be observed that the diaphragm flexibility has significant effects on 

the seismic demands of the in-plane response of walls. In particular, for the West wall, which is more 

flexible, a displacement amplification of 220% is observed between the as-built diaphragm D2 and the 

lower-bound values. 

Such amplification is due to two factors associated with flexible diaphragms; namely, (1) the variation of 

the diaphragms’ inertial forces and (2) reduced coupling between the walls when the diaphragm are 

flexible. The effect of the first factor can be seen in Figure 18, where the spectral acceleration of the 0.6g 

table motion is plotted with respect to the diaphragm periods (normalised with respect to values 

corresponding to the original diaphragm). The comparison between the spectral accelerations and the 

peak wall displacements (Figure 17) indicates that the wall displacement amplifications occur when the 

spectral accelerations (or inertial forces) of the diaphragms are amplified. Once the spectral acceleration 

is reduced for 𝑇𝑑 greater than approximately 0.7 s, the peak wall displacement is also reduced. The peak 

inertial force of the diaphragm hence directly affects the displacement demands of the walls. This 

observation also implies that the amplification is dependent on the ground motion characteristics. The 

second factor exacerbates the amplification of the weaker/flexible side (i.e. West wall) due to the limited 

coupling provided by flexible diaphragms in redistributing the internal forces.  

It can be seen that the peak diaphragm deformation (Figure 17) closely reflects the spectral displacement 

(Figure 18), suggesting that the diaphragm deformation may be estimated directly from the elastic 

spectrum. The similarity occurs because the diaphragms are modelled as being elastic, and the in-plane 

loaded walls are generally much stiffer than the diaphragms. Hence, the diaphragms essentially behave as 

elastic single-degree-of-freedom systems with rigid supports. When the diaphragms are relatively stiff 

(and the walls can no longer be considered as rigid supports), some deviations can be seen between the 

peak diaphragm deformations and the elastic displacement spectrum. 

Even though the diaphragm deformation may be approximated by the spectral displacement, it is 

questionable if the diaphragm deformation actually matches the displacement spectrum when the 

diaphragm is overly flexible, without causing instability of the out-of-plane responding walls. Further 

studies are needed to investigate the effect of the dynamic response of the out-of-plane walls (particularly 
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for the two-way spaning walls) on the building response when the diaphragm becomes excessively 

flexible. 

 

Figure 17. Influence of diaphragm stiffness on the wall displacement and roof deformation, subjected to 

the 0.6 g excitation intensity 

 

Figure 18. Plots of normalised spectral acceleration and displacement corresponding to the average 

diaphragm period for the 0.6 g excitation 
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6. CONCLUSIONS 

In this paper, results of a case study are reported on the applicability of the equivalent frame modelling 

approach for the global analysis of URM buildings with flexible diaphragms, when the local out-of-plane 

failure mechanisms have been mitigated. Reflecting the current modelling practice, the diaphragms were 

considered to remain elastic and the out-of-plane wall stiffness and strength contributions were neglected.  

The simple modelling approach was able to capture, with reasonable accuracy, the fundamental mode 

characteristics and the evolution of the peak displacements as the excitation intensity increased. On the 

other hand, the higher modes and the damage mechanisms were not as accurately simulated, particularly 

towards the near-collapse state. 

Concerning the damage mechanisms, different failure mechanisms were obtained (prior to the ultimate 

state) depending on the assumed length of the rigid node offset. More consistent results (with respect to 

the experimental data) were achieved when the equivalent frame idealisation reflected the actual crack 

pattern. 

For the case study building, the analyses did not indicate large sensitivity to the diaphragm stiffness 

values. When the diaphragms were made relatively flexible, however, the numerical models indicated the 

potential for significant sensitivity, including amplification, of the wall displacements due to the 

diaphragm stiffness values. 

The analyses also revealed that perhaps the most significant limitation of the investigated modelling 

approach is the omission of the out-of-plane walls. The discrepancies in the mode properties were 

identified as primarily due to the lack of out-of-plane wall stiffness. The interaction between the out-of-

plane responding wall and flexible diaphragm is also expected to play an important role as the diaphragm 

flexibility increases. 

Considering these points, the following conclusions can be drawn for practical application: 

 The analyses are sensitive to the frame geometry (deformable lengths of piers) and the best 

agreement with the actual response is expected when the geometry is guided by the crack pattern. 

Clearly, when the frame model is used for prediction of the response, the final crack pattern may 

not be obvious, in which case the engineer may need to consider the sensitivity of the results by 

varying the length of the piers. In such sensitivity analysis, an absolute minimum deformable 
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length of the frame should correspond to height of the adjacent openings. In addition, any pre-

existing crack should be reflected in the idealisation;  

 Neglecting out-of-plane loaded walls may render the results inaccurate if the diaphragm 

deformation is significant, and/or the building response is predominantly elastic; 

 If diaphragm stiffness is known, then the likely level of diaphragm deformation (relative to the 

supporting walls) may be gauged from the elastic displacement spectrum as a preliminary 

consideration;  

 If the diaphragm deformation is deemed to be excessively large, alternative analysis approaches 

that can account for two-way spanning out-of-plane wall behaviour, such as the finite element 

method, may be warranted; and 

 If diaphragm stiffness is unknown, a sensitivity analysis on the stiffness value is recommended 

due to the relatively flexible diaphragms significantly affecting the wall displacement demand. 
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Appendix A – Limitation of Lumped Mass Diaphragm Idealisation 

The lumped mass idealisation of the diaphragm introduces some inaccuracies, in particular, concerning 

the forces generated by the diaphragm motion. Two idealised elastic diaphragm models are analysed to 

illustrate this point, considering the supporting in-plane walls to be rigid. The first model corresponds to a 

generalised SDOF system of a shear beam with uniformly distributed mass, assuming the displacement 

shape, 𝜓, to be the deformed shape of the beam subjected to a parabolic load. This model may be 

considered to be representative of actual timber diaphragms (Wilson et al. 2013). The generalised mass 

�̃�, generalised stiffness �̃� and the period 𝑇 of the system are  

�̃� =
3968

7875
𝑚  , �̃� =

4352

875

𝐺𝐴

𝜅𝐿
  ,   𝑇 = 2𝜋√

�̃�

�̃�
   

(A.1) 

where 𝑚 is the total mass of the diaphragm including the contributions from out-of-plane walls, 𝐺 is the 

shear modulus, 𝐴 is the diaphragm cross section area, 𝐿 is the span length and 𝜅 is the cross section shape 

factor for shear. 

The peak displacement at mid-span 𝑢0 and the peak elastic restoring force 𝑉0 of the shear beam are given 

by (Chopra 2007) 

𝑢0 = Γ̃𝐷, 𝑉0 = Γ̃�̃�𝐴     (A.2) 

where �̃� = ∫ �̅�𝜓𝑑𝑥
𝐿

0
, with �̅� =mass per unit length, and Γ̃ = �̃� �̃�⁄ . 𝐷 and 𝐴 express the peak 

displacement and pseudo-acceleration correspondingly. 

The equivalent mass and the stiffness corresponding to the lumped mass idealisation of the diaphragm 

used in this study are  

�̃� =
1

2
𝑚  , �̃� = 4

𝐺𝐴

𝜅𝐿
    

(A.3) 

The peak mid-span displacement and the base shear force of the lumped mass system are 

𝑢0 = 𝐷, 𝑉0 = �̃�𝐴     (A.4) 
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Figures A.1 shows the comparisons of the period, peak mid-span displacement and the peak elastic 

restoring force obtained from the two idealisations, subjected to the design spectrum of AS 1170.4 

(Standards Australia 2007) with a peak ground acceleration of 0.1g on site class Ce. The diaphragm 

stiffness 𝐺𝑑, defined as the shear modulus multiplied by the thickness, was set to 1750kN/m 

(approximately representing a diaphragm with double layered sheathing (ASCE 2014)), and results 

correspond to the span length of 10 m and several different aspect ratios (𝐿/𝐵). It can be seen that both 

the periods and the peak displacements of the two idealisations match well. However, the elastic force 

demand of the lumped mass model is consistently smaller than the generalised SDOF idealisation of the 

distributed mass model. This discrepancy is mainly attributed to the difference in the “effective” mass of 

the two models. For the generalised SDOF shear beam, the “effective” mass, which produces the peak 

base shear when multiplied by the spectral acceleration, is equal to Γ̃�̃� = 0.815𝑚 (from Eq. A.2). For the 

lumped mass idealisation, the corresponding value is �̃� = 0.5𝑚 (from Eq. A.4). Hence the peak elastic 

force imposed on the lumped mass idealisation is approximately 60% of the more representative, shear 

beam model with distributed mass.  
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Figure A.1. Comparisons of (a) period, (b) peak mid-span displacement, and (c) peak base shear of the 

diaphragm idealisations. L is the span length and B is the width of the diaphragm. 

Despite the theoretical discrepancy, the lumped mass idealisation has been used successfully in past 

studies (Tena-Colunga and Abrams 1992; Kim and White 2004). The reason may be that the discrepancy 

is most significant when the diaphragm is relatively flexible. For stiff diaphragms, the wall supports do 

not remain rigid, and the participation of the wall mass will likely reduce the discrepancy. Indeed, at the 

limiting condition of a rigid diaphragm, the two idealisations will yield identical results, as governed by 

the total mass of the diaphragm and the stiffness of the walls. Hence the lumped mass model is expected 

to be appropriate when the diaphragm is relatively stiff, while it can underestimate the force demand by 

up to 40% when the diaphragm becomes overly flexible. However, for such flexible diaphragms the force 

demands are also usually small, and hence, may have only limited effects on the building response. In this 

study, lumped mass idealisation is considered to be an acceptable simplification, given the simplified 

nature of the overall model. 
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CHAPTER 5  

 

INFLUENCE OF DIAPHRAGM FLEXIBILITY 

Background 

This chapter presents the results of an extensive parametric study carried out using idealised plan-

asymmetric systems to identify and characterise the effects of diaphragm flexibility. The paper “Influence 

of diaphragm flexibility on seismic response of unreinforced masonry buildings with flexible 

diaphragms” shows that there are multiple effects of diaphragm flexibility on the peak structural 

responses, which are dependent on the level of the stiffness- and, more significantly, the strength-

eccentricity of the system. A qualitative diaphragm classification is developed, and is used to characterise 

the effects of diaphragm flexibility. A simple measure based on the ratio of diaphragm deformation to the 

average wall displacement is proposed to determine when the multi-mode behaviour becomes significant.  

List of Manuscripts 

Nakamura, Y., Derakhshan, H., Magenes, G. and Griffith, M. C. (2016) “Influence of diaphragm 
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Earthquake Engineering, published online 27 July 2016. 
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Influence of Diaphragm Flexibility on Seismic Response of 

Unreinforced Masonry Buildings with Flexible Diaphragms 

ABSTRACT 

The effects of diaphragm flexibility on the seismic response of low-rise unreinforced masonry buildings 

are examined using one-way stiffness- and strength-eccentric single-storey systems subjected to 

unidirectional ground excitation. A wide range of diaphragm stiffnesses are considered. Results show that 

diaphragm flexibility can induce different effects depending on the configuration of the system and the 

level of diaphragm flexibility. When diaphragm is relatively stiff, amplified displacement demands can be 

imposed on the flexible side of the structure. When diaphragm is relatively flexible, peak displacements 

of in-plane loaded walls generally reduce. A diaphragm classification is developed to capture these salient 

effects.  

keywords: flexible diaphragm, unreinforced masonry, plan asymmetry, inelastic response. 

1. INTRODUCTION 

Seismic design and assessment of buildings are typically carried out assuming the floor and roof 

diaphragms to be rigid in their own planes, provided they have adequate in-plane stiffness properties. 

While the rigid diaphragm assumption is appropriate for many construction types, certain structural 

systems have deformable diaphragms that render the rigid diaphragm assumption questionable. One 

particular structural system with pronounced diaphragm flexibility is unreinforced masonry (URM) 

buildings with the floor and roof diaphragms constructed of timber boards and joists. Due to the limited 

coupling provided by the flexible diaphragms, the in-plane loaded shear walls (in-plane walls) tend to 

respond independently of each other (Penna 2015). Consequently, multiple dominant modes can be 

present even though URM buildings are typically low-rise (of generally up to 5 storeys), and their 

response characteristics can deviate from those typical of rigid diaphragm structures (Tena-Colunga & 

Abrams 1996). 

Previous research into the effects of diaphragm flexibility on elastic building response has shown that 

increased diaphragm flexibility results in the elongation of the fundamental period of the structure and an 

increase in the multi-mode behaviour (Jain & Jennings 1985; Saffarini & Qudaimat 1992; Moon & Lee 

1994; Tena-Colunga & Abrams 1996; Ju & Lin 1999). The structural configuration most affected by 

diaphragm flexibility is consistently reported as low-rise shear wall buildings, with a large number of 
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bays. Moon and Lee (1994) noted that diaphragm flexibility can also lead to modified mode shapes, as 

well as a phenomenon they referred to as “mode shifts”, whereby two modes of a rigid diaphragm system 

appear in the flexible diaphragm system with their modal orders switched. Fleischman and Farrow (2001) 

have shown that the increase in diaphragm flexibility results in the separation of the masses attributed to 

the in-plane walls and the diaphragms into different modes; the lower modes typically comprising of the 

vibrations of the diaphragms, while the higher modes containing the deformations of the walls.  

The inelastic response of buildings with flexible diaphragms has so far received less attention than the 

elastic response. De-La-Colina (1999) analysed single-storey, plan-asymmetric frame structures designed 

by a typical code procedure and found that for medium- to large-period systems, the increase in 

diaphragm flexibility reduced the in-plane displacement of walls. For short-period systems, some 

increases in the wall displacements were observed. These effects of diaphragm flexibility were found to 

reduce with the increase in the level of yielding and the initial period of the system. A similar period-

dependent behaviour was also reported by Sadashiva et al. (2012) for symmetric systems. Kim and White 

(2004) conducted a parametric analysis of a nonlinear model initially calibrated to experimental tests 

conducted on a single-storey symmetric reinforced masonry building with a timber roof. Their parametric 

analysis indicated the occurrence of the largest in-plane wall displacement when the diaphragm was 

neither absolutely rigid nor completely flexible. 

Experimental studies on URM buildings with flexible diaphragms showed that partial failures (such as 

out-of-plane wall collapse) were likely to occur when the diaphragms were excessively flexible, or if the 

diaphragm to wall connections were poor (Tomaževič et al. 1991; Magenes et al. 2014; Senaldi et al. 

2014; Vintzileou et al. 2015). When partial failures were prevented by strengthening the diaphragms and 

diaphragm to wall connections, URM buildings with flexible diaphragm generally achieved comparable 

base shear resistances as those of similar buildings with rigid (reinforced concrete) diaphragms 

(Tomaževič et al. 1993). However, some test results have indicated that buildings with flexible 

diaphragms experienced larger wall displacement demands compared to those with rigid diaphragms 

under a similar level of excitation (Magenes et al. 2014; Senaldi et al. 2014). 

While previous studies have identified various aspects of response characteristics of buildings with 

flexible diaphragms, several issues remain unanswered. These include (1) whether the diaphragm 

flexibility is beneficial or detrimental to the seismic demands imposed on the lateral load resisting walls, 

and (2) whether qualitatively consistent building responses are obtained regardless of the level of 

diaphragm flexibility. This paper reports on a parametric study conducted to address these issues 

concerning the influence of flexible diaphragms on the global seismic responses of URM buildings. An 
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idealised simple numerical model, intended to capture the main response characteristics of the building 

typology concerned, is used in order to carry out systematic nonlinear dynamic analyses encompassing a 

wide range of diaphragm stiffness values. While the focus of the present study is URM buildings, the 

results of the parametric study may also be applicable to other structural systems which have relatively 

stiff in-plane loaded walls supporting flexible diaphragms. The results show that (1) relatively flexible 

diaphragms can reduce the peak displacements of the in-plane walls, while relatively stiff diaphragm can 

lead to increased seismic demands, and (2) the non-rigid diaphragms can be broadly categorised into four 

ranges based on their salient effects on the building behaviour. 

2. DESCRIPTION OF NUMERICAL MODEL 

Analyses are conducted on idealised single-storey models, consisting of a rectangular diaphragm 

supported by four walls at its perimeter (Figure 1(a)). The perimeter walls are considered to resist loading 

in the in-plane loaded directions only, and the wall stiffnesses in the out-of-plane directions are neglected. 

The centre of mass (CM) coincides with the geometric centroid, while uniaxial stiffness eccentricity (esx, 

defined as the distance between the CM and the centre of stiffness, CR) and strength eccentricity (epx, 

defined as the distance between the CM and the centre of strength, CP) are introduced by making wall 2 

stiffer and stronger than wall 1. The system is subjected to unidirectional excitations applied in the y 

direction of the model. 

 

Figure 1. Plan view of (a) idealised system, and (b) analytical model. 

Numerical modelling of URM buildings poses significant challenges due to their distributed mass, low 

tensile strength and the dependence of their lateral strengths on the vertical (axial) forces. In order to 
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capture such details, finite element analysis may at first appear to be the most suitable modelling 

approach. However, nonlinear (dynamic) finite element analysis capable of identifying all possible failure 

mechanisms requires significant computational resources, and the required constitutive properties, as well 

as generally accepted constitutive models, are currently lacking. It may also be thought that the dominant 

global response characteristics of buildings with flexible diaphragms could be captured by relatively 

simple models, even if they do not fully account for the specific response mechanisms of URM 

construction. This study uses such simplified models in order to discern the main trends of the dynamic 

behaviour, where the simplifications introduced include: 

 no connections between the orthogonal walls; 

 the diaphragm is considered to remain linearly elastic, and is perfectly and continuously attached 

to the perimeter walls; 

 the out-of-plane wall failures are considered to have been prevented; 

 the dependence of URM wall strength on the level of axial forces is neglected; and 

 the span direction of the floor joists are not explicitly considered. 

The analytical model representing the idealised system is shown in Figure 1(b). RUAUMOKO (Carr 

2008) is used for the analysis. The force-deformation relationship of each wall is assumed to be captured 

by the “thin” Takeda hysteresis model (Figure 2(c)), which is typically used to simulate the response of 

reinforced concrete walls and columns (Priestley et al. 2007). The post-yield stiffness is set to zero for all 

walls. Implicit in this behavioural model is the assumption that the masonry walls can deform 

inelastically, in a ductile manner. Even though the conventional notion of ductility does not apply to 

masonry due to its lack of tensile resistance after cracking, typical failure modes of masonry piers (Figure 

2(a) and Figure 2(b)) do exhibit inelastic behaviours that can be represented by the bilinear idealisations 

of their backbone curves, with appropriate levels of energy dissipation depending on the failure mode 

(Magenes & Calvi 1997). Therefore, the use of the Takeda hysteresis model was considered to be an 

appropriate simplification for the purpose of this study, in which the in-plane behaviour of each wall is 

assumed to be produced by a combination of flexural and shear failure modes of several piers. 
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Figure 2. Typical force-displacement relationships of unreinforced masonry piers (Magenes & Calvi, 

1997), for (a) rocking, (b) diagonal shear failure modes. The "thin" Takeda model used in the 

analysis is shown in (c). 

The diaphragm is modelled by 16 quadrilateral membrane elements (Carr 2008). The degrees of freedom 

of the collinear nodes in the x and y directions are slaved to achieve the shear-dominant deformation 

mechanism consistently observed for timber diaphragms, typical of those found in existing URM 

buildings (Brignola et al. 2012; Wilson et al. 2013; Giongo et al. 2014; Whitney and Agrawal 2015). For 

example in Figure 1(b), the displacements in the y direction are slaved for nodes 1 to 5, nodes 6 to 10, 

nodes 11 to 15, nodes 16 to 20, and nodes 21 to 25. The mesh sensitivity and the validity of node slaving 

were checked by comparing the fundamental frequency of the numerical model against the theoretical 

value of a shear beam. The configuration used in this study resulted in small errors of about 1 %. 

Note that the behaviour of a timber diaphragm is typically orthotropic (Giongo et al. 2014). However, an 

isotropic membrane was used in the present study to reduce the number of variables. This was considered 

to be an appropriate simplification because the diaphragm deformations orthogonal to the direction of 

loading were small. In the direction of loading, the investigated range of diaphragm stiffness 

encompassed the conceivable stiffness range of timber floor systems. 

URM buildings with timber floors are essentially distributed mass systems, in which a large proportion of 

the seismic mass is attributed to the mass of the masonry. In fact, the floor masses typically account for 

only 10 - 20 % of the total building mass. In order to reflect this, the wall masses are directly lumped at 

the location of the wall elements (shown in Figure 1(b) by grey circles), while the floor masses are 

distributed across the diaphragm elements. 

The configuration of the analytical model is defined by the following parameters, where the total mass of 

the structure is denoted by 𝑚, the stiffness and strength of the 𝑖𝑡ℎ wall oriented in the direction of loading 

are defined by 𝑘𝑦𝑖 and 𝑓𝑦𝑖 respectively, with the wall located at a distance 𝑥𝑖 from the CM,  
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 The translational period of the symmetric system in the direction of loading under the rigid 

diaphragm condition, 𝑇𝑦 = 2𝜋√𝑚 𝐾𝑦⁄ , where 𝐾𝑦 = ∑ 𝑘𝑦𝑖 is the lateral stiffness of the structure. 

 The ratio of the uncoupled torsional to lateral frequencies of the rigid diaphragm system, Ω𝜃 =

√𝐾𝜃𝑠𝑚 𝐼𝑂𝐾𝑦⁄ , where 𝐼𝑂 is the mass moment of inertia of the rigid diaphragm about the CM and 

𝐾𝜃𝑠 is the torsional stiffness of the structure about the CR. 

 The stiffness eccentricity, 휀𝑠𝑥 =
𝑒𝑠𝑥

𝐿𝑥
=

1

𝐿𝑥

∑ 𝑘𝑦𝑖𝑥𝑖

𝐾𝑦
, expressed as normalised to the dimension of the 

diaphragm perpendicular to the direction of excitation. 

 The total strength of the system in the direction of excitation, 𝐹𝑦 = ∑ 𝑓𝑦𝑖. 

 The strength eccentricity, 휀𝑝𝑥 =
𝑒𝑝𝑥

𝐿𝑥
=

1

𝐿𝑥

∑ 𝑓𝑦𝑖𝑥𝑖

𝐹𝑦
, expressed as normalised to the dimension of the 

diaphragm perpendicular to the direction of excitation. 

 The total strength orthogonal to the direction of excitation, 𝐹𝑥 = ∑ 𝑓𝑥𝑖. 

 The fraction of the mass attributed to each wall oriented in the direction of loading (wall 1 and 2, 

denoted by 𝑚1 and 𝑚2) to the total mass of the system, 𝜌𝑦 =
𝑚1

𝑚
=

𝑚2

𝑚
. 

 The fraction of the mass attributed to each wall oriented in the direction orthogonal to loading 

(wall 3 and 4, denoted by 𝑚3 and 𝑚4) to the total mass of the system, 𝜌𝑥 =
𝑚3

𝑚
=

𝑚4

𝑚
. 

 The fraction of the mass attributed to the diaphragm to the total mass of the system, 𝜌𝑑 =
𝑚𝑑

𝑚
. 

 The fundamental period of the diaphragm, 𝑇𝑑 = 2√
𝑚𝑑,𝑡𝑜𝑡𝐿𝑥

𝜅𝐺𝑡𝑑𝐿𝑦
 where 𝑚𝑑,𝑡𝑜𝑡 = (𝜌𝑑 + 2𝜌𝑥)𝑚 is the 

total mass attributed to the diaphragm including those of the out-of-plane loaded walls, 𝐺 is the 

shear modulus, 𝑡𝑑 is the diaphragm thickness and 𝜅 is the shape factor, which equals 1 for the 

model (because of the node slaving, uniform shear stress is enforced in the diaphragm). This is 

the theoretical fundamental period of a fix-ended shear beam, which is almost identical to the 

approximate expression proposed for timber diaphragms by Wilson et al. (2013), derived using a 

shear beam with a uniform mass distribution, responding in a displacement shape corresponding 

to a parabolic load. 𝐺𝑑 = 𝐺𝑡𝑑 is often referred to as the characteristic timber diaphragm stiffness 

(ASCE 2014). 
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 Damping ratio, assumed to be constant 5% critical damping for all modes. 

Note that while the notions of stiffness and strength eccentricities (typically associated with the torsional 

behaviour of rigid diaphragm structures) are used as convenient definitions, analyses will show (Section 

4) that the torsional behaviour becomes small as the diaphragm becomes flexible. Therefore the 

eccentricities are better understood as asymmetries in the distributions of stiffness and strength rather than 

as parameters governing the torsional behaviour of the system. For this reason, eccentric systems will be 

referred to as stiffness- or strength-asymmetric systems. For the systems considered in this study, the 

relative stiffness and strength of wall 1 and 2 can be obtained from the defined eccentricities by 
𝑘𝑦1

𝑘𝑦2
=

0.5−𝜀𝑠𝑥

0.5+𝜀𝑠𝑥
 and 

𝑓𝑦1

𝑓𝑦2
=

0.5−𝜀𝑝𝑥

0.5+𝜀𝑝𝑥
. 

3. RANGE OF PARAMETERS AND GROUND MOTIONS 

The variables considered in the parametric analysis were the lateral period of the system (Ty), frequency 

ratio (Ωθ), yield force levels (Fy), strength of orthogonal walls (Fx), stiffness and strength eccentricities 

(εsx and εpx), and the distribution of mass (ρx, ρy, and ρd). No particular design code requirements were 

followed in the selection of the parameters. 

The values of 𝑇𝑦 ranged from short (0.1 s) to moderate (0.6 s) periods, which ranged from the 

acceleration- to the velocity-sensitive regions of the ground motions, and were considered to encompass 

the likely range of URM buildings. As URM buildings almost always have shear walls located at the 

perimeter of the structure, they were assumed to be torsionally stiff (Ω𝜃 ≥ 1). The values of Ω𝜃 

corresponding to 1 and 1.4 were analysed. Four different values of the normalised stiffness eccentricity, 

휀𝑠𝑥, were selected, ranging from 0 to 0.3. The total mass (𝑚) and the dimension perpendicular to the 

direction of loading (𝐿𝑥) were kept constant so that the stiffnesses of the walls oriented in the direction of 

loading were determined uniquely by setting 𝑇𝑦 and 휀𝑠𝑥. The mass moment of inertia (𝐼𝑂) was also kept 

constant so that the stiffness of the walls in the x direction was uniquely determined by setting values for 

𝑇𝑦 and Ω𝜃.  

The total strength in the y direction was determined based on the rigid diaphragm configuration through 

the expression 𝐹𝑦 =
𝑓𝑜

𝑅𝑦
, where 𝑓𝑜 was the mean peak elastic force attained from the set of ground motions 

used in the analysis, and 𝑅𝑦 was the force reduction factor assigned to the system. In order to investigate 

the effect of yield levels, 𝑅𝑦 was varied between 1 (elastic), 2.5 and 4. The strength eccentricity, 휀𝑝𝑥, was 
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set to either 0 or equal to 휀𝑠𝑥. 휀𝑝𝑥 = 0 occurs when walls of equal strength are placed symmetrically 

about the CM, while 휀𝑝𝑥 = 휀𝑠𝑥 implies a linear relationship between stiffness and strength (Peruš and 

Fajfar, 2005). As stiffness and strength are usually correlated, these two cases were considered to reflect 

the likely range of the wall strength distributions. The total strength of the walls in the x direction was set 

by 𝐹𝑥 = 𝐹𝑦𝑅𝐹, where 𝑅𝐹 was varied between 0.5 and 1.  

Two sets of mass ratios representing different scenarios were investigated. The first set consisted of 

22.5% of total mass equally distributed on the walls (𝜌𝑦 = 𝜌𝑥 = 0.225), with 10% of total mass assigned 

to the diaphragm (𝜌𝑑 = 0.1). Such condition may represent buildings which are almost square in plan. 

The second set consisted of 45% more masses on the walls oriented in the x direction than those of the 

walls in the y direction (𝜌𝑦 = 0.164 and 𝜌𝑥 𝜌𝑦 = 1.45⁄ ), and the diaphragm mass was set to 19.6% of the 

total mass. Hence the second condition represented a case in which a significantly larger mass was 

excited by the deformation of the diaphragm, for instance buildings which are rectangular in plan, loaded 

in the direction perpendicular to the long dimension. Finally, for each combination of variables, the 

diaphragm periods were varied from 0.01 s to 2.0 s in eleven increments.  

The ranges of variables considered in the analysis are summarised in Table 1. The parameters kept 

constant in the analyses are listed in Table 2. The constant plan dimensions for 𝐿𝑥 and 𝐿𝑦 were used to 

keep the same diaphragm mesh size for all analyses. 

Table 1. Range of variables 

Variable Values 

𝑇𝑦 0.1, 0.2, 0.35 and 0.6 s 

Ω𝜃 1 and 1.4 

휀𝑠𝑥 0, 0.1, 0.2 and 0.3 

휀𝑝𝑥 0, 0.1, 0.2 and 0.3 

𝑅𝑦 1 (elastic), 2.5 and 4 

𝑅𝐹 0.5 and 1 

𝜌𝑦 0.225 and 0.164 

(𝜌𝑑 + 2𝜌𝑥) 𝜌𝑦⁄  2.444 and 4.085 

𝑇𝑑 0.01, 0.05, 0.075, 0.1, 0.3, 0.5, 0.75, 1, 1.25, 1.5 and 2 s 
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Table 2. Constant parameters 

Variable Values 

𝑚 25 tons 

𝐼𝑂 1633.125 tons-m2 

𝐿𝑥 12 m 

𝐿𝑦 18 m 

Hysteretic 

behaviour 
Modified Takeda (Figure 2(c)) 

Damping 5% of critical damping for all modes 

The ground motion records were obtained from the Pacific Earthquake Engineering Research Center 

(PEER) database (PEER 2014), and consisted of waveforms processed into the fault-normal and fault-

parallel components. The selected records are listed in Table 3. The ground motions were measured on 

stiff soil with the top 30 m soil shear velocity (𝑉𝑠30) between 360 m/s and 720 m/s, with distances from 

the rupture plane between 15 km and 62 km. The records were scaled so that the mean spectrum of the 

record set (shown in Figure 3) corresponded well with the design spectrum of AS 1170.4 (Standards 

Australia, 2007) on a site classified as “rock” (soil subclass type Be, 𝑉𝑠30 > 360 m/s) with the peak ground 

acceleration of 0.2 g.  

Table 3. Records used in analysis 

Event Year Station 𝑀𝑤 Mechanism 

Closest 

distance 

(km) 
𝑉𝑠30 (m/s) 

Scale 

factor 

Northridge 1994 
LA - UCLA 

Grounds 
6.69 Reverse 22.5 398.4 0.6789 

Northridge 1994 
Santa Susana 

Ground 
6.69 Reverse 16.7 715.1 0.8073 

Northridge 1994 
San Gabriel - 

E Grand Ave 
6.69 Reverse 39.3 401.4 1.2641 

Irpinia 1980 
Rionero In 

Vulture 
6.9 Normal 30.1 530 1.848 

Loma Prieta 1989 

San Jose - 

Santa Teresa 

Hills 

6.93 
Reverse-

Oblique 
14.7 671.8 0.7638 

Loma Prieta 1989 

Fremont - 

Mission San 

Jose 

6.93 
Reverse-

Oblique 
39.5 367.6 1.5848 

Hector Mine 1999 
Twentynine 

Palms 
7.13 Strike-Slip 42.1 684.9 3 

Hector Mine 1999 
Heart Bar 

State Park 
7.13 Strike-Slip 61.2 684.9 2.6688 
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Figure 3. Mean spectrum of records and Newmark-Hall idealisation 

4. EFFECT OF DIAPHRAGM FLEXIBILITY 

4.1 Response of Symmetric Systems 

The mean peak displacements of wall 1 and wall 2 (main lateral-load resisting elements oriented in the 

direction of loading) are shown in Figure 4 corresponding to the elastic and the inelastic systems with 𝑅𝑦 

of 2.5 and 4. As the structure is symmetric, the displacements of the two walls are identical, and the walls 

perpendicular to the direction of loading are not excited. For brevity, the distribution of mass is expressed 

by the ratio 𝜌𝑥 𝜌𝑦⁄ , and the results correspond to 𝜌𝑥 𝜌𝑦⁄ = 1 (i.e. representative of almost square plan 

structures). Four different values of 𝑇𝑦 are presented and the displacement variations are plotted against 

the diaphragm period, 𝑇𝑑.  
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In general, the inelastic response of the symmetric systems is qualitatively similar to the elastic response, 

and characterised by the reductions in the wall displacements as the diaphragm flexibility increases. For 

the short-period system of Ty = 0.1 s, however, some amplification of the flexible side can occur as the 

yield level increases. For elastic systems, this reduction can be shown to arise from the reduced 

interactions of modal masses associated with the walls and the diaphragms (Fleishman and Farrow 2001). 

When the diaphragm becomes very flexible, the diaphragm mass responds independently of the walls, and 

each wall behaves as though it is an isolated element, resisting its own inertia only. This is reflected in the 

constant wall displacements beyond 𝑇𝑑 of approximately 1 s in Figure 4. The similarity between the 

displacement variations of the elastic and the inelastic systems suggests that the walls also behave as 

independent elements for inelastic systems with the increase in diaphragm flexibility. The response 

reduction is most prominent for short-period systems (e.g. 𝑇𝑦 = 0.1 s) with large levels of yielding.  

 

Figure 4. Mean peak displacement of walls in symmetric system, 𝜌𝑥 𝜌𝑦⁄ = 1. Yield displacements (dy) of 

the walls are indicated. 
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4.2 Response of Stiffness Asymmetric Systems 

The mean peak wall displacements of stiffness-asymmetric, but strength-symmetric (휀𝑝𝑥 = 0) systems are 

shown in Figure 5 for wall 1 (flexible side) and wall 2 (stiff side). The stiffness eccentricity 휀𝑠𝑥 is varied 

from 0.1, to 0.3 and the results are shown with respect to 𝑇𝑑. Each figure presents results corresponding to 

three different values of lateral period (𝑇𝑦 = 0.1, 0.2 and 0.35 s), and three levels of yielding (elastic, 𝑅𝑦 

of 2.5 and 4). In all plots, the responses of the symmetric systems are also shown for comparison.  

The overall displacement variations of the flexible and the stiff sides can be seen to resemble the 

symmetric response. In addition, the response variations are also qualitatively similar to the elastic 

behaviour. However, the displacement of the flexible side increases, and that of the stiff side reduces, in 

comparison to the symmetric system in almost all ranges of diaphragm stiffness. The amplification of the 

flexible side's displacement over the rigid diaphragm condition can be observed when the diaphragm is 

relatively stiff. This amplification becomes more pronounced with the increase in stiffness asymmetry. 

The mean peak wall displacements of the inelastic systems of Figure 5 are shown normalised to the yield 

displacements of walls (i.e. as ductility) in Figure 6. In contrast to the displacement demand, the ductility 

demand of the stiff side increases, and the flexible side reduces, in comparison to the symmetric system. 

This effect is most significant when the diaphragm is stiff. As the diaphragm flexibility increases, the 

discrepancy in the ductility demand between the two sides disappears. This result implies that the 

diaphragm flexibility generally leads to a more uniform distribution of damage between the in-plane 

loaded walls, if the strength eccentricity of the building is small. 

The mean peak displacements of walls 3 and 4 (orthogonal sides) are shown in Figure 7 for 𝑇𝑦 of 0.35 s, 

for three levels of yielding and stiffness eccentricities. The displacements are largest when the diaphragm 

is rigid. As the diaphragm flexibility increases, rapid reductions in the wall displacements take place, 

suggesting that the orthogonal sides are excited predominantly by the torsional rotation of the diaphragm. 

The yielding of the main lateral-load resisting walls causes the reduction of the orthogonal displacements, 

which appears to be consistent with the reduction in torsional behaviour expected as the strength 

distribution is symmetric. 
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Figure 5. Mean peak displacement of flexible (wall 1) and stiff (wall 2) sides, stiffness-asymmetric 

systems with Ωθ = 1, 𝑅𝐹 = 1 and 𝜌𝑥 𝜌𝑦⁄ = 1. 
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Figure 6. Mean peak ductility of flexible (wall 1) and stiff (wall 2) sides, stiffness-asymmetric systems 

with Ω𝜃 = 1, 𝑅𝐹 = 1 and 𝜌𝑥 𝜌𝑦⁄ = 1. 

 

Figure 7. Mean peak in-plane displacement of orthogonal (wall 3 and wall 4) sides, stiffness-asymmetric 

systems with 𝑇𝑦 = 0.35 s, Ω𝜃 = 1, 𝑅𝐹 = 1 and 𝜌𝑥 𝜌𝑦⁄ = 1. 

The effects of variations in the stiffnesses and the strengths of the orthogonal sides, as expressed by Ω𝜃 

and 𝑅𝐹, as well as the differences in the mass ratio 𝜌𝑥 𝜌𝑦⁄ , are shown in Figure 8 for 𝑇𝑦 of 0.35 s and 𝑅𝑦 

of 2.5. The parameters Ω𝜃 and 𝑅𝐹 affect stiff diaphragm systems, but have negligible influences as the 

diaphragm flexibility increases. This is because the orthogonal sides are primarily engaged by the 

torsional behaviour of the diaphragm, hence changes in their properties affect systems that undergo 
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torsional response, i.e. for relatively stiff diaphragms only. On the other hand, the variation in the mass 

ratio affects relatively flexible diaphragm systems and has negligible influences for stiff diaphragm 

systems, because the rotational inertia (𝐼𝑂) has been kept constant in the analysis. In general, the 

aforementioned effects remain small for the range of parameters investigated, and they may be considered 

as secondary parameters insofar as the effects of diaphragm flexibility are concerned. For the remainder 

of the paper, the system configurations will consist of Ω𝜃 = 1, 𝑅𝐹 = 1 and 𝜌𝑥 𝜌𝑦⁄ = 1. 

 

Figure 8. Mean peak displacements of stiffness-asymmetric systems with, 𝑇𝑦 = 0.35 𝑠, 𝑅𝑦 = 2.5 휀𝑠𝑥 =

0.3, and 𝑅𝐹 = 1, (a) variation in Ω𝜃, keeping constant 𝑅𝐹 = 1 and 𝜌𝑥 𝜌𝑦⁄ = 1, (b) variation 

in 𝑅𝐹, keeping constant Ω𝜃 = 1 and 𝜌𝑥 𝜌𝑦⁄ = 1, and (c) variation in 𝜌𝑥 𝜌𝑦⁄ , keeping constant 

Ω𝜃 = 1 and 𝑅𝐹 = 1. 

4.3 Response of Strength Asymmetric Systems 

The effect of strength asymmetry on the mean peak displacements of the main lateral-load resisting 

elements are shown for the same structural configurations as for the stiffness-asymmetric systems with 𝑅𝑦 

of 2.5 and 4, with the exception that the strength eccentricity is now made equal to the stiffness 

eccentricity, 휀𝑝𝑥 = 휀𝑠𝑥 (Figure 9). The responses of the corresponding symmetric systems are again 

presented for comparison.  
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Figure 9. Mean peak displacement of flexible and stiff sides of strength asymmetric systems. 
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Figure 10. Mean peak ductility of flexible and stiff sides of strength asymmetric systems. 

The response characteristics show significant deviations from the symmetric, and even the stiffness-

asymmetric, systems. They also differ considerably from the elastic response (Figure 5). The inelastic 

response of strength-asymmetric systems are characterised by the large amplification of the flexible side's 

displacement, and the rapid reduction of the stiff side's displacement. While the amplified displacement of 

the flexible side also occurs for stiffness-asymmetric systems, it becomes much more pronounced.  

The ductility demands of strength-asymmetric systems are shown in Figure 10. In contrast to the 

stiffness-asymmetric (but strength-symmetric) systems, the flexible side is subjected to a consistently 

larger ductility demand than the stiff side, and the increase in the level of strength eccentricity exacerbates 

this effect. Furthermore, the discrepancy in the ductility demand between the flexible and stiff walls 

remains even when the diaphragm flexibility is increased. This result suggests that for buildings with 

strength eccentricity, the flexible side is likely to experience more damage than the stiff side for all levels 

of diaphragm stiffness.  
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The maximum value of the peak displacement of the flexible side (𝑢1,𝑚𝑎𝑥), which generally occurs at Td 

between 0.3 s and 0.5 s (Figure 9), can be significantly larger than the displacement of the flexible side 

under the rigid diaphragm configuration at Td = 0 s (𝑢1,𝑟𝑖𝑔). The maximum displacement amplification 

ratio, u1,max/u1,rig, has been found to be primarily a function of, and almost linearly related to, the strength 

eccentricity εpx (or the level of strength asymmetry). The amplification was also more pronounced when 

the period Ty of the structure was less than the period at the beginning of constant velocity segment of the 

spectrum, TC (Figure 3c). Other parameters, including Td and Ry did not significantly affect the maximum 

amplification ratio of the flexible side. Eq. 1 was derived for the maximum displacement amplification of 

the flexible side as a linear function of εpx, in which the influence of Ty was included by fitting an 

exponential function using least squares. The reasonable correlations of the empirical expression with the 

numerical results are shown in Figure 11. 

𝑢1,𝑚𝑎𝑥

𝑢1,𝑟𝑖𝑔
= 1 + [3.363 (

𝑇𝑦

𝑇𝐶
)

−0.95

] 휀𝑝𝑥 (1) 

 

Figure 11. Comparison of Eq. 1 against displacement amplification of the flexible side obtained from 

time-history analysis. 
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The displacement variations of the strength-asymmetric systems also show similarities with those of 

symmetric systems when the diaphragm flexibility becomes large. In all cases analysed, the asymptotic 

reduction in the displacement of the flexible side, and the almost constant response of the stiff side 

indicate the walls to behave as if they are uncoupled elements. To confirm this premise, each wall was 

analysed as a single-degree-of-freedom (sdof) system with its own mass only, and the mean peak 

displacements from the sdof analysis (𝑢𝑠𝑑𝑜𝑓) were compared with those of the actual model (𝑢𝑓𝑙𝑒𝑥) at the 

large diaphragm period of 𝑇𝑑 = 2.5 s (Figure 12). The near-unity ratios between the two analyses indeed 

confirm that the walls respond as uncoupled elements when the diaphragm becomes overly flexible.  

 

Figure 12. Ratios of mean peak displacements of uncoupled walls to the results obtained from the actual 

model with 𝑇𝑑 = 2.5 s. 

4.4 Summary of Parametric Study 

The parametric analysis has shown that diaphragm flexibility can induce two different effects on the in-

plane wall responses. The first effect is common to all systems (symmetric, stiffness- and strength-

asymmetric) and characterised by the reduction of the wall responses and ultimately of the uncoupled 
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wall behaviour as the diaphragm flexibility becomes large. The second effect concerns the plan-

asymmetric systems, in particular those with strength asymmetries. When the diaphragm is relatively stiff, 

significant amplification of the flexible side's response can occur. In comparison, diaphragm flexibility 

has been observed to be generally beneficial for the stiff side of the structure in reducing both 

displacement and ductility demands. For strength-asymmetric structures, the maximum conceivable 

amplification of the flexible side’s displacement has been observed to be primarily a function of the initial 

period of the structure and the level of strength asymmetry, and can be estimated using Eq. 1.  

5. CHARACTERISATION OF DIAPHRAGM FLEXIBILITY 

5.1 Diaphragm Classification 

The diaphragms can be classified into distinct ranges based on how an incremental flexibility of the 

diaphragm affects the wall responses. For the most general configuration of strength-asymmetric systems, 

four diaphragm stiffness ranges can be readily identified from the variations of the peak wall 

displacements. An example is shown in Figure 13 for 𝑇𝑦 = 0.35 s, 𝑅𝑦 = 2.5 and 휀𝑠𝑥 = 휀𝑝𝑥 = 0.3. Using 

similar terminologies to those commonly used in seismic codes and guidelines (ASCE 2014), these ranges 

are referred to as "rigid", "stiff", "semi-flexible" or "flexible". The qualitative descriptions of these ranges 

are as follows: 

 The "rigid" range defines the diaphragm stiffnesses for which an incremental diaphragm 

flexibility has little effects on the wall responses because the diaphragm remains almost rigid.  

 In the "stiff" range, an incremental diaphragm flexibility increases the response of the flexible 

side, and reduces that of the stiff side.  

 In the "semi-flexible" range, an increase in diaphragm flexibility induces a reduction in the 

flexible side's response.  

 The "flexible" range defines the diaphragm stiffnesses for which the walls behave as though they 

are isolated elements, and an incremental diaphragm flexibility has no effect on the wall 

behaviour. 
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Figure 13. Diaphragm classification, illustrated for 𝑇𝑦 = 0.35 s, 𝑅𝑦 = 2.5 and 휀𝑠𝑥 = 휀𝑝𝑥 = 0.3. 

The classification also reflects the differences in the dominant diaphragm deformation characteristics. For 

the unidirectional loading considered in this study, the diaphragm deformation may be decomposed into 

four components - translation, torsional rotation, shear and bending - as shown in Figure 14. The first two 

components express the rigid-body motion, while the latter two capture the deformational modes of the 

diaphragm. Note that "shear" and "bending" refer to the overall deformation shapes as indicated in Figure 

14, and have no relations to the deformation components of a Timoshenko beam. The relative importance 

of these components can be gauged by comparing the derived displacements ∆𝑤, ∆𝜃, ∆𝑠 and ∆𝑑 

respectively for translation, torsion, shear and bending (Figure 14). They can be computed from the actual 

displacements measured at 3 different locations of the model in the direction of loading (𝑢1 to 𝑢3 in 

Figure 14(a)) and at two locations in the direction orthogonal to loading (𝑣1 and 𝑣2 in Figure 14(a)), 

∆𝑤=
𝑢1 + 𝑢3

2
 (2) 

∆𝜃= (𝑣1 − 𝑣2)
𝐿𝑥

𝐿𝑦
 (3) 

∆𝑠= (𝑢1 − 𝑢3) − ∆𝜃 (4) 

∆𝑑= 𝑢2 − ∆𝑤 (5) 
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Figure 14. Deformation components of the diaphragm, (a) measurement locations of model, (b) 

translation, (c) torsion, (d) shear and (e) bending. 

The mean of the peak values of ∆𝑤, ∆𝜃, ∆𝑠 and ∆𝑑 are plotted in Figure 15 for the same system 

configuration as for Figure 13. It can be seen that: 

 The "rigid" diaphragm range is characterised essentially by the rigid-body motion of the 

diaphragm. The shear (∆𝑠) and the bending (∆𝑑) components are negligible in this range; 
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 The "stiff" diaphragm range is characterised by the mix of the rigid-body, the shear and the 

bending deformations. The shear component is dominant, while the torsional motion becomes 

small;  

 The "semi-flexible" diaphragm range is also characterised by the mix of the shear and the 

bending deformations, while the torsional behaviour is almost negligible. In contrast to the 

"stiff" range, bending becomes the dominant component; 

 The "flexible" diaphragm range is dominated by the bending component. 

 

Figure 15. Mean peak deformation components of the diaphragm for 𝑇𝑦 = 0.35 s, 𝑅𝑦 = 2.5, 휀𝑠𝑥 = 0.3, 

휀𝑝𝑥 = 0.3. 

In the "stiff" range, the shear deformation of the diaphragm occurs with the amplification of the flexible 

side (Figure 13) because the flexible side, being also the weaker side when 휀𝑠𝑥=휀𝑝𝑥, tends to yield first, 

while the stiff side may remain almost elastic. A large difference in the instantaneous wall stiffnesses 

hence exists, and as the diaphragm is not rigid, the displacement of the flexible side is not restrained by 

the stiff side. This results in the large yielding of the flexible side accompanied by the shear-dominant 

deformation of the diaphragm. 

In the "semi-flexible" range, the same phenomenon as the "stiff" range essentially occurs. However, 

because the diaphragm becomes flexible enough to vibrate between the walls in a different mode, it leads 
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to the reduction of the inertia force to be resisted by the walls. This results in the reduction in the flexible 

side's displacement (Figure 13). 

Similar associations between the diaphragm classification and the dominant diaphragm deformation can 

be established for the stiffness-asymmetric system. The main difference between the stiffness- and 

strength-asymmetric systems is that the shear mode does not become a dominant component for stiffness-

asymmetric systems (Figure 16(b)). This is because the flexible and the stiff sides tend to yield at the 

same time when 휀𝑝𝑥 = 0, resulting in no significant differences in the instantaneous wall stiffnesses. For 

the symmetric system (Figure 16(a)), the shear mode does not exist, and the "stiff" diaphragm range 

disappears, so that the "rigid" range is followed by the "semi-flexible" range.  

 

Figure 16. Mean peak deformation components of the diaphragm for 𝑇𝑦 = 0.35 s, 𝑅𝑦 = 2.5, (a) 

symmetric (휀𝑠𝑥 = 0, 휀𝑝𝑥 = 0), (b) stiffness-asymmetric (휀𝑠𝑥 = 0.3, 휀𝑝𝑥 = 0) 

5.2 Characteristics of Dynamic Behaviour 

The dominance of the bending component of the diaphragm deformation strongly affects the dynamic 

behaviour of the system, and the transition point between the "stiff" and the "semi-flexible" diaphragms 

marks a change in the response characteristics of the system from being governed essentially by a single 

mode to a multi-mode behaviour. This can be identified from the Fourier amplitudes of the displacements 

of the flexible and the stiff sides, as well as the diaphragm mid-span. Using the same structural 

configuration as for Figure 13, a Fourier analysis is conducted over the windowed duration of 5% to 95% 

of the Arias intensity for each ground motion. The calculated amplitudes are then averaged and 

normalised to the peak value (Figure 17). The plots show that a dominant mode exists in the "rigid" and 

the "stiff" diaphragm ranges (𝑇𝑑 < 0.5 s). Even though the higher mode associated with torsion also 

affects the stiff side, the fundamental mode can be considered to govern the response in these ranges. In 
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the "semi-flexible" range (0.5 ≤ 𝑇𝑑 < 1.5 s), however, the response of the stiff side becomes independent 

of the rest of the structure. In the "flexible" range (𝑇𝑑 ≥ 1.5 s), the independent motions of the walls and 

the diaphragm become apparent. Therefore, multiple dominant modes are present in the “semi-flexible” 

and “flexible” ranges, while a single dominant mode generally exists in the “rigid” and the “stiff” ranges. 

Similar consistent trends have also been observed for the symmetric and the stiffness-asymmetric 

systems. This observation has a practical implication, because the single-mode assumption may be 

appropriate in simplifying the seismic analysis of structures whose diaphragms are classified as "rigid" or 

"stiff". 

 

Figure 17. Normalised Fourier amplitudes of displacements for 𝑇𝑦 = 0.35 s, 𝑅𝑦 = 2.5 and 휀𝑠𝑥 = 휀𝑝𝑥 =

0.3. 

The transition from the "stiff" to the "semi-flexible" range (or transition from essentially a single-mode to 

a multi-mode response) may be considered to occur if the bending component of the diaphragm becomes 

relatively large in comparison to the other deformation components. One measure of this is the ratio 𝜆 =

Δ𝑑 Δ𝑤⁄ . The values of 𝜆 calculated at the transition point using the mean peak displacements show 

asymptotic reductions with the increase in 𝑇𝑦, as shown in Figure 18 for all symmetric, stiffness- and 
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strength-asymmetric systems with 𝜌𝑥 𝜌𝑦⁄ = 1. In addition, the range of calculated 𝜆 reduces with 𝑇𝑦, with 

𝜆 = 1/3 providing a reasonable approximation to the median values for 𝑇𝑦 of 0.35 and 0.6 s, which are in 

the velocity-sensitive range of the ground motion. For shorter period systems, this limit is a generally 

conservative measure of the transition point. Therefore, as an approximate (and conservative) measure, 

𝜆 = 1/3 may be considered to signify the transition between the “stiff” to “semi-flexible” ranges of 

diaphragms. 

 

Figure 18. Variation of 𝜆 as a function of 𝑇𝑦, includes symmetric, stiffness- and strength-asymmetric 

configurations. 

6. APPRAISAL OF SIMPLIFIED MODEL 

The parametric analysis was conducted using idealised single-storey systems which did not fully capture 

the characteristics of actual URM buildings with flexible diaphragms (as discussed in Section 2). Hence, 

two case studies were conducted using more detailed numerical models to verify the applicability of the 

results obtained from the simplified models for URM buildings. 

The two building models (Model A and Model B) were single-bay, two-storey URM constructions. The 

models were analysed using the equivalent frame analysis program TREMURI (Lagomarsino et al. 2013). 

The plan layouts of the models and their in-plane wall discretisations are shown in Figure 19. The 

direction of loading and the span direction of floor joists are also indicated. As summarised in Table 4, the 

buildings had different levels of stiffness and strength eccentricities. Model A had a small stiffness 

eccentricity of 0.07 and no significant strength eccentricity. Model B had stiffness and strength 

eccentricities of 0.32 and 0.08, respectively. The stiffness and strength of each in-plane loaded wall (Wall 
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1 and Wall 2) were calculated from a pushover analysis by idealising the pushover curve of each wall by 

an elastic-plastic simplification.  

 

Figure 19. Building models analysed 

Table 4. Parameters of case study building models 

Parameter Model A Model B 

𝑇𝑦 (s) 0.15 0.23 

휀𝑠𝑥 0.07 0.32 

휀𝑝𝑥 0.0 0.08 

𝜌𝑥 𝜌𝑦⁄  0.74 1.27 

The in-plane behaviours of the walls were modelled using the equivalent frame idealisation, in which the 

nonlinear behaviours of piers and spandrels are defined by the macroelement model of Penna et al. 

(2014). The macroelement model is able to capture the important response mechanisms of URM, 

including the coupled axial-rocking behaviour with limited compressive strength, and the cumulative 

shear damage resulting in strength and stiffness degradations. The stiffness contributions of the out-of-

plane walls were considered to be small in comparison to those of in-plane direction, and were hence 

neglected. Four elastic membrane elements were used to represent a diaphragm with the stiffnesses 
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corresponding to the range of timber diaphragm constructions described in ASCE 41-13 (ASCE 2014). In 

addition, two relatively stiff diaphragms representing hypothetical retrofits were also analysed. 

Nonlinear time-history analysis was conducted for each building, subjected to a suite of accelerograms 

scaled to match the design spectrum of AS 1170.4 (Standards Australia 2007) for Site Class Ce, with the 

period at the beginning of the constant velocity range TC = 0.34 s. The ground motions were different to 

those used for the parametric study, and are listed in Appendix B. The records were scaled in magnitude 

until significant inelastic behaviours of both buildings were attained. 

The analyses showed that inelastic damage was concentrated in the ground storey for both models. Figure 

20 shows the mean peak interstorey drift ratios of the critical ground storey plotted against the average 

diaphragm period of the floor and the roof. Figure 20 shows that the response characteristics of both 

building models are consistent with the diaphragm classification developed using the simplified systems. 

Furthermore, the effects of diaphragm flexibility on the wall responses can be seen to depend on strength 

eccentricity. When the strength eccentricity is negligible, Model A indicates that the effects of diaphragm 

flexibility are similar for both flexible and stiff sides. When the strength eccentricity is present, however, 

results of Model B show that the diaphragm flexibility induces the response amplification of the flexible 

side and the rapid reduction of the stiff side. These observations are identical to the main characteristics of 

the responses of observed using simplified systems (Section 4).  

 

Figure 20. Mean peak interstorey drift ratios of flexible and stiff walls for (a) strength-symmetric Model 

A, (b) strength-asymmetric Model B 

The applicability of the empirical expression developed using the simplified systems for URM buildings 

was also investigated. The maximum response amplification ratio of the flexible side (Eq. 1) was 

evaluated for Model B and compared against the numerical result. Using the values listed in Table 4, this 

ratio was evaluated to be 1.34. From Figure 20(b), the “exact” ratio (mean peak drift at Td = 0.43 s 
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divided by the corresponding value at Td = 0.09 s) is found to be 1.41, which is within 5% of the predicted 

value. This close correspondence suggests that the simplified system used in the parametric analysis was 

able to capture the main response characteristics of URM buildings with flexible diaphragms. 

7. CONCLUSIONS 

The effects of diaphragm flexibility on the seismic response of plan-asymmetric structures typical of 

URM buildings were investigated using simple inelastic models. A wide range of diaphragm stiffnesses 

were considered, ranging from practically rigid to almost completely flexible.  

The analyses identified that the diaphragm flexibility can increase or reduce the displacement demands on 

the in-plane walls, depending on the level of diaphragm flexibility and the presence of stiffness and 

strength eccentricity. The reduction of the wall displacement is induced by the bending-dominant 

(vibrational) response of the diaphragm, and occurs when the diaphragms are relatively flexible for all 

systems considered in the study (symmetric, stiffness - and strength - asymmetric). The increased wall 

displacement predominantly occurs in plan-asymmetric systems, in particular those with strength 

eccentricity, when the diaphragm is relatively stiff. In these cases, the diaphragms tend to deform in a 

shear-dominant shape, and causes large displacement amplification of the flexible side of the structure. 

In general, non-rigid diaphragms may be classified into four ranges, referred in this study as "rigid", 

"stiff", "semi-flexible", and "flexible", defined qualitatively on how incremental diaphragm flexibility 

affects the displacement demands of the in-plane walls. The “rigid” diaphragm range is characterised 

essentially by the rigid-body motions of the diaphragm, and hence incremental diaphragm flexibility has 

negligible effects on the wall responses. At the other end of the spectrum, in the “flexible” range, 

diaphragm flexibility also has little effects because the walls tend to behave as independent elements. The 

“stiff” range corresponds to the shear-dominant displacement shape of the diaphragm, which increases the 

displacements of the flexible side and reduces the stiff side, while the “semi-flexible” range corresponds 

to the bending-dominant diaphragm displacement, which causes the reductions of the displacements for 

both flexible and stiff walls. In particular, the transition from the "stiff" to the "semi-flexible" range has 

been identified to correspond with the transition from the essentially single-mode to the multi-mode 

behaviour. A measure of this transition point has been derived based on the displacement shape of the 

diaphragm.  

Although simplified single-storey single-bay models were used in this study, general conclusions are 

expected to be applicable for multi-storey single-bay structures as the participations of higher modes 
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along the building height are typically negligible for low-rise URM structures. Further studies are 

however needed for buildings with additional internal walls, and for those with more complicated wall 

layouts.  
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Appendix A – List of Main Symbols 

Δd Deformation of diaphragm relative to the average displacement of in-plane walls 

Δw Average displacement of in-plane walls 

Δθ Differential displacement of flexible and stiff sides caused by torsional rotation of diaphragm 

Δs Differential displacement of flexible and stiff sides caused by raking shear of diaphragm 

εsx Normalised stiffness eccentricity  

εpx Normalised strength eccentricity  

IO Mass moment of inertia of rigid diaphragm structure 

Ky Total stiffness in the direction of loading 

λ Ratio of Δd to Δw 

m Total mass 

Ωθ Ratio of uncoupled torsional to lateral frequencies of rigid diaphragm system 

Ry Force reduction factor in the direction of loading 

RF Ratio of strength in the orthogonal directions of the structure  

ρy Fraction of total mass attributed to each wall in the direction of loading 

ρx Fraction of total mass attributed to each wall in the direction orthogonal to loading 

ρd Fraction of total mass attributed to diaphragm 

TC Period at the transition of acceleration- to velocity-sensitive ranges of the response spectrum 

Td Fundamental period of diaphragm 

Ty  Translational period of symmetric system under the rigid diaphragm configuration 

u1,max  Maximum value of peak displacement of the flexible side over all values of diaphragm stiffness 
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u1,rig  Peak displacement of the flexible side for the rigid diaphragm configuration 

uflex  Peak displacement of walls when diaphragm is completely flexible 

usdof  Peak displacement of individual walls 
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Appendix B – List of Accelerograms for Case Study 
 

Table B.1. List of accelerograms used for case study 

Event Year Station 𝑀𝑤 

 

Mechanis

m 

Closest 

distance 

(km) 

 Vs30 

(m/sec) 

 Scale 

factor  

Friuli 1976 Tolmezzo 6.5 Reverse 15.82 505.23 0.9492 

Imperial 

Valley 1979 Compuertas 6.53 Strike slip 15.3 259.86 1.7846 

Imperial 

Valley 1979 

El Centro Array 

#12 6.53 Strike slip 17.94 196.88 1.9922 

Irpinia 1980 Rionero In Vulture 6.2 Normal 22.69 574.88 2.412 

Superstition 

Hills 1987 Brawley Airport 6.54 Strike slip 17.03 208.71 2.3956 

Northridge 1994 

Hollywood - 

Willoughby Ave 6.69 Reverse 23.07 347.7 1.4762 

Northridge 1994 

LA - 116th St 

School 6.69 Reverse 41.17 301 1.7326 

Northridge 1994 LA - Baldwin Hills 6.69 Reverse 29.88 297.07 1.4162 

Northridge 1994 

Northridge - 17645 

Saticoy St 6.69 Reverse 12.09 280.86 0.7668 

Northridge 1994 

Santa Susana 

Ground 6.69 Reverse 16.74 715.12 1.0751 

Joshua Tree  1992 

North Palm Springs 

Fire Sta #36 6.1 Strike slip 21.97 367.84 1.6272 

Christchurch 2011 

Canterbury Aero 

Club 6.2 

 Reverse 

Oblique 14.41 280.26 1.6631 
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CHAPTER 6  

 

NONLINEAR STATIC PROCEDURES 

Background 

In this chapter, the applicability of three types of widely used nonlinear static (pushover) analysis 

methods are evaluated for unreinforced masonry buildings with flexible diaphragms. Three building 

models with different levels of stiffness eccentricity and pier failure mechanisms are used to investigate 

(1) the most suitable way in applying the various analysis methods, and (2) the method that yields the 

most accurate predictions, when compared to the “exact” nonlinear time-history analysis. The results of 

the study cast some doubts on the applicability of the Modal Pushover Analysis for unreinforced masonry 

buildings with flexible diaphragms. Practical recommendations are presented to identify when single-

mode pushover analyses can be used with reasonable accuracy.  

List of Manuscripts 

Nakamura, Y., Derakhshan, H., Griffith, M. C., Magenes, G. and Sheikh, A. H. (2016) “Applicability of 

nonlinear static procedures for low-rise unreinforced masonry buildings with flexible diaphragms”, 

submitted to Engineering Structures 
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Applicability of Nonlinear Static Procedures for Low-Rise Unreinforced 

Masonry Buildings with Flexible Diaphragms 

ABSTRACT 

The applicability of the N2 method, the modal pushover analysis (MPA) and an adaptive pushover 

analysis method are investigated for estimating the peak seismic responses of unreinforced masonry 

buildings with flexible diaphragms. The nonlinear static procedures are evaluated against the nonlinear 

time-history analyses of three low-rise building models with various levels of stiffness eccentricity, 

failure mechanisms of piers (rocking or shear), and a range of diaphragm stiffness representing timber 

floor and roof systems. The results indicate that the MPA is unsuitable for unreinforced masonry 

buildings with flexible diaphragms, if the building response is shear-dominated. The adaptive method 

provides the most accurate estimates when the diaphragms are relatively stiff. When the diaphragms are 

relatively flexible, none of the considered methods can provide accurate predictions of peak seismic 

demands. However, conservative results may be obtained using the N2 method, by taking the envelope of 

pushover analyses conducted using force distributions proportional to the uniform and linear displacement 

shapes along the height of the building. The present study also identifies the most suitable analysis 

parameters/methods in using various nonlinear static procedures, such as the location of the control node 

in the N2 method and the modal combination rules in the MPA, for unreinforced masonry buildings with 

flexible diaphragms. 

keywords: pushover analysis, N2, MPA, adaptive, unreinforced masonry, flexible diaphragm 

1. INTRODUCTION 

An essential component of a performance-based seismic assessment is the computation of inelastic 

seismic response of a building subjected to a predetermined level of earthquake shaking. In computing the 

seismic response, it is well recognised that the linear elastic analysis used in traditional force-based 

assessment is inadequate in capturing the redistribution of internal forces, as well as the distribution of 

damage, after the onset of nonlinear behaviour (Magenes & Penna 2009). On the other hand, rigorous 

nonlinear time-history analysis (NTHA) of a multi degree of freedom (MDOF) model remains unfeasible 

for typical design/assessment tasks, due to the need to develop complex numerical models, the 

appropriate selection of a suite of ground motions and the large computational effort required.  
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To avoid these difficulties, nonlinear static procedures (NSPs) based on pushover analysis have been 

developed in the past decades, aimed at attaining a balance between the accuracy of analysis and the 

suitability for practical use.  

The simplest form of NSPs considers the building to respond in an invariant displacement shape (or in a 

single mode) throughout the excitation. An example in this category is the N2 method (Fajfar & 

Gašperšič 1996; Fajfar 1999). By considering a single-mode response, the dynamic response of the 

MDOF structure can be reduced to that of an equivalent single degree of freedom (SDOF) system. This 

simpler equivalent SDOF is used to estimate the peak inelastic displacement (target displacement) at a 

selected location (control node) of the MDOF structure. The pushover analysis at that target displacement 

is considered to approximate the peak inelastic seismic response of the building.  

A limitation of the single-mode pushover analysis method is that it cannot capture the responses of 

buildings containing multiple dominant modes. This limitation has led some researchers to propose multi-

mode NSP, an example of which is the Modal Pushover Analysis (MPA) (Chopra & Goel 2002). In the 

MPA, the multi-mode effects are accounted for in an approximate manner by conducting separate 

pushover analyses for each significant elastic mode and the results of such “modal” pushover analyses are 

combined to obtain the total peak dynamic response. While the MPA considers the contribution of 

multiple modes, the elastic mode shapes are considered to remain unmodified throughout the excitation, 

even if an inelastic damage alters the dynamic property of the building.  

The adaptive pushover methods were developed with the aim of capturing the changing characteristics of 

the structure as it enters the inelastic range. Various proposals have been made for modifying the 

pushover forces based on the instantaneous damage state of the structure (Aydinoğlu 2003; Antoniou & 

Pinho 2004a; Antoniou & Pinho 2004b; Kalkan & Kunnath 2006). An adaptive pushover procedure has 

also been developed for unreinforced masonry (URM) buildings (Galasco et al. 2006) with the primary 

aim of making the analysis independent of the location of the control node. In the procedure developed by 

Galasco et al. (2006), the pushover force distribution at the ith step (pi) is constructed using the computed 

displacement shape of the previous analysis step (ψi-1), 

𝐩i = 𝐦𝛙i−1 (1) 

where m denotes the mass matrix of the building. 

The initial application of the adaptive method found that constraints were needed on the force 

distribution, pi, in order to obtain realistic responses for buildings with flexible diaphragms (Galasco et al. 



 

150 

 

2006). While promising results are reported, this adaptive pushover procedure has not been investigated 

in the context of a NSP. 

Even though the NSPs have become commonly used for the analysis of URM buildings in recent years, 

two broad issues require further studies for buildings with flexible diaphragms: 

 The first issue is the uncertainties in the selection of analysis parameters when using the NSPs. 

These uncertainties include the suitable reference hysteresis behaviour assumed in calculating the 

target displacement, the suitable location of control node, the modal combination method used in 

MPA, and the procedure to convert the pushover curve to an equivalent SDOF system definition 

for the adaptive method, considering the continuously changing lateral force distribution pattern. 

Some of these uncertainties arise because the NSPs were originally developed for buildings with 

rigid diaphragms. For example, while the location of the control node can logically be placed at 

the centre of mass of roof for buildings if the diaphragms are rigid, the most suitable location is 

not immediately apparent when the diaphragms are flexible. Other issues concern the nonlinear 

static analysis of URM buildings more generally. For example, while the use of equivalent SDOF 

systems with idealised hysteresis models for estimating the target displacement have been studied 

for RC or steel frame buildings (Krawinkler & Seneviratna1998; Chopra et al. 2003) specific 

studies for URM buildings have been limited, with a notable exception (Graziotti et al. 2014). If a 

suitable idealised hysteresis rule can be identified, inelastic displacement ratios derived on the 

basis of extensive statistical studies for modern construction systems (Vidic et al. 1994; Ruiz-

Garcia & Miranda 2003; Chopra & Chintanapakdee 2004) can be adopted also for URM 

buildings.  

 The second issue requiring further studies is the identification of the applicable ranges of the 

NSPs. While intuition suggests that more advanced methods (e.g. MPA and the adaptive NSP) 

are able to provide better estimates of seismic responses than the single-mode N2 method for a 

wider range of diaphragm stiffness values, systematic evaluations have not been undertaken to 

verify the accuracies of various methods. Furthermore, no studies have been conducted to identify 

the factors affecting the accuracies of NSPs for URM buildings with flexible diaphragms.  

The study reported herein aims to address these issues associated with the NSPs for URM buildings with 

flexible diaphragms. The applicability of the N2 method, the MPA and an adaptive NSP utilising the 

pushover algorithm of Galasco et al. (2006) are investigated for URM buildings with flexible diaphragms, 

using three building models with different levels of stiffness eccentricity and predominant failure 
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mechanisms (by rocking or shear). A wide range of diaphragm stiffnesses representative of timber floor 

systems are considered. The geometrical and engineering properties of these buildings and the earthquake 

loading scenarios are reported in Section 2. The most suitable analysis parameters for each NSP are 

identified in Section 3, by comparing the estimated control node displacements with the “exact” results 

obtained from the NTHA of the MDOF model. Finally, utilising the best analysis parameters for each 

NSP identified in Section 3, the relative accuracies of the NSPs are investigated in Section 4, followed by 

concluding remarks in Section 5.  

2. DESCRIPTIONS OF BUILDINGS, NUMERICAL MODELS AND GROUND 

MOTIONS 

2.1 Descriptions of Building Models 

Three building models, broadly representative of low-rise isolated URM buildings commonly found in 

New Zealand and Australia (Russel 2010; Griffith et al. 2013) were analysed. The models differed in the 

number of storeys (2 or 3), number of bays (1 or 2), stiffness eccentricity and the predominant failure 

mechanisms. Table 1 summarises the key properties with Figure 1 showing the plan views of the 

buildings and the elevations of the in-plane loaded walls. The stiffness eccentricities were calculated for 

the first floor, considering the piers of the ground storey to be fixed at top and bottom (i.e. rigid 

spandrels). The densities of masonry and timber materials were 1800 kg/m3 and 660 kg/m3 respectively. 

Uniform floor live load of 4 kPa was assumed, with the seismic load factor of 0.3 in accordance with AS 

1170.1 (Standards Australia 2002). The analyses were conducted under unidirectional loading, applied in 

the X directions of the models. 

Table 1. Structural properties of the building models 

Building Number of storey Number of bays Trig
† (s) 

Normalised 

stiffness 

eccentricity‡ 

Dominant failure 

mechanism¶ 

Model 1 2 1 0.231 0.36 Rocking 

Model 2 2 1 0.151 0.1 Shear 

Model 3 3 2 0.253 0.2 Shear 
† fundamental period of the building with rigid diaphragms 

‡ normalised eccentricity in the direction of excitation 

¶ the shear failure was considered to be dominant if more than half the piers of the critical storey failed in 

shear 
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Figure 1. Plan and elevation views of the building models (dimensions in m) 

The floor and roof diaphragms were representative of flexible (or non-rigid) timber systems with identical 

constructions at all floor levels. Six different configurations were considered for each model. They 

corresponded to single straight sheathing (D1), single diagonal sheathing (D2), double straight sheathing 

(D3), double layered panels (D4), and two additional levels representing hypothetical retrofits (D5 and 

D6). The reference diaphragm stiffness (Gd), expressed as the shear modulus multiplied by the equivalent 

diaphragm thickness are summarised in Table 2 based on the “expected” values given in ASCE 41-13 

(ASCE 2014).  
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Table 2. Reference diaphragm stiffness values 

Diaphragm Gd (kN/m) Description 

D1 350 Single straight sheathing 

D2 1400 Single diagonal sheathing, chorded 

D3 2625 Double straight sheathing, chorded 

D4 3150 Double layered panels, chorded 

D5 7000 Hypothetical retrofit 1 

D6 35000 Hypothetical retrofit 2 

2.2 Numerical Modelling and Analysis 

The TREMURI program (Lagomarsino et al. 2013) was used to model the buildings. The walls were 

modelled by the equivalent frame idealisation considering the in-plane wall actions. The inelastic 

responses of the piers and spandrels were represented by the macroelement formulation (Penna et al. 

2014), which captures the rocking and shear behaviours separately (Figure 2). In the macroelement, the 

rocking response is modelled at the two ends by a set of compression-only springs with limited strengths. 

The P-Delta effect was considered to be negligible due to the small level of expected displacement in 

comparison to the width of piers, and hence, no strength degradation was considered for the rocking 

behaviour (Figure 2b). The shear behaviour is captured by the internal (middle) segment, and governed by 

a monotonically increasing damage parameter α, where α>1 results in the strength degradation of the 

macroelement (Figure 2c). The material properties of masonry were obtained from an experimental study 

conducted by Knox (2012), using bricks obtained from damaged heritage buildings in the Christchurch 

earthquake with a weak mortar mix representative of older URM buildings (Table 3).  

Each diaphragm was modelled using four elastic membrane elements, with translational degrees of 

freedom at the mid-span to capture its dynamic behaviour. The nodes belonging to the diaphragms and 

the walls were shared at wall corners and intersections. The shear stiffnesses of the membranes were set 

so that the diaphragm stiffnesses corresponded to the six configurations (Table 2), further modified to 

account for the stiffness contributions of the out-of-plane loaded walls using the procedure by Giongo et 

al. (2014). However, the dynamic behaviours of the out-of-plane responding walls were not explicitly 

modelled.  

The nodal masses were assigned based on tributary areas considering the horizontal (inertial) loading. To 

obtain the nodal masses, the tributary masses were firstly computed separately for the diaphragm and wall 

nodes. Where the diaphragm and wall nodes coincide at wall corners and intersections, the computed wall 

and diaphragm nodal masses were then added. It is noted that assigning nodal masses in this manner is 
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appropriate for the dynamic analysis of low-rise buildings where the induced direction of the excitation is 

primarily horizontal. However, it does not give the correct internal force distributions under gravity 

loading. Hence, additional nodal forces (vertical loads and moments) were imposed on the structure to 

obtain correct gravity load distributions prior to carrying out the dynamic analyses.  

The inherent (i.e. non-hysteretic) component of energy dissipation was modelled using the Rayleigh 

viscous damping model for the NTHA. TREMURI program uses Rayleigh damping proportional to the 

initial stiffness, and this approach is known to overestimate the inherent component of damping when the 

structure undergoes inelastic behaviour (Priestley & Grant 2005). The overestimation occurs because the 

Rayleigh viscous damping effectively increases with the elongation in the period of the structure. To 

address this issue, an approximate approach was used; specifically, a 5% initial damping ratio was 

assigned at (1) the lower frequency corresponding to the secant stiffness to collapse, identified as the 

point at which the base shear resistance reduced below 80% of peak value, and (2) higher frequency 

corresponding to the lowest elastic mode containing 90% mass participation. In calculating the lower 

frequency, an initial single-mode pushover analysis was carried out to identify the point of collapse. It is 

noted that a similar approach has been used by Mouyiannou et al. (2014) when carrying out NTHA in 

TREMURI. 

Table 3. Masonry material properties used (calculated from Knox (2012)) 

Young’s 

modulus 

Shear 

modulus 

Compressive 

strength 
Cohesion Friction coefficient 

1385 MPa 740 MPa 5.74 MPa 0.101 MPa 0.152 

 

Figure 2. Macroelement model: (a) element kinematics, (b) rocking response and (c) shear response. 

2.3 Ground Motions 
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Twelve natural accelerogams were selected from the database of Pacific Earthquake Engineering 

Research Centre (PEER 2015), and scaled to match the design spectrum of AS 1170.4 (Standards 

Australia 2007) for site class Ce (defined as shallow soil). In order to obtain records with magnitudes 

between 6 and 7 without excessive scaling, the peak ground acceleration (PGA) of the target spectrum 

was set to 0.26 g. The closest distance from the rupture plane ranges from 14 to 41 km. The records did 

not contain damaging near-field characteristics such as the forward directivity effect. A wide range of soil 

conditions were considered, as indicated by the average top 30 m shear velocity (Vs,30) ranging from 197 

m/s to 715 m/s. Table 4 summarises the ground motion records used in the analysis. The mean 5% 

damped acceleration and displacement spectrum are shown in Figure 3. In addition to the PGA of 0.26 g, 

two additional intensity levels corresponding to the PGA of 0.13 g and 0.52 g were also considered in the 

analysis, in order to induce different levels of inelastic behaviours. 

Table 4. List of ground motion records 

Event Station Year Magnitude Component 
Rrup 

(km) 

Vs,30 

(m/sec) 

Friuli Tolmezzo 1976 6.5 000 15.82 505.23 

Imperial Valley Compuertas 1979 6.53 015 15.3 259.86 

Imperial Valley El Centro Array #12 1979 6.53 140 17.94 196.88 

Irpinia Rionero In Vulture 1980 6.2 000 22.69 574.88 

Superstition Hills Brawley Airport 1987 6.54 225 17.03 208.71 

Northridge 
Hollywood - Willoughby 

Ave 
1994 6.69 090 23.07 347.7 

Northridge LA - 116th St School 1994 6.69 090 41.17 301 

Northridge LA - Baldwin Hills 1994 6.69 090 29.88 297.07 

Northridge 
Northridge - 17645 

Saticoy St 
1994 6.69 090 12.09 280.86 

Northridge Santa Susana Ground 1994 6.69 000 16.74 715.12 

Joshua Tree CA 
North Palm Springs Fire 

Sta #36 
1992 6.1 180 21.97 367.84 

Christchurch Canterbury Aero Club 2011 6.2 N40E 14.41 280.26 
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Figure 3. Mean spectra of ground motions with average PGA of 0.26 g 

3. IDENTIFICATION OF SUITABLE ANALYSIS PARAMETERS 

3.1 Parameters Investigated 

As the existing NSPs have been developed for modern rigid diaphragm constructions, several 

uncertainties are associated with their application for URM buildings with flexible diaphragms. The 

analysis parameters investigated in the present study are summarised in Table 5, and are described in this 

section. 

For the N2 method, the main uncertainties for the application of the method are (1) location of control 

node, and (2) the computation of target displacement using an equivalent SDOF system. In order to 

identify the most appropriate control node location, the accuracies of the target displacements computed 

at the control node placed at the roof levels of each in-plane loaded wall and the diaphragm mid-spans are 

investigated. In addition, four different hysteresis models are studied for calculating the target 

displacement using the NTHA of the equivalent SDOF systems. The hysteresis models correspond to 

elastic-plastic, thin Takeda, origin centered, and bilinear elastic rules (Figure 4). 

It is noted that in practice, the computation of the target displacement needs to be carried out without 

conducting a NTHA of the equivalent SDOF system. In seismic codes and guidelines (CEN 2004; FEMA 

2005; ASCE 2014), this is achieved by utilising empirical formulae that relates elastic spectral 

displacement to the inelastic spectral displacement. However, in order to eliminate statistical bias inherent 
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in the simplified spectrum-based approaches, the present study uses step-by-step NTHA of the equivalent 

SDOF system. 

Several load patterns are also considered for the N2 method in the present study, namely (a) mass 

multiplied by “uniform” displacement shape (uniform pushover analysis), (b) mass multiplied by “linear” 

displacement shape along the height of the building (linear pushover analysis), which is similar to load 

patterns often specified in seismic codes, and (c) mass multiplied by displacement shape corresponding to 

that calculated using the response spectrum analysis with the square root of squares (SRSS) combination 

rule (SRSS pushover analysis). 

 

Figure 4. Hysteretic models investigated for the equivalent SDOF system 

The analysis parameters investigated for the MPA are (1) location of control node, and (2) mode 

combination rules used for combining the “modal” pushover analysis results. The control node locations 

investigated are (a) location that displaces the most in the elastic range, and (b) location that displaces the 

most at the ultimate state of the structure. The considered combination rules consist of SRSS and the 

complete quadratic combination (CQC) rules. The calculation of the target displacement is conducted for 

each mode by the NTHA of the equivalent SDOF system, using the most suitable hysteresis model 

identified for the N2 method. In the present study, the number of modes considered encompassed more 

than 85% of mass participation. 

The analysis parameter investigated for the adaptive NSP is the conversion of the pushover curve to the 

equivalent SDOF system, accounting for the continuously changing force distribution during the analysis. 

Three conversion methods are investigated
1
. The first approach (ADAP1) uses the current displacement 

shape of the structure to calculate the conversion parameters. The second method (ADAP2) is similar to 

the ADAP1, but uses the displacement shape back calculated from the pushover force profile of the 

current step. The difference between ADAP1 and ADAP2 is that the pushover force distribution (pi in Eq. 

                                                      

1
 More detailed descriptions of the conversion methods are provided in Appendix B of this thesis. 
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1) is bounded in the present study in order to obtain realistic analysis results (Galasco et al. 2006), while 

the displacement response may lay outside the constraint distributions. The limiting force distributions 

correspond to the SRSS and uniform pushover analyses of the N2 method; the SRSS distribution may 

considered to be appropriate when the building is in the elastic range, while the uniform distribution 

represents the ultimate state of the building when a soft-storey occurs in the ground storey. The third 

approach (ADAP3) constructs the equivalent SDOF system based on conserving the work done on the 

MDOF structure by the pushover forces (Hernández-Montes et al. 2004). The target displacement is again 

obtained by the NTHA of the equivalent SDOF system, using the most suitable hysteresis model 

identified for the N2 method. 

As the ADAP1 procedure uses the computed displacement shape, it is independent of the control node 

location. ADAP3 is also independent of the control node, as it does not require any displacement to be 

monitored during the pushover analysis. On the other hand, ADAP2 requires the control node in 

constructing the pushover curve, as the constraints imposed on the pushover force distribution lead to an 

inconsistency between the actual displacement shape and that used in the conversion. For ADAP2, the 

control node is placed at the mid-span degree of freedom of the most flexible roof for all building models. 

Table 5. List of analysis parameters studied 

Analysis Method Investigated Parameters 

N2 method 

 Location of control node 

 Hysteresis model for the computation of target 

displacement using equivalent SDOF system 

 Lateral pushover force distribution 

MPA 
 Location of control node 

 Mode combination rule 

Adaptive pushover method 
 Conversion procedure from pushover curve to equivalent 

SDOF system 

3.2 Results for N2 method 

The suitability of using equivalent SDOF systems with idealised hysteresis rules for the calculation of 

target displacement is investigated first. Figure 5 shows the comparisons of the estimated target 

displacements against the peak displacements obtained from the NTHA of the MDOF model. The plots 

include all ground motions, building models, diaphragm stiffnesses, excitation intensities, and the 

assumed displacement shape, hence giving an overall idea of the relative accuracies of various hysteresis 

models. The presented results correspond to the analyses conducted using the mid-span of the most 
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flexible roof diaphragm as the control node. While not shown, qualitatively identical trends were also 

observed when the control node was placed at different locations of the building. The error of the target 

displacement estimations of the N2 method (𝑢𝑐,𝑁2) with respect to the NTHA results (𝑢𝑐,𝑁𝑇𝐻𝐴) are 

quantified in Figure 5 using the root mean square of the displacement error normalised by the building 

height (h), as given by 𝛿𝑅𝑀𝑆 = √∑ (
𝑢𝑐,𝑁2−𝑢𝑐,𝑁𝑇𝐻𝐴

ℎ
)

2
. 

The plots show that the two hysteresis models with limited to no hysteretic energy dissipation capacities 

(origin centered and bilinear elastic) give highly conservative estimates as the excitation intensity 

increases. The overestimations appear to increase exponentially, and significant errors can be expected as 

the inelastic behaviour increases. The elastic-plastic model, on the other hand, provides good predictions 

on average. However, the large variability about the equality line indicates the potential for significant 

errors (including underestimations) for individual ground motion. The most suitable hysteresis, that gives 

(on average) results closest to the NTHA analysis with the smallest variability, is the modified Takeda 

(thin) model. Indeed, the responses of URM walls generally show a combination of the rocking and shear 

failures, which are approximated most closely by the modified Takeda model.  
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Figure 5. Comparisons of the target displacement estimates from the N2 method against NTHA with 

control node at the mid-span of the most flexible roof diaphragm, including all hysteresis 

models and pushover force distributions. 

In assessing the suitability of the control node, it may be recognised that the location of the control node 

affects the pushover analysis insofar as determining how far the structure is to be pushed. Hence the most 

suitable control node location is where the estimated target displacement matches the NTHA results on 

average, with the smallest coefficient of variation (measure of scatter). The ratio (𝑢𝑐
∗) of the estimated 

target displacement to the NTHA displacement is used to evaluate the applicability of a control node, 

𝑢𝑐
∗ =

𝑢𝑐,𝑁2

𝑢𝑐,𝑁𝑇𝐻𝐴
 

(2) 

Figure 6 and Figure 7 show the mean and coefficient of variation of the target displacement ratios against 

the average diaphragm period of the floors (Td) for Model 2 and Model 3 respectively, subjected to the 
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largest ground motion intensity of 0.52 g. Td is calculated from the stiffness and the tributary mass of the 

diaphragm. The control node location is varied between the top level of the in-plane loaded walls, and the 

mid-spans of the roof diaphragms. It is noted that in Model 3, the diaphragm between Wall 1 and Wall 2 

(denoted as Roof 1 in Figure 1) is more flexible than the diaphragm between Wall 2 and Wall 3 (denoted 

as Roof 2 in Figure 1) due to the larger span length.  

The mean ratios show that consistently good estimates are obtained when the control node is placed at the 

mid-span of the (most flexible) roof diaphragm. This is the only location where acceptable accuracy can 

be attained for all diaphragm stiffness levels, the assumed displacement shapes, and the building models 

(Model 1 showed similar trends to Model 2, and is not shown). Furthermore, the similar values of the 

coefficient of variation for the different control node locations indicate that there is no particular location 

that consistently gives the smallest coefficient of variation. The mid-span of the most flexible diaphragm 

(i.e. Roof 1 for Model 3) hence appears to be the most suitable location for the N2 method.  

The estimation of the target displacement at the mid-span of the (most flexible) diaphragm is also 

reasonably consistent for different levels of inelastic behaviour. Figure 8 shows the mean target 

displacement ratios for the three models with the control node at the mid-span of the roof (Roof 1 for 

Model 3) for different levels of excitation. All building models remained practically elastic for the 0.13 g 

excitation, while significant inelastic responses were induced under the 0.52 g intensity. However, the 

mean target displacement ratios were relatively insensitive to the change in the response characteristics. 

The coefficient of variation of the predictions (Figure 9), however, generally increases with the excitation 

intensity. 
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Figure 6. Mean and coefficient of variation of target displacement ratios for Model 2 under 0.52 g PGA, 

(a) uniform pushover force, (b) linear pushover force, and (c) SRSS pushover force. 

 

Figure 7. Mean and coefficient of variation of target displacement ratios for Model 3 under 0.52 g 

excitation, (a) uniform pushover force, (b) linear pushover force, and (c) SRSS pushover 

force. 
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Figure 8. Sensitivity of the mean target displacement ratios to ground motion intensity. 
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Figure 9. Sensitivity of the coefficient of variation of target displacement ratios to ground motion 

intensity. 

3.3 Results for MPA 

For the MPA, the most suitable location of control node, and the mode combination rules were 

investigated. 

In Figure 10, the mean of the peak displacement ratios corresponding to various diaphragm stiffnesses are 

shown for the mid-spans of the (most flexible) roof for the three building models under the largest 

excitation of 0.52 g PGA, which induced significant inelastic behaviour. The displacement ratio is defined 

similarly to Eq. 2, with 𝑢𝑐,𝑁2 replaced by the value computed from the MPA. The figure includes the 

control node locations that displace the most in the elastic range (case 1) and at the ultimate state (case 2), 

with either the SRSS or the CQC mode combination rules. In most cases, the results are not overly 

sensitive to the control node location, indicating that the location that displaces the most in the elastic 

range also generally undergoes the largest inelastic deformation. Where there are discrepancies, however, 

the more accurate results are obtained when the control node corresponds to the location that displaces the 
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most in the elastic range. This is attributed to the larger initial period of the equivalent SDOF system, 

which results in a larger target displacement.  

The differences between the two combination rules are generally negligible, despite the fact that some 

modes were closely spaced due to the similar values of diaphragm stiffness at all floor levels. The CQC 

rule is nevertheless preferred in the present study as it gives more conservative predictions. 

 

Figure 10. Comparisons of the mean displacement ratios at mid-spans of roof (roof 1 for Model 3), 

subject to 0.52 g PGA ground motion for the four different MPA cases. 

3.4 Results for Adaptive Procedure 

Three conversion procedures (ADAP1, ADAP2 and ADAP3, Section 3.1) are investigated for the 

adaptive NSP. The mean peak displacement ratios at the mid-spans of the roofs (Roof 1 for Model 3) are 

plotted against the diaphragm periods in Figure 11. The displacement ratio is calculated analogously to 

Eq. 2, using the computed value from the adaptive procedure in lieu of 𝑢𝑐,𝑁2. The ADAP1 approach 

underestimates the peak displacements when the diaphragms become overly flexible. The underestimation 

occurs due to the disproportionate increase in the displacement of the diaphragm mass, which effectively 

reduces the mass of the equivalent SDOF system. The strength of the equivalent SDOF hence increases in 

comparison to its effective mass, which results in the reduced inelastic displacement for a given ground 

motion. In comparison, the ADAP2 and ADAP3 procedures provide more consistent results with the 

NTHA. In particular, ADAP3 generally gives more conservative results. 
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Figure 11. Comparisons of the mean displacement ratios at mid-spans of roof (Roof 1 for Model 3) for the 

three different conversion procedures for adaptive pushover analysis. 

3.5 Summary 

From the analyses conducted, following recommendations are given for the application of NSPs to URM 

buildings with flexible diaphragms. These recommendations will be adopted in studying the accuracies of 

various analysis methods in Section 4. 

 For all methods: target displacement of the equivalent SDOF system to be obtained using 

modified Takeda or similar hysteresis. 

 N2 method: control node to be located at the mid-span of the most flexible diaphragm at the roof 

level of the building. 
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 MPA method: (1) for each mode, control node to be placed at the location that displaces the most 

in the elastic range; (2) use CQC rule to combine the modal responses. 

 Adaptive method: conversion to the equivalent SDOF system to be based on the equal work done 

on the MDOF structure by the pushover forces using the procedure of Hernández-Montes et al. 

(2006). 

4. APPLICABILITY OF NONLINEAR STATIC PROCEDURES 

4.1 N2 Method 

The applicability of the N2 method is investigated by comparing the plan displacements at the roof level 

and interstorey drift ratios of in-plane loaded walls against the NTHA results. Three different pushover 

force distributions, uniform, linear and SRSS, are considered. The comparisons of the displacements at 

roof level are shown in Figure 12, while the interstorey drifts are shown in Figure 13, Figure 14 and 

Figure 15 for Models 1, 2 and 3 respectively, subjected to the largest 0.52g excitation. 

The linear pushover analysis can be seen to give the most conservative roof displacement predictions for 

all building models. The estimated interstorey drifts are more uniform along the height than those 

obtained by the NTHA, leading to general overestimations of the upper-storey drifts for all diaphragm 

stiffnesses. 

The uniform pushover analysis predicts more constant plan displacement shapes than the NTHA, and this 

leads to the underestimation of the flexible side and the overestimation of the stiff side when the stiffness 

eccentricity of the building is large (Models 1 and 3). For Model 2, when the stiffness eccentricity is 

small, the uniform pushover analysis over-predicts the responses of both in-plane loaded walls. The 

computed interstorey drift by the uniform pushover analysis is concentrated in the ground storey, which 

becomes most pronounced when shear damage is the dominant failure mechanism of the critical storey. 

The upper-storey drifts are typically underestimated by the uniform pushover analysis. 

The SRSS force distribution generally gives better correlations with the NTHA for both the roof 

displacements and the interstorey drifts. However, large underestimations can occur (for example, Model 

1 with D4 in Figure 13) when the diaphragms become flexible. 

In general, regardless of the type of pushover force profile, the accuracy of the N2 method is mainly 

dependent on the level of diaphragm stiffness. Other factors, such as the level of stiffness eccentricity and 
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failure mechanism, appear to be of secondary importance in comparison. The exact NTHA results 

indicate that the interstorey drift demands reduce when the diaphragm flexibility is increased. The single-

mode N2 method cannot capture this reduction associated with the multi-mode behaviour of the 

buildings, and their predictions increasingly overestimate those of the NTHA results. In addition, no 

single pushover force distribution is found to provide the most accurate predictions for all diaphragm 

stiffnesses. However, conservative displacement and interstorey drift estimates can be made if the 

envelope of the uniform and the linear pushover analysis results is considered.  

 

Figure 12. Comparisons of mean peak top displacements obtained from N2 method against the mean 

NTHA results, subjected to 0.52 g PGA (plan view). 
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Figure 13. Comparisons of mean peak interstorey drifts from N2 method and NTHA for (a) flexible (wall 

1) and (b) stiff (wall 2) in-plane walls of Model 1 subjected to 0.52 g PGA. 

 

Figure 14. Comparisons of mean of peak interstorey drifts obtained from N2 method against mean NTHA 

(a) flexible (wall 1) and (b) stiff (wall 2) in-plane walls of Model 2 subjected to 0.52 g PGA. 
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Figure 15. Comparisons of mean of peak interstorey drifts obtained from N2 method against mean NTHA 

for (a) flexible (wall 1) and (b) stiff (wall 2) in-plane walls of Model 3 subjected to 0.52 g 

PGA (elevation). 

4.2 MPA 

The plan displacement shapes computed from the MPA are compared against the NTHA in Figure 16 and 

Figure 17 subjected to the PGA of 0.13g and 0.52g respectively. When the building response is primarily 

elastic under the 0.13g excitation (Figure 16), the MPA provides accurate predictions of the NTHA 

results. This is expected because the MPA is identical to the RSA in the elastic range, and it appropriately 

accounts for the multi-mode behaviour through modal superposition. In contrast, the accuracy of the 

inelastic building response predictions under the 0.52g excitation (Figure 17) is dependent on the 

dominant failure mechanisms of the building models. For Model 1, in which the dominant failure 

mechanism is the rocking of piers, the MPA performs well. The accuracy in this case was comparable to 

the elastic response predictions. For Models 2 and 3 however, for which the piers failed mostly in shear, 

the MPA consistently underestimates the peak displacements.  

The interstorey drifts for shear-dominated Models 2 and 3 also show large underestimations of the critical 

storey, as indicated in Figure 18 for Model 3 subjected to the 0.52g excitation. These underestimations are 

most pronounced when the diaphragms are relatively flexible and the multi-mode behaviour is prevalent. 
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The underestimations of the MPA are caused by the assumption of independent modal responses, and this 

is highlighted in the present study due to the definition of the macroelement used in the analysis. In the 

macroelement definition, the rocking behaviour is almost elastic (although nonlinear), while the shear 

behaviour is highly inelastic, defined by a monotonically increasing scalar parameter that accounts for the 

macroscopic representation of cumulative damage occurring at mortar joints. Such cumulative damage 

cannot be captured by assuming independent modal responses, and this leads to the underestimations of 

responses by the MPA when multiple modes contribute to building behaviour. 

The assumption of the independent modal responses also creates a difficulty in identifying the damage 

level of the piers. This problem is illustrated in Figure 19, which shows the variations of axial and shear 

forces obtained during the modal pushover analyses, plotted against the strength interaction curves of the 

exterior pier of Model 2 located on the compression side. The plot also shows the combined results of the 

MPA and the peak values corresponding to the NTHA. The individual modal pushover analyses show 

that none of the analyses actually resulted in the failure of the pier. However, the combined result 

indicates that the pier would have failure in shear. Furthermore, the maximum compressive force on the 

pier remains in the range corresponding to the rocking failure for modes 2, 4 and 7, while for mode 6, the 

axial force enters into the range corresponding to shear failure. The combined shear force can also exceed 

the actual strength of the pier, which is a recognised limitation of the MPA (Goel and Chopra 2005). 

These issues attributed to the independent modal response assumption of the MPA make the accuracy of 

the method questionable when multiple dominant modes are present. 
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Figure 16. Comparisons of mean peak top displacements obtained from the MPA against the mean NTHA 

result, subjected to 0.18 g PGA (plan view). 

 

Figure 17. Comparisons of mean peak top displacements obtained from the MPA against the mean NTHA 

result, subjected to 0.52 g PGA (plan view). 
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Figure 18. Comparisons of mean peak interstorey drifts obtained from the MPA against mean NTHA for 

the flexible (wall 1) in-plane walls subjected to 0.52 g PGA (elevation). 

 

Figure 19. Axial - shear variations of “modal” pushover analysis in against the failure domain of the 

ground storey exterior pier of Model 2, corresponding to the 0.52 g PGA excitation. 
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4.3 Adaptive Pushover 

The plan displacement shapes computed from the adaptive pushover analysis are compared against the 

NTHA in Figure 20 corresponding to the PGA of 0.52g. The interstorey drifts under the same excitation 

intensity are shown in Figure 21 for Model 3. In general, the adaptive pushover analysis captures the top 

displacements and interstorey drifts better than the N2 method or the MPA. However, the limitations 

similar to the N2 method can be observed; for all models, the reduced interstorey drifts associated with 

multi-mode behaviour is not accurately captured. This similarity with the N2 method occurs even though 

the pushover force distribution is continually modified during the analysis to account for the changing 

characteristics of the building behaviour, because the single-mode behaviour is essentially assumed at 

each analysis step.  

 

Figure 20. Comparisons of mean peak top displacements obtained from the adaptive pushover analysis 

against the mean NTHA result, subjected to 0.52 g PGA (plan view). 
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Figure 21. Comparisons of mean peak interstorey drifts obtained from the adaptive pushover analysis 

against mean NTHA for the in-plane walls of Model 3 subjected to 0.52 g PGA (elevation). 

4.4 Diaphragm Deformation 

The analyses indicate that the N2 method and the adaptive NSP typically underestimate the diaphragm 

deformation (Figure 12 and Figure 20), which is defined here as the mid-span displacement of the 

diaphragm relative to the average displacement of the supporting in-plane loaded walls. 

In order to obtain more accurate estimates of the diaphragm deformation, a simple strategy is proposed 

based on the following assumptions: (1) the diaphragms remain elastic throughout the excitation, and (2) 

the in-plane loaded walls are sufficiently stiffer than the diaphragms so that they can be considered 

essentially rigid for the purpose of calculating diaphragm deformation. The first assumption is consistent 

with the numerical modelling used in the analyses. The second assumption may be considered reasonable 

when the diaphragm flexibility is relatively large. Using these assumptions, the peak diaphragm 

deformation can be approximated by the elastic spectral displacement value corresponding to the 

diaphragm period. 

The accuracy of such simple spectrum approach is shown in Figure 22, where the ratios of the estimated 

peak diaphragm deformations from the response spectrum (Sd) to the exact value obtained from the 
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NTHA (Δd) are plotted against the NTHA results. The mean ratios show good agreement of the spectrum 

approach in predicting a wide range of diaphragm deformation values, with the average error 

approximately ranging between 70% to 150% of the NTHA. As expected, the standard deviations of the 

predictions (or the scatter of results) increase as the diaphragms become stiff because the assumption of 

rigid in-plane walls become inaccurate. It is noted that the proposed procedure has some similarities to the 

direct displacement-based design approach investigated by Whitney and Agrawal (2015). 

 

Figure 22. Peak ratios of spectral displacements to the diaphragm deformations calculated from NTHA 

4.5 Discussions and Recommendations on the Use of Nonlinear Static Procedures 

The analyses show that all considered pushover analysis methods have limited applicability. The 

accuracies of the methods are found to depend on two main factors, namely (1) the failure mechanism of 

the in-plane loaded walls, and (2) the level of diaphragm flexibility. While both factors affect the 

applicability of the investigated NSPs, the MPA is primarily dependent on the failure mechanism of the 

piers in the critical storey. In contrast, the applicability of the N2 methods and the adaptive procedures are 
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mainly dependent on the level of diaphragm flexibility. Based on these observations, recommendations 

are provided for the applicable ranges of various pushover analysis methods for URM buildings with 

flexible diaphragms. 

The applicability of the MPA for URM buildings with flexible diaphragms in practice appears to be 

limited, due to the large underestimations of response estimates for buildings which undergo shear-

dominant failures. Furthermore, it is difficult to identify the damage levels of walls when multiple modes 

are present in the building response. For these reasons, the use of the MPA is not recommended for URM 

buildings with flexible diaphragms. 

For the N2 method and the adaptive NSP, the analyses become erroneous when the presence of multiple 

modes result in the reductions of the “exact” displacement (or interstorey drift) demands of the in-plane 

loaded walls. In a previous parametric study conducted using idealised single-storey systems, such multi-

mode responses were identified to become significant when the ratio of the diaphragm deformation to the 

average wall displacement (Δw), λ = Δd/Δw, was approximately greater than 1/3. Hence a possible strategy 

for ensuring the accuracy of the N2 and the adaptive NSP is to firstly carry out the analyses and then to 

check that the maximum diaphragm deformation obtained at all floor levels satisfies the condition of λ ≤ 

1/3. The applicability of this strategy is illustrated in Figure 23, in which the ratios of the peak ground 

storey drifts obtained using the NSPs to the NTHA results (Δ*
w,1) are plotted against the maximum values 

of λ for each ground motion. It is noted that in calculating λ, the diaphragm deformations were obtained 

using the response spectrum approach (Section 4.4), while the average wall displacements were obtained 

from the NSPs. Figure 24 shows that λ ≤ 1/3 appears to be a reasonable limit, if somewhat on the 

conservative side, to be placed on the results of the NSPs to ensure that the accuracy of the N2 and the 

adaptive NSP are at a comparable level to those of the rigid diaphragm configuration (i.e. when λ tends to 

zero). The plots also confirm that the adaptive NSP are generally more accurate than the N2 method when 

the λ ≤ 1/3 condition is met. 

Large errors can be associated with both the N2 method and the adaptive NSP when λ > 1/3. However, 

the analyses have shown that the N2 method can provide conservative results for all diaphragm stiffness 

values when the envelope of the uniform and linear pushover analyses is considered.  
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Figure 23. Ratios of ground storey drifts calculated by the N2 method and adaptive pushover analysis to 

the NTHA results, plotted against the maximum λ values. Data points include all pushover 

force distributions and ground motion excitation levels. 

5. CONCLUSIONS 

The applicability of the N2 method, MPA and the adaptive pushover method developed by Galasco et al. 

(2006) for estimating the peak seismic responses of URM buildings with flexible diaphragms were 

investigated, considering the NTHA of the MDOF models give the “exact” dynamic responses. Three 

building models with different levels of stiffness eccentricity, number of storeys, number of bays and the 

predominant failure mechanisms were considered.  

The analyses indicated that the accuracy of the MPA was primarily dependent on the failure mechanism 

of the buildings, while those of the N2 and the adaptive method were influenced mainly by the level of 

diaphragm flexibility. 

When the building response remained almost elastic, or when the piers predominantly responded in 

rocking, the MPA provided the most accurate predictions of the peak displacements and interstorey drifts. 

However, when the buildings experienced significant inelastic shear damage, the MPA consistently 
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underestimated the displacements and the critical interstorey drifts. The underestimations were attributed 

to the assumption of the independent “modal” responses in the MPA, which did not capture the 

cumulative nature of shear damage implemented in the numerical model. These results suggest that the 

MPA is not suitable for URM buildings with flexible diaphragms. 

The adaptive method provided the most accurate predictions of the roof displacements and interstorey 

drifts ratios when the diaphragm was relatively stiff. The applicable range of the adaptive method can be 

given by λ ≤ 1/3, where λ is the maximum ratio of the diaphragm deformation at a floor level to the 

average displacement of in-plane walls supporting the diaphragm at the same level. In calculating λ, the 

diaphragm deformation can be approximated using the displacement spectrum, and the wall 

displacements can be obtained from the pushover analysis.  

When λ > 1/3, no investigated method could provide good predictions of the NTHA results. In this range 

of diaphragm flexibility, more advanced multi-mode adaptive pushover procedures may be needed, which 

require further studies. However, conservative results can be obtained by using the N2 method, by taking 

the envelope of the results obtained using the pushover force distributions corresponding to the uniform 

and linear displacement shapes.  

Furthermore, the most consistent predictions of the target displacements are expected when analyses are 

carried out in the following manner: 

 N2 method: control node to be located at the mid-span of the most flexible diaphragm at the roof 

level of the building. 

 MPA method: (1) for each mode, control node to be placed at the location that displaces the most 

in the elastic range; (2) use CQC rule to combine the modal responses. 

 Adaptive method: conversion to the equivalent SDOF system to be based on the equal work done 

on the MDOF structure by the pushover forces using the procedure of Hernández-Montes et al. 

(2006). 

 The target displacement to be calculated using hysteresis models similar to thin Takeda model, or 

by spectrum-based approximate procedures developed using such models. Further studies are 

however recommended to identify/develop inelastic displacement ratio expressions appropriate 

for URM buildings. 
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CHAPTER 7  

 

CONCLUSIONS AND RECOMMENDATIONS 

 

1. CONCLUSIONS 

The research presented in this thesis focused on enhancing the understanding of the global seismic 

behaviour of URM buildings, and contributing towards the improved seismic analysis methods when the 

floor and roof diaphragms are flexible. The specific objectives of this research were: (1) development of a 

comprehensive understanding of the seismic behaviour of URM buildings with flexible diaphragms; (2) 

investigation of accuracies of existing analysis methods; and (3) contributing towards the improvement of 

analysis methods for URM buildings with flexible diaphragms. The main conclusions of the present 

research are summarised in the following for each objective. 

1.1 Seismic Behaviour of URM Buildings with Flexible Diaphragms 

Diaphragm flexibility has significant influences on the global responses of buildings, and on the seismic 

demands imposed on the lateral load resisting walls. Modal analysis has shown that for symmetric 

buildings, two important modes are typically present. The deformations of the diaphragms are typically 

concentrated in the lower mode, while the responses of the in-plane loaded walls are contained in the 

higher mode. In the elastic range, the increased diaphragm flexibility generally leads to the reduced peak 

base shear force because of the independent responses of the masses attributed to the diaphragms and in-

plane loaded walls. 

In the inelastic range, the diaphragm flexibility can induce two different effects, depending on the level of 

diaphragm stiffness and the plan-asymmetry, especially the strength eccentricity, of the building. When a 

strength eccentricity is present, large amplification of the displacement demand of the flexible side can 

occur. However, for all building configurations, large diaphragm flexibility was observed to lead to the 

reduced in-plane wall demands, in a manner similar to the elastic system.  

In general, non-rigid diaphragms can be categorised into four ranges – “rigid”, “stiff”, “semi-flexible”, 

and “flexible” – based on how incremental diaphragm flexibility affects the peak displacement demands 

of the in-plane loaded walls. The “rigid” diaphragm range is characterised essentially by the rigid-body 

motion of the diaphragm, and incremental diaphragm flexibility has little effects on the wall responses. In 
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the “stiff” diaphragm range, incremental diaphragm flexibility causes the amplification of the 

displacement of the flexible side, and reduction of the displacement of the stiff side. In the “semi-rigid” 

range, incremental diaphragm flexibility reduces the peak demand on the flexible side of the building, and 

the “flexible” range corresponds to the almost independent responses of the diaphragm and the walls.  

The maximum displacement amplification of the flexible side occurs at the transition from the “stiff” to 

the “semi-flexible” diaphragm ranges. An empirical expression of the maximum amplification has been 

derived as a function of strength eccentricity. This transition point also approximately corresponds to the 

transition from an essentially single-mode to the multi-mode dominant behaviour of the building. A 

simple measure of the diaphragm stiffness corresponding to this transition point has been derived as λ = 

Δd/Δw = 1/3, where Δd is the peak deformation of the diaphragm mid-span relative to the supporting walls, 

and Δw is the average displacement of the supporting walls.  

1.2 Accuracy of Existing Seismic Analysis Methods 

Both linear and nonlinear static analysis methods were investigated. Existing linear analysis methods are 

based on a simplifying assumption of the dynamic interaction occurring between the flexible diaphragms 

and the in-plane loaded walls, and the accuracies of the methods depend on the level of diaphragm 

flexibility. The analysis procedure contained in ASCE 41-13 (ASCE 2014) is reasonably accurate when 

the diaphragms are stiff. However, its accuracy reduces as the diaphragm flexibility increases. On the 

other hand, the method by Knox (2012) is more accurate when the diaphragms are relatively flexible, but 

its accuracy reduces as the diaphragms become stiff. 

The applicability of the investigated nonlinear static methods, namely the N2 method (Fajfar and 

Gašperšič 1996), the MPA (Chopra and Goel 2002) and an adaptive pushover analysis by Galasco et al. 

(2006), also depend on the level of diaphragm flexibility. However, for the MPA, the accuracy of the 

method also depends significantly on the dominant failure mechanism of the piers (rocking or shear). 

Because of the dependence on the failure mechanism, as well as the difficulties in identifying the damage 

level of piers and spandrels, the MPA is not recommended as a suitable method in estimating the peak 

seismic response of URM buildings with flexible diaphragms.  

The most accurate predictions of the nonlinear responses are expected when the adaptive pushover 

method is used. However, it is also recommended that the use of the single-mode adaptive method to be 

limited to the case when the maximum value of λ = Δd/Δw for all diaphragms in a building is less than or 

equal to 1/3. In calculating λ, the diaphragm deformation can be obtained from the elastic spectral 

displacement corresponding to the diaphragm period. Consistently conservative predictions can also be 
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obtained for all levels of diaphragm stiffness using the N2 method, by taking the envelope of the analyses 

conducted using pushover forces proportional to the uniform and linear displacement shapes along the 

height of the structure. 

1.3 Improvement of Seismic Analysis Methods 

Using the two important modes identified from the modal analysis, an improved linear analysis procedure 

has been proposed. The proposed method directly accounts for the dynamic interaction between the 

flexible diaphragms and in-plane loaded walls. A set of analysis charts has been developed for the design 

spectrum of NZS 1170.5 (New Zealand Standard 2004) to facilitate the simplified code-based application 

of the method. Similar charts can readily be developed for other code-specified spectra. 

The most suitable manner for the application of the existing nonlinear static procedures for URM 

buildings with flexible diaphragms has also been identified. Most accurate predictions of the target 

displacements are expected when analyses are carried out in the following manner: 

• N2 method: control node to be located at the mid-span of the most flexible diaphragm at the roof 

level of the building. 

• MPA: (1) for each mode, control node to be placed at the location that displaces the most in the 

elastic range, and (2) use CQC method to combine the modal responses. 

• Adaptive method: conversion of the pushover curve to the equivalent SDOF system to be based 

on the equal work done on the MDOF structure by the pushover forces, using the procedure of 

Hernández-Montes et al. (2006). 

• The target displacement to be calculated using equivalent SDOF system with hysteresis models 

similar to thin Takeda model, or by spectrum-based approximate expressions developed using such 

hysteresis models. 

2. RECOMMENDATIONS 

The outcomes of the present research lead to several areas of future research into the improvement of 

seismic analysis methods for URM buildings with flexible diaphragms. 

Firstly, there is a need for an improved numerical model capable of accurately capturing the three-

dimensional behaviour of URM buildings with flexible diaphragms. Such a numerical model should 
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include all the salient characteristics of URM buildings with flexible diaphragms; namely the orthotropic 

nature of timber diaphragms, the limited (or poor) connections between diaphragms and the masonry 

walls, and the dynamic behaviour of the out-of-plane responding walls.  

At present, the linear static method remains popular in practice. Therefore, further investigations in 

improving the accuracy of the linear static method appears to be appropriate. The procedure developed in 

this study can be extended to incorporate the redistribution of the internal forces as part of the linear static 

analysis method, in order to better capture the likely distribution of damage. 

The results of the present research suggest that improving the nonlinear static analysis method for URM 

buildings with flexible diaphragms requires the consideration of both the changing nature of structural 

response into the inelastic range and the multi-mode behaviour arising from diaphragm flexibility. Hence, 

it is suggested that further studies to be undertaken to develop a multi-mode adaptive pushover method 

for URM buildings with flexible diaphragms. It would be particularly valuable to have such method 

coded in widely available analysis software, such as TREMURI. 

Finally, while the present research has indicated the suitability of using equivalent SDOF systems with 

modified Takeda (or similar) hysteresis model to estimate the target displacement in a manner similar to 

modern construction systems, further systematic statistical evaluations are recommended. The question of 

whether the equivalent nonlinear SDOF system (as used in this research) or the equivalent linear system 

with increased viscous damping is more appropriate for URM buildings, should also be addressed. 
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APPENDIX A 

 

EXAMPLE TREMURI INPUT FILE 

 

A1. INTRODUCTION 

In Chapters 4 to 6, the equivalent frame analyses were carried out using TREMURI software. This 

appendix presents an example TREMURI input file, incorporating four membrane elements to model a 

flexible diaphragm as described in Chapter 4. 

A2. EXAMPLE TREMURI INPUT FILE 

Tremuri 1 7 1 

/Settings 

Default 

Best 1 

/walls 

1 0.175 0.175 0.0 

2 0.175 11.825 0.0 

3 0.175 0.175 90° 

4 9.825 0.175 90° 

5 0.175 6 0.0 

6 5 0.175 90° 

/Material_properties 

! masonry  

1 1385000000 740000000 18 5740000 130000 130000 1 1 1 0.111 2.5 0.3 

! steel 

2 200000000000 83333333333 7810 350000000 

! rigid (massless) 

3 200000000000 83333333333 0.0 

/nodes_2d 

2 1  3.63 0.0 N 

3 1  6.03 0.0 N 

6 1  3.63 4.0 R 18 0.29 0.45 0.45 0.7 0.8 

7 1  6.03 4.0 R 18 0.29 0.45 0.45 0.7 0.8 

10 1 3.63 7.5 R 18 0.23 0.45 0.45 0.0 1.0 

11 1 6.03 7.5 R 18 0.23 0.45 0.45 0.0 1.0 

20 2 4.825 7.5 R 18 0.23 1.5 1.5 0.0 1 

/nodes_3d 
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1  2  1 3  0.0 N N 

4  2  1 4  0.0 N N 

5  2  1 3  4.0 R 18 0.29 0.175 1.38 0.253 0.353 N 

8  2  1 4  4.0 R 18 0.29 1.38 0.175 0.253 0.353 N 

9  2  1 3  7.5 R 18 0.23 0.175 1.38 0.0 0.553 N 

12 2  1 4  7.5 R 18 0.23 1.38 0.175 0.0 0.553 N 

13 2  2 3  0.0 N N 

14 2  2 6  0.0 N N 

15 2  2 4  0.0 N N 

16 2  2 3  4.0 R 18 0.29 0.175 2.125 0.336 0.836 N 

17 2  2 6  4.0 R 18 0.29 1.5 1.5 1.0 1.5 N 

18 2  2 4  4.0 R 18 0.29 2.125 0.175 0.336 0.836 N 

19 2  2 3  7.5 R 18 0.23 0.175 2.125 0.0 0.336 N 

21 2  2 4  7.5 R 18 0.23 2.125 0.175 0.0 0.336 N 

22 2  2 6  9.1 N N 

23 2  4 5  0.0 N N 

24 2  4 5  4.0 N N 

25 2  4 5  7.5 N N 

26 2  3 5  0.0 N N 

27 2  3 5  4.0 N N 

28 2  3 5  7.5 N N 

29 2  1 6  0.0 N N 

30 2  1 6  4.0 N N 

31 2  1 6  9.1 N N 

32 2  5 6  0.0 N N 

33 2  5 6  4.0 N N 

34 2  5 6  9.1 N N 

/macroelements 

1  1  1 5  0.6 1.824 1.55 3.647 0.35 1 0 

2  1  2 6  3.625 1.6 0.9 3.2 0.35 1 0 

3  1  3 7  6.025 1.6 0.9 3.2 0.35 1 0 

4  1  4 8  9.05 1.824 1.55 3.647 0.35 1 0 

5  1  5 9  0.6 5.6 1.55 2.695 0.23 1 0 

6  1  6 10 3.625 5.6 0.9 1.8 0.23  1 0 

7  1  7 11  6.025 5.6 0.9 1.8 0.23  1 0 

8  1  8 12  9.05 5.6 1.55 2.695 0.23 1 0 

9  1  5 6  2.275 3.95 1.5 1.8 0.29 1 1 

10 1  6 7  4.825 3.95 1.5 1.5 0.29 1 1 

11 1  7 8  7.375 3.95 1.5 1.8 0.29 1 1 

12 1  9 10 2.275 7 1 1.8 0.23 1 1 

13 1  10 11 4.825 7 1 1.5 0.23 1 1 

14 1  11 12 7.375 7 1 1.8 0.23 1 1 

15 2  13 16 0.975 1.582 2.3 3.164 0.35 1 0 
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16 2  14 17 4.825 1.25 3 2.5 0.35 1 0 

17 2  15 18 8.675 1.582 2.3 3.164 0.35 1 0 

18 2  16 19 0.975 5.75 2.3 2.828 0.23 1 0 

19 2  17 20 4.825 5.75 3 1.5 0.23 1 0 

20 2  18 21 8.675 5.75 2.3 2.828 0.23 1 0 

21 2  16 17 2.725 3.75 2.5 1.2 0.29 1 1 

22 2  17 18 6.925 3.75 2.5 1.2 0.29 1 1 

23 2  19 20 2.725 7 1.0 1.2 0.23 1 1 

24 2  20 21 6.925 7 1.0 1.2 0.23 1 1 

25 4  23 24 5.825 2.0 12.0 4.0 0.35 1 0 

26 4  24 25 5.825 5.75 12.0 3.5 0.23 1 0 

27 3  26 27 5.825 2.0 12.0 4.0 0.35 1 0 

28 3  27 28 5.825 5.75 12.0 3.5 0.23 1 0 

/Beam_elastic 

! rigid arms for walls 3 and 4 

100 3  5 27  3  10 5 0 0 

101 3  27 16  3  10 5 0 0 

102 3  9 28 3  10 5 0 0 

103 3  28 19 3  10 5 0 0 

104 4  8 24 3  10 5 0 0 

105 4  24 18 3  10 5 0 0 

106 4  12 25 3  10 5 0 0 

107 4  25 21 3  10 5 0 0 

! diaphragm dummy elements 

200 5  26 27 3  10E-6 10E-14 0 0 

201 5  27 28 3  10E-6 10E-14 0 0 

202 5  32 33 3  10 10E-14 0 0 

203 5  33 34 3  10 10E-14 0 0 

204 5  23 24 3  10E-6 10E-14 0 0 

205 5  24 25 3  10E-6 10E-14 0 0 

206 6  29 30 3  10 10E-14 0 0 

207 6  30 31 3  10 10E-14 0 0 

208 6  32 33 3  10 10E-14 0 0 

209 6  33 34 3  10 10E-14 0 0 

210 6  14 17 3  10E-6 10E-14 0 0 

211 6  17 22 3  10 10E-14 0 0 

/floors 

1  5 30 33 27 0.02 10000000000 10000000000 0.0 70928850 0.0 

2  30 8 24 33 0.02 10000000000 10000000000 0.0 70928850 0.0 

3  33 24 18 17 0.02 10000000000 10000000000 0.0 70928850 0.0 

4  27 33 17 16 0.02 10000000000 10000000000 0.0 70928850 0.0 

5  9 31 34 28 0.02 10000000000 10000000000 0.0 70276400 0.0 

6  31 12 25 34 0.02 10000000000 10000000000 0.0 70276400 0.0 
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7  34 25 21 22 0.02 10000000000 10000000000 0.0 70276400 0.0 

8  28 34 22 19 0.02 10000000000 10000000000 0.0 70276400 0.0 

/mass 

1 5250.42 -0.206893449 -1.018186825 -0.973517639 

2 1034.208 0 0 -0.912 

3 1034.208 0 0 -0.912 

4 5250.42 -0.206893449 -1.018186825 -0.973517639 

5 10583.62601 -0.463926744 -0.958250652 0.340962603 

6 0 0 0 0 

7 0 0 0 0 

8 10583.62601 0.463926744 -0.958250652 0.340962603 

9 5102.401055 -0.655352238 -0.796748283 0.54276848 

10 0 0 0 0 

11 0 0 0 0 

12 5102.401055 0.655352238 -0.796748283 0.54276848 

13 5788.2825 -0.388763231 0.923574216 -0.923527986 

14 2989.98 0 0 -0.791 

15 5788.2825 0.388763231 0.923574216 -0.923527986 

16 12555.16781 -0.675334829 0.807776262 0.373655201 

17 10738.34867 0 0 0.393490825 

18 12555.16781 0.675334829 0.807776262 0.373655201 

19 5465.085755 -0.769591378 0.743872917 0.509248939 

20 0 0 0 0 

21 5465.085755 0.769591378 0.743872917 0.509248939 

22 5881.987416 0 0.337037945 0.999176568 

23 7339.5 0 0 -1 

24 13923.82527 0.204850463 0 0.261911795 

25 5581.368336 0.294235108 0 0.661609433 

26 7339.5 0 0 -1 

27 13923.82527 -0.204850463 0 0.261911795 

28 5581.368336 -0.294235108 0 0.661609433 

29 0 0 0 0 

30 8425.17767 0 -0.40868073 0.241406143 

31 7225.417416 0 -0.2743721 1.217548066 

32 0 0 0 0 

33 4727.245795 0 0 0 

34 2721.747579 0 0 0 

/Restraints 

1  v v v v v 

2  v v v  

3  v v v 

4  v v v v v 

13  v v v v v 
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14  v v v v v 

15  v v v v v 

23  v v v v v 

26  v v v v v 

29  v v v v v 

32  v v v v v 

! diaphragm restraint  

30 0 0 0 0 v 

31  0 0 0 0 v 

22 0 0 0 0 v 

/cf 10 0.0001 1500 

5 0 0 -48624 0 40422 

6 0 -44033 643 

7 0 -44033 -394 

8 0 0 -48624 0 -40422 

9 0 0 -38421 -19448 21295 

10 0 -28754 151 

11 0 -28754 41 

12 0 0 -38421 -19448 -21295 

16 0 0 -70278 0 82430 

17 0 0 -106270 0 0 

18 0 0 -70278 0 -82430 

19 0 0 -43508 19448 36688 

20 0 -53488 0 

21 0 0 -43508 19448 -36688 

24 0 0 -256807 0 0 

25 0 0 -111988 0 0 

27 0 0 -256807 0 0 

28 0 0 -111988 0 0 

33 0 0 -46374 0 0 

/po 500 0.0001 300 34 ux 0.25 0.25 0 

5 454.37 0 0.0 0.0 0.0 0.0 

6 1.3866 0.0 0.0 

7 1.3866 0.0 0.0 

8 454.37 0 0.0 0.0 0.0 0.0 

9 1278 0 0.0 0.0 0.0 0.0 

10 3.4616 0.0 0.0 

11 3.4616 0.0 0.0 

12 1278 0 0.0 0.0 0.0 0.0 

16 1390.7 0 0.0 0.0 0.0 0.0 

17 1193.6 0 0.0 0.0 0.0 0.0 

18 1390.7 0 0.0 0.0 0.0 0.0 

19 1721.3 0 0.0 0.0 0.0 0.0 
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20 8.3823 0.0 0.0 

21 1721.3 0 0.0 0.0 0.0 0.0 

22 1846.1 0 0.0 0.0 0.0 0.0 

24 7969 0 0.0 0.0 0.0 0.0 

25 4936.4 0 0.0 0.0 0.0 0.0 

27 7969 0 0.0 0.0 0.0 0.0 

28 4936.4 0 0.0 0.0 0.0 0.0 

30 360.39 0 0.0 0.0 0.0 0.0 

31 1804.1 0 0.0 0.0 0.0 0.0 

33 2660 0 0.0 0.0 0.0 0.0 

34 2370.3 0 0.0 0.0 0.0 0.0 
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APPENDIX B 

 

CONVERSION METHODS OF ADAPTIVE PUSHOVER 

CURVES 

 

B1. INTRODUCTION 

The three conversion methods ADAP1, ADAP2 and ADAP3 introduced in Chapter 6 are described in 

more detail in this Appendix. 

B2. DESCRIPTIONS OF METHODS 

As described in Chapter 2, for single-mode nonlinear static procedure, the properties of the equivalent 

SDOF system (equivalent mass and force-displacement relationship) can be derived from the pushover 

curve by the following conversions  

Equivalent mass: 

𝑚∗ = 𝝓T𝒎𝜾 (B.1) 

Equivalent displacement: 

𝑑∗ =
𝑢𝑟

Γ
 

(B.2) 

Equivalent normalised force: 

𝑓∗ =
𝑉𝑏

Γ𝑚∗
 

(B.3) 

The equation of motion of the equivalent SDOF system (equivalent to Eq. 12 of Chapter 2, but presented 

in a slightly modified form by dividing both sides of the equation by 𝑚∗): 

𝑑∗̈ + 𝑓∗ = −�̈�𝑔 (B.4) 

where 𝒎 is the mass matrix, 𝝓 is the assumed displacement shape, 𝜾 is the kinetic transmission vector of 

ground motion, 𝑢𝑟 is the displacement of the control node, 𝑉𝑏 is the base shear and Γ = 𝝓T𝒎𝜾 𝝓T𝒎𝝓⁄ . 
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When an adaptive pushover analysis is performed, the assumed displacement shape varies from one 

pushover analysis step to the next; in the adaptive pushover algorithm investigated in Chapter 6, 𝝓 at a 

given pushover analysis step is equal to the displacement shape analysed in the previous step. In addition, 

the investigated adaptive pushover algorithm also limits the pushover force distributions (obtained by 

mass multiplied by the displacement shape) to be between the uniform and SRSS force patterns. 

ADAP1 directly adopts the expressions Eq. B.1 to Eq. B.3 to calculate the properties of the equivalent 

SDOF system. The displacement vector 𝝓𝑖 at the ith step is used to calculate the values 𝑚𝑖
∗, 𝑑𝑖

∗ and Γ𝑖. 

ADAP2 also uses expressions Eq. B.1 to Eq. B.3 directly at each step. However, the vector 𝝓𝑖 used in the 

conversion is not the assumed displacement shape, but the value back calculated from the pushover force 

pattern. As the force pattern is bounded, the vector 𝝓𝑖 used in the conversion may not be proportional to 

the assumed displacement shape. 

ADAP3 is based on the equivalence of the work done by the pushover forces and the energy absorbed by 

a SDOF system. This approach is conceptually similar to the energy-based conversion proposed by 

Hernández-Montes et al. (2004). The incremental work done by the pushover forces is firstly calculated 

as 

Δ𝑊𝑖 = 𝒑𝑖(𝒖𝑖 − 𝒖𝑖−1) (B.5) 

where 𝒑𝑖 and 𝒖𝑖 are the pushover force and the calculated displacements respectively, at the ith analysis 

step. 

The incremental displacement satisfying energy equivalence is obtained by equating the work done by the 

base shear,  

Δ𝐷𝑖 =
Δ𝑊𝑖

𝑉𝑏,𝑖
 

(B.6) 

The base shear can be expressed in a manner similar to the standard modal expression, using the 

displacement shape 𝝓𝑖 at the ith step, 

𝑉𝑏,𝑖 = 𝜔𝑖
2Γ𝑖𝑚𝑖

∗𝐷𝑖 (B.7) 
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where 𝐷𝑖 is the summation of displacements calculated in Eq B.6 up to the ith step, and 𝜔𝑖 may be 

interpreted as a linearised frequency corresponding to the secant stiffness from the origin to the ith 

analysis step on the pushover curve. 

Rearranging Eq. B.7, 

𝜔𝑖
2𝐷𝑖 =

𝑉𝑏,𝑖

Γ𝑖𝑚𝑖
∗ 

(B.8) 

Comparing Eq. B.8 to the standard equation of motion of SDOF system (e.g. Chopra 2007) shows that the 

displacement of the equivalent SDOF system is 

𝑑𝑖
∗ = 𝐷𝑖 (B.9) 

and the restoring force of the equivalent SDOF system is 

𝑓𝑖
∗ =

𝑉𝑏,𝑖

Γ𝑖𝑚𝑖
∗ 

(B.10) 

The ADAP3 approach uses Eq. B9 and Eq. B.10 at each point on the pushover curve to obtain the 

equivalent SDOF system definition. 
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APPENDIX C 

 

ACCURACY OF SINGLE-MODE PUSHOVER ANALYSIS 

METHOD 

 

Background 

This Appendix contains the paper titled "Estimating the accuracy of single-mode pushover analysis 

method" presented at the 10th Pacific Conference on Earthquake Engineering. The paper investigates a 

technique for estimating the magnitude of error involved when using the single-mode pushover analysis 

for URM buildings with flexible diaphragms. 

This Appendix presents additional material related to Chapter 6.  
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ABSTRACT 

Nonlinear static analyses of unreinforced masonry buildings are typically carried out assuming a single-

mode response of the structure. While this assumption is appropriate when the floor and the roof 

diaphragms are rigid in their own planes, many existing unreinforced masonry buildings have flexible 

timber diaphragms, for which the applicability of a single-mode pushover analysis becomes questionable. 

This paper explores whether the accuracy of a single-mode pushover analysis can be estimated from the 

results of the pushover analysis itself. From the theoretical consideration, a key parameter that reflects the 

validity of the single-mode pushover analysis is shown to be the sensitivity of the analysis to the control 

node location, and a measure of the control node sensitivity is proposed. Preliminary parametric studies 

conducted on idealised single-storey systems and a two-storey building show that the proposed measure 

can provide an indicative error of the single-mode pushover analysis. 

1. INTRODUCTION 

Nonlinear static (pushover) methods have become widely used for the seismic demand estimation of 

buildings, with various forms of the method specified in Eurocode 8 (CEN 2004), ATC-40 (ATC 1996) 

and ASCE 41-13 (ASCE 2014). In association with the advances in the development of efficient 

numerical tools, the use of pushover analysis has also become common for the evaluation of unreinforced 

masonry (URM) buildings (Magenes and Penna 2009). 

The pushover methods currently used for masonry buildings almost exclusively correspond to the single-

degree-of-freedom (SDOF) representation of the structure, in which the pushover analysis is carried out 

using invariant lateral forces. Typically, the lateral forces are assumed to be proportional to mass 

(uniform displacement shape) or to mass multiplied by a linear (inverted triangular) shape along the 

height of the building. The former approximates the soft-storey behaviour, while the latter is more 

appropriate when the inelastic deformations are distributed throughout the building or when the walls 

behave as weakly coupled cantilevers. Such single-mode pushover (SPO) analysis is known to be an 

acceptable approximation for low-rise regular buildings with rigid diaphragms. However, existing URM 

buildings often have flexible timber floor and roof diaphragms, and several studies have questioned the 

indiscriminate use of the SPO analysis when the diaphragms are flexible (Costley and Abrams 1995; 

Mendes and Lourenço 2009). Although refined pushover methods, for example a multi-mode procedure 

(Chopra and Goel 2002), can be extended to buildings with flexible diaphragms, it is important to be able 

to estimate when a SPO analysis can be applied with sufficiently accurate results. This is particularly so 



 

199 

 

for URM buildings, of which the majority may be considered to be simple structures, for which 

correspondingly simple analysis procedures are preferred in practice. 

In this paper, the theoretical background of the SPO analysis is firstly summarised, showing that a reliable 

SPO analysis should be independent of the control node location. The differences in the predicted 

responses obtained using different control nodes are considered to reflect the inaccuracy of the SPO 

analysis, and a measure of the control node sensitivity is proposed. Parametric analyses on idealised 

single-storey systems and a two-storey building suggest that the proposed measure can provide an 

indicative error of the SPO analysis. 

2. THEORETICAL BACKGROUND 

The theoretical basis of the SPO analysis relies on the assumption of an invariant deflected shape  of the 

structure throughout the excitation (Fajfar and Gašperšič 1996; Krawinkler and Seneviratna 1997), which 

is used to reduce the multi degree of freedom (MDOF) structure to an equivalent SDOF system.  

Consider the nonlinear MDOF equation of motion, 

𝒎�̈� + 𝒄�̇� + 𝒇𝒔(𝒖, �̇�) = −𝒎𝜾�̈�𝑔(𝑡) (1) 

where m and c are the mass and the damping matrices respectively, 𝒖 is the relative displacement vector, 

𝒇𝒔 is the vector of nonlinear resisting forces, ι is the influence vector of the ground motion and �̈�𝑔 is the 

ground acceleration. Introducing the assumption of the invariant displacement profile, 

𝒖 = 𝝓𝑞(𝑡) (2) 

Substituting Eq. 2 into Eq. 1, pre-multiplying by 𝝓T and simplifying the equation in a manner analogous 

to the standard modal decomposition (Chopra 2007) gives the equation of motion of the equivalent SDOF 

system, 

�̈� + 2𝜉𝜔�̇� +
𝐹𝑠(𝐷, �̇�)

𝐿
= −�̈�𝑔(𝑡) 

(3) 

where 𝐹𝑠 = 𝝓T𝒇𝒔, 𝐿 = 𝝓T𝒎𝜾, 𝐷 =
𝑞

 Γ
, and Γ = 𝝓T𝒎𝜾

𝝓T𝒎𝝓
. The damping term is expressed by the initial 

frequency ω and the damping ratio ξ corresponding to the assumed displacement shape, defined so that 

𝝓T𝒄𝝓

𝝓T𝒎𝝓
= 2𝜉𝜔.  
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The SPO analysis approximates the force-displacement relationship of the equivalent SDOF system 

(𝐹𝑠 𝐿⁄ -𝐷) by the base shear – control node displacement (𝑉𝑏-𝑢𝑘) relationship (pushover curve) of a static 

pushover analysis of the structure subjected to incremental lateral forces proportional to 𝒎𝝓 (Fajfar and 

Gašperšič 1996). It should be noted that the pushover curve is not a unique property of the structure as it 

depends on the choice of  and the location of the control node. The conversion between the pushover 

curve and 𝐹𝑠 𝐿⁄ -𝐷 (capacity curve) of the equivalent SDOF system is given by 

𝐷 =
𝑢𝑘

Γ𝜙𝑘
 

(4) 

𝐹𝑠

𝐿
=

𝑉𝑏

Γ𝐿
 

(5) 

In the N2 method, the displacement profile is normalised to the control node location, i.e. 𝜙𝑘=1. 

The capacity curve is typically simplified by a bilinear idealisation to enable the solution of Eq. 3. Eq. 3 

can be solved rigorously by the nonlinear time history analysis (NTHA) of the equivalent SDOF system. 

Alternatively, the peak value of 𝐷 may be obtained using approximate techniques such as the equivalent 

linearisation (Capacity Spectrum Method), the use of the modification factors on the elastic displacement 

(Displacement Coefficient Method) or the use of the inelastic spectrum (N2 method). Once the peak value 

of 𝐷 is obtained, Eq. 4 can be inverted to obtain the peak displacement estimate of the control node. The 

results of the pushover analysis at the peak control node displacement gives the approximate peak seismic 

demands (e.g. displacements, inter-storey drifts, member chord rotations) of the structure. 

3. MEASURE OF CONTROL NODE SENSITIVITY 

A pushover analysis satisfying Eq. 2 is independent of the control node location. This can be seen by 

considering analyses with the same assumed displacement shape, but using two different control nodes 𝑗 

and 𝑘. The only difference between the two analyses is the displacement definition of the equivalent 

SDOF systems, 𝐷𝑗 and 𝐷𝑘, as given by Eq. 4. If Eq. 2 is re-written as 

𝑢𝑗

𝑢𝑘
=

𝜙𝑗

𝜙𝑘
 

(6) 

and substituted into 𝐷𝑗, 

𝐷𝑗 =
𝑢𝑗

Γ𝜙𝑗
=

𝑢𝑘

Γ𝜙𝑗

𝜙𝑗

𝜙𝑘
= 𝐷𝑘 = 𝐷 

(7) 
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The two equivalent SDOF systems are hence identical to each other, and the same peak displacement will 

be obtained when Eq. 3 is solved. Similar consideration shows that the structural responses (e.g. 

displacement, inter-storey drifts) are also identical when 𝝓 reflects the exact displacement shape.  

However, the SPO analysis is generally not independent of the control node because (1) a building 

entering in the nonlinear response regime continuously changes its displacement shape, and (2) the multi-

mode behaviour becomes prominent as the diaphragm flexibility increases, neither of which can be 

captured by a single invariant displaced shape. If a control node 𝑘 is used in the SPO analysis, the degree 

to which the predicted responses depend on the choice of the control node may be expressed in the form 

of error as (referred to as control node sensitivity, CS)  

𝐶𝑆 = |
𝑟𝑘

𝑟𝑗
− 1| , 𝑗 ≠ 𝑘 

(8) 

where 𝑟𝑘 is a response of interest from the pushover analysis using the reference control node 𝑘, and 𝑟𝑗 is 

the corresponding result using some other control node 𝑗 ≠ 𝑘. The value of CS varies depending on the 

response parameter used (e.g. displacements, inter-storey drifts, chord rotations), the selected control 

node locations, and for the different locations/members of the structure. If several control nodes are used 

for the additional analyses (i.e. for node j in Eq. 8), the maximum value of CS can be used as the control 

node sensitivity.  

An invariant displacement shape could approximate the nonlinear displacements if the structure is 

appropriately designed, for instance by distributing the seismic demand uniformly throughout the 

structure, so that the likely displacement shape of the structure is known. However, in most cases of 

existing structures, the distribution of the nonlinear deformation demand cannot be identified a priori, and 

the assumption of a fixed displacement shape is generally incorrect. This problem has led in the past to 

the proposal of adaptive pushover methods (Galasco et al. 2006) where the evolving nature of the 

displacement shape is accounted for in the pushover procedure. Nevertheless, for a SPO analysis to give 

correct results, Eq. 2 must be valid, so that the pushover analysis will give consistent results irrespective 

of the choice of the control node. Hence it may be supposed that a correlation exists between the control 

node sensitivity and the accuracy of the SPO analysis and Eq. 8 to provide an indicative measure of the 

accuracy of the non-adaptive, fixed shape SPO analysis. This premise is investigated in the following 

section. 

4. NUMERICAL ANALYSIS 
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4.1 Idealised Single-storey System 

A parametric analysis was conducted using idealised single-bay single-storey systems with one-way 

stiffness and strength eccentricities (Fig. 1(a), 1(b)). Simple single-storey systems representing the most 

basic response characteristics of buildings with flexible diaphragms were used in order to eliminate the 

uncertainties associated with the height-wise distribution of the pushover forces and to enable the rigorous 

solution of the equation of motion of the equivalent SDOF system. Therefore the inaccuracy of the SPO 

analysis resulting from the diaphragm flexibility can be isolated. The parameters of the model are defined 

by (1) plan dimensions 𝐿𝑥 and 𝐿𝑦, (2) total mass, (3) period of the rigid diaphragm system 𝑇𝑦, (4) ratio of 

the uncoupled torsional to translational frequencies of the rigid diaphragm condition Ω𝜃, (5) stiffness 

eccentricity 휀𝑠𝑥, (6) strength eccentricity 휀𝑝𝑥, (7) force reduction factor under the rigid diaphragm 

condition in the direction of excitation 𝑅𝑦, (8) ratio of strengths in the orthogonal direction to the 

direction of excitation 𝑅𝐹, (9) fraction of masses attributed to the walls (𝜌𝑤1,  𝜌𝑤2 etc.) and the diaphragm 

𝜌𝑑, and (10) fundamental period of the diaphragm as a shear beam 𝑇𝑑. The systems used in this study had 

the following constant properties; 𝐿𝑥=12 m, 𝐿𝑦=18 m, total mass of 25 tons, 𝑇𝑦 = 0.35 s, Ω𝜃 = 1, 𝑅𝐹 = 1, 

𝜌𝑤1=𝜌𝑤2=𝜌𝑤3=𝜌𝑤4 = 0.225, 𝜌𝑑=0.1 and the constant modal damping ratio of 5%. The inelastic 

behaviour of the spring was represented by a Takeda model. The wall masses were lumped at the 

locations of wall springs, while the diaphragm mass was distributed across the diaphragm elements. The 

diaphragms were modelled by elastic membrane elements, with each line of nodes constrained to move 

together in each orthogonal direction, so that the diaphragm deformation was governed by its shear 

modulus calculated from 𝑇𝑑. The stiffness eccentricity 휀𝑠𝑥 amounted to 0.3𝐿𝑥. The strength parameters 

were varied as shown in Table 1 to create systems with two levels of yielding (𝑅𝑦=2.5 or 4), that had 

either a symmetric distribution of wall strength (휀𝑝𝑥=0), or the strength eccentricity equal to the stiffness 

eccentricity (휀𝑝𝑥 = 휀𝑠𝑥). The diaphragm period was varied between 0.01 s and 2 s. 

 

Figure 1. Idealised model and ground motions used in the analysis. 
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Table 1. Models used in the analysis 

Model 𝑹𝒚 𝜺𝒑𝒙 

M1 2.5 0.0 

M2 2.5 0.3 

M3 4 0.0 

M4 4 0.3 

Three unscaled ground motions of different frequency content and intensities were used in the analysis. 

The ground motions were (1) El Centro earthquake recorded on 19th May 1940, (2) Nahanni earthquake 

recorded on 23th of December 1985, and (3) Kobe earthquake recorded at Takatori station on 16th January 

1995. Figure 1(c) shows the 5% damped elastic spectra of the records together with the fundamental 

periods of the considered systems. 

The NTHA of the system was considered to provide the “exact” peak displacements, 𝒖𝑇𝐻𝐴. As the 

variation of pushover forces along the height of the building was irrelevant for the single-storey model, 

the SPO analysis was conducted using pushover forces proportional to the distribution of mass in the 

direction of loading. The response of the equivalent SDOF system was calculated rigorously by solving 

the nonlinear equation of motion (Eq. 3) using the bilinearised 𝐹𝑠 𝐿⁄ -𝐷 relationship, and the peak 

displacement of the equivalent SDOF system was converted back to the control node displacement by 

inverting Eq. 4. The pushover analysis at that control node displacement gave the estimated peak 

displacements, 𝒖𝑆𝑃𝑂.  

The accuracy of the SPO analysis was measured by the peak displacement error (PDE)  

𝑃𝐷𝐸 =
𝑢𝑆𝑃𝑂

𝑢𝑇𝐻𝐴
− 1 

(9) 

which were evaluated for the displacements at wall 1, wall 2 and the diaphragm mid-span. 

The control node sensitivity (CS) defined in Eq. 8 were calculated from the displacements obtained by the 

SPO analysis with the reference control node at the diaphragm mid-span, and the additional analyses 

using control nodes on wall 1 and wall 2. The maximum values of CS were then recorded for wall 1, wall 

2 and the diaphragm mid-span. Note that the CS values are calculated solely from pushover analysis, 

while the PDE expresses the accuracy of SPO with respect to NTHA. 
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Figure 2 shows the typical displacement predictions of SPO analysis when the control node is varied 

between wall 1, wall 2 and the diaphragm mid-span (shown for model M3 subjected to the El Centro 

record). The predictions clearly show the increased sensitivity to the control node location as the 

diaphragm flexibility increases.  

Figure 3 shows the values of CS and the corresponding PDE. Also indicated on the plots are the equality 

relationship between the absolute value of the PDE and the CS. A good correlation between the PDE and 

the CS can be observed for the El Centro record, with the CS providing an indicative upper-bound error 

of the SPO analysis. This indicates that the exact responses tend to lie within the range of responses 

predicted by the SPO analyses using different control nodes, as confirmed in Figure 2. For the Nahanni 

and the Takatori records, the correlation is not as clear as for the El Centro record. Large overestimations 

can be observed for both records when CS is in the range of 0.3 to 0.6, which imply that the SPO analysis 

tends to be conservative, regardless of the location of the control node. In fact, a SPO analysis is likely to 

overestimate the actual responses when the diaphragm becomes flexible because the analysis assumes the 

majority of the seismic mass (the value depends on the assumed displacement shape) to participate in a 

single mode, while the actual response is governed by a multi-mode behaviour in which some out-of-

phase cancelling of responses would occur. The underestimation errors of the SPO analysis, however, are 

consistently bound by the CS for all records.  

 

Figure 2. Peak displacement predictions by SPO analysis using different control nodes for M3 subjected 

to El Centro accelerogram. 
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Figure 3. Correlation between peak displacement error and the control node sensitivity. 

4.2 Two-storey Stone Masonry Building 

The use of the control node sensitivity in gauging the accuracy of the SPO analysis is further investigated 

using a full-scale stone masonry building with strengthened timber floor and roof, which was tested under 

shake-table excitations at EUCENTRE (Magenes et al. 2014). The building was subjected to the 1979 

Montenegro earthquake measured at the Ulcinj-Hotel Albatros station, scaling the peak acceleration from 

0.06 g to 1.16 g. The building was modelled using TREMURI (Lagomarsino et al. 2013) with each wall 

represented by the equivalent frame idealisation of their in-plane behaviour. The out-of-plane wall 

behaviour was not explicitly modelled. The deformable lengths of the equivalent frames (i.e. piers and 

spandrels) were modelled using the macroelement formulation (Penna et al. 2014), which accounts for the 

axial-rocking interaction and shear-softening behaviours of URM. Each diaphragm was approximately 

represented by four elastic membrane finite elements to capture its vibrational behaviour (Figure 4), with 

the floor mass distributed to the perimeter walls and the diaphragm centre nodes based on simple tributary 

area consideration under lateral (inertial) loading. Additional static forces were applied on the walls to 

ensure the correct gravity stresses. This modelling approach was validated against the test data, with an 

acceptable accuracy (Fig. 5). 
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Figure 4. TREMURI model of tested building. 

 

Figure 5. Comparison of numerical model against test data for 0.56 g to 0.88 g (penultimate) excitation 

levels. 

Using the validated model, the diaphragm stiffness was reduced to 1.0, 0.75, 0.5 and 0.25 times the as-

built configuration in order to simulate diaphragms of increasingly flexible constructions. The NTHA was 

conducted for each diaphragm configuration subjected to the 0.71 g and 0.88 g excitations. These 

analyses were considered to give the “exact” responses of the buildings for the purpose of assessing errors 

in the SPO analysis. 

The SPO analyses were conducted using pushover forces proportional to mass and mass multiplied by a 

linear profile along the height of the structure. These two profiles are often considered to envelope the 

actual inelastic response (Galasco et al. 2006). Instead of rigorously solving the equation of motion of the 

equivalent SDOF system, the target displacement was estimated by the formulation of the N2 method 
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(Vidic et al. 1994; Fajfar 1999). The CS for the displacements and the inter-storey drifts at each level of 

the west wall, east wall, and the diaphragm mid-spans were calculated using the roof mid-span as the 

reference control node, with the additional analyses conducted using the control nodes at the roof levels 

of the two longitudinal walls.  

Figure 6 shows the PDE and the peak inter-storey drift errors (IDE), which is defined analogously to Eq. 

9 using inter-storey drifts, against the corresponding CS for the uniform and the linear displacement 

profiles. For the uniform displacement shape, the CS correlates well with both the PDE and the IDE. As 

observed for the idealised single-storey system, the CS can be seen to approximate the indicative upper-

bound error of the analysis. For the linear displacement shape, the poor correlation is attributed to the 

actual response of the upper-storey west wall and the diaphragm not being bound by the SPO analyses 

with different control nodes (Fig. 7). However, for both assumed displacement shapes, the 

underestimation is again well bound by the CS and the SPO analysis generally tends to overestimate the 

“exact” NTHA responses. 

An interest observation can be made regarding Figure 7, by noting that the three different predictions 

correspond to the same pushover analysis. The differences between them arise from the different levels of 

inelastic deformation depending on the control node location. Hence they indicate the progression of the 

nonlinear displacement under the pushover analysis conducted assuming a linear displacement shape. It 

can be seen that the analysis initially indicate larger upper storey deformation (for control node on east 

wall), but with an increased loading, the damage becomes concentrated at the ground storey (slight 

unloading takes place for the west wall). Hence even when the linear displacement is assumed, the 

pushover analysis ultimately indicates the concentration of inelastic damage at the ground storey, which is 

more consistent with the NTHA results, for which a uniform displacement shape may be considered more 

appropriate. 

It may be noted that the SPO analysis does not converge to the exact response as the CS becomes small. 

Even for the uniform displacement shape, the PDE and the IDE of approximately 20% to 50% can be 

observed when the CS becomes negligible. This error is attributed to the inaccuracies inherent in the 

bilinear idealisation of the pushover curve and the empirical formulation used to estimate the peak 

displacement. 
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Figure 6. Correlation between control node sensitivity and peak displacement and interstorey drift errors. 

 

Figure 7. Comparison of NTHA of building model with diaphragm stiffness 0.5 times the as-built 

condition subjected to the 0.85 g excitation, with pushover analyses using linear 

displacement shape. The upper-storey displacements of the NTHA fall outside the 

predictions of the SPO analyses using different control nodes. 

5. CONCLUSIONS 

a measure for estimating the accuracy of a single-mode pushover analysis was investigated based on the 

sensitivity of the pushover analysis predictions to the variations in the control node location. From the 

limited number of analyses carried out, the proposed measure of the control node sensitivity was 

generally found to correlate with the accuracy of the SPO analysis. Provided that the displacement shape 

assumed in the pushover analysis was appropriate (i.e. consistent with the dominating failure mechanism) 

and several different control nodes are used, for example at the flexible and stiff walls and the roof mid-

span, the SPO analysis tended to envelope the exact responses. In such cases, the proposed measure 

provided the upper-bound errors of the SPO analysis. Even when the SPO analyses did not envelope the 
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exact response, they generally provided conservative estimates of the responses. Notably, the 

underestimation error was consistently bound by the proposed measure. Therefore, limiting the control 

node sensitivity to an acceptable value could be one of the requirements needed to avoid unsafe use of the 

SPO analysis for URM buildings with flexible diaphragms. 
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