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TITLE 

A new model for cold climate source rock preservation in the Arckaringa Basin 

ABSTRACT 

The controls on organic carbon preservation in sediments are poorly understood, 

however there is a first order association between high total organic carbon 

concentration (TOC), warm climates and fine grained sediments with mature 

mineralogy in the geologic record.  Permo-Carboniferous marine sediments in the 

Arckaringa Basin, however, present an exception with anomalous organic carbon 

concentration (<11% TOC) occurring within mineralogically immature siltstones 

deposited in deep, narrow (marine) fjords during glacial conditions.  Organic matter 

(OM) is not refractory terrigenous material, but rather hydrogen-rich and labile, thus 

identifying an active preservational mechanism that differs from conventional organic 

carbon enrichment controlled by mineral preservation effects.  Energy Dispersive 

Spectrometry (EDS) reveal an association between labile OM and high sulphur 

concentrations, and EDS mineral mapping identifies a cyclic millimetre alteration 

between sulphur/OM rich laminae and manganese carbonate (kutnohorite) laminae, 

identifying oscillating benthic redox conditions similar to annual varves in proglacial 

environments.  Framboidal pyrite (<5 µm) is abundant only within organic-rich 

laminae, indicating sulphate reduction in euxinic conditions resulting from restricted sea 

water exchange and the development of strong density stratification.  Seisimic profiles 

indicate that deposition occurred in fjord-shaped troughs, with restriction resulting from 

end moraines acting as sills to the open ocean.  Thus, organic carbon enrichment is 

attributed to restriction in the ancient fjords, leading to periods of hydrogen sulphide 

build up within the water column that were annually flushed with seasonal change in 

temperature and runoff.   The reducing conditions of the fjord provided a chemical trap 

for S leading to its enrichment in organic matter.  Similarly, Mn within carbonates was 

enriched in the same manner.  Excess dissolved sulphur build up in the water column 

and sediments resulted in vulcanization (sulfurization) reactions polymerizing labile 

organic compounds (lipids and carbohydrates) and their preservation as organosulphur 

compounds during early diagenesis. 
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