# Exhumation of the Peake and Denison

## Ranges; insights from low-

## temperature thermochronology

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

James William Hall November 2014



## EXHUMATION OF THE PEAKE AND DENISON RANGES; INSIGHTS FROM LOW-TEMPERATURE THERMOCHRONOLOGY

#### **EXHUMATION OF THE PEAKE AND DENISON RANGES**

### ABSTRACT

Multi-method thermochronology applied to the Peake and Denison Ranges (northern South Australia) reveals multiple episodes of exhumation. Apatite Fission Track (AFT) data suggest three time periods in which exhumation induced basement cooling of the Ranges into AFT closure temperatures (~60-120 °C): Approximately 470-440 Ma, 340-290 Ma and 200-180 Ma. The Carboniferous and Jurassic exhumation episodes are supported by additional zircon (ZHe) and apatite (AHe) (U-Th-Sm)/He results respectively. We interpret the first pulses of rapid cooling as a result of the final pulses of the Delamerian and/or start of the Alice Springs Orogeny. Erosion and sedimentary burial during the Devonian brought the basement rocks back to ZHe closure temperatures (~200-180 °C). Shortly after, during the Carboniferous, the Ranges were exhumed to the surface which is likely a result of the final pulse of the Alice Springs Orogeny (~300 Ma). The presence of the Mount Margaret Surface during the Late Permian provides independent geological evidence that the Ranges were exposed at the surface at that time. During the Late Triassic-Early Jurassic, the Ranges were once again reheated to AFT closure temperatures, however, the lack of preserved sedimentary rocks of age suggests that this may not be simply due to burial.

Alternatively, the Ranges could have been affected by a well-documented and widespread hydrothermal pulse, which reheated the rocks without significant sedimentary burial. Cretaceous AHe ages coupled with the presence of coarse-grained terrigeneous rocks at that time indicate that the ranges were shallowly buried during this time before Late Cretaceous exhumation (potentially caused by the rifting of Antarctica from Australia), exhumed the Ranges back to the surface. One additional Miocene AHe age was obtained near the fault-escarpment of the Davenport Range. This was thought to be related with enhanced fault activity at that time and finalised the exhumation history of the Ranges.

## **KEYWORDS**

Exhumation, Peake and Denison Ranges, Low-Temperature Thermochronology, Apatite Fission Track, Apatite Helium, Zircon Helium, South Australia.

## **TABLE OF CONTENTS**

| Abstract                                                   | i  |
|------------------------------------------------------------|----|
| Keywords                                                   | i  |
| List of Figures and Tables                                 | 2  |
| Introduction                                               | 2  |
| Geological Setting                                         | 5  |
| Methodology                                                |    |
| Results                                                    |    |
| Calibration procedures                                     |    |
| Apatite Fission Track Thermochronology                     | 14 |
| Apatite Fission Track Length Data                          |    |
| (U-Th-Sm)/He Thermochronology                              |    |
| Modelling                                                  |    |
| Discussion                                                 |    |
| Thermochronological constraints                            |    |
| Thermal history model for the Peake and Denison Ranges     |    |
| Tectonic events that affected the Peake and Denison Ranges |    |
| Comparison with exhumation studies on neighbouring regions |    |
| Regional interpretations and models                        |    |
| Conclusions                                                |    |
| Acknowledgments                                            |    |
| References                                                 |    |
| Appendix A: Extended Methodology                           |    |
| Samples                                                    |    |
| Crushing                                                   |    |
| Mineral Separation                                         |    |
| Picking                                                    |    |
| Mounting, Grinding and Polishing                           |    |
| Etching                                                    |    |
| Counting and Measuring                                     |    |
| LA-ICP-MS                                                  |    |
| (U-Th-Sm)/He Dating                                        |    |
| Appendix B: Extended Data Spreadsheets                     |    |

#### LIST OF FIGURES AND TABLES

- Figure 6 (next page), the exhumation histories of samples 2017962, 7571, 9508 and 9594, modelled with the *HeFTy* software (Ketcham 2005). Each time – temperature plot illustrates the modelled pathway for each sample from 400 °C at 500 – 600 Ma to surface temperatures at the present. Each sample is constrained by measured constraints (such as Apatite Fission Track (AFT) ages, Apatite Helium (AHe) ages, or Zircon Helium (ZHe) ages; indicated by red boxes on each plot) from this thesis, geological constraints (Indicated by blue boxes on each

plot) such as the Mount Margaret Surface, and a high temperature starting constraint (indicated by a black box on each plot), where the rocks are assumed to be from 450 – 600 Ma. The dashed red box on sample 2017962 indicates a constraint based on AHe data, which needed a slight shift towards lower temperatures to find a sufficient number of statistically good model paths. The green region on each plot is the acceptable path envelope, while the pink region is the good path envelope. The merits for these paths are stated in table 3. ....... 23

- Table 2, (U-Th-Sm)/He results indicating the Helium (He) age, Apatite Fission Track (AFT) Age, <sup>238</sup>Uranium concentration (parts per million), <sup>232</sup>Thorium concentration (parts per million), <sup>147</sup>Samarium concentration (parts per million), Ratio of <sup>232</sup>Thorium over <sup>238</sup>Uranium, concentration of <sup>4</sup>Helium (nanocubic centimetre (ncc) per μg), and Ft (the fraction of Alpha particle ejection dependant on the dimensions the apatite crystal; Ehlers and Farley 2003).. 21
- Table 3, HeFTy parameters including number of paths tried, number of acceptable paths, number of good paths, goodness of fit for acceptable paths merit, and goodness of fit for good paths merit for the four samples (2017962, 9594, 9508, and 7571).

   Table 4, the parameters for LA-ICP-MS instrumental setup, data acquisition and data reduction.44

#### **INTRODUCTION**

The Peake and Denison Ranges are located in the north eastern region of the Gawler Craton. They are dominated by Proterozoic sedimentary and metamorphic rocks with abundant Paleoproterozoic to Ordovician igneous intrusive and extrusive rocks (Ambrose et al. 1981). There are three significant igneous bodies in the Ranges; the Tidnamurkuna Volcanics, the Wirriecurrie Granite and the Bungadillina Monzonite (Hopper 2001). While the formation of the Peake and Denison Ranges has been well studied (Ambrose et al. 1981; Morrison 1989; Hopper 2001), to date no comprehensive low-temperature thermochronological study has been conducted on the Ranges to determine the timing of exhumation to shallow crustal levels. The exhumation history has been inferred from regional detrital zircon studies such as MacDonald et al. (2013) which theorised regional exhumation in the Gawler Craton to be Mid Cretaceous. However, two pilot low-temperature thermochronological and structural studies on the exhumation history have determined different timings for the exhumation for the Peake and Denison Ranges (Wopfner 1968; Radke 1973). These studies reported Permian (266 ±23 Ma) Apatite Fission Track ages for the Bungadillina Monzonite intrusion and Miocene to Pleistocene exhumation ages based on gypsite surfaces across the Levi Fault (Figure 2).

This thesis aims to provide a more rigorous and detailed model for the low-temperature exhumation of the Peake and Denison Ranges. It will determine if, contrary to previous studies, the Delamerian and Alice Springs Orogenies were the main mechanisms for exhumation in the region, and if later Mesozoic exhumation occurred as a result of prolonged regional tectonic activity (proposed by MacDonald *et al.*; 2013) followed by a period of fault-reactivation and associated denudation during the Miocene and

Pleistocene, proposed by Wopfner (1968). This is significant as this will allow the exhumation of the Peake and Denison Ranges and northern South Australia as a whole to be linked with other exhumation studies in South Australia e.g. south and eastern Gawler Craton (Reddy Hons. thesis 2014), and the Flinders Ranges (Foster et al. 1994; Mitchell et al. 2002; Weisheit et al. 2014), This thesis fits into a larger project to characterise and understand the low temperature exhumation history of South Australia. In order to provide models on the low-temperature thermal history of the Peake and Denison Ranges, Apatite Fission Track (AFT) analysis (using the laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method) was applied to model the exhumation history of the Ranges below 120 °C. Additional apatite (U-Th-Sm)/He (AHe) dating and zircon (U-Th-Sm)/He (ZHe) dating was conducted on selected samples, with the intention of refining the exhumation history model of the Ranges between approximately 75-45 °C and 200-170 °C respectively (Farley 2002; Reiners et al. 2004). By combining these methods, a permissive model of the exhumation history is postulated. This model is linked with the sedimentological record of the adjacent basins and possible tectonic events are discussed that may have caused the exhumation of the Peake and Denison Ranges.

### **GEOLOGICAL SETTING**

The Peake and Denison Ranges are comprised of Mesoproterozoic metamorphic rocks, Neoproterozoic sedimentary rocks and Paleoproterozoic to Ordovician igneous intrusive and extrusive rocks (Ambrose *et al.* 1981). The surrounding landscape is covered by Cretaceous sedimentary rocks and Miocene to Pleistocene sediments of the Lake Eyre Basin (Figure 2). The main igneous bodies in the study area are the Wirriecurrie Granite, the Tidnamurkuna Volcanics and the Bungadillina Monzonite. The

Wirriecurrie Granite is of Paleoproterozoic age (1793  $\pm$  8 Ma for Wirriecurrie Granite using U-Pb SHRIMP dating by Rogers and Freeman; 1994) and is deformed towards its margins. There are two deformation events recorded in the Wirriecurrie Granite, which are thought to be related to the Musgravian and Delamerian Orogenies (evidenced by Musgravian and Delamerian K-Ar ages; Ambrose *et al.* 1981). The Tidnamurkuna Volcanics are Paleoproterozoic (1806  $\pm$  27 Ma; Fanning *et al.* 1988) basaltic dominated flows with two episodes of rhyolitic flows. The Bungadillina Monzonite is the name given to a series of monzonites, syenites and gabbros. Their intrusion is the result of the Delamerian Orogeny and they have been dated to be Ordovician in age (497.5  $\pm$  10 Ma using U-Pb; Rogers and Freeman 1994). Additional lamprophyre and dolerite dykes are associated with the Bungadillina Monzonite and were also formed during the same event.

After the formation of the Bungaillina Monzonite, a series of sedimentary rocks were deposited within the region. The first sedimentary rock preserved is the Nultaddy Seismic Unit which is a poorly studied shale unit deposited during the Devonian (Allender *et al.* 1987). This unit is unconformably overlain by the Late Carboniferous to Early Permian, Arckaringa Basin sediments (Boorthanna, Stuart Range, and Mount Toondina Formations) that were deposited as alternating shales and sandstone layers with coal layers present near the top. The presence of coal layers indicates that these are terrestrial deposits. An erosional peneplain known as the Mount Margaret Surface (MMS) is located on the Davenport Range (Figure 2) and has been documented to be late Permian in age (Rogers and Freeman 1994). This demonstrates that the Ranges were at the surface during this time. There are no recorded sedimentary rocks from the Early Permian until the late Jurassic, when the medium to coarse grained Algebuckina



## Sandstone was deposited.

Figure 1, simplified map of South Australia illustrating the outlines of the main geological units: the Gawler Craton, Musgrave Block, Flinders Ranges, and the main sedimentary basins: Officer Basin, Arckaringa Basin, Lake Eyre Basin and Cooper Basin. The Peake and Denison Ranges are indicated in black and are located at the margin between the Lake Eyre and Arckaringa Basins. The locations of the Ceduna Basin and the proposed palaeo-river are plotted as well (after MacDonald *et al.*; 2013) to illuminate the relationship between the proposed river system and the Peake and Denison Ranges (see text for further discussion).

The top of this sandstone unit is silicified and contains plant fossils, which is indicative

of a terrestrial origin. Following a short intermission, deposition reoccurred during the

Early Cretaceous with the deposition of the Neales River Group sediments. The Mt.

Anna Sandstone Member, Cadna-Owie Formation, Bulldog Shale, Coorikiana

Sandstone, and Oodnadatta Formation make up this group. These units are made up of

alternating shales and sandstones within each unit. Cenozoic deposition consists of

mostly coarse terrestrial units including the Mirackina Conglomerate, which is a

palaeochannel deposit, as well as unnamed conglomerates, gravels, alluvial deposits,

clay deposits, and aeolian sands at the top. These sedimentary units were largely



deposited in the Late Eocene - Early Pliocene and Pleistocene - Holocene.

Figure 2, Simplified geological map and stratigraphic column of the Peake and Denison Ranges, indicating the relationship between and ages of different geological units, the location of major faults, topographic contour lines and sample localities. Samples 2017962 and 2017960 were collected and supplied by the Geological Survey of South Australia (Fanning *et al.* 2007). All other samples were collected by University of Adelaide PhD Candidate, Morrison (1989) and supplied by Prof. John Foden. Map modified after Hopper (2001).

In addition to the older deformation events as a result of the Musgravian and Delamerian Orogenies there have been three major tectonic events documented in the vicinity of the study area since the Delamerian Orogeny which may have induced exhumation of the Ranges. Radke (1973) obtained AFT data suggesting an exhumation event during the Permian ( $266 \pm 23$  Ma). Additionally, various papers (Twidale 1994; Kohn *et al.* 2002; MacDonald *et al.* 2013) report widespread exhumation in the Gawler Craton during the Upper Cretaceous, therefore it is highly plausible this exhumation also affected the Peake and Denison Ranges. The final tectonic event suggests there was uplift and faulting during the Miocene and Pleistocene, which is recorded by the displacement of morphological features such as gypsite surfaces (Wopfner 1968) across the Levi Fault in the region. This is supported by Foster *et al.* (1994) who concluded that there was exhumation during the Miocene in the northern Flinders Ranges. Waclawik *et al.* (2008) and Reynolds *et al.* (2006) show evidence (deformation of Miocene sediments and intra-cratonic stresses) for neo-tectonism in the region which supports this theory of recent exhumation of the Ranges.

Any major tectonic uplift events that induced exhumation of the Peake and Denison Ranges will have proximal and distal effects on surrounding sedimentary basins as well. The Arckaringa Basin's eastern margin is at the base of the Peake and Denison Ranges while the Lake Eyre Basin sits on the Ranges eastern margin (Figure 1). Wopfner (1964) showed that exhumation of the ranges had caused faulting in the nearby basins. More recently, MacDonald *et al.* (2013) theorised that the Ceduna River flowed over the Peake and Denison region during the Cenomanian. This theory implies that the Peake and Denison Ranges were not topographic highs at that time unless they served as secondary sedimentary source regions for the Ceduna delta sediments. If the Ranges

had been exhumed on the other hand, they would serve as a boundary and thus prevent flow to the south. Hence, unravelling the exhumation history of the Peake and Denison Ranges is paramount to understand the landscape evolution of northern South Australia as well as important to evaluate source-to-sink models for the offshore Ceduna Delta Basin.

#### METHODOLOGY

Granitoid rock samples were taken from outcrops at the Peake and Denison Ranges by Morrison (1989) and by researchers of the Geological Survey of South Australia (Fanning et al. 2007). The Morrison (1989) samples were received as whole-rock samples, while the Fanning et al. (2007) samples were provided by Dr. Anthony Reid as apatite and zircon mineral separates. Rock crushing was completed using conventional crushing methods after which, the crushed rock underwent separation via panning, the magnetic separation and conventional heavy liquid separation. Apatite grains were picked out from these separates and mounted in resin on a slide, after which they were ground down and polished. After sufficient polishing they were etched with 20 °C, 5 M HNO<sub>3</sub> for 20 seconds. This etching process reveals the fission tracks in apatite and allows the fission tracks to be counted under a microscope. The counting process was completed in a reference grid raster under an Olympus BX51 Microscope at 1000x magnification. Confined tracks, fission track etch pits (D<sub>par</sub>) and the angles of the confined tracks to C-axis were measured using an Olympus DP21 camera and computer attachment. These were recorded to estimate the rate of cooling through the AFT closure temperature. The concentrations of U<sup>238</sup>, U<sup>235</sup> and Ca<sup>44</sup> on each grain were determined using a Laser-Ablation Inductively-Coupled-Plasma Mass-spectrometer (LA ICP MS) at Adelaide Microscopy (Resonetics laser system coupled with an

Argilent 7700s quadruple mass spectrometer). The LA ICP MS precisely measured the concentrations of the U<sup>235</sup>, U<sup>238</sup>, and Ca<sup>44</sup> isotopes, which are required to calculate the AFT age of each analysed grain. The concentrations were measured from the exact spot where the fission tracks were counted as the concentration of U and Ca is often variable within the apatite grain (Hasebe *et al.* 2004). Calibration of the LA ICP MS was carried out against a suite of NIST glass standards and using Durango apatite as secondary standard. Ca<sup>44</sup> was used as an internal standard. Data reduction was carried out using inhouse Excel spreadsheets. A minimal amount of unreliable U-concentrations (mainly due to heavily zoned U-concentrations) were not used further in the AFT age calculations.

Two apatite and one zircon separate were chosen based on grain quality to be sent to the John De Laeter Centre at Curtin University for (U-Th-Sm)/He dating. He-gas was extracted from these grains using a Nd-YAG laser before they were digested in acid. Finally, the U, Th, and Sm concentration of the samples was recorded using an Agilent 7500CS mass spectrometer.

AFT age results, length distributions and (U-Th-Sm)/He age results were subsequently modelled using the *HeFTy* software (Ketcham 2005), to constrain the simulated thermal history evolution of the study region between ~200 °C and surface outcrop temperatures. Multiple age-components were identified using the automatic mixture model in the *Radial Plotter* Software (Vermeesch 2009), which are discussed further below.

#### RESULTS

#### **Calibration procedures**

AFT analysis was the main method applied in this thesis to deduct the low-temperature thermal history of the Peake and Denison Ranges. In order to validate the results presented in this thesis, which was obtained by a novel analytical protocol described in the attached supplementary files, an accuracy check was performed on Durango apatite standard and an in-house apatite standard (ARK 717) from Arkaroola (coordinates 341962E, 6657785N, GDA94). Durango apatite is a well-known standard in the fission track community and was precisely dated with the <sup>40</sup>Ar-<sup>39</sup>Ar method as  $31.44 \pm 0.18$  Ma (McDowell *et al.* 2005).



Figure 3, a, Radial plot of Apatite Fission Track (AFT) ages of the Durango standard, from this thesis, using the laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) method indicating the degree of dispersion, central age, and number (n) of samples counted. In the radial plot, each analysed age is plotted against its precision, which is used to distinguish potential multiple age-components. The obtained central age of  $30.4 \pm 1.2$  Ma is within error of the standard Durango age of  $31.44 \pm 0.18$  Ma old (McDowell *et al.* 2005). b, Radial plot of AFT ages from De Grave *et al.* (2012) using the same method protocol. As shown, similar central ages and data-trends were obtained. These central ages are in good agreement with the precisely obtained age (McDowell *et al.* 2005). Individual apatite AFT ages are displayed by running a straight line from the left of the plot, starting at the 0 point, through the grain, to the right side which reveals the age (in Ma). As the standard deviation is on the x-axis, the age of the samples are more precise if they are plotted closer to the right side of the plot. The error bar is shown as  $\pm 2 \sigma$  on the left which is identical for all the grains. The radial plots were constructed using *Radial Plotter* (Vermeesch 2009).

Since this standard apatite is sourced from an immediately cooled volcanic tuff, all other thermochronometers should report the exact same age. A total of 43 Durango analyses were carried out during this thesis, resulting in an overall mean AFT age of  $30.4 \pm 1.2$  Ma (Figure 3). This is within error of the precisely obtained <sup>40</sup>Ar-<sup>39</sup>Ar age of  $31.44 \pm 0.18$  Ma (McDowell *et al.* 2005). These AFT ages were compared to Durango AFT ages collected by De Grave *et al.* (2012) using the same protocol in a different lab to indicate the validity of the protocol.

Figure 4 shows the results obtained for in-house standard ARK 717. The results obtained in this study (Figure 4, panel c) are compared with analyses by 2014 Honours student Jack Gillespie (Figure 4, panel b), which used the same analytical protocol, and with unpublished data from Dr. Stijn Glorie on a sample from the same region (TTN-1) using the classical AFT method (Ghent, Belgium). As shown, the intra-laboratory results are highly comparable ( $117 \pm 6$  Ma this study,  $115 \pm 5$  Ma by J. Gillespie) and are largely in agreement with the results obtained in Ghent as well. The larger amount of (natural) dispersion for the Adelaide results is purely due to comparing multi-grain with single-grain-results.

#### **Apatite Fission Track Thermochronology**

Radial plots for all samples are shown in Figures 5. All samples except 9582, 9508 and 7582 show a large dispersion in individual AFT ages, when dispersion was higher than  $\sim$ 20%, the data for these samples have been subdivided into populations of two age-components. This un-mixing process was carried out using the automatic mixture model in *Radial Plotter* and using the dispersion in D<sub>par</sub> measurements (which reflects different annealing kinetics among individual grains) as a visual aid to validate the modelled age-

components. Statistical acceptable minimum AFT ages and additional AHe and/or ZHe ages (discussed further) are indicated as well.

Sample 2017962 yields a central age of  $273 \pm 24$  Ma with a large degree (36%) of dispersion. Using the automatic mixture model in *Radial Plotter* (Vermeesch 2009), two age-components were differentiated of  $187 \pm 11$  Ma and  $339 \pm 14$  Ma, the minimum statistical acceptable AFT age was found to be  $164 \pm 20$  Ma. The D<sub>par</sub> measurements produced an average length of 1.2 µm.

The central age for sample 2017960 is  $383 \pm 29$  Ma with two age populations present, (1) at  $475 \pm 33$  Ma, and (2) at  $306 \pm 25$  Ma. The minimum age gathered from *Radial Plotter* is  $293 \pm 53$  Ma. The individual AFT ages show minor scatter between these two age populations as well. The average D<sub>par</sub> length produced was 1.27 µm with minimal dispersion.

Sample 9594 yields a central age of  $403 \pm 27$  Ma with two main populations in the sample, (1) at  $488 \pm 56$  Ma and (2) at  $323 \pm 38$  Ma while the minimum age is  $314 \pm 42$  Ma. Minor scatter of individual ages between age populations is present. The smallest  $D_{par}$  length was produced for this sample, at 0.80 µm while the average  $D_{par}$  length was 1.15 µm.

As its part of the same igneous body, 9582's AFT ages are expected to be similar to that of 9594, and the central age for sample 9582 ( $402 \pm 46$  Ma) is within error to that of 9594, however, this central age is unreliable as the sample shows rather large dispersion (29%). It was opted to exclude two significantly older outliers of about 700 Ma based on their low-uranium concentrations which brings the central age down to  $342 \pm 25$  Ma with a dispersion of 4.6 %. This age is within error to the youngest age population observed in sample 9594 and thus validates this age population. The minimum age for

the sample is 324 Ma which is only 10 Ma older than for sample 9594. The average  $D_{par}$  length of 1.13  $\mu$ m is also close to the  $D_{par}$  length of 9594, further strengthening the connection between the two samples.

Sample 9528 yields a central age of  $276 \pm 26$  Ma with large dispersion (25%). Two distinctive age populations can be defined of  $325 \pm 29$  Ma and  $188 \pm 19$  Ma which correlate well with the populations defined in the previously discussed samples (especially with sample 2017962). The minimum age of  $196 \pm 31$  Ma for sample 9528 plots within error of that for sample 2017962. This sample yielded the second highest  $D_{par}$  average of all samples at 1.4 µm as well as the second highest dispersion of 1.10 - 2.00 µm.

The apatite grains in sample 9508 yield rather large U zonation and large inclusions which affected most of the obtained AFT data for this sample. Only five reliable age determinations could be used which returned a central age of  $414 \pm 33$  Ma. The minimum AFT is reported as  $413 \pm 34$  Ma while the D<sub>par</sub> length average is  $1.3 \mu$ m. Samples 7582 and 7571 are from the same monzonite body, and since sample 7582 returned only 3 reliable ages, both samples were pooled in the same radial plot. Their pooled central age was calculated as  $376 \pm 28$  Ma. Given the rather large age dispersion (24%), they were separated into two populations with ages of  $441 \pm 28$  Ma and  $271 \pm 25$ Ma which correlate well with other samples from the study area. The minimum AFT age for these pooled samples is  $280 \pm 38$  Ma. The dispersion of D<sub>par</sub> lengths within these samples is the largest of all samples from  $0.90 - 2.10 \mu$ m while the average D<sub>par</sub> length of 1.58 µm is also the highest of all samples.



Figure 4, Radial plots of Apatite Fission Track ages from the Ark 717 Sample (b and c) and the TTN1 sample (a) detailing the ages and standard deviation of each grain counted, the average age (Central value), and the degree of dispersion. n is the number of analysed grains. a and b are radial plots from previous Apatite Fission Track studies by Dr. Stijn Glorie (a) and Mr. Jack Gillespie (b). c displays the results obtained in this study. The three samples indicate the validity of the applied method (see text for more details). Radial plots were constructed using *Radial Plotter* (Vermeesch 2009).



Figure 5, Radial plots of Apatite Fission Track (AFT) ages from samples 2017962, 2017960, 7571 and 9582, 9508, 9528, 9582, and 9594, as well as a radial plot containing all samples. n indicates number of grains measured, Central value indicates the central age of the sample, dispersion indicates the percentage of age dispersion within the sample, the colour difference indicates the different  $D_{Par}$  (Etch Pit) lengths for each measured grain.  $D_{Par}$  is measured in  $\mu$ m. Where more than one population of ages is present, the central age is split into age peaks using the Automatic Mixture model of *Radial Plotter*. All ages acquired from radial plots are presented in table 1. To the right of each radial plot is the accompanying AFT length frequency histogram for each sample (except 7582 which has no length data, only the length data for 7571 is shown). On each histogram, AFT length is in  $\mu$ m, n indicates the number of tracks measured,  $l_m$  is average track length, and  $\sigma$  is the Standard deviation of the sample. Radial plots were constructed using *Radial Plotter* (Vermeesch 2009).



#### Figure 5, continued.

For one additional sample (7327) no reliable AFT age determination could be obtained due to anomalously low <sup>238</sup>U concentrations of the apatites hence no results are displayed in Figure 5 for this sample.

When all the samples are pooled on the same radial plot, three main populations can be distinguished:  $446 \pm 17$  Ma,  $292 \pm 19$  Ma, and  $184 \pm 12$  Ma (Figure 5). These age populations are interpreted to represent the timing of important cooling episodes during the late Ordovician, early Permian and early Jurassic through the apatite fission track closure temperatures (~120-60 °C), recorded in the thermal history of the Peak and Denison basement. The minimum AFT age for all samples plots at  $214 \pm 13$  Ma which is largely in agreement (slightly older) with the youngest defined age peak of  $184 \pm 12$  Ma, indicating that the final cooling phase through AFT closure temperatures occurred at ~200Ma.

| Sample         | Altitud<br>e<br>(m) | Lithology     | U/Pb<br>age  | ρs            | Ns       | N  | 238U             | σ                   | AFT<br>age  | Lowe<br>r age | Upper<br>Age | lm    | n  | σc   |
|----------------|---------------------|---------------|--------------|---------------|----------|----|------------------|---------------------|-------------|---------------|--------------|-------|----|------|
| 7571 +<br>7582 | 400                 | Syenite       | 497 ±<br>10  | 49 +<br>32.54 | 531      | 17 | 4.766 +<br>22.03 | 0.052<br>+<br>0.673 | 376 ±<br>28 | 271 ±<br>25   | 441 ±<br>28  | 12.89 | 38 | 1.32 |
| 9508           | 200                 | Syenite       | 497 ±<br>10  | 21.79         | 170      | 5  | 6.286            | 0.157               | 414 ±<br>33 | -             | -            | 11.23 | 34 | 1.87 |
| 9528           | 300                 | Monzonit<br>e | 497 ±<br>10  | 13.32         | 293      | 14 | 9.59             | 0.128               | 276 ±<br>26 | 188 ±<br>19   | 325 ±<br>29  | 11.83 | 11 | 1.7  |
| 9582           | 200                 | Monzonit<br>e | 497 ±<br>10  | 10.75         | 186      | 8  | 6.286            | 0.157               | 342 ±<br>25 | -             | -            | 12.65 | 10 | 1.36 |
| 9594           | 150                 | Monzonit<br>e | 497 ±<br>10  | 10.76         | 538      | 17 | 5.086            | 0.055               | 403 ±<br>27 | 323 ±<br>38   | 488 ±<br>56  | 12.33 | 36 | 1.64 |
| 201796<br>0    | 150                 | Rhyolite      | 1806 ±<br>27 | 11.91         | 611      | 14 | 7.321            | 0.221               | 383 ±<br>29 | 306 ±<br>25   | 475 ±<br>33  | -     | -  | -    |
| 201796<br>2    | 100                 | Granite       | 1793 ±<br>8  | 11.04         | 111<br>5 | 19 | 8.786            | 0.128               | 273 ±<br>24 | 187 ±<br>11   | 339 ±<br>14  | 11.27 | 66 | 1.61 |

Table 1, Sample details, Apatite Fission Track (AFT) results, and U/Pb age of each sample. Measured data is also shown, where  $^{238}$ U = concentration of  $^{238}$ Uranium,  $\sigma$  = Standard Deviation of the  $^{238}$ U,  $\rho$ s = counted AFT density (in 10<sup>5</sup> tracks/ cm<sup>2</sup>), Ns = number of fission tracks counted, N = number of grains counted, AFT age = Apatite Fission Track Central age (lower and upper age are all AFT age populations of their respected samples),  $l_m$  = average confined AFT length, n = number of confined tracks counted, and  $\sigma$ c = Standard Deviation of the confined tracks.

#### **Apatite Fission Track Length Data**

AFT length histograms for all relevant samples are present in Figure 5. For samples 9528 and 9582, where less than 30 confined tracks were measured, caution was exercised towards further interpretations due to the low number of confined tracks. Sample 2017962 contained 66 measurable confined tracks, with an average length of 11.27  $\mu$ m and a standard deviation of 1.61  $\mu$ m. Sample 9594 yielded an average length of 12.33  $\mu$ m based on 36 confined tracks with a standard deviation of 1.64  $\mu$ m. Only 10 confined tracks were found for sample 9582 with an average length of 12.56  $\mu$ m and a standard deviation of 1.36  $\mu$ m. Much like sample 9582, sample 9528 only contained 11 measureable confined tracks. The average track length is 11.8  $\mu$ m with a standard deviation of 1.7  $\mu$ m. 34 confined tracks were measured in sample 9508 with an average length of 11.23  $\mu$ m and a standard deviation of 1.87  $\mu$ m. No AFT length data was collected for sample 7582, therefore, only AFT length data for sample 7571 is shown in Figure 5 and in Table 1. 38 confined tracks were measured with an average length of 12.89  $\mu$ m and a standard deviation of 1.32  $\mu$ m.

#### (U-Th-Sm)/He Thermochronology

Three samples were chosen to be analysed using the (U-Th-Sm)/He method at the John de Laeter Centre in Curtin University (N. Evans). Apatite grains from samples 2017962, 9582 and 7327 and zircons from 2017962 (Table 2) were chosen based on grain quality. The zircon (U-Th-Sm)/He (ZHe) results obtained for sample 2017962 show little dispersion with an average ZHe age of  $356.4 \pm 20.4$  Ma. The apatite grains from 2017962, in comparison, produced two (U-Th-Sm)/He (AHe) age clusters of  $199.6 \pm 12.8$  Ma based on three grains and  $97.2 \pm 6.6$  Ma based on two grains (Table 2). The oldest AHe age component mimics the minimum AFT age for this sample. For sample

9582 an average AHe age of  $101.1 \pm 7.6$  Ma was obtained based on 2 analyses. This AHe age corresponds well with the youngest AHe cluster for sample 2017962 and indicates that cooling through the AHe closure temperatures (~75-45 °C) occurred during the Mid Cretaceous. Furthermore, Sample 9582 yields two other AHe ages of Late Cretaceous ( $63.4 \pm 4.7$  Ma) and Miocene ( $16.4 \pm 1.2$  Ma). The latter Miocene AHe age was however only obtained for one apatite grain thus caution is required to not over-interpret this age. Sample 7327 recorded an average AHe age of  $76.1 \pm 6$  Ma based on five grains, however, they were scattered from 88.1 Ma to 62.6 Ma which are further indications of cooling through the AHe closure temperatures during the Mid to Late

Cretaceous.

| Sample           | He Age                                              | AFT age              | 238U  | <sup>232</sup> Th | <sup>147</sup> Sm | <sup>232</sup> Th/ <sup>238</sup> U | ⁴He   | Ft   |
|------------------|-----------------------------------------------------|----------------------|-------|-------------------|-------------------|-------------------------------------|-------|------|
| 2017962<br>(ZHe) | 356.4 ± 20.4                                        | 187 ± 11<br>339 ± 14 | 893.8 | 304.1             | -                 | 0.35                                | 38.72 | 0.65 |
| 2017962<br>(AHe) | 199.6 ± 12.8<br>97.2 ± 6.6                          | 187 ± 11<br>339 ± 14 | 31.23 | 81.44             | 74.25             | 2.46                                | 0.41  | 0.6  |
| 9582<br>(AHe)    | $101.1 \pm 7.6$<br>$63.4 \pm 4.7$<br>$16.4 \pm 1.2$ | 342 ± 25             | 44.58 | 65.85             | 20.68             | 3.47                                | 0.1   | 0.6  |
| 7327<br>(AHe)    | 76.1 ± 6                                            | -                    | 10.02 | 42.52             | 26.21             | 4.65                                | 0.12  | 0.6  |

Table 2, (U-Th-Sm)/He results indicating the Helium (He) age, Apatite Fission Track (AFT) Age, <sup>238</sup>Uranium concentration (parts per million), <sup>232</sup>Thorium concentration (parts per million),
 <sup>147</sup>Samarium concentration (parts per million), Ratio of <sup>232</sup>Thorium over <sup>238</sup>Uranium, concentration of <sup>4</sup>Helium (nanocubic centimetre (ncc) per µg), and Ft (the fraction of Alpha particle ejection dependant on the dimensions the apatite crystal; Ehlers and Farley 2003).

#### Modelling

The exhumation history of the region was modelled using the computer software  $HeFT_V$ (Ketcham 2005) which models the path the rocks travelled in time-temperature space from a set time to the present using a combination of AFT age and length data, He age data, U and other geological significant constraints. In order to create a statistically acceptable model, fission tracks age and length data is the minimum input requirement and length data should at least include >20 confined track measurements. This condition was only met for samples 2017962, 9594, 9508 and 7571. These samples were

modelled using their AFT age (and if possible AHe/ZHe) constraints, a high and low temperature endpoint at pre-Delamerian times and present-day outcrop temperatures and one additional geological constraint: all samples were assumed to be at or near the surface during the late Permian due to the presence of the Mount Margaret Surface (MMS; Rogers and Freeman 1994).

Most models produced similar results with a general trend of fast exhumation from 500 Ma to 400- 300 Ma, where the samples reach the surface, followed by shallow burial and subsequent shallow exhumation during the Cretaceous. The applied modelling software is mainly designed to model low-temperature cooling (below ~200C), the extent and timing of the thermal history above these temperatures cannot precisely be estimated using these models. As mentioned above, it is assumed that all samples started were at significant depth (and high temperatures) prior to the Delamerian. The samples for which little thermochronological data was available (only AFT results; 9594, 9508 and 7571) show a general exhumation history of rapid exhumation from Delamerian times to ~400 Ma followed by slow cooling or thermal quiescence between ~350 and 250 Ma. All models except 9508 show shallow (to about  $50 - 75 \circ C$ ) burial during the Jurassic and exhumation to the surface during the Cretaceous (Figure 6). 9508, on the other hand, shows shallow burial from ~250 Ma to ~75 Ma before rapid Cretaceous exhumation reinstated the rocks at the surface. All these samples were modelled with a goodness of fit merit for good paths (pink paths in Figure 6) of 0.5 (Table 3) and a goodness of fit merit for acceptable paths (green paths in Figure 6) at 0.05.

2017962 is the best constrained model, which is based on a combination of ZHe, AHe, AFT and geological data, therefore it produces the most plausible cooling model. However, due to the larger number of inserted data, the merit value to obtain

statistically good model paths was brought down to 0.2 instead of 0.5. The Wurriecurrie Granite formed during the Mesoproterozoic, however first signs of cooling below ~200 °C were dated to the Carboniferous. Previous exhumation pulses that induced cooling below ~200 °C before the Carboniferous may have existed but are erased by the subsequent thermal history of the Ranges. This model shows that gentle early Palaeozoic cooling brought the samples to temperatures of ~200 °C before increased cooling during the Devonian – Carboniferous brought the basement to the surface. Geological evidence for early Permian surfacing comes from the occurrence of the MMS. Subsequent burial (to 75 – 80 °C) occurred from about 300 Ma to about 150 Ma before another pulse of rapid cooling carried the sample up to the near surface. A final phase of burial occurred from 150 Ma to 100 Ma before a final pulse of Cretaceous cooling brought the sample to the surface during the Late Cretaceous.

| Sample  | Paths<br>tried | Acceptable<br>paths | Good<br>paths | Acceptable<br>merit | Good<br>merit |
|---------|----------------|---------------------|---------------|---------------------|---------------|
| 2017962 | 278491         | 2848                | 10            | 0.05                | 0.2           |
| 9594    | 10000          | 637                 | 271           | 0.05                | 0.5           |
| 9508    | 35498          | 808                 | 19            | 0.05                | 0.5           |
| 7571    | 10000          | 440                 | 133           | 0.05                | 0.5           |

Table 3, *HeFTy* parameters including number of paths tried, number of acceptable paths, number of good paths, goodness of fit for acceptable paths merit, and goodness of fit for good paths merit for the four samples (2017962, 9594, 9508, and 7571).

Figure 6 (next page), the exhumation histories of samples 2017962, 7571, 9508 and 9594, modelled with the *HeFTy* software (Ketcham 2005). Each time – temperature plot illustrates the modelled pathway for each sample from 400 °C at 500 – 600 Ma to surface temperatures at the present. Each sample is constrained by measured constraints (such as Apatite Fission Track (AFT) ages, Apatite Helium (AHe) ages, or Zircon Helium (ZHe) ages; indicated by red boxes on each plot) from this thesis, geological constraints (Indicated by blue boxes on each plot) such as the Mount Margaret Surface, and a high temperature starting constraint (indicated by a black box on each plot), where the rocks are assumed to be from 450 – 600 Ma. The dashed red box on sample 2017962 indicates a constraint based on AHe data, which needed a slight shift towards lower temperatures to find a sufficient number of statistically good model paths. The green region on each plot is the acceptable path envelope, while the pink region is the good path envelope. The merits for these paths are stated in table 3.



#### DISCUSSION

All the *HeFTy* models produced in this thesis are indicative of fast cooling from the Delamerian to 400 - 350 Ma before reaching the surface at 300 - 250 Ma, although these models are highly plausible, they do not account for the ZHe age at ca. 356 Ma. This ZHe age would mean the rocks underwent burial from AFT temperatures to ZHe temperatures from 400 Ma to 356 Ma before returning to AFT closure temperatures, which is not witnessed in any *HeFTy* model. After 250 Ma, and depending on the sample, these models either indicate that (1) the rocks stayed at or near the surface from 250 Ma to the present or (2) minor burial occurred from 250 Ma to about 150 Ma, followed by rapid shallow exhumation to the surface where the rocks remained to the present. As illustrated above, none of the *HeFTy* models are unambiguous and fully encompass the full exhumation history of the Ranges as no model takes all obtained thermochronological data into account. For this reason, a model which fits all data (including geological constraints) was created (Figure 7).

Figure 7 a shows the preferred thermal history model based on all obtained data for this thesis and matched with the sedimentological record of the Peake and Denison Ranges. This section first discusses the data obtained by the different thermochronometers for this thesis, before commenting on the model itself and the tectonic events which controlled the exhumation. This is followed by, comparisons and interpretations between neighbouring regions and the Peake and Denison Ranges. Finally, the previous the validity of the previous models are discussed.

#### **Thermochronological constraints**

The results of the AFT analysis on all samples indicate three major periods of rapid cooling which are interpreted as episodes of significant exhumation in the Peake and

Denison Ranges. Ordovician (~470-440 Ma) and Carboniferous – early Permian (~340-290 Ma) exhumation pulses can be related with the well-known, regional Delamerian and Alice Springs Orogenies while the younger Jurassic (~200-180 Ma) event can be related to a local exhumation event or linked to possible increased hydrothermal activity in the region at that time (as discussed below).

The Late Devonian ZHe ages obtained in this thesis are only a few Ma older than the Carboniferous AFT ages and record evidence for rapid exhumation at that time. The AHe ages for this study indicate cooling within the last 200 Ma with a main cooling phase during the Mid to Late Cretaceous, however, due to the evidence for the Ranges reaching the surface during the Permian as seen by the presence of the Mount Margaret Surface and the older AFT ages, it is unlikely these indicate any deep exhumation. Three AHe ages fall outside of the Mid to Late Cretaceous, being ~199 Ma, 141 Ma, and 16 Ma. The oldest AHe age may indicate (1) the early stages of burial to AFT temperatures or the presence of hydrothermal activity during that time as mentioned above. This AHe age is slightly older than the youngest AFT ages within the region which points towards an increase in temperature from ~200 Ma to ~180 Ma and therefore, most likely an increase in burial rates in the region. The alternative has already been noted in this thesis with the possibility of hydrothermal activity during this time causing the increased temperatures as it correlates with a period of hydrothermal activity within the Arkaroola region (Weisheit *et al.* 2014).

The single AHe age at ca. 141 Ma is an indicator of minor burial at that time, which is supported by the deposition of Algebuckina Sandstone and the Neales River Group sediments (both shown in blue on the sedimentary log on Figure 7).

The youngest AHe age is likely related to the Miocene fault movement which was observed by Wopfner (1968). Since there is only one grain producing this age, it is

unlikely to be a major exhumation event. However, it is possible that this AHe age can be linked with the final exhumation event in the Ranges with burial from 50 Ma to around 20 Ma before the rocks were rapidly exhumed to the surface through fault movement.

### Thermal history model for the Peake and Denison Ranges

The thermal history model presented in Figure 7 a was fitted through all the data points whilst matching it with the sedimentary data presented by Rogers and Freeman (1994). The most likely model shows fast cooling and exhumation during the Delamerian Orogeny (~500 Ma). However, these Delamerian AFT ages were unsupported by ZHe data collected from sample 2017962. This may point towards two possible exhumation paths in the model (dashed lines versus filled lines). The first model indicates that the Ranges exhumed rapidly from 500 Ma to 400 Ma and was followed by erosion and sedimentation (as seen in the poorly constrained Nultaddy Seismic Unit which deposited during this time), which caused burial of the Ranges until reaching temperatures around 200 °C at ~350 Ma. At this point, another pulse of the Alice Springs Orogeny would have forced the Ranges out of ZHe closure temperatures and into AFT closure temperatures within a few million years.

The alternative model (dashed lines) shows that the Wirricurrie granite (sample 2017962) experienced a different thermal history compared to the western Peake and Denison Ranges as this granite is located on the opposite side of a major fault (Figure 2). In this model, the ZHe age of 356 Ma may be the first time the Wirriecurrie Granite cooled to low temperatures while the western Ranges where exhumed to similar temperatures at an earlier time (~490 Ma). This model would rely on the existence of the fault in the Denison Range during this time and its movement facilitating the uplift

of the Wirriecurrie Granite while the rest of the Ranges experienced less uplift. Since neither path can be proven, both have been indicated on Figure 7.

After the Ranges abandoned ZHe temperatures, rapid exhumation occurred which was quickly followed by with the deposition of, the Boorthanna, Stuart Range, and Mount Toondina Formations at ~300 Ma. Since the model does not display evidence of burial during this time, the rocks remained likely at the subsurface. After this time, the presence of the Mount Margaret Surface provides evidence for the region reaching the surface at 250 Ma, which is clearly displayed in the model. At ~200Ma AFT and AHe data indicate either burial or the previously mentioned hydrothermal activity. Neither path can be ruled out due to lack of evidence for both theories.

From 150 Ma to 100 Ma, a period of shallow burial and deposition occurred, as reflected in the deposition of the Algebuckina Sandstone and the Neales River Group sediments. The Late Cretaceous is characterised by a hiatus in the sedimentary record which correlates remarkably well with the ~100-60 Ma AHe ages obtained for this study. Both observations are indicative of a period of renewed exhumation after sedimentary burial brought the basement rocks down to ~80 °C. It is assumed that, by the end of this exhumation, the Peake and Denison Ranges are fully exposed at the surface. Immediately following the end of the Cretaceous, sedimentation resumed with the deposition of the Mirackina Conglomerate as well as numerous unnamed formations and sediments throughout the Cenozoic. The Miocene AHe age coincides well with increased coarse sedimentation which is likely related with fault movements as discussed above (Wopfner 1968). It is hence likely that the fault movements induced a different Cenozoic exhumation model for the eastern section of the Ranges as shown by the Cenozoic dashed path in Figure 7. While the western Ranges likely surfaced during the Late Cretaceous, the eastern section may have remained buried until the Miocene



fault movement induced the present-day relief, exposing the eastern section at that time.

Figure 7, the proposed exhumation path of the Peake and Denison Ranges through timetemperature space (Panel a) with inclusion of sedimentary constraints and compared to the exhumation history model of the Arkaroola region (Panel b; Weisheit *et al.* 2014). Apatite Helium (AHe) ages are indicate by blue dots, Zircon Helium (ZHe) ages by red dots, and Apatite Fission Track age populations by black dots. Through these ages, a best-fit exhumation model was constructed which matches all data, the sedimentological record of the adjacent basins and the estimated cooling rates from the *HeFTy* models. Alternative exhumation paths are indicated by dashed lines (see text for discussion). The erosional peneplain which is known as the Mount Margaret Surface is also plotted since this is a period of time where the rocks are known to be at the surface. the box containing the asterisk is a period of known hydrothermal activity in the Arkaroola region and possible hydrothermal activity in the Peake and Denison Ranges. The Arkaroola region time-temperature graph was adapted from Weisheit *et al.* (2014) and contains compiled data from e.g. Krieg *et al.* (1995); McLaren *et al.* (2002); Mitchell *et al.* (2002).

#### Tectonic events that affected the Peake and Denison Ranges

The oldest exhumation pulse is a result of the Delamerian Orogeny (514 - 490 Ma; Foden *et al.* 2006) as it perfectly coincides with the oldest AFT ages that was interpreted to be the mechanism for the formation of the Bungadillina Monzonite (Ambrose et al. 1981; Morrison 1989; Rogers and Freeman 1994), However, an early pulse of the Alice Springs Orogeny  $(475 \pm 4 \text{ Ma})$  may have contributed as well (Hand et al. 1999; Mawby et al. 1999; Haines et al. 2001). The Alice Springs Orogeny has been widely documented (e.g. Mitchell et al. 1998; Gibson and Stüwe 2000; Mitchell et al. 2002) to have caused exhumation in South Australia as it caused substantial crustal thickening throughout South Australia (Ballèvre et al. 2000). It is therefore likely that both orogenies had an effect on the Peake and Denison Ranges and the Ordovician exhumation pulse is thus presumably an effect of both. Unlike the previously mentioned exhumation events, the Triassic - Jurassic event is not widespread as it is not seen in distal studies (O'Sullivan et al. 1995; Gleadow et al. 2002b; Kohn et al. 2002), however, it has effected proximal regions such as the Cooper Basin (Mayromatidis 2007). Therefore, this period of exhumation is either a result of local exhumation or the AFT ages were partially reset by hydrothermal activity. This hydrothermal activity was observed in the Arkaroola Region as well (Figure 7; Lambert et al. 1982; Idnurm and Heinrich 1993; Weisheit et al. 2014). This hydrothermal activity has been observed by many (Ambrose *et al.* 1981; Morrison 1989; Hopper 2001), however an age for it has never been given. Alternatively, the Jurassic cooling pulse captured in the AFT data could reflect a period of shallow exhumation which is however unsupported by the occurrence of sediments of this age. Alternatively, these sediments may have been reworked and redeposited during subsequent exhumation pulses. In the latter case, these 200 - 180 Ma AFT ages may not be a result of hydrothermal activity and might just be

evidence of burial and subsequent uplift of the Ranges. The final exhumation event occurred during the Cretaceous and despite the lack of explanations for the regional Cretaceous exhumation for South Australia (Gibson and Stüwe 2000; MacDonald *et al.* 2013), it is probable this exhumation was the result of the rifting of Australia from Antarctica as Stump and Fitzgerald (1992) linked exhumation during this time period in Antarctica to the rifting.

#### Comparison with exhumation studies on neighbouring regions

When compared to other regions in South Australia, the Peake and Denison Ranges reveal quite a few similarities with many other exhumation models. As seen in Figure 7 b, Arkaroola is one region which contains a comparable exhumation history. As shown, the Weisheit *et al.* (2014) model reveals similar AFT, ZHe and AHe results for the Arkaroola region with AFT peaks around 200 – 180 Ma, their model first reached the surface at a similar time, and both show burial before Cretaceous exhumation occurred. Three out of the four periods of exhumation highlighted in the Peake and Denison Ranges are also present in the Arkaroola Region, while no evidence for pre-Devonian upper crustal exhumation was obtained for the Arkaroola region. This may have been erased by subsequent events as the total amount of exhumation in the Arkaroola region during the Devonian-Carboniferous is estimated to be over 10km (Weisheit et al. 2014). The models mainly differ around 200 Ma, where the Peake and Denison model follows the data with an apparent reheating episode at ~200 Ma as a result of either deep burial or hydrothermal activity and prolonged burial during the Mid to Late Cretaceous. The Arkaroola model on the other hand explains the data solely by the hydrothermal activity during that time and maintains its position at the surface.

Another model for Arkaroola, presented by Mitchell *et al.* (2002), proposed that Arkaroola remained within the Partial Annealing Zone from the Alice Springs Orogeny until ~50 Ma, at which point it exhumed to the surface. This model matches to a certain degree, with the Peake and Denison model, however, the exhumation occurred slightly later than proposed in the Peake and Denison model for this thesis. The Mitchell *et al.* (2002) models show a clustering of AFT ages around 200 Ma which correlates to the youngest AFT cluster in the Peake and Denison Ranges, and with the model by Weisheit *et al.* (2014) for Arkaroola. The Mitchell *et al.* (2002) model furthermore suggests that exhumation occurred during the Late Cretaceous, similar as shown for the Peake and Denison Ranges in this thesis.

This Late Cretaceous exhumation is also present within the Adelaide Fold Belt of South Australia (Gibson and Stüwe 2000). A Carboniferous – Permian exhumation even is recorded for this region which correlates well with the contemporaneous AFT population within the Peake and Denison Ranges. More regional studies (Gleadow *et al.* 2002b; Kohn *et al.* 2002) of South Australia postulate that Carboniferous exhumation occurred throughout most of South Australia while Boone (2013) provides further thermochronological evidence for exhumation during the Devonian – Carboniferous. These matching models from various locations within South Australia indicate that the Peake and Denison Ranges have a similar exhumation history with the other study regions in South Australia at least during the Palaeozoic. The Meso-Cenozoic thermal history of the Peake and Denison Ranges slightly differs of that of other study regions (as discussed above), which may partly be related with the absence of AHe or other low-temperature data in other studies.

#### **Regional interpretations and models**

Before this research was conducted, three theories existed on the exhumation of the Peake and Denison Ranges. Radke (1973), proposed a tectonic event at 266 Ma from AFT data which is only marginally younger than obtained for some samples in this thesis (e.g. the 273 Ma population of sample 2017962). The presence of the Mount Margaret Surface around this time proves there was exhumation during this time. This is also the first time the Ranges are known to be at the surface which validates Radke's proposition of a tectonic event during this time. The single AHe age in the Miocene gives weight to Wopfner's argument to fault movement during this time, however, it is likely to be only minor in terms of exhumation of the Ranges. The third theory, from MacDonald et al. (2013) postulated that widespread exhumation occurred in the northern Gawler Craton during the Cretaceous which was observed for the model for the Peake and Denison Ranges and within the Arkaroola model as well. MacDonald also proposed the Ceduna Delta (Figure 1) formed from a proximal and distal source, over two different time periods during the Cretaceous (Santonian - Maastrichtian and Cenomanian). The results obtained for this thesis provide evidence for exhumation during the Cenomanian (~100-95Ma AHe ages) and Maastrichtian (~75-60 Ma AHe ages). However none of these events are well-constrained in the thermal history model of the Peake and Denison Ranges and may rather indicate that continuous exhumation occurred during the late Cretaceous until the end of the Maastrichtian. Although more data is required to verify the extent of the Late Cretaceous exhumation, our data indicates that significant topography existed in the Peake and Denison Ranges since the early Cenomanian. This topography would have acted as a barrier for a major river system that is thought to have existed at that time (Figure 1; McDonald et al. 2013). However, the exhumation events recorded in the Peake and Denison Ranges during the

Cenomanian and Maastrichtian may have induced transport of sediments from South Australia's interior towards the Bight basin. In this regard, previously deposited outwash of river systems within Central Australia may have been reworked and transported southwards as a result of these Late Cretaceous exhumation pulses.

#### CONCLUSIONS

Low-temperature thermochronology of the Peake and Denison Ranges revealed two major periods of exhumation, during the Ordovician and late Carboniferous – Permian, and two periods of shallow exhumation, after sedimentary burial or hydrothermal activity, during the Late Triassic – Jurassic and the Cretaceous.

The combination of the Delamerian and Alice Springs Orogenies induced exhumation of the Peake and Denison Ranges to shallow crustal levels. As a result, the basement cooled to surface temperatures from temperatures in excess of 400 °C, over two bursts of exhumation at  $\sim$ 500 – 430 Ma and 350 – 300 Ma. Latter phase exhumed the Peake and Denison Ranges to the surface which is recorded by the presence of the Mount Margaret Surface around 250 Ma. Subsequent burial or hydrothermal activity brought the Ranges back into AFT and AHe temperatures at around 200 – 180 Ma. From 140 – 100 Ma, the Ranges were occupying AHe temperatures due to shallow burial and deposition of the Aglebuckina Sandstone and Neales River Group sediments. Immediately after deposition ceased, the final exhumation period began with the long, shallow Cretaceous exhumation from AHe temperatures to the surface which was potentially caused by the rifting of Australia from Antarctica.

The proposed exhumation model for this thesis confirms the prior theories of Permian tectonism, widespread Cretaceous exhumation and Miocene fault movement, plus additional events which transported the Peake and Denison Ranges to the surface.

The Peake and Denison Ranges experienced a similar exhumation history as the

northern Flinders Ranges, as seen in Figure 7. Studies of the Adelaide Fold Belt indicate

there are at least two shared exhumation events with the Peake and Denison Ranges,

one in the Carboniferous-Permian and the other in the Cretaceous, while other regional

South Australia studies share an obvious exhumation pulse during the Carboniferous.

#### **ACKNOWLEDGMENTS**

This thesis was made possible thanks to the financial support of Department of State Development, South Australia and the University of Adelaide. I would like to thank Stijn Glorie for the countless hours of supervision, Dr. Anthony Reid and Prof. John Foden for the sample donations, Prof. Alan Collins for his supervision, Jack Gillispie, Max Reddy, Rachel Rudd and Natalie Debenham for numerous discussions about the thesis, The John De Laeter Center at Curtin University for collecting the He data, and lastly, Adelaide Microscopy for the use of the LA-ICP-MS.

#### REFERENCES

- ALLENDER J. F., TAYLOR B. W. & GILBY A. R. 1987. Geophysical interpretations report. 1984 Hogarth-ARC. PELs 5 and 6 Arckaringa Block. *South Australia Department of Mines and Energy. Open File Envelope* 5561(6). (unpublished).
- AMBROSE G. J., FLINT R. B. & WEBB A. W. 1981. Precambrian and Palaeozoic Geology of the Peake and Denison Ranges. *Geological Survey of South Australia Bullitin* **50**.
- BAKKER R., J. & ELBURG M. 2006. A magmatic- hydrothermal transition in Arkaroola (Northern Flinders Ranges, South Australia): from diopside-titanite pegmatites to hematite-quartz growth. *Contributions to Mineralogy and Petrology* 152, 541-569.
- BALLÈVRE M., MÖLLER A. & HENSEN B. J. 2000. Exhumation of the lower crust during crustal shortening: an Alice Springs (380 Ma) age for a prograde amphibolite facies shear zone in the Strangways Metamorphic Complex (central Australia). *Journal of Metamorphic Geology* 18, 737-747.
- BOONE S. C. 2013. Apatite Fission Track Anomaly within the Archean-Proterozoic Gawler Craton: The Thermal Record of a Paleoaquifer System. Masters Thesis. University of Melbourne, Melbourne (unpubl.).
- BRUGGER J., FODEN J. & WULSER P.-A. 2011. Genesis and preservation of a uranium-rich paleozoic epithermal system with a surface expression (Northern Flinders Ranges, South Australia): radiogenic heat driving regional hydrothermal circulation over geological timescales. *Astrobiology* 11, p.499+.
- DE GRAVE J., GLORIE S., RYABININ A., ZHIMULEV F., BUSLOV M. M., IZMER A., ELBURG M., VANHAECKE F. & VAN DEN HAUTE P. 2012. Late Palaeozoic and Meso-Cenozoic tectonic evolution of the southern Kyrgyz Tien Shan: Constraints from multi-method thermochronology in the Trans-Alai, Turkestan-Alai segment and the southeastern Ferghana Basin. *Journal of Asian Earth Sciences* 44, 149-168.
- EHLERS T. A. & FARLEY K. A. 2003. Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. *Earth and Planetary Science Letters* **206**, 1-14.
- ELBURG M. A., BONS P. D., FODEN J. & BRUGGER J. 2003. A newly defined Late Ordovician magmaticthermal event in the Mt Painter Province, northern Flinders Ranges, South Australia. *Australian Journal of Earth Sciences* **50**, 611-631.

- ELBURG M. A., ANDERSEN T., BONS P. D., SIMONSEN S. L. & WEISHEIT A. 2013. New constraints on Phanerozoic magmatic and hydrothermal events in the Mt Painter Province, South Australia. *Gondwana Research* 24, 700-712.
- FANNING C. M., FLINT R. B., PARKER A. J., LUDWIG K. R. & BLISSETT A. H. 1988. Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology. *Precambrian Research* 40–41, 363-386.
- FANNING C. M., REID A. J. & TEALE G. 2007. A geochronological framework for the Gawler Craton, South Australia. *South Australia. Geological Survey. Bulletin* **55**.
- FARLEY K. A. 2002. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry 47, 819-844.
- FODEN J., ELBURG M. A., DOUGHERTY-PAGE J. & BURTT A. 2006. The Timing and Duration of the Delamerian Orogeny: Correlation with the Ross Orogen and Implications for Gondwana Assembly. *The Journal of Geology* **114**, 189-210.
- FOSTER D. A., MURPHY J. M. & GLEADOW A. J. W. 1994. Middle tertiary hydrothermal activity and uplift of the northern flinders ranges, South Australia: Insights from apatite fission-track thermochronology. *Australian Journal of Earth Sciences* **41**, 11-17.
- GIBSON H. J. & STÜWE K. 2000. Multiphase cooling and exhumation of the southern Adelaide Fold Belt: constraints from apatite fission track data. *Basin Research* **12**, 31-45.
- GLEADOW A. J. W., DUDDY I. R., GREEN P. F. & HEGARTY K. A. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. *Earth and Planetary Science Letters* **78**, 245-254.
- GLEADOW A. J. W., BELTON D. X., KOHN B. P. & BROWN R. W. 2002a. Fission Track Dating of Phosphate Minerals and the Thermochronology of Apatite. *Reviews in Mineralogy and Geochemistry* **48**, 579-630.
- GLEADOW A. J. W., KOHN B. P., BROWN R. W., O'SULLIVAN P. B. & RAZA A. 2002b. Fission track thermotectonic imaging of the Australian continent. *Tectonophysics* **349**, 5-21.
- GREEN P. F., DUDDY I. R., GLEADOW A. J. W., TINGATE P. R. & LASLETT G. M. 1985. Fission-track annealing in apatite: Track length measurements and the form of the Arrhenius plot. *Nuclear Tracks and Radiation Measurements (1982)* **10**, 323-328.
- HAINES P. W., HAND M. & SANDIFORD M. 2001. Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens. *Australian Journal of Earth Sciences* **48**, 911-928.
- HAND M., MAWBY J. O., KINNY P. & FODEN J. 1999. U–Pb ages from the Harts Range, central Australia: evidence for early Ordovician extension and constraints on Carboniferous metamorphism. *Journal of the Geological Society* 156, 715-730.
- HASEBE N., BARBARAND J., JARVIS K., CARTER A. & HURFORD A. J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. *Chemical Geology* **207**, 135-145.
- HOPPER D. J. 2001. Crustal evolution of paleo- to mesoproterozoic rocks in the Peake and Denison Ranges, South Australia. PhD Thesis. The University of Queensland, Brisbane (unpubl.).
- IDNURM M. & HEINRICH C. A. 1993. A palaeomagnetic study of hydrothermal activity and uranium mineralization at Mt Painter, South Australia. *Australian Journal of Earth Sciences* **40**, 87-101.
- KETCHAM R. A. 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. *Reviews in Mineralogy and Geochemistry* **58**, 275-314.
- KOHN B. P., GLEADOW A. J. W., BROWN R. W., GALLAGHER K., O'SULLIVAN P. B. & FOSTER D. A. 2002. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. *Australian Journal of Earth Sciences* 49, 697-717.
- KRIEG G. W., ALEXANDER E. M. & ROGERS P. 1995 Eromanga Basin. In DREXEL J. F. & PREISS W. V. eds. The Geology of South Australia, vol. 2, The Phanerozoic. South Australia Geological Survey, Bulletin. pp. 101-105.
- LAMBERT I. B., DREXEL J. F., DONNELLY T. H. & KNUTSON J. 1982. Origin of breccias in the Mount Painter area, South Australia. *Journal of the Geological Society of Australia* 29, 115-125.
- LI G.-M., CAO M.-J., QIN K.-Z., EVANS N. J., MCINNES B. I. A. & LIU Y.-S. 2014. Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U–Pb, biotite Ar/Ar and zircon/apatite (U–Th)/He dating. *Journal of Asian Earth Sciences* **79**, **Part B**, 741-758.

- MACDONALD J., D., HOLFORD S. P., GREEN P. F., DUDDY I. R., KING R. C. & BACKÉ G. 2013. Detrital zircon data reveal the origin of Australia's largest delta system. *Journal of the Geological Society, London* **170**, 3-6.
- MAVROMATIDIS A. 2007. Exhumation Study in the Cooper-Eromanga Basins, Australia and the Implications for Hydrocarbon Exploration. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects* **29**, 631-648.
- MAWBY, HAND & FODEN 1999. Sm–Nd evidence for high-grade Ordovician metamorphism in the Arunta Block, central Australia. *Journal of Metamorphic Geology* 17, 653-668.
- MCDOWELL F. W., MCINTOSH W. C. & FARLEY K. A. 2005. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. *Chemical Geology* **214**, 249-263.
- MCLAREN S., DUNLAP W. J., SANDIFORD M. & MCDOUGALL I. 2002. Thermochronology of high heatproducing crust at Mount Painter, South Australia: Implications for tectonic reactivation of continental interiors. *Tectonics* 21, 2-1-2-18.
- MCLAREN S., SANDIFORD M., POWELL R., NEUMANN N. & WOODHEAD J. 2006. Palaeozoic Intraplate Crustal Anatexis in the Mount Painter Province, South Australia: Timing, Thermal Budgets and the Role of Crustal Heat Production. *Journal of Petrology* **47**, 2281-2302.
- MITCHELL M. M., KOHN B. P. & FOSTER D. A. 1998 Phanerozoic cooling in eastern South Australia: consequences for tectonic models. In P. V. D. H. & F. D. C. eds. Advances in Fission-Track Geochronology: a Selection of Papers Presented at the International Workshop on Fission Track Dating. pp. 207-224. Ghent, Belgium: Kluwer Academic Publishers. 1996.
- MITCHELL M. M., KOHN B. P., O'SULLIVAN P. B., HARTLEY M. J. & FOSTER D. A. 2002. Lowtemperature thermochronology of the Mt Painter Province, South Australia. *Australian Journal of Earth Sciences* **49**, 551-563.
- MORRISON R. S. 1989. The Igneous Intrusive Rocks of the Peake and Denison Ranges within the Adelaide Geosyncline Volume II: Figures, Plates, Captions, Maps, Tables and Appendicies. PhD Thesis. University of Adelaide, Adelaide (unpubl.).
- O'SULLIVAN P. B., KOHN B. P., FOSTER D. A. & GLEADOW A. J. W. 1995. Fission track data from the Bathurst Batholith: Evidence for rapid mid-Cretaceous uplift and erosion within the eastern highlands of Australia. *Australian Journal of Earth Sciences* **42**, 597-607.
- RADKE F. 1973 Fission-Track dating. Progress Report. (unpubl.): Amdel Project.
- REINERS P. W., SPELL T. L., NICOLESCU S. & ZANETTI K. A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. *Geochimica et Cosmochimica Acta* 68, 1857-1887.
- REYNOLDS S. D., MILDREN S. D., HILLIS R. R. & MEYER J. J. 2006. Constraining stress magnitudes using petroleum exploration data in the Cooper–Eromanga Basins, Australia. *Tectonophysics* 415, 123–140.
- ROGERS P. & FREEMAN P. 1994 Explanatory Notes for the Warrina 1 : 250 000 Geological Map. Report Book. South Australian Department of Mines and Energy.
- STUMP E. & FITZGERALD P. G. 1992. Episodic uplift of the Transantarctic Mountains. *Geology* 20, 161-164.
- TWIDALE C. R. 1994. Gondwanan (Late Jurassic and Cretaceous) palaeosurfaces of the Australian craton. *Palaeogeography, Palaeoclimatology, Palaeoecology* **112**, 157-186.
- VERMEESCH P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots. *Radiation Measurements* 44, 409-410.
- WACLAWIK V. G., LANG S. C. & KRAPF C. B. E. 2008. Fluvial response to tectonic activity in an intracontinental dryland setting: The Neales River, Lake Eyre, Central Australia. *Geomorphology* 102, 179-188.
- WEISHEIT A., BONS P. D., DANISÍK M. & ELBURG M. A. 2014. Crustal-scale folding: Palaeozoic deformation of the Mt Painter Inlier, South Australia. *Geological Society, London, Special Publications* 394, 53-77.
- WOPFNER H. 1964. Permain-Jurassic history of the western Great Artesian Basin. Transactions of the Royal Society of South Australia 88, 117-128.
- WOPFNER H. 1968. Cretaceous sediments on the Mount Margaret Plateau and Evidence for Neo-Tectonism. *Quarterly Geological Notes, Geological Survey of South Australia* 28, 7-11.
- WOPFNER H. 1970. Permian paleogeography and depositional environment of the Arckaringa Basin, South Australia. In Proceedings and Papers IUGS Sub-Commission on Gondwana stratigraphy and palaeontology. Second Gondwana symposium. Council for Scientific and Industrial Research, Scientia, South Africa, 273-291.

WULSER P. A. 2009. Uranium metallogeny in North Flinders Ranges region of South Australia. PhD thesis. Adelaide University, Adelaide.

## **APPENDIX A: EXTENDED METHODOLOGY**

### Samples

Eight granitoid rock samples were collected from the Peake and Denison Ranges during the 1980s by University of Adelaide PhD candidate Morrison (1989) and were stored in the in the crypts at Adelaide University until selected for this Thesis. Samples 9594 (Monzonite), 9582 (Monzonite), 9528 (Monzonite), 9508 (Albitized Monzonite), 7582 (Syenite), 7571 (Syenite), and 7327 (Biotite Lamprophyre) were collected by Morrison (1989). Two apatite and zircon separates (Samples 2017960 (shortened to sample 60) which is from the Tidnamurka Rhyolite and 2017962 (shortened to sample 62) which is from the Wirriecurrie Granite) were prepared and collected from two different whole rock samples by DMITRE (Fanning *et al.* 2007). All Samples are shown in figure 2.

## Crushing

The rock samples were crushed from whole rock down to a suitable grain size for separation and mounting. The first step in this process was to cut the rocks into small sizes using a Diamond Saw. These cut rocks were crushed using a Large Jaw Crusher and subsequently milled using a Ring Mill. This milled rock was sieved using a Sieve Shaker to separate the grains into three sizes >425  $\mu$ m, 425-79  $\mu$ m, and <79  $\mu$ m. The Ring Mill and Sieve Shaker process was repeated on most of the >425  $\mu$ m grains to increase the amount of 425-79  $\mu$ m grains. The 425-79  $\mu$ m sieved grains are optimal for this study and therefore all material in this interval were selected for mineral separation.

## **Mineral Separation**

The sieved minerals were panned in water to remove a large majority of the lighter minerals to decrease the amount of minerals which proceeded through the Frantz Isodynamic Separator (Frantz) and Heavy Liquid Separation. All of the panned light minerals were dried in a low temperature oven (<70 °C) and kept for possible future use. The remaining minerals were heated on a low temperature hot plate (50 °C) and once dried a magnet was used to remove all the highly magnetic minerals. These magnetic minerals were saved for possible use later. The left over minerals were put through the Frantz to remove the residual magnetic minerals. The first run through was on 0.5 Amperes before the minerals which were not moved by the magnet were recycled through the Frantz at 1.4 Amperes. The magnetic minerals were kept separately for potential future use. The minerals which passed through both runs in the Frantz were separated, based on density, using the heavy liquid Methylene Iodide (which has a density of 3.3 g mL-1). The grains which sank to the bottom of this heavy liquid were collected and rinsed out with acetone to remove all traces of the heavy liquid from them. The grains which did not sink to the bottom were also collected and rinsed with acetone. They were kept for potential future use.

## Picking

Apatite grains from the bottom of the heavy liquid were picked using a picking needle under two Olympus SZ61 picking microscopes. The first microscope contained a clear dish with loose grains and the second dish contained a glass slide with double sided tape on it. Underneath the glass slide, another glass slide is placed, with a '+' drawn on it 20 mm from the end and 7.5 mm in from the side. This slide acts as a guide for the location where the apatite grains will be placed on the double sided tape once the two slides are lined up correctly. Inclusion-free apatite grains with euhedral to subhedral grain shape were picked and placed in a raster on the double sided tape. Rasters of at least  $12 \times 12$  grains were preferable, however, in cases were apatite was not abundant, smaller square rasters were used.

Five glass slides were used in total with two samples on each slide, both samples place at the same end, in line with each other 7.5 mm from the end.

## Mounting, Grinding and Polishing

Mounting of the grains is required to ease the process of counting and to ensure the grains are not lost during the LA-ICP-MS sessions. Before mounting can occur, glass slides have to be placed in an array. The array is as follows: the glass slide with the apatite raster in the centre, at each end, one slide perpendicular to the end of the apatite slide, one more slide at each end on top of the slides, perpendicular with the apatite slide and about 1 cm onto the end of the apatite slide. Once the resin is placed on the apatite slide, a final slide is laid on top of the array directly on top of the apatite slide, this ensures there is one slide length between these two slides. The grains were mounted in a mixture of epoxyCure resin (20-8130-032) and epoxyCure hardener (20-8132-008) with a ratio of 5 : 1. 20 minutes of stirring the mixture was required to ensure it was mixed enough for it to be considered homogenous throughout. Once the mixture is homogeneous, small drops of it were placed on top of the apatite grain raster sitting on the double sided tape. The drops were big enough to cover the entire raster and must exceed one glass slide in height so the final slide in the array comes into contact and sticks to the resin.

The resin was left to harden over a period of 3-4 days before the two attached slides are separated using a razor blade. The razor blade has to slide between the double sided tape and the slide which the tape is attached to. Once it has completely removed the tape from the slide, the tape can be peeled off the resin, leaving the grains exposed at the top of the resin with the other end of the resin attached to the final slide in the array.

- 1. Once the tape is removed, the sample needs to be ground down to expose internal grain sections. The steps for grinding and polishing are as follows: Round the edges of the glass slide using Zinc Lapping Discs
- 2. Apply water to Waterproof Silicon Carbide Paper before grinding off the top layer of resin by applying equal pressure to the sample and moving the sample in a figure of eight around the wet carbide paper. Repeat this step, stopping to check the progress under a microscope constantly, until top layer of resin, all remaining tape and the top of the grains are removed. Begin with #1200 paper before using #2400 for finer grinding when grinding is nearing completion.

- 3. Once the samples are ground down to an adequate level, they must be polished. A Struers DP-U4 Cloth Lap with 3  $\mu$ m or 1  $\mu$ m polishing cloths and the associated diamond suspension polishing lubricant were used to polish the samples.
- Polishing was completed in five minute blocks until fully polished, first on the 3 μm cloth and later on the 1 μm cloth for finer polishing. While polishing, the samples were held horizontal and were constantly rotated to apply an even polish on the sample.

## Etching

Once the samples were polished, they were submerged and etched in 5 M HNO3 which was at 20 °C for 20 seconds. After the 20 seconds, they were dropped in a jug of water to dilute all remaining acid on the samples. Etching of Samples is required to enable fission tracks to be seen under the microscope by dissolving the surface of the grain, thus increasing the size of the fission tracks (Figure 8).



Figure 8, an example of an etched apatite grain surface. The whole are the etch pits  $(D_{par})$  of the fission tracks. The photo is taken in reflected light using an Olympus BX51 Microscope, with an Olympus DP21 camera and computer attachment, on 100x zoom.

## **Counting and Measuring**

Uranium is found in trace amounts within the crystal lattice in apatite and when U undergoes spontaneous fission, it damages the crystal lattice, leaving a 'fission track' (Figure 2). Each fission track is the remnant of a single fission event (Gleadow *et al.* 2002a). Above a 60 °C, these fission tracks can anneal and above 120 °C, completely repair the crystal lattice. Therefore, below 60 °C (the closure temperature), the fission tracks remain in the crystal lattice (Green *et al.* 1985). Between 60 – 120 °C (known as the partial annealing zone; PAZ), fission tracks are able to anneal but not completely repair the crystal lattice. The fission tracks anneal more (thus decreasing the length of the fission track) with more time spent within the PAZ. Shorter fission tracks indicate longer time spent within the PAZ therefore, indicating the rate of cooling. As fission tracks are only partially annealed within the PAZ, this is the temperature range which is

revealed when the AFT age is concluded when etched fission tracks are counted and combined with the U concentration of the grain.

The degree of shortening is proportional to the cooling rate and hence length measurements can be used further constrain the thermal history of the samples. Tracks which are completely confined within the crystal lattice, horizontal and etched through the contact with another track (Figure 10; TINT) or cleavage (TINCLE) can be measured to conclude the rate of cooling (Gleadow *et al.* 1986).



Figure 9, an example of an etched apatite grain. The dark lines within the grain are the fission tracks. The photo is taken using transmitted light on an Olympus BX51 Microscope, with an Olympus DP21 camera and computer attachment, on 100x zoom.

All counting and measuring was conducted on an Olympus BX51 Microscope, with an Olympus DP21 camera and computer attachment, on 100x zoom, using both transmitted and reflected light.

Counting was undertaken with the intention of counting 1000 fission tracks over 20-30 grains counted per sample.

Grains were selected for counting by passing a set of criteria:

- 1. Large enough grain size to count.
- 2. Random spread of fission tracks.
- 3. Reasonable amount of tracks, therefore, grains with too few or too many tracks were not counted.
- 4. Well-polished grains

Once a grain was selected for counting, the raster in the eye-piece was placed over the region of the grain to be counted and the dimensions of the counted area were documented. All the fission tracks were counted in the region and the final number was documented. A photograph was taken of the region for verification later. This process was repeated on all the grains possible until the goal number was reached.

The goal number for measuring was 100 confined tracks per sample, with a minimum of 20 confined tracks if only less than 20 confined tracks could be measured, these data was not used in further interpretations. All possible grains were checked for confined tracks and if the track could be verified to be horizontal and completely confined, its

length was measured. The angle to the C-axis and 5  $D_{par}$  (etch pit lengths) were also measured. Finally, the type of track-intersection (TINT or TINCLE) was noted. This was repeated on each sample until all the confined tracks had been measured, limited to 100 per sample.



Figure 10, an example of a confined track (a TINT in this example), as indicated by the red line covering the confined track. #1 distance indicates the length and location of the track, #2 indicates the angle of the track to the C-axis of the grain wile the last measurement indicates the length of an etch pit ( $D_{par}$ ; measured in reflected light). The photo is taken using transmitted light on an Olympus BX51 Microscope, with an Olympus DP21 camera and computer attachment, on 100x zoom.

## LA-ICP-MS

The Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometer was used to conclude the concentrations of  $U^{238}$ ,  $U^{235}$ , and  $Ca^{44}$ . This information was gathered by ablating the apatite crystals at the exact position (the actual spot size, which is listed in Table 1, used was often slightly smaller than the counted region. In this case, the spot was placed in the centre of the counted area which is a valid approach if track counts appeared homogenous throughout the counted region.) which was counted as U and Ca concentrations can change over the grain (Hasebe *et al.* 2004) and allowing the Mass-Spectrometer to calculate the concentration . All information about the LA-ICP-MS used is identified in Table 4.

A total of 160 grains were sampled on the laser not including the two sets of standards, each sample was used in an exact sequence to allow for ease in the data reduction phase. One sequence consisted of 80 unknowns measurements, therefore, the sequence was run twice to accommodate the 160.

The sequence is:

- 1. 3 Known glass standards (NIST 610, NIST 612 and NIST 614), each measured twice
- 2. 2 Apatite Durango standards
- 3. 8 unknowns from the samples

| ICPM-MS                               |                                               |
|---------------------------------------|-----------------------------------------------|
| Brand and model                       | Agilent 7700s                                 |
| Forward power                         | 1300 W                                        |
| Gas flows (L/min)                     |                                               |
| Cool (Ar)                             | 15.00                                         |
| Auxiliary (Ar)                        | 0.89                                          |
| Carrier (He)                          | 0.70                                          |
| Sample (Ar)                           | 0.93                                          |
| Laser                                 |                                               |
| Type of Laser                         | Excimer laser                                 |
| Brand and Model                       | Resonetics M-50-LR                            |
| Laser wavelength                      | 193nm                                         |
| Pulse duration                        | 20 ns                                         |
| Spot size                             | 32 μm                                         |
| Repetition rate                       | 5 Hz                                          |
| Energy attenuation                    | 50%                                           |
| Laser fluency                         | ~7 J/cm <sup>-2</sup>                         |
| Laser warm up (background collection) | 15 s                                          |
| Data acquisition parameters           |                                               |
| Data acquisition protocol             | Time-resolved analysis                        |
| Scanned masses                        | 235, 238, 43                                  |
| Samples per peak                      | 1                                             |
| Number of scans per peak              | 1                                             |
| Detector mode                         | Pulse counting                                |
| Detector deadtime                     | 35 ns                                         |
| Background collection                 | 15 s                                          |
| Ablation for age calculation          | 30 s                                          |
| Washout                               | 15 s                                          |
| Standardisation and data reduction    |                                               |
| Primary standard used                 | NIST 610, NIST 612, NIST 614 calibration line |
| Secondary standard used               | Durango apatite (McDowell et al. 2005)        |
| Data reduction software used          | In-house Excel <sup>®</sup> spreadsheet       |
| ICPM-MS                               |                                               |
| Brand and model                       | Agilent 7700s                                 |
|                                       |                                               |

This sequence was repeated until all 80 unknowns are measured and repeated again for the second batch of 80 unknowns.

| Brand and model | Agilent 7700s |
|-----------------|---------------|
| Forward power   | 1300 W        |

Gas flows (L/min)

Table 4, the parameters for LA-ICP-MS instrumental setup, data acquisition and data reduction.

## (U-Th-Sm)/He Dating

Helium (<sup>4</sup>He) diffusion through the radiogenic decay of Uranium and Thorium can be used to calculate the age at which rocks passed through a certain temperature as, above this closure temperature, <sup>4</sup>He can freely diffuse out of the mineral grain, however, below the closure temperature, the <sup>4</sup>He is trapped within the grain. Therefore, by determining the amount of <sup>4</sup>He to U and Th, the age of the closure temperature (The closure temperature for apatite is 45 °C and around 170 °C for zircon) can be concluded (Farley 2002).

Two apatite separates and one zircon separate were picked using a picking needle under two Olympus SZ61 picking microscopes. Only the grains with the best grain shape, Over 70  $\mu$ m in diameter and without inclusions or zonation were picked. These samples were sent to the John De Laeter Center at Curtin University in Perth for (U-Th-Sm)/He Dating. For detailed methods of (U-Th)/He Dating at John De Laeter Center, refer to Li *et al.* (2014).

Upon receiving the samples, grains which best suited the criteria for analysis were selected and measured for the calculation of an alpha correction factor (Farley *et al.* 1996).

## Apatite:

He was extracted from the selected grains by loading the grains into platinum microcrucibles and heated by a 1064 nm Nd-YAG laser. The U and Th concentration was concluded using isotope dilution. The Apatite was dissolved in 7 M HNO<sub>3</sub> over 12 hours and the resulting concentration of U and Th was recorded and calibrated against a standard using a Mass spectrometer.

## Zircon:

The zircons were loaded into Niobium microvials and the He was extracted by heating the crystals to >1200 °C by a 1064 nm Nd-YAG laser. Isotope dilution inductively coupled mass spectrometry was used to determine the concentrations U and Th. The zircons were digested in 350  $\mu$ l of HF for 40 hours, at 240 °C. Following this, 200 °C, 300  $\mu$ l of HCl was used on each sample for 24 hours to dissolve any remaining fluoride salts. After the 24 hour period, the U and Th concentrations were measured with a mass spectrometer.



Figure 11, an example of a zircon grain used in (U-Th-Sm)/He analysis. This grain exhibits all the criteria needed for (U-Th-Sm)/He analysis. The photo is taken using transmitted light on an Olympus BX51 Microscope, with an Olympus DP21 camera and computer attachment, on 100x zoom.

## **APPENDIX B: EXTENDED DATA SPREADSHEETS**

| Durango | Durango  | Durango  | Durango   | Durango  | Durango  | Durango  |        |          |          |     |       |        |        |      |
|---------|----------|----------|-----------|----------|----------|----------|--------|----------|----------|-----|-------|--------|--------|------|
| Sample  | meas     | SD %     | moos 11   | SD %     | meas     | SD %     | 238U   | DE       | 20       | No  | ^     | rho c  | t (Ma) | SD + |
| Sample  | 230      | 30 %     | 111005 44 | 30 %     | 230/44   | 30 %     | Dui    |          | 30       | 115 | A     | 110 5  |        | 3D ( |
| A1 ii   | 5204.602 | 0.780542 | 1467202   | 0.797734 | 0.003563 | 0.81005  | 11.337 | 0.818022 | 0.092737 | 10  | 10000 | 100000 | 17.63  | 5.58 |
| A1iii   | 5413.557 | 0.818547 | 1532061   | 0.715591 | 0.003539 | 0.614246 | 11.245 | 0.625923 | 0.070382 | 17  | 10000 | 170000 | 30.19  | 7.32 |
| A1iv    | 5315.266 | 0.817117 | 1484304   | 0.762601 | 0.00359  | 0.662056 | 11.405 | 0.673017 | 0.076756 | 27  | 10000 | 270000 | 47.21  | 9.09 |
| A1v     | 6183.756 | 0.666393 | 1763729   | 0.52731  | 0.003508 | 0.480055 | 11.128 | 0.49816  | 0.055435 | 20  | 10000 | 200000 | 35.87  | 8.02 |
| A1vi    | 5786.281 | 0.657035 | 1662528   | 0.59703  | 0.003485 | 0.544156 | 11.056 | 0.560423 | 0.061961 | 15  | 10000 | 150000 | 27.10  | 7.00 |
| A1vii   | 5967.316 | 0.789436 | 1702111   | 0.788077 | 0.003513 | 0.560005 | 11.130 | 0.579836 | 0.064535 | 16  | 10000 | 160000 | 28.71  | 7.18 |
| A1viii  | 5959.345 | 0.74171  | 1697707   | 0.706684 | 0.003517 | 0.557681 | 11.139 | 0.577904 | 0.064373 | 17  | 10000 | 170000 | 30.47  | 7.39 |
| A1ix    | 5890.381 | 0.760137 | 1665416   | 0.764708 | 0.003545 | 0.569653 | 11.213 | 0.594688 | 0.066683 | 14  | 10000 | 140000 | 24.94  | 6.67 |
| A1x     | 5755.595 | 0.897147 | 1670911   | 0.748738 | 0.003448 | 0.636214 | 10.907 | 0.659075 | 0.071884 | 23  | 10000 | 230000 | 42.07  | 8.78 |
| A2i     | 6293.804 | 0.794335 | 1303949   | 0.766837 | 0.004837 | 0.625549 | 15.278 | 0.654706 | 0.100029 | 11  | 10000 | 110000 | 14.39  | 4.34 |
| A2ii    | 6149.711 | 0.731716 | 1286531   | 0.694524 | 0.004788 | 0.562224 | 15.121 | 0.594971 | 0.089963 | 19  | 10000 | 190000 | 25.10  | 5.76 |
| A2iii   | 6291.256 | 0.821922 | 1296939   | 0.849302 | 0.004864 | 0.560383 | 15.339 | 0.600965 | 0.09218  | 17  | 10000 | 170000 | 22.14  | 5.37 |
| A2iv    | 6265.231 | 0.719768 | 1307129   | 0.655684 | 0.004798 | 0.521549 | 15.132 | 0.565517 | 0.085574 | 28  | 10000 | 280000 | 36.93  | 6.98 |
| A2v     | 5586.725 | 0.816144 | 1308790   | 0.767984 | 0.004277 | 0.582099 | 13.467 | 0.630377 | 0.084895 | 18  | 10000 | 180000 | 26.70  | 6.29 |
| A2vi    | 5595.005 | 0.732748 | 1316169   | 0.661684 | 0.004258 | 0.588504 | 13.408 | 0.636897 | 0.085393 | 13  | 10000 | 130000 | 19.38  | 5.38 |
| A2vii   | 7206.376 | 0.984337 | 1469407   | 0.962133 | 0.004915 | 0.556018 | 15.457 | 0.617001 | 0.095367 | 12  | 10000 | 120000 | 15.52  | 4.48 |
| A2x     | 6258.22  | 0.85574  | 1476901   | 0.760441 | 0.004245 | 0.593571 | 13.326 | 0.662873 | 0.088337 | 13  | 10000 | 130000 | 19.50  | 5.41 |
| A3 i    | 3976.415 | 0.932536 | 1572651   | 0.864427 | 0.002538 | 0.790547 | 8.125  | 0.84704  | 0.068823 | 12  | 10000 | 120000 | 29.49  | 8.52 |
| A3 ii   | 4059.414 | 0.812417 | 1576875   | 0.453207 | 0.002577 | 0.818805 | 8.250  | 0.873551 | 0.072071 | 7   | 10000 | 70000  | 16.96  | 6.41 |
| A3 iii  | 3845.016 | 1.003002 | 1547789   | 1.057884 | 0.002498 | 0.841842 | 7.995  | 0.89757  | 0.071762 | 9   | 10000 | 90000  | 22.49  | 7.50 |
| A3 iv   | 3903.929 | 1.023499 | 1533832   | 0.905053 | 0.002548 | 0.710942 | 8.155  | 0.776407 | 0.06332  | 13  | 10000 | 130000 | 31.83  | 8.83 |
| A3 v    | 3804.198 | 0.801235 | 1556443   | 0.659902 | 0.002449 | 0.724765 | 7.833  | 0.794621 | 0.062246 | 12  | 10000 | 120000 | 30.59  | 8.83 |
| A3 vi   | 3860.257 | 1.006018 | 1522276   | 1.017043 | 0.002551 | 0.89755  | 8.160  | 0.955232 | 0.07795  | 11  | 10000 | 110000 | 26.92  | 8.12 |

885714.3

666666.7

483333.3

8100 592592.6

3500

3600

6000

31

48

24

29

| A3 vii    | 3765.668     | 0.910583 | 1564796 | 0.660635 | 0.00241  | 0.794129 | 7.706  | 0.86646  | 0.066771 |    | 3 10000 | 80000  | 20.74  | 7.34  |
|-----------|--------------|----------|---------|----------|----------|----------|--------|----------|----------|----|---------|--------|--------|-------|
| A3 viii   | 3757.928     | 0.853126 | 1558783 | 0.920373 | 0.002425 | 0.873483 | 7.755  | 0.940274 | 0.072923 | 1  | 10000   | 100000 | 25.76  | 8.15  |
| A3 ix     | 3781.148     | 1.098848 | 1559980 | 0.929852 | 0.002429 | 0.783381 | 7.764  | 0.867484 | 0.06735  | 1  | 1 10000 | 110000 | 28.30  | 8.53  |
| A3 x      | 3870.286     | 0.747244 | 1558711 | 0.749909 | 0.002491 | 0.709679 | 7.962  | 0.802382 | 0.063882 | 1  | 10000   | 100000 | 25.09  | 7.94  |
| A4 i      | 4079.206     | 0.914715 | 1528214 | 0.886524 | 0.002681 | 0.791794 | 8.566  | 0.888404 | 0.0761   | 1  | 5 10000 | 150000 | 34.95  | 9.03  |
| A4 ii     | 4155.376     | 0.778796 | 1551111 | 0.73691  | 0.002686 | 0.699697 | 8.582  | 0.808409 | 0.069374 |    | 9 10000 | 90000  | 20.96  | 6.99  |
| A4 iii    | 4055.161     | 0.813519 | 1508372 | 0.864359 | 0.002705 | 0.937802 | 8.640  | 1.034416 | 0.089368 | 1  | 4 10000 | 140000 | 32.35  | 8.65  |
| A4 iv     | 4610.728     | 0.933498 | 1497983 | 0.914205 | 0.003088 | 0.69177  | 9.863  | 0.819152 | 0.080796 | 2  | 2 10000 | 220000 | 44.49  | 9.49  |
| A4 v      | 5029.624     | 1.056781 | 1535177 | 0.924274 | 0.003282 | 0.703321 | 10.480 | 0.847436 | 0.088812 | 2  | 2 10000 | 220000 | 41.88  | 8.94  |
| A4 vi     | 4972.174     | 0.693253 | 1550556 | 0.50667  | 0.003212 | 0.71146  | 10.254 | 0.8555   | 0.087724 | 1  | 9 10000 | 190000 | 36.98  | 8.49  |
| A4 vii    | 5109.164     | 0.947149 | 1566175 | 0.999849 | 0.003278 | 0.716605 | 10.463 | 0.880155 | 0.092087 | 1  | 5 10000 | 160000 | 30.54  | 7.64  |
| A4 viii   | 4185.593     | 0.920435 | 1554199 | 0.822316 | 0.0027   | 0.749688 | 8.617  | 0.908676 | 0.078301 | 1  | 5 10000 | 150000 | 34.75  | 8.98  |
| A4 ix     | 4041.448     | 0.922367 | 1491328 | 0.92544  | 0.002723 | 0.825923 | 8.687  | 0.992806 | 0.086248 | 1  | 7 10000 | 170000 | 39.05  | 9.48  |
| A4 x      | 3772.82      | 0.80567  | 1438021 | 0.732425 | 0.00263  | 0.68756  | 8.390  | 0.882643 | 0.07405  | 1  | 3 10000 | 180000 | 42.80  | 10.10 |
| A5i       | 15920.41     | 0.628208 | 2007784 | 0.588214 | 0.007935 | 0.414793 | 12.115 | 0.668396 | 0.080976 | 2  | 2 10000 | 220000 | 36.24  | 7.73  |
| A5ii      | 16365.58     | 0.756642 | 2036690 | 0.73565  | 0.008042 | 0.419929 | 12.267 | 0.672414 | 0.082487 | 1  | 4 10000 | 140000 | 22.80  | 6.10  |
| A5iii     | 15524.97     | 0.903861 | 1932048 | 0.908992 | 0.008042 | 0.372676 | 12.101 | 0.675033 | 0.081683 | 2  | 3 10000 | 230000 | 37.93  | 7.91  |
| A5iv      | 15291.69     | 0.770835 | 1881252 | 0.728878 | 0.008134 | 0.426301 | 12.227 | 0.709104 | 0.086705 | 2  | 10000   | 200000 | 32.66  | 7.31  |
| A5v       | 15248.44     | 0.885645 | 1866454 | 0.826312 | 0.008172 | 0.400322 | 12.120 | 0.753955 | 0.09138  | 2  | 10000   | 200000 | 32.94  | 7.37  |
| A5vi      | 14747.98     | 0.89339  | 1849774 | 0.824401 | 0.007977 | 0.440156 | 11.819 | 0.7805   | 0.092251 | 1  | 5 10000 | 160000 | 27.04  | 6.76  |
| Peake and | d Denison Sa | amples   |         |          |          |          |        |          |          |    |         |        |        |       |
|           | meas         |          |         |          | meas     |          | 238U   |          |          |    |         |        |        |       |
| Sample    | 238          | SD %     | meas 44 | SD %     | 238/44   | SD %     | Dur    | RF       | SD       | Ns | A       | rho s  | t (Ma) | SD t  |
| 62 E3     | 4560.636     | 2.271577 | 1162135 | 0.992325 | 0.00391  | 1.626587 | 12.291 | 1.630588 | 0.200419 | 3  | 3 5000  | 760000 | 122.59 | 19.99 |

9.227 0.728657 0.067233

1.194357

1.00886 0.035551

1.81706 0.147453

0.06027

3.524

8.115

5.046

62 E10

62 F6

62 F10

62 H5

4099.805 0.820335

1453.979 1.304232

3166.985 1.371508

1972.44 1.556837

0.708215

0.6959

1399297

1241485 0.913392

1224142 0.659302

1295101

0.002936 0.719616

0.001121 1.002317

0.002582 1.813414

0.001606 1.188771

189.32

328.09

162.37

188.91

34.03

47.47

33.27

35.15

| 62 J5  | 1626.74  | 1.480605 | 1452648  | 0.914924 | 0.00112  | 1.194437 | 3.520  | 1.200072 | 0.042238 | 56  | 10000 | 560000   | 310.84 | 41.70  |
|--------|----------|----------|----------|----------|----------|----------|--------|----------|----------|-----|-------|----------|--------|--------|
| 62 J11 | 4369.249 | 1.959497 | 1362536  | 0.649889 | 0.0032   | 1.727646 | 10.050 | 1.731576 | 0.174031 | 61  | 6300  | 968254   | 189.99 | 24.55  |
| 62K3   | 3490.449 | 1.857228 | 1192789  | 1.501114 | 0.002756 | 6.810838 | 8.648  | 6.811936 | 0.589073 | 79  | 5600  | 1410714  | 318.51 | 41.89  |
| 62 K4  | 2989.634 | 1.132928 | 1225262  | 0.852278 | 0.002442 | 0.821665 | 7.662  | 0.830822 | 0.06366  | 54  | 3500  | 1542857  | 390.92 | 53.30  |
| 62 K7  | 9194.591 | 0.924063 | 1683867  | 1.000017 | 0.005477 | 1.043609 | 17.182 | 1.051007 | 0.180585 | 107 | 5600  | 1910714  | 218.82 | 21.28  |
| 62 K8  | 1550.546 | 1.161732 | 1483788  | 0.800096 | 0.001047 | 1.013037 | 3.284  | 1.020751 | 0.033523 | 41  | 5400  | 759259.3 | 446.88 | 69.94  |
| 62 K10 | 2608.132 | 0.902472 | 1527272  | 0.911159 | 0.001717 | 0.987881 | 5.386  | 0.995889 | 0.053636 | 31  | 3600  | 861111.1 | 312.32 | 56.18  |
| 62 L1  | 666.1241 | 1.854583 | 999556.9 | 1.516241 | 0.000671 | 1.524113 | 2.101  | 1.53017  | 0.03215  | 32  | 6300  | 507936.5 | 466.56 | 82.79  |
| 62 L4  | 8052.788 | 1.125399 | 1187136  | 1.096521 | 0.006793 | 0.55166  | 21.285 | 0.568425 | 0.120989 | 171 | 6000  | 2850000  | 262.57 | 20.13  |
| 62 L5  | 3513.173 | 1.525437 | 1362539  | 0.77205  | 0.002574 | 1.2036   | 8.066  | 1.211493 | 0.097717 | 64  | 3500  | 1828571  | 438.50 | 55.07  |
| 62 L6  | 2957.678 | 1.258028 | 1383439  | 0.994108 | 0.002138 | 0.814443 | 6.699  | 0.826238 | 0.055351 | 75  | 6000  | 1250000  | 363.05 | 42.03  |
| 62 L8  | 3310.316 | 2.55634  | 1456060  | 1.205047 | 0.002249 | 1.712146 | 7.046  | 1.717962 | 0.121039 | 45  | 2800  | 1607143  | 441.12 | 66.19  |
| 62 L10 | 5797.034 | 2.357843 | 1498392  | 1.055299 | 0.003824 | 1.557203 | 11.977 | 1.563695 | 0.18728  | 70  | 7200  | 972222.2 | 160.46 | 19.34  |
| 62 L11 | 6914.565 | 0.71564  | 1376349  | 1.028215 | 0.005057 | 1.073971 | 15.823 | 1.084779 | 0.171644 | 59  | 3000  | 1966667  | 244.09 | 31.89  |
| 60 A1  | 2133.497 | 1.669652 | 731241.4 | 2.055911 | 0.003097 | 3.073669 | 9.691  | 3.077523 | 0.298242 | 36  | 2800  | 1285714  | 260.22 | 44.10  |
| 60 B1  | 1527.216 | 1.775659 | 978814.2 | 1.359928 | 0.001561 | 1.1368   | 4.881  | 1.147859 | 0.05603  | 38  | 4800  | 791666.7 | 316.70 | 51.50  |
| 60 B4  | 1735.939 | 1.120001 | 1231321  | 0.803822 | 0.001411 | 0.888237 | 4.413  | 0.902572 | 0.039832 | 87  | 7200  | 1208333  | 525.97 | 56.59  |
| 60 B9  | 1094.241 | 3.03939  | 741508.8 | 1.576035 | 0.001507 | 3.096163 | 4.710  | 3.101017 | 0.146052 | 36  | 3600  | 1000000  | 411.54 | 69.77  |
| 60 C1  | 1221.833 | 1.89824  | 937127.2 | 1.418789 | 0.001303 | 1.110111 | 4.070  | 1.123791 | 0.045734 | 23  | 2000  | 1150000  | 542.14 | 113.21 |
| 60 C3  | 1509.816 | 1.134412 | 1062543  | 1.131668 | 0.001431 | 1.083745 | 4.470  | 1.097973 | 0.049084 | 46  | 4000  | 1150000  | 495.35 | 73.24  |
| 60 C4  | 706.0073 | 3.648509 | 860080.7 | 1.951166 | 0.000807 | 2.803254 | 2.520  | 2.808872 | 0.07078  | 25  | 3000  | 833333.3 | 630.08 | 127.25 |
| 60 C9  | 1119.114 | 1.440917 | 1173454  | 1.045397 | 0.000955 | 1.098403 | 2.983  | 1.112886 | 0.033196 | 35  | 6000  | 583333.3 | 379.99 | 64.37  |
| 60 C10 | 3491.765 | 1.752334 | 946145.1 | 0.852679 | 0.003674 | 1.212352 | 11.475 | 1.225694 | 0.140648 | 82  | 4500  | 1822222  | 310.25 | 34.47  |
| 60 C11 | 4827.181 | 4.329665 | 869057.8 | 1.336932 | 0.005847 | 4.995099 | 18.259 | 4.998405 | 0.91267  | 50  | 1500  | 3333333  | 355.41 | 53.31  |
| 60 D3  | 3379.681 | 1.090632 | 898223.8 | 0.970293 | 0.003782 | 1.030704 | 11.799 | 1.049198 | 0.123798 | 36  | 2100  | 1714286  | 284.42 | 47.50  |
| 60 D6  | 3064.283 | 3.891064 | 1190555  | 0.996718 | 0.002507 | 2.906402 | 7.821  | 2.913211 | 0.227835 | 50  | 3000  | 1666667  | 413.02 | 59.64  |
| 60 D9  | 3519.238 | 4.969181 | 952604.1 | 1.775882 | 0.003659 | 4.107816 | 11.413 | 4.112708 | 0.469401 | 21  | 1800  | 1166667  | 201.41 | 44.73  |
| 60 D11 | 1305.025 | 1.596954 | 1016452  | 0.7783   | 0.001281 | 1.267013 | 3.994  | 1.283019 | 0.05125  | 46  | 5000  | 920000   | 445.24 | 65.90  |

| 7327 A1         | 641.1482 | 1.651866 | 1150786 | 0.852171 | 0.000559 | 1.538308 | 1.742  | 1.551711 | 0.027038 | 45  | 3500  | 1285714  | 1329.74 | 199.30 |
|-----------------|----------|----------|---------|----------|----------|----------|--------|----------|----------|-----|-------|----------|---------|--------|
| 7327 A4         | 764.7456 | 2.388045 | 1145288 | 1.132232 | 0.000661 | 1.634896 | 2.061  | 1.647699 | 0.033961 | 42  | 3200  | 1312500  | 1163.02 | 180.48 |
| 7327 B1         | 643.1342 | 1.634777 | 1124749 | 0.720064 | 0.000572 | 1.516241 | 1.785  | 1.530238 | 0.02731  | 61  | 3600  | 1694444  | 1665.36 | 214.75 |
| 7327 B2         | 735.6445 | 1.628348 | 1238301 | 0.926835 | 0.000594 | 1.318854 | 1.850  | 1.337102 | 0.024733 | 19  | 5400  | 351851.9 | 369.90  | 85.01  |
| 7327 B9<br>7327 | 719.0018 | 1.428128 | 1330457 | 0.584252 | 0.000542 | 1.511881 | 1.688  | 1.528048 | 0.025797 | 32  | 5000  | 640000   | 717.33  | 127.28 |
| B11             | 683.3858 | 1.547341 | 1206013 | 0.76367  | 0.000569 | 1.594541 | 1.772  | 1.610091 | 0.028531 | 76  | 4900  | 1551020  | 1549.74 | 179.51 |
| 7327 C1         | 603.2671 | 1.399523 | 1206935 | 0.722139 | 0.000501 | 1.272633 | 1.559  | 1.29233  | 0.020146 | 30  | 4200  | 714285.7 | 857.46  | 156.94 |
| 7327 C2         | 5232.883 | 0.921886 | 1196703 | 1.084642 | 0.004401 | 0.864436 | 13.707 | 0.893571 | 0.122482 | 215 | 5400  | 3981481  | 556.64  | 38.29  |
| 7327 C3         | 672.9417 | 1.659353 | 1339985 | 0.728724 | 0.000502 | 1.42518  | 1.563  | 1.443281 | 0.022554 | 34  | 5400  | 629629.6 | 759.84  | 130.77 |
| 7327 C7         | 485.1043 | 1.99381  | 1357638 | 1.12058  | 0.000361 | 2.417186 | 1.124  | 2.428049 | 0.027287 | 40  | 4000  | 1000000  | 1572.54 | 251.55 |
| 7327 C8<br>7327 | 654.6547 | 1.391703 | 1251534 | 0.543428 | 0.000523 | 1.273036 | 1.629  | 1.29382  | 0.021073 | 46  | 10000 | 460000   | 541.84  | 80.20  |
| C11             | 740.71   | 1.991498 | 1337975 | 1.065995 | 0.000551 | 1.377075 | 1.713  | 1.398717 | 0.023956 | 142 | 9000  | 1577778  | 1621.64 | 137.96 |
| 7327 D9<br>7327 | 697.3518 | 2.313792 | 1351596 | 1.732066 | 0.000516 | 1.521251 | 1.604  | 1.541122 | 0.024714 | 70  | 7000  | 1000000  | 1140.91 | 137.49 |
| D11<br>7327     | 752.8393 | 1.721723 | 1320943 | 1.292858 | 0.000571 | 1.305596 | 1.776  | 1.328991 | 0.023606 | 91  | 10000 | 910000   | 951.58  | 100.55 |
| E14             | 634.4335 | 1.830784 | 1238157 | 1.549142 | 0.000513 | 1.190094 | 1.597  | 1.216039 | 0.019417 | 35  | 4900  | 714285.7 | 838.37  | 142.08 |
| 7327 F1         | 734.9358 | 1.576159 | 1189276 | 0.763293 | 0.000618 | 1.40262  | 1.923  | 1.42498  | 0.027403 | 47  | 4200  | 1119048  | 1070.66 | 156.92 |
| 7327 F6<br>7327 | 792.9012 | 1.552323 | 1258503 | 0.568831 | 0.00063  | 1.492261 | 1.960  | 1.513562 | 0.029667 | 35  | 6300  | 555555.6 | 543.71  | 92.27  |
| F12             | 797.3541 | 1.681959 | 1286888 | 1.365603 | 0.000621 | 1.103329 | 1.929  | 1.132331 | 0.021845 | 97  | 8000  | 1212500  | 1149.16 | 117.40 |
| 7327 G8<br>7327 | 764.6105 | 1.455945 | 1229907 | 0.727282 | 0.000622 | 1.38509  | 1.935  | 1.40859  | 0.027258 | 66  | 6300  | 1047619  | 1001.56 | 124.09 |
| G11             | 792.0675 | 1.622633 | 1355458 | 0.981617 | 0.000584 | 1.324828 | 1.815  | 1.352198 | 0.024546 | 100 | 7000  | 1428571  | 1409.22 | 142.20 |
| 7327 H2         | 271.1191 | 2.488692 | 1140208 | 0.567135 | 0.000238 | 2.462454 | 0.739  | 2.477464 | 0.018303 | 44  | 4200  | 1047619  | 2351.87 | 359.31 |
| 7327 H3         | 683.3352 | 1.428061 | 1184788 | 0.966713 | 0.00058  | 1.426161 | 1.801  | 1.452228 | 0.026148 | 39  | 5600  | 696428.6 | 731.08  | 117.55 |
| 7327 I2<br>7327 | 709.4202 | 1.672583 | 1142629 | 0.893286 | 0.000622 | 1.531599 | 1.932  | 1.556186 | 0.03006  | 50  | 6400  | 781250   | 762.55  | 108.49 |
| 113             | 694.6511 | 2.094469 | 1236515 | 1.445592 | 0.000562 | 1.537188 | 1.744  | 1.561974 | 0.027236 | 31  | 3600  | 861111.1 | 919.59  | 165.79 |

| 7327 J7         | 721.5096 | 1.243599 | 1246351  | 0.668684 | 0.00058  | 1.225515 | 1.801  | 1.256823 | 0.022641 | 39 | 3600 | 1083333  | 1103.56 | 177.25 |
|-----------------|----------|----------|----------|----------|----------|----------|--------|----------|----------|----|------|----------|---------|--------|
| 1321            | 3172 315 | 2 608878 | 1151332  | 1 086/58 | 0 002080 | 1 62/561 | 0 280  | 1 6/8583 | 0 152005 | 35 | 3000 | 1166667  | 246.83  | 11 02  |
| 7582            | 0472.040 | 2.030070 | 1101002  | 1.300430 | 0.002303 | 1.024001 | 3.200  | 1.040303 | 0.152335 |    | 5000 | 1100007  | 240.00  | 41.52  |
| B6i             | 9621.037 | 1.886932 | 1232148  | 1.706211 | 0.007788 | 0.527261 | 24.179 | 0.596424 | 0.144208 | 70 | 2000 | 3500000  | 283.40  | 33.92  |
| B6ii            | 5231.792 | 2.6506   | 657844.5 | 1.240746 | 0.007918 | 2.493463 | 24.557 | 2.511055 | 0.61665  | 52 | 1600 | 3250000  | 259.59  | 36.58  |
| 7582 D4         | 1630.399 | 4.345889 | 313108.3 | 4.342209 | 0.005597 | 7.237426 | 17.350 | 7.243917 | 1.256817 | 44 | 1500 | 2933333  | 329.81  | 55.16  |
| 7571 A8         | 4327.874 | 1.660975 | 1619286  | 1.091409 | 0.002658 | 0.821051 | 8.407  | 0.875745 | 0.073624 | 38 | 2100 | 1809524  | 417.02  | 67.75  |
| 7571 B4         | 5990.92  | 1.653075 | 1613297  | 1.294732 | 0.003706 | 0.773587 | 11.720 | 0.831629 | 0.097465 | 17 | 1600 | 1062500  | 178.95  | 43.43  |
| 7571 B6         | 3011.361 | 2.167116 | 1539121  | 1.857227 | 0.001953 | 0.987101 | 6.176  | 1.033319 | 0.063821 | 11 | 900  | 1222222  | 384.38  | 115.96 |
| 7571 C3         | 1849.065 | 1.686004 | 1531627  | 1.130956 | 0.001208 | 1.238834 | 3.821  | 1.276258 | 0.048771 | 21 | 2000 | 1050000  | 527.75  | 115.36 |
| 7571 D7         | 1992.837 | 1.739758 | 1546675  | 1.117492 | 0.001284 | 1.110375 | 4.058  | 1.153585 | 0.046815 | 33 | 2800 | 1178571  | 556.54  | 97.09  |
| 7571 E3         | 2241.522 | 1.2954   | 1624868  | 0.82023  | 0.001379 | 0.933938 | 4.358  | 0.985159 | 0.042936 | 36 | 4500 | 800000   | 357.30  | 59.65  |
| 7571 E4         | 1710.923 | 1.537865 | 1564353  | 1.205311 | 0.001094 | 0.929488 | 3.459  | 0.981191 | 0.033936 | 21 | 2400 | 875000   | 487.45  | 106.48 |
| 7571 E6         | 1155.16  | 1.992196 | 1611064  | 1.117382 | 0.000713 | 1.342623 | 2.254  | 1.379106 | 0.031082 | 8  | 1800 | 44444.4  | 383.08  | 135.54 |
| 7571 G1         | 2737.487 | 2.09896  | 1539190  | 1.152522 | 0.001772 | 1.655913 | 5.603  | 1.685786 | 0.094452 | 42 | 3000 | 1400000  | 481.67  | 74.77  |
| 7571 G9         | 1460.249 | 1.236204 | 1333515  | 0.640536 | 0.001095 | 1.064411 | 3.461  | 1.11056  | 0.038436 | 26 | 3500 | 742857.1 | 415.89  | 81.69  |
| 7571 H3<br>7571 | 2097.091 | 1.35848  | 1708285  | 1.273779 | 0.001232 | 0.974682 | 3.896  | 1.025155 | 0.039939 | 49 | 6400 | 765625   | 381.81  | 54.68  |
| H13             | 1537.573 | 1.472937 | 1732250  | 0.862668 | 0.000887 | 1.154181 | 2.804  | 1.197355 | 0.033578 | 24 | 3600 | 666666.7 | 459.07  | 93.87  |
| /5/1<br> 11     | 1491,194 | 1,797604 | 1679196  | 0.736457 | 0.000885 | 1.411604 | 2,798  | 1.449762 | 0.040569 | 13 | 2800 | 464285.7 | 323.81  | 89.93  |
| 7571            |          |          |          |          |          |          |        |          |          |    |      |          | 0_0.01  |        |
| 113             | 2059.336 | 1.308748 | 1673853  | 1.142638 | 0.001235 | 1.194005 | 3.904  | 1.239209 | 0.048374 | 26 | 5600 | 464285.7 | 233.76  | 45.94  |
| 9582 B2         | 4424.756 | 1.104677 | 1523635  | 0.834045 | 0.002908 | 0.987343 | 9.189  | 1.042773 | 0.095817 | 38 | 2800 | 1357143  | 289.04  | 46.98  |
| 9582 B7         | 5086.762 | 6.779086 | 1398441  | 3.274342 | 0.003717 | 6.723381 | 11.744 | 6.731809 | 0.790576 | 28 | 1800 | 1555556  | 259.80  | 52.12  |
| 9582 C9         | 3167.946 | 1.609099 | 1726481  | 0.827141 | 0.001825 | 0.967684 | 5.764  | 1.030469 | 0.059398 | 11 | 1600 | 687500   | 234.41  | 70.72  |
| 9582 E9         | 3197.811 | 1.368685 | 1568443  | 0.784116 | 0.002033 | 0.903657 | 6.423  | 0.97176  | 0.062421 | 34 | 3000 | 1133333  | 343.80  | 59.06  |
| 9582 F4         | 846.348  | 2.025972 | 501431   | 1.067563 | 0.001678 | 1.436614 | 5.301  | 1.480792 | 0.078498 | 13 | 1200 | 1083333  | 396.57  | 110.15 |
| 9582 H5         | 2689.245 | 2.146032 | 1757038  | 1.373636 | 0.001532 | 1.849057 | 4.838  | 1.888037 | 0.091345 | 24 | 2400 | 1000000  | 400.96  | 82.20  |

| 9582 H9         | 1601.472 | 1.611429 | 1444261  | 1.573929 | 0.001115 | 1.046687 | 3.522  | 1.114741 | 0.039257 | 17 | 2000 | 850000   | 465.84 | 113.10 |
|-----------------|----------|----------|----------|----------|----------|----------|--------|----------|----------|----|------|----------|--------|--------|
| 9582  9         | 1628.911 | 1.526905 | 1480268  | 1.630051 | 0.00111  | 1.020248 | 3.504  | 1.091283 | 0.038234 | 21 | 2500 | 840000   | 462.85 | 101.13 |
| 9508 I1         | 2717.164 | 1.502236 | 1226578  | 1.236586 | 0.002225 | 1.311353 | 7.019  | 1.387091 | 0.097366 | 21 | 1200 | 1750000  | 480.62 | 105.09 |
| 9508 K3         | 4928.806 | 1.079019 | 1219999  | 1.15172  | 0.004058 | 0.760417 | 12.802 | 0.886977 | 0.113549 | 43 | 1600 | 2687500  | 407.05 | 62.18  |
| 9508 K7         | 3616.07  | 4.208095 | 1293922  | 0.80415  | 0.002769 | 4.356702 | 8.734  | 4.38304  | 0.382828 | 35 | 1800 | 1944444  | 430.85 | 75.24  |
| 9508 L3         | 4006.267 | 5.262623 | 1111364  | 1.536045 | 0.00367  | 6.271926 | 11.576 | 6.29043  | 0.728165 | 48 | 2000 | 2400000  | 402.16 | 63.32  |
| 9508 L7         | 4874.875 | 6.530091 | 1524165  | 2.220935 | 0.003215 | 5.945171 | 10.141 | 5.965074 | 0.604911 | 23 | 1200 | 1916667  | 367.61 | 79.73  |
| 9528            |          |          |          |          |          |          |        | /        |          |    |      |          | 040.45 | 20 50  |
| C2i             | 10009.55 | 0.755364 | 1285309  | 0.77884  | 0.007798 | 0.420256 | 24.593 | 0.646796 | 0.159069 | 56 | 2100 | 2666667  | 213.45 | 28.56  |
| 9528 C7         | 1871.6   | 3.170382 | 1150674  | 1.69598  | 0.001672 | 3.202025 | 5.271  | 3.243325 | 0.170972 | 24 | 2400 | 1000000  | 368.92 | 76.25  |
| 9528 C9         | 3853.822 | 2.373746 | 1319049  | 0.844022 | 0.002891 | 1.740109 | 9.115  | 1.815686 | 0.165492 | 32 | 2400 | 1333333  | 286.34 | 50.88  |
| 9528 H6         | 1072.422 | 1.53266  | 942865.9 | 0.686136 | 0.001141 | 1.512199 | 3.597  | 1.599389 | 0.057531 | 13 | 1800 | 722222.2 | 389.83 | 108.30 |
| 9528 B9         | 1385.955 | 1.932714 | 1416331  | 0.733388 | 0.000981 | 1.997034 | 3.091  | 2.065098 | 0.063842 | 13 | 2000 | 650000   | 407.66 | 113.38 |
| 9528 D7         | 2112.449 | 2.726943 | 1359231  | 0.885922 | 0.001587 | 4.134767 | 5.004  | 4.168381 | 0.208594 | 5  | 600  | 833333.3 | 324.97 | 145.96 |
| 9528            | 2547 572 | 1 257007 | 1000674  | 1 000160 | 0.001005 | 1 051016 | 6 220  | 1 10072  | 0.074020 | 10 | 1000 | 1000000  | 210.62 | 00.20  |
|                 | 2047.072 | 1.23/00/ | 1202071  | 1.033100 | 0.001995 | 0.045550 | 0.209  | 1.109/3  | 0.074020 | 10 | 1000 |          | 310.02 | 90.30  |
| 9528 E7         | 3/30.686 | 1.313205 | 134/0/0  | 0.907328 | 0.00277  | 0.945556 | 8.729  | 1.098207 | 0.095868 | 8  | 1200 | 666666.7 | 151.07 | 53.44  |
| 9528 E8         | 1236.359 | 6.750139 | 834086.2 | 5.056046 | 0.001396 | 4.113922 | 4.400  | 4.152011 | 0.182682 | 9  | 800  | 1125000  | 492.47 | 165.42 |
| 9528 J1         | 12463.43 | 0.66956  | 1410849  | 0.68328  | 0.008847 | 0.479153 | 27.883 | 0.739801 | 0.206279 | 45 | 2100 | 2142857  | 152.01 | 22.69  |
| 9528 A5         | 2883.103 | 0.966916 | 1139018  | 0.965598 | 0.002549 | 1.013561 | 8.033  | 1.160999 | 0.093261 | 11 | 900  | 1222222  | 297.56 | 89.78  |
| 9528 A7         | 3498.464 | 1.446599 | 1081197  | 0.823906 | 0.00323  | 1.035487 | 10.179 | 1.181423 | 0.120259 | 15 | 1400 | 1071429  | 207.30 | 53.58  |
| 9528 A9         | 2362.767 | 0.905161 | 1270471  | 0.915007 | 0.001871 | 0.983294 | 5.897  | 1.137245 | 0.067059 | 11 | 1200 | 916666.7 | 303.87 | 91.69  |
| 9528<br>C2ii    | 4736 808 | 0 805128 | 1220211  | 0 704807 | 0.003865 | 0 705262 | 12 170 | 0 08074  | 0 110//6 | 11 | 2100 | 1052381  | 313 12 | 10.00  |
|                 | 4730.000 | 0.003120 | 4007044  | 0.734007 | 0.003603 | 4.075400 | F 000  | 4.00055  | 0.004005 |    | 2100 | 1400000  | 400.70 | 49.00  |
| 9594 A5         | 6569.372 | 3.961072 | 4267244  | 3.668744 | 0.001511 | 1.275499 | 5.068  | 1.28255  | 0.064995 | 34 | 3000 | 1133333  | 432.76 | 74.43  |
| 9594 A8         | 4463.201 | 1.144799 | 5315174  | 0.802296 | 0.000843 | 1.255897 | 2.827  | 1.263194 | 0.035714 | 20 | 1800 | 1111111  | /42.16 | 166.22 |
| 9594 B6         | 8383.366 | 2.317888 | 5253862  | 1.845547 | 0.001599 | 1.580501 | 5.363  | 1.586426 | 0.085077 | 25 | 2400 | 1041667  | 377.50 | 75.74  |
| 9594 B7<br>9594 | 5054.786 | 2.676408 | 4959096  | 1.008638 | 0.001004 | 1.801795 | 3.366  | 1.80711  | 0.06083  | 14 | 1600 | 875000   | 500.34 | 134.03 |
| B11             | 8030.189 | 2.301747 | 5423406  | 1.562929 | 0.001471 | 1.226818 | 4.935  | 1.234794 | 0.060934 | 28 | 2100 | 1333333  | 519.30 | 98.35  |

| 9594 C1     | 9767.616 | 1.094529 | 6077608 | 0.817702 | 0.001607 | 0.742467 | 5.393 | 0.755896 | 0.040765 | 31 | 2100 | 1476190  | 525.82 | 94.52  |
|-------------|----------|----------|---------|----------|----------|----------|-------|----------|----------|----|------|----------|--------|--------|
| 9594 C7     | 6672.928 | 2.819685 | 4661650 | 1.029397 | 0.001438 | 2.866746 | 4.825 | 2.870345 | 0.138507 | 29 | 2000 | 1450000  | 575.01 | 108.04 |
| 9594 D1     | 7484.395 | 1.00646  | 5628494 | 1.146257 | 0.001335 | 0.679475 | 4.479 | 0.694907 | 0.031126 | 75 | 5600 | 1339286  | 572.29 | 66.20  |
| 9594 D4     | 4319.064 | 1.633058 | 4887380 | 1.050857 | 0.00088  | 0.93114  | 2.958 | 0.946001 | 0.02798  | 22 | 3500 | 628571.4 | 411.91 | 87.91  |
| 9594 D9     | 7874.955 | 1.738755 | 4841183 | 1.104646 | 0.001618 | 0.952769 | 5.438 | 0.967776 | 0.052631 | 41 | 4000 | 1025000  | 366.61 | 57.37  |
| 9594 E9     | 5950.522 | 2.716258 | 4879207 | 2.687962 | 0.001227 | 1.265244 | 4.125 | 1.27696  | 0.052678 | 19 | 2400 | 791666.7 | 373.09 | 85.73  |
| 9594        |          |          |         |          |          |          |       |          |          | _  |      |          |        |        |
| E14         | 7152.455 | 0.910118 | 5596366 | 0.961686 | 0.00128  | 0.696959 | 4.304 | 0.718703 | 0.030936 | 7  | 900  | 777777.8 | 351.87 | 133.02 |
| 9594<br>F11 | 14327,19 | 1,713946 | 5372109 | 0.871008 | 0.002663 | 1,235415 | 8,955 | 1.248654 | 0.111822 | 56 | 5000 | 1120000  | 245.58 | 32.96  |
| 9594        |          |          |         |          |          |          |       |          | •••••==  |    |      |          |        | 0_100  |
| G10         | 7987.619 | 1.495406 | 4813816 | 1.192451 | 0.00166  | 0.864661 | 5.583 | 0.884101 | 0.049358 | 23 | 2800 | 821428.6 | 287.96 | 60.10  |
| 9594 H4     | 11230.27 | 1.000791 | 5295635 | 0.867596 | 0.00212  | 0.460832 | 7.133 | 0.4975   | 0.035487 | 33 | 2500 | 1320000  | 360.14 | 62.72  |
| 9594 H5     | 9000.108 | 1.45579  | 4961328 | 1.258437 | 0.001812 | 0.562237 | 6.104 | 0.602664 | 0.036785 | 32 | 3000 | 1066667  | 340.61 | 60.25  |
| 9594 15     | 4634.169 | 1.5534   | 4916769 | 1.420439 | 0.000943 | 0.806028 | 3.177 | 0.835636 | 0.026544 | 16 | 3500 | 457142.9 | 281.79 | 70.49  |
| 9594 16     | 12390.68 | 0.957546 | 5561492 | 0.826401 | 0.002229 | 0.596569 | 7.509 | 0.637222 | 0.04785  | 33 | 1800 | 1833333  | 471.02 | 82.05  |

|                |                                             | Table of Co                  | onstants                           |                                    |                                    |                                            |  |  |
|----------------|---------------------------------------------|------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------------|--|--|
| Durango<br>P&D | TRUE CaO<br>%<br>55.77<br>55.1              | TRUE Ca<br>%<br>39.8<br>39.4 | TRUE Ca<br>ppm<br>398357<br>393571 | True 44<br>Ca<br>8309.73<br>8209.9 | True 43 Ca<br>537.7821<br>531.3214 | *based on SEM measurements CaO for Durango |  |  |
|                | lambda D<br>1.55E-10                        | M<br>238.0508                | Na<br>6.02E+23                     | lambda<br>f<br>8.46E-<br>17        | density<br>3.22                    | (Gleadow)                                  |  |  |
|                | Rsp (μm)<br>0.000725                        | k<br>1                       |                                    |                                    |                                    |                                            |  |  |
|                | Reference age (McDowell 2005)<br>31.44 0.18 |                              |                                    |                                    |                                    |                                            |  |  |
|                | Ca uit Barbarand et al 2003                 |                              |                                    |                                    |                                    |                                            |  |  |
|                |                                             |                              |                                    |                                    |                                    |                                            |  |  |