

# QUALITATIVE AND QUANTITATIVE ANALYSIS OF SALIVA IN A GROUP OF HIV INFECTED INDIVIDUALS

Thesis submitted in partial fulfilment of the requirements for the

degree of Master of Dental Surgery

Elizabeth A Coates B.D.S. (Adel)

December 1997

Faculty of Dentistry

The University of Adelaide

This thesis is dedicated to Tony

## **TABLE OF CONTENTS**

Page

|           |                                                 | 0   |
|-----------|-------------------------------------------------|-----|
|           | Declaration                                     | V   |
|           | Acknowledgements                                | vi  |
|           | List of Figures                                 | vii |
|           | List of Tables                                  | ix  |
|           | List of Abbreviations                           | xi  |
| Chapter 1 | Introduction                                    | 1   |
| Chapter 2 | Literature Review                               | 4   |
| 1         | Human Immunodeficiency Virus (HIV)              | 5   |
| 1.1       | HIV Definition and Pathogenesis                 | 5   |
| 1.2       | Epidemiology                                    | 10  |
| 1.3       | Opportunistic Infections                        | 18  |
| 1.4       | Oral manifestations                             | 19  |
| 2         | HIV and saliva                                  | 24  |
| 2.1       | HIV-related salivary gland disease (HIV-SGD)    | 24  |
| 2.2       | Xerostomia                                      | 25  |
| 2.3       | Presence of HIV in saliva                       | 28  |
| 2.4       | Sialochemistry in HIV infection                 | 32  |
| 3         | Saliva                                          | 36  |
| 3.1       | Composition of Saliva                           | 36  |
| 3.2       | Salivary Proteins                               | 38  |
| 3.3       | Function of salivary proteins                   | 40  |
| 3.4       | Salivary Lipids                                 | 46  |
| 3.5       | The inorganic components of saliva              | 46  |
| 3.6       | Saliva and oral health                          | 49  |
| 3.7       | Methods of collection and analysis of saliva    | 53  |
| 4         | Conclusions and rationale for the present study | 63  |

| Chapter 3     | Materials and Methods                             | 66   |
|---------------|---------------------------------------------------|------|
| 3.1           | Subjects                                          | 67   |
| 3.2           | Saliva collection                                 | 78   |
| 3.3           | Protein analysis                                  | 84   |
| 3.4           | Calcium analysis                                  | 86   |
| 3.5           | Analysis of data                                  | 88   |
| Chapter 4     | Results                                           | 89   |
| 4.1           | Age and sex distribution of subjects              | 90   |
| 4.2           | pH of saliva samples                              | 91   |
| 4.3           | Stimulated salivary flow rate                     | 104  |
| 4.4           | Resting salivary flow rate                        | 121  |
| 4.5           | Resting salivary weight                           | 124  |
| 4.6           | Saliva calcium levels                             | 124  |
| 4.7           | Protein analysis                                  | 125  |
| Chapter 5     | Discussion                                        | 137  |
| Chapter 6     | Conclusions                                       | 163  |
|               | Appendices                                        | Ť    |
| Appendix I    | Ethics and informed consent                       | ii   |
| Appendix II   | Electrophoresis and Blotting standards            | iv   |
| Appendix III  | Instructions for the use of Novex gel             | V    |
| Appendix IV   | Formula for sample buffer                         | xii  |
| Appendix V    | Formula for reservoir buffer                      | xiii |
| Appendix VI   | Formula for destainer                             | xiv  |
| Appendix VII  | List of calcium standards used in analysis        | XV   |
| Appendix VIII | Salivary flow and pH values from previous studies | xvi  |
|               | Bibliography                                      | 165  |

iv

#### DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and to the best of my knowledge and belief contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available for loan and photocopying.

Elizabeth A. Coates

December 1997

#### ACKNOWLEDGEMENTS

I am deeply grateful for the patience and support of Associate Professor David Wilson, the supervisor of this project. He has donated extraordinary amounts of time, and has provided much invaluable advice on aspects of scientific research and methodology.

Many thanks also go to Dr Angela Pierce for her resolute editing, and to Sandie Powell, Margaret Leppard, and Peter Dent for technical back up, computer assistance and photographic assistance.

Thanks especially to Dr. Olé Webkin, without whose cheerful and friendly advice and above all, laboratory support, this project could not have been completed. A thank you to Dr John McIntyre for the discussions that led to the development of the study and also for his assistance with the calcium and protein analysis. Dr Keith Turnbull provided the use of the atomic absorption spectrophotometer and deserves praise for his tolerance, and Mr Philip Leppard, of the Statistics Department, somehow managed to evaluate an enormous amount of data and condense it to a workable form.

The South Australian Dental Service have been particularly supportive of my work and I am grateful for their understanding, interest and continued assistance. The help and understanding given by the staff of the dedicated dental unit has been deeply appreciated, in particular Kirsty Larwood for her assistance with the investigations. Karyn Stephens has been exceptional with secretarial assistance.

My family have endured the process of developing and completing this project with bemused tolerance. A special thank you to them.

Finally, a very special thank you to the patients with HIV infection who cheerfully volunteered to participate in the project. Their affection for those of us working in the unit, their willingness to assist in the accumulation of any additional scientific knowledge, and in particular their courage, have all contributed to making this a special field within which to work.

# LIST OF FIGURES

| No. Title                                                                         | Page |
|-----------------------------------------------------------------------------------|------|
| Figure 1 Angular Cheilitis                                                        | 70   |
| Figure 2 Pseudomembranous candidiasis of the oropharynx                           | 70   |
| Figure 3 Erythematous candidiasis of the palate                                   | 71   |
| Figure 4 Erythematous candidiasis of the tongue in the same patient               | 71   |
| Figure 5 The presence of candida was confirmed by smear microscopy using          | 72   |
| 10% Potassium Hydroxide                                                           |      |
| Figure 6 Linear Gingival Erythema (LGE), characterised by a fiery red band at     | 73   |
| the gingival margin with minimal plaque formation                                 |      |
| Figure 7 Necrotising Ulcerative Gingivitis (NUG) showing spontaneous bleeding     | 73   |
| and necrosis of the gingival tissues                                              |      |
| Figure 8 Necrotising Ulcerative Periodontitis (NUP). A spontaneous bony           | 74   |
| sequestrum is evident on the palate distal to the left canine                     |      |
| Figure 9 Extensive bone and soft tissue loss are a feature of NUP and in this     | 74   |
| patient obvious root caries are also present                                      |      |
| Figure 10 Necrotising Ulcerative Stomatitis(NUS). Spontaneous bleeding, and       | 75   |
| necrosis of the buccal mucosa are evident                                         |      |
| Figure 11 A spontaneous bony sequestrum in the same patient                       | 75   |
| Figure 12 Rampant caries in a patient with low stimulated salivary flow           | 76   |
| Figure 13 Erosion of enamel: a distinct pattern on the labial surfaces of the     | 76   |
| upper teeth                                                                       |      |
| Figure 14 Erosion of labial surfaces of teeth resembling tooth cavity preparation | 77   |
| Figure 15 Erosion of teeth is associated with wear of incisal surfaces            | 77   |
| Figure 16 Duotest pH paper showing a stimulated salivary sample reading           | 79   |
| Figure 17 Saliva was collected in a graduated tube                                | 81   |
| Figure 18 Saliva was weighed on a Sauter K1200 electronic balance                 | 82   |
| Figure 19 The Atomic Absorption Spectrophotometer                                 | 87   |
| Figure 20 Comparison of unstimulated salivary pH between control and HIV          | 92   |
| infected subjects                                                                 |      |
| Figure 21 CD4 cell counts relative to unstimulated salivary pH                    | 94   |
| Figure 22 HIV subjects: Comparison of candida prevalence relative to              | 96   |
| unstimulated salivary pH                                                          |      |
| Figure 23 The relationship between caries and unstimulated salivary pH            | 98   |
| Figure 24 Erosion in subjects with HIV relative to pH of unstimulated saliva      | 100  |
| Figure 25 Periodontal manifestations in relation to unstimulated salivary pH      | 102  |
| Figure 26 Relationship between medication and pH of unstimulated saliva           | 103  |

|           |                                                                          | vill |
|-----------|--------------------------------------------------------------------------|------|
| Figure 27 | Comparison of stimulated salivary flow between control and HIV           | 106  |
|           | infected subjects                                                        |      |
| Figure 28 | Graphic presentation of the results emphasises the trend for very low    | 107  |
|           | stimulated salivary flow in HIV infected patients                        |      |
| Figure 29 | Comparison of stimulated salivary flow rates with medication history in  | 109  |
|           | subjects with HIV                                                        |      |
| Figure 30 | The range of CD4 cell counts related to stimulated salivary flow         | 111  |
| Figure 31 | Caries of teeth related to stimulated salivary flow in subjects with HIV | 117  |
| Figure 32 | Periodontal manifestations related to stimulated salivary flow           | 118  |
| Figure 33 | Candida in HIV subjects related to stimulated salivary flow              | 119  |
| Figure 34 | Erosion of teeth relative to stimulated salivary flow                    | 120  |
| Figure 35 | Photograph of electrophoresis gel (1)                                    | 128  |
| Figure 36 | Photograph of electrophoresis gel (2)                                    | 129  |
| Figure 37 | Photograph of electrophoresis gel (3)                                    | 130  |
| Figure 38 | Photograph of electrophoresis gel (4)                                    | 131  |
| Figure 39 | Photograph of electrophoresis gel (5)                                    | 132  |
| Figure 40 | Photograph of electrophoresis gel (6)                                    | 133  |
| Figure 41 | Photograph of electrophoresis gel (7)                                    | 134  |
| Figure 42 | Photograph of electrophoresis gel (8)                                    | 135  |
| Figure 43 | Photograph of electrophoresis gel (9)                                    | 136  |
| Figure 44 | CT scan demonstrating Sjögrens type of parotid swelling in HIV-SGD       | 148  |
| Figure 45 | HIV-SGE in the patient who had the CT scan seen in Figure 44             | 149  |
| Figure 46 | HIV-SGE in a HIV-infected patient whose serum amylase was                | 149  |
|           | elevated                                                                 |      |
| Figure 47 | CT scan demonstrating the lymphoepithelial cyst type of parotid          | 150  |
|           | swelling associated with HIV-SGD                                         |      |

### LIST OF TABLES

| No       | Title                                                                | Page |
|----------|----------------------------------------------------------------------|------|
| Table 1  | Age and sex distribution, relative to investigations carried out, of | 90   |
|          | all subjects in the study                                            |      |
| table 2  | Variation in pH of unstimulated saliva between HIV                   | 91   |
|          | subjects and control subjects                                        |      |
| Table 3  | HIV subjects with unstimulated salivary pH values relative to        | 93   |
|          | CD4 cell count                                                       |      |
| Table 4  | HIV subjects. Comparison of candida prevalence                       | 95   |
|          | relative to unstimulated salivary pH                                 |      |
| Table 5  | The presence of caries is unrelated to pH values                     | 97   |
| Table 6  | The presence of erosion is unrelated to pH values                    | 99   |
| Table 7  | The presence of periodontal disease is unrelated to                  | 101  |
|          | pH values                                                            |      |
| Table 8  | Stimulated salivary flow rates for HIV infected subjects and the     | 105  |
|          | control group                                                        |      |
| Table 9  | Comparison of stimulated salivary flow rates with medication         | 108  |
|          | history in subjects with HIV medication                              |      |
| Table 10 | Correlation between CD4 cell counts and stimulated salivary          | 110  |
|          | flow in HIV infected subjects                                        |      |
| Table 11 | Saliva characteristics of 20 HIV infected subjects with very low     | 113  |
|          | stimulated salivary flow rates relative to CD4 count and             |      |
|          | medication                                                           |      |
| Table 12 | Saliva characteristics of 15 HIV infected subjects with low          | 114  |
|          | stimulated salivary flow rate relative to CD4 count and              |      |
|          | medication                                                           |      |
| Table 13 | Caries of teeth related to stimulated salivary flow in subjects      | 115  |
|          | with HIV                                                             |      |

| Table 14 | Oral Manifestations recorded for 65 subjects with HIV            | 116 |
|----------|------------------------------------------------------------------|-----|
| Table 15 | Subjects with HIV (13/65) with low and very low Resting Salivary | 122 |
|          | Flow rates                                                       |     |
| Table 16 | Expression of candida, periodontal disease, caries and erosion   | 123 |
|          | in 65 subjects with HIV correlated to Resting Phase Salivary     |     |
|          | Flow Rate                                                        |     |
| Table 17 | Resting salivary weight for control and HIV-infected subjects    | 124 |

х

# LIST OF ABBREVIATIONS

| AZT     | Zidovudine                                    |
|---------|-----------------------------------------------|
| Aci     | Aciclovir                                     |
| AIDS    | Acquired Immune Deficiency Syndrome           |
| ANUG    | Acute necrotising ulcerative gingivitis       |
| aPRPs   | Acidic proline rich proteins                  |
| bPRPs   | Basic proline-rich proteins                   |
| Bac     | Bactrim                                       |
| CD4     | Cluster differentiated (4) T-cell lymphocytes |
| CD8     | Cluster differentiated (8) T-cell lymphocytes |
| Clar    | Clarithromycin                                |
| CMV     | Cytomegalovirus                               |
| DDC     | Hivid/ Zalcitabine                            |
| DDI     | Didanosine                                    |
| DNA     | Deoxyribonucleic acid                         |
| EBV     | Epstein-Barr virus                            |
| EEC     | European Economic Community                   |
| EDTA    | Ethylene diamine tetra acetic acid            |
| ELISA   | Enzyme-linked immunosorbent assay             |
| Flu     | Fluconazole                                   |
| Fun     | Fungilin                                      |
| GP160   | HIV glycoprotein                              |
| HIV     | Human Immunodeficiency Virus                  |
| HIV-G   | HIV-related gingivitis                        |
| HIV-SGD | HIV-related salivary gland disease            |
| HSV     | Herpes simplex virus                          |
| lgA     | Immunoglobulin A                              |
| lgG     | Immunoglobulin G                              |
| IgM     | Immunoglobulin M                              |
| I       | Imipramine                                    |

| Itra | Itraconazole                           |
|------|----------------------------------------|
| kD   | Kilodaltons                            |
| Ket  | Ketoconazole                           |
| KS   | Kaposi's sarcoma                       |
| LGE  | Linear Gingival Erythema               |
| Lit  | Lithium                                |
| MAC  | Mycobacterium avium complex            |
| Met  | Methadone                              |
| MG   | mucous glycoproteins                   |
| MWt  | molecular weight                       |
| Nap  | Naprosan                               |
| NUG  | Necrotising Ulcerative Gingivitis      |
| NUP  | Necrotising Ulcerative Periodontitis   |
| NUS  | Necrotising Ulcerative Stomatitis      |
| PCR  | Polymerase chain reaction              |
| RNA  | Ribonucleic acid                       |
| PM   | Polymedication                         |
| PRPs | Proline rich proteins                  |
| Pul  | Pulmacort                              |
| Rif  | Rifampicin                             |
| Sep  | Septrim                                |
| SLPI | Secretory leukocyte protease inhibitor |
| Thal | Thalidomide                            |
| Ven  | Ventolin                               |
| Vit  | Vitamins                               |
| WHO  | The World Health Organisation          |
| ZDV  | Zidovudine                             |
| Zyl  | Zyloprim                               |