
z

I

I

A High Performance Colour Graphics Display
System

Chong he Fang, B.E.

A thesis submitted for the degree of

Master of Science

in the Department of Computer Science of

the University of Adelaide.

-3-88

A*"nnloi', 5".* \5{L | \1f8,

November 1987



Contents

List of Figures

Summary

Declaration

Acknowlegements

1 fntroduction
1.1 The display system of a workstation

L.1.1 The significance of the graphics display system

Itl

vt

vrr

vlll

L.L.2 The raster graphics display system
1.1.3 The advantages and disadvantages of the raster graphics display
L.L.4 The frame buffer
1.1.5 Basic graphics capabilities

1.2 This thesis
L.2.L Motivation
1.2.2 Hypothesis
7.2.3 The remainder of this thesis .

2 Implementation
2.1 Architectural features of workstation display systems

2.I.t RasterOp model
2.t.2 Parallel architectures .

2.1.3 Peripheral and integral display system architectures
2.2 The implemented display system

2.2.t General architecture of the host workstation
2.2.2 The display subsystem

2.3 The multi-mode frame buffer
Frame buffer updating in a multi-window environment
The screen format and frame buffer organization
Multiple functionality modes and their data structures

2.3.4 Other multi-mode frame buffers
2.3.5 The design of the multi-mode frame buffer array
2.3.6 The display controller

13

74

1

1

1

3

b

b

8

L2

L2

16
16

16

19

22
24
25
26
31

31

33
39
43
44
56
61

2.3.r
2.3.2
2.3.3

I

2.3.7 The system interface



3 Virtual frarne buffer
3.1 The virtual frame buffer scheme.

3.1.1
3.1.2
3.1.3

4.3

3.L.4 The solution - the page group concept
3.1.5 Address translation for the multi-mode frame buffer

3.2 A virtual frame buffer management simulator
3.2.r
3.2.2
3.2.3

Introduction
The a'ddress translator and its data structures
Frame buffer resóurce management - the frame buffer configurator

3.2.4 The paging handler and related data structures
3.2.5 Sharing of the virtual frame buffer address space

The motivation for using a virtual frame buffer
Ordinary paging virtual memory systems
The difficulties of implementing a virtual colour frame buffer

3.2.6 Experimentation

63
63
63
64
66
68
70
74
74
to
81

84
96

..105

4 Using the display system
4.1 The programming model of the display system

4.7.7 Overview
4.L.2 The co-ordinate system

4.2 Programming the display subsystem
4.2.L Basic drawing procedures
4.2.2 RasterOp mode operation
4.2.3 Pixel mode operation
4.2.4 Bit-plane mode operation
4.2.5 Off-screen buffer management .

4.2.6 Multiprocessor environments
Experimentation and performance issues
4.3.1 Performance estimation
4.3.2 Experimentation

5 Conclusions
5.1 Concluding remarks
5.2 Further work

A Address rnapping

B Virtual frame buffer algorithms

Bibliography

106
106

106
108

L12
L72
113
723
132
734
138
140
140
r42

151-

151
155

158

160

L73

ll



List of Figures

1.1 A computer graphics system.
L.2 A raster image.
1.3 A raster graphics display system.
1.4 Models of the frame buffer.
1.5 The raster operation.

3

4
,)

6

I
2.r
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.L0
2.tL
2.r2
2.13
2.74
2.L5
2.76
2.I7
2.I8
2.I9
2.20
2.2L

The PERQ workstation.
The Sun-2 workstation.
The Iris workstation.
A cellular array processor architecture.
A peripheral display system.
An integral display system.
The architecture of the host workstation.
The architecture of the implemented graphics display system.
Block diagram of a video RAM chip.
The organization of a frame buffer bit-plane.
Frame buffer address and data formats.
Basic arrangement of the frame buffer memory.
The multi-mode memory data path
Procedure RasterOp.
Copying one primitive image rectangle.
RasterOp in a bit-plane organized memory.
The block diagram for the BLT chip. .

Functional partition of the display controller.
The updating controller.
The refresh controller.
Block diagram of the system interface.

T7

18

20
22
23
24
25
29
óÐ

36
4T

45
47
49

51

52
53
Ðt
58
60
62

64
bÐ

66
69
69
7L

72
77
79

3.1 The composition of an address in a paging virtual memory system.
3.2 The address translation.
3.3 The address translation algorithm.
3.4 A stack of binary images forms a colour image.
3.5 The page group concept.
3.6 Fields of the frame buffer address.
3.7 Frame buffer address format.
3.8 The NS32000 address translation scheme.
3.9 The structure of PTl and PT2 for the simulator.

lll



Procedure Address-translator.
The page frame list data structure.
Partitioning the physical frame buffer.
Overview of the virtual frame buffer scheme.
Procedure Pager.
P rocedure G et -plane-rnode-P T 1 -entry.
Procedure Look-up-plane-rnode ]T2. .

Procedure C alUn-page-group.
The PFN database.
The working set list.
A global entry and its relation to the other data structures.
Procedure Check-global.

4.7 A programming model of the display system.
4.2 A pixel in a linearly addressed raster storage.
4.3 A "form" representation of image storage.
4.4 New "form" representations of raster storage.
4.5 The paste algorithm
4.6 Copying a 16-pixel segment using RasterOp mode.
4.7 Copying a 16-pixei segment in pixel mode.
4.8 Copying a 16-pixel segment in bit-plane.
4.9 Copying an image in the middle of a horizontal line.
4.10 Performance comparison for copying a 16-pixel segment, with a pixel-depth

of eight.
4.11 ProcedureRasterOpJlT.. : . . .

4.12 R¿,sterOp with transformation.
4.13 The pixel pointer type.
4.I4 P rccedure Line-relative.
4.15 Drawing an antialiasing line.
4.16 Procedure Smoothjine.
4.L7 P tocedure RasterOpJixel.
4.18 Procedure Maximum
4.19 The data structure for frame buffer heap
4.20 Procedure NewForm.
4.2L Calculating frame buffer base address for the three modes
4.22 The sequence of frame buffer operation.
4.23 Estimation of the performance of the frame buffer.

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.t7
3.18
3.19
3.20
3.21

The prototype hardrvr¡are.

Examples of basic graphics operations
Example of concurrent multi-mode operation

4.27 The frame buffer data transfer cycle time.
4.28 The system bus utilization for various graphics operations

80
83
83
86
87
87
88
90
91

92
99

001

107
110
110
111

116
LL7
177
118
119

4.24
4.25
4.26

4.29

A..1

4.2
4.3

I20
L21
723
724
126
126
L27
I29
131

136
137
137
r47
143
144
I45
146
747
148

L49Measurements of the image updating speed.

Address mapping for the display system.
Mapping for BLT register select bits. . . .

Mapping for VSC register select bits. .

158
159

159

lv



B.
B.
B.
B.
B.
B.
B.
B.

Procedure Derive
Procedure Callin-block.
P rocedure P ut jnto-working-set
Procedure Evict -page€roup.
Procedure Evict-3-rnode. .

P rocedure G et -pageJrame-back.
Additional actions for procedure CalUn-block.
Procedure Create-shared-a,rea.

Il.9 Procedure Create-shared-table.

1

2

3

4
5

6
(

8

160
161

161

L62
L63
L64
16õ
166
167
168
169
169
170
L7L
L72

8.10
B.11
B.L2
8.13
8.14
8.15

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

Create-shared-entry.
Map-to-global.
Derive-shared-entry.
Delete-old-region.
Delete-entry.
D elete-different -group.

v



SurnnÌary

A high performance colour graphics display system plays an important role in the man-
machine interface of a computer workstation. With rapid progress in the technology of
TV monitors and the reducing cost of frame buffer memory, the raster graphics display is
becoming predominant in the graphics display freld. The advantage of the raster display
is that because the brightness and colour of each picture element can be specified inde-
pendently any picture can be conveniently displayed with comparatively low cost. The
main difficulty of the high performance raster graphics display is that a great many bits in
the frame buffer must be modified to make major changes to the picture. Therefore, the
capability of rapidly updating the frame buffer is one of the most important properties of
a raster graphics display system.

This thesis describes the design of a high resolution colour graphics display system for
a shared-memory 32-bit multiprocessor workstation. This display system makes picture
creation and rearrangement simple and rapid by introducing a specially structured mul-
tiple functionality mode frame buffer. This multi-mode frame buffer supports fast raster
operations, flexible picture element manipulation, a virtual frame buffer architecture and
multiprocessor parallel picture updating in the frame buffer. This system has been de-
signed as a hardware testbed for experimentation with various graphics applications and
for the display of multiple overlapped active windows.

A virtual frame buffer simulator is presented to show a scheme which enables the multi-
mode colour frame buffer to be a demand-paged virtual frame buffer. This not only enlarges
the frame buffer space, which is essential for the display of active multiple overlapped
windows and the panning of very large images, but also facilitates the management of
image storage and reinforces security.

An experimental hardware display system has been built, and basic graphics operations
have been tested on the prototype. An analysis of the resulting performance is presented
to show the appropriateness of this display system architecture and to indicate suitable
directions for further improvement.
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Chapter 1

Introduction

1.1- The display systern of a workstation

1.1.1 The significance of the graphics display systern

A high performance colour graphics display system plays an important role in the man-

machine interface of a workstation. Since humans are good and efficient at understanding

pictorial representations of information, a high quality graphics display is a good mearl.s

of achieving man-machine communication. For example, a graphics display can be used

o to visualize physical or abstract objects which normally can only be ex-

pressed in numerical data or mathematical expressions, such as the pic-

torial representation of mathematical, physical and economic functions,

and the dynamic display of the behaviour of the execution of a program

- seeing the effect of transformations in a pictorial fashion facilitates the

perception of patterns and trends, and the discovery of new ideas,

o to reconstruct the shape of invisible but detectable objects, such as the

internal organs of a living human being, and

o to create computer-generated scenes or shapes for simulation, design anal-

ysis, process control and education.



CHAPTER 1. INTRODUCTION

A graphics display cal h¿r.ndle a large variel,y of fonts, syurbols, and ch.aracter sizes; it

can mix text with graphics. It also supports flexible editing, providing a powerful tool for

document preparation, engineering drafting and electronic typesetting.

Graphical interaction encourages people to develop new ideas to use computer technol-

ogy in many areas of endeavour. This is particularly evident from the uses of computer

graphics displays in art, animation and graphic design.

Display systems which can only handle monochrome images prove inadequate in many

applications. The importance of colour can be seen from the following examples:

o colour is used to distinguish features that would be indistinct in mono-

chrome image, for example in the examination of a Landsat image,

o colour can express visually some special properties of the object being

displayed, such as using a solid shaded colour image to show how the

curvature of a three dimensional surface varies,

o colour makes information more readable and understandable - for exam-

ple, the interconnections in a complex multi-layer printed circuit board

can only be clearly displayed by representing traces in different layers

with different colours,

o colour is essential in increasing the realism of a high quality picture, and

o colour can also be used to attract people's attention by highlighting special

information with special colour, such as using red for warning messages.

Another important aspect of a graphics display is that it supports the display of multiple

overlapped windows, so that a user may consult many information sources at the same

2



CHAPTER 1. INTRODUCTION 3

time without the inconvenience of switching the display screen from one to the other.

This significantly improves the quality of the man-machine interface; for example, a user

can observe the progress of a CAD program from one window, and execute interactive

commands in another window, and obtain design parameters from a third window. Each

window can be sent to the back or pulled to the front, according to the user's needs.

L.L.z The raster graphics display systern

A computer graphics display system can be described as shown in Figure 1.1. The appli-

cation data structure holds descriptions of real or abstract objects whose pictures are to

appear on the screen. The description of an object includes geometric data that defines

the shape of object components and data which defines the relationship between these

components, as well as some non-geometric data that describes properties of the objects

useful for post-processing. The application program accesses the application data struc-

ture, storing or retrieving data relevant to the objects. The application program aJso uses

the graphics package to generate graphics commands which instruct the display system to

Host Computer Dtsplay Unlt

Interacttve Input

Figure 1.1. A computer graphics system.

\
Dfsplay
program

Applicatton
program

Video
monitor

Display
processlng

unlt

Graphlcs
package

Appltcatton
data structure



CHAPTER 1. INTRODUCTION 4

create a picture of the objects on the screen. There are many kinds of display systems;

this thesis will focus on the raster display system.

A raster graphics display system represents the image by a two dimensional array of

picture elements, referred to as pitels. Each pixel has a value which represents the colour

and brightness of the pixel. The pixels are arranged in a number of scanlines, as shown

in Figure 1.2; the number of scanlines on a screen, and the number of pixeis on each

scanline, determine the resolution of the display. These pixels are normally stored as a trvo

dimensional array in a special memory, called tlne frame buffer or image n¿en1,ory. Because

each image element is directly mapped into memory bits, a raster image is also referred to

as a bitrnap image.

Figure L.2. L raster image.

A raster graphics display system can be depicted by the block diagram shown in Fig-

ure 1.3. The host processor generates high level graphics primitives for the display pro-

cessor. The display processor creates pictures by writing data into the frame buffer. The

screen refresh system reads the image from the frame buffer, and uses the look-up table

and D/A converters to transform the pixel values into colour signals or grey-scale signals,

finally displaying the image on the screen.

H-
ilE-r-

J T I___IJ-
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Figure 1.3. A raster graphics display system.

1'1.3 The advantages and disadvantages of the raster graphics
display

The advantage of the raster graphics display is that because the brightness and colour of

each pixel can be specified independently any picture can be conveniently displayed. With

the reducing cost of frame buffer memory and the use of standard television technology,

the raster graphics display is becoming predominant in the graphics display field.

The difficulties of the high performance raster graphics display is that a great many

bits in the frame buffer must be modified to make major changes to the picture. Therefore,

the capability of rapidly updating the frame buffer is one of the most irnportant properties

of a raster graphics display system.

L.L.4 The frame buffer

As will be seen later in this thesis, the organization of the frame buffer and. its interface

to the rest of the display system have particular significance to the functionality and

performance of a colour raster display system. Therefore, the research described. in this

td

Look-up Table
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D/A Converters

Video
Monftor

Screen Refresh
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Frame BufferDisplay Processor
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thesis h¿r's focussed on the study of a specially structured. frame buffer and its interaction
with the rest of the dispiay system- Firstl¡ a series of models of the frame buffer is
introduced.

The first model of the frame buffer is a two dimensionar array of pixels and is thus the
same data structure as a bitmap image. It can be expressed in a pascal-like notation, as

follows:

type frame-buffe¡: ârrây [0..Xmax, O..ymax] of pixel ;

Pixel : O..Max-value;

Figure 1'a@) illustrates tbis tuo-d,imensional array of pbels model. Actually, this mod.el
is a three dimensional array, the third dimension being the pixel value. The largest pixel
value which can be expressed in this array is denoted by ,,Max_value,,. The ,,Xmax,,

and "Ymax" stand for the maximum x- and y-coordinates which can be accommodated
in this array' Physicaliy, the frame buffer is organized by word. In the two-dimensional

Plxel
depth

6

x

vv

tb)

v

x x
plxel
\

(a)

Figure 1.4. Models of the frame buffer.

(c)
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array of pixels model, a memory word contains thc valuc of one pixel or a few adjacent

pixels. The pixel value is an integer, represented by several memory bits; the number of

memory bits, which represents the value of one pixel, is often referred to as pixel ilepth.

This frame buffer format is called pirel packed format.

The frame buffer can also be considered to be a stack of bit-planes, each bit-plane

holding a binary image. This arrangement can be represented in our notation as follows:

type frame-buffer : ârrây [1..maxplane] of bit-plane ;

bit-plane - array [O..Xmax, 0..Ymax] of pixel ;

pixel: boolean;

in which "maxplane" stands for the number of bit-planes in the frame buffer, and "Xmax"

and "Ymax" are the maximum x- and y-coordinates in each bit-plane. Tbis staclc of

bit-planes model is illustrated in Figure 1.4(b). Physically, each pixel in a bit-plane is

represented by one bit. Pixels which have the same x- and y-coordinates, but occur in

different bit-planes, are physically aligned to each other. A collection of these physically

aligned bits across all the bit-planes stands for the value of a multi-bit pixel in the two-

dimensional array of pixels model. In the stack of bit-planes model, the memory word

represents a rectangle of a binary image in a particular bit-plane (usually 16 to 32 pixels).

This frame buffer format is called the bit-plane format.

Other frame buffer formats and data structures can be derived from the above two basic

frame buffer models, and will be discussed in Chapter 2. A typical example is that several

bit planes can form a group, corresponding to a image with reduced colour resolution;

in ihis way, the whole frame buffer becomes an arbitrary mixture of bit-plane groups, as

depicted in Figure l.a(c). By manipulating the look-up table, the images represented by
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these bit-plane groups can be displayed one at a time, or with assigrred visual priolity, so

that images in different bit-plane groups can be displayed simultaneously in an overlapped

fashion.

1-.1-.5 Basic graphics capabilities

Aimost all appiications include the need for basic graphic functions, such as line drawing,

area fill, overlapped window manipulation, panning and scrolling a large image, character

display and so on. The ability to manipulate and display natural images and images with

shaded colour is often also essential for more sophisticated graphics applications.

In order to support these operations, four basic graphics capabilities are necessary for

a display system; they are fast RasterOp, pixel value manipulation, a large image buffer

and efficient image data transfer. Each of these is discussed, in turn, below.

RasterOp

One of the most important graphics functions is called RasterOp or BitBlt (bit bound-

ary block transfer), first introduced by Xerox PARC [23]. RasterOp is an image copy.

During a R¿sterOp, a source image rectangle is copied onto a destination rectangle, as

depicted in Figure 1.5; the halftone image rectangle is a square bitmap image which rep-

resents a texture to be painted onto the destination image. In the course of copying, a

bitwise logical operation is applied between source, destination and halftone image rect-

angles (which will be referred to simply as "source", "destination" and tthalftonet'). The

result is written into the destination image rectangle. The image rectangles can have

arbitrary pixel boundaries.

The logical operations between the three images can consist of as many as 256 combi-

nations, but only a few are of practical use. Examples include:
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Figure 1.5. The raster operation.

o set destination to "0" or "1",

o copy source to destination,

o form the exclusive "OR" of the source and destination,

o apply the logical ((OR" operation to source and destination,

o coPY the source to the destination rvlúle using halftone as a mask (called

"texturing" ),

o invert the destination, and

o copy thä haHtone to the destination.

These bitwise logical operations are not only powerful for manipulating binary images,

but many of them also lend themselves to the manipulation of colour images. For example,

they can be used to

o set the destination to some background colour,

o copy the source to the destination,

o extend a binary pattern into a coloured pattern (for example, a character

I

Operation

Result

Destination
image

rectangle

Halftone
image

rectangle

Source
image

rectangle
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stored in binary pattern form in a font area can be extended to a coloured

character when copied into the destination),

o texture a colour image area, and

o combine colour images.

The uses of RasterOp can be demonstrated by the following examples. A bitmap image

can be created by copying small primitive images. For example, a screenful of text can be

formed by copying characters from a font area to the text region, several images can be

combined, and a smail image can be used as a brush and copied along a trajectory to form

a line with texture and arbitrary width.

Other graphics functions, such as panning and scrolling a large image, rotating a image

through 90 degrees, or image zooming, can also be done by image copy.

Manipulation of multiple overlapped screen windows can also be handled by image

copy. Examples include changing window size, moving a window to a new position, saving

the obscured parts of a window in a off-screen buffer area, and restoring the window when

these parts of the window are uncovered.

From the above discussion, v/e can see that RasterOp is a fairly general graphics op-

eration. In order to have fast RasterOp execution, as many pixels as possible need to be

copied in one memory cycle. For binary images, this is done by using a memory word

to represent a 16- to 32-pixel binary image rectangle. For multi-bit pixel colour images,

this suggests the use of a bit-plane frame buffer format and simultaneous execution of

RasterOp in all bit-planes. The graphics processor needs hardware assistance to handle

pixel boundary image block transfer and the logic operations. Therefore, hardware Ras-

terOp support should be considered in the architecture of the display system in order to
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accelerate a large group of graphics capabilities.

Pixel value rnanipulation

For a large number of graphics applications, the pixel values of an image need to be

manipulated one after another; examples of situations where this occurs include filling

polygons with shaded colour, displaying natural images with pseudo-colour, and antialias-

ing by blending foreground and background colours. In these applications, the graphics

processor should be able to access and manipulate the pixel values efficiently, so that

these operations can be executed at a reasonable speed. Furthermore, since most of these

operations are computationally intensive, an increase in processing power will enhance

overall performance. This suggests that the frame buffer should be organized in a pixel

packed format and be accessible to multiple processors, so that the processing power of

the multiprocessor workstation can be exploited.

Large off-screen buffer area

A large off-screen buffer area is needed to back up obscured windows, menus, icons and

fonts, as well as being used when a large image is being scrolled. However, the size of the

physical frame buffer is always limited and in managing the limited buffer area there is

some software overhead in dealing with the fragmentation problem. Therefore, a paging

virtual frame buffer scheme may be a promising scheme to investigate as a solution to this

problem.

Efficient imaqe data transfer

Images need to be moved around the system for processing, display or storage. There-

fore, it should be possible to transfer the image data efficiently between ihe frame buffer

and the main memory, between the frame buffer and the disc, and also between image
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bit-planes.

L.2 This thesis

L.2.L Motivation

The motivation for this work is the design and investigation of a high resolution colour

display system for a multiprocessor workstation which simplifies and speeds up picture

creation and rearrangement. This is achieved by introducing a special structured frame

buffer memory, putting it into the virtual memory space, and exploiting the processing

power of a shared memory multiprocessor environment.

The design goal is to build a hardware testbed for experimentation with various graphics

applications. This testbed is to provide a moderately high level of performance in many

different application areas and to efficiently display a variety of images. Image types

include bitmap images, display list images, solid colour and shaded colour images, and

binary images.

Because a multi-window display is so important in a modern user interface, one of

the objectives of this work is to provide hardware assistance to handle multi-window dis-

plays. A virtual frame buffer is proposed as an experimental attempt to improve image

management.

The design makes use of the large and fl.exible processing power of the symmetric

multiprocessor architecture of the workstation to promote parallelism in image creation

and updating, in order to achieve high perfoûnance.
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L.2.2 Hypothesis

From the above discussion, we can see that different frame buffer organizations are suited

to different kinds of colour graphics capabilities; an ordinary frame buffer memory cannot

satisfy ail the different data type and functionality requirements described earlier. There-

fore, it is usual for a graphics display system to optimize its frame buffer to one type

of application. For example, the Textronix 41158 graphics terminal [17] and the AED

512 graphics terminal [1] orient their applications to line drawing and organizes the frame

buffer in the pixel packed format. However, this is not fast enough or convenient enough

to handle RasterOp function. The Comrnodore AMIGA [30] treats the frame buffer as

a stack of binary images, each memory word standing for a binary image rectangle; this

is done to allow fi.exible use of bit-plane groups to represent images of different colour

resolutions and for the convenience of executing RasterOp function. However, pixel value

manipulation in this scheme is expensive.

The hypothesis for the experiment described in this thesis is composed of the following

three parts:

1. A multi-mode frame buffer may enhance overall colour graphics display system per-

formance.

2. Multiple graphics processors may improve performance.

3. A virtual frame buffer may enhance management of multiple screen windows.

Multi-mode frame buffer

In each mode, the frame buffer is designed to support a specific category of operation;

so that the constraints, imposed by a particular memory format can be eliminated, and
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the performance of the graphics display system can be enhanced. Thrcc mcmory modes

are considered adequate:

o in pixel mode, the processor accesses the frame buffer by pixel value,

o in bit-plane mode, the processor accesses the frame buffer by bit plane,

and

o in RasterOp mode, the frame buffer supports parallel multiple bit-plane

RasterOp.

The three modes will satisfy most of the requirements of graphics operations

Multiple graphics processors

Making the frame buffer directly accessible to multiple general purpose processors,

which work as graphics processors, ffiây exploit the large processing pov/er of the multi-

processor workstation for parallel updating of images.

Virtual frarne buffer

A large virtual frame buffer will facilitate the management of the frame buffer heap

area (solving the heap fragmentation problem, to a large extent) and images larger than

the physical frame buffer size can be accommodated in the virtual frame buffer.

L.2.3 The rernainder of this thesis

Chapter 2 includes a brief survey of various raster graphics display architectures and a

description of the definition and the implementation of a new display system. Chapter

3 describes the multi-mode colour virtual frame buffer management scheme. A detailed

description of the algorithrns used in a virtual frame buffer sirnulator is given in this chapter
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and an appendix; this simulator shows how this virtual frame buffer managcmcnt schcmc

works, and demonstrates its functionality.

In Chapter 4, the programming model and co-ordinate system of the display system

are given. Also given are algorithmic descriptions of a number of sample procedures for

basic graphics operations, illustrating how to use the display system. The special issues

arising when the display system is used in a multiprocessor environment are also discussed.

Finaliy, Chapter 4 describes the experiments which have been carried out on the hardware

prototype. An analysis of the results is presented to show the performance issues for this

display system and the directions for further improvement.

Chapter 5 summarizes the achievements of this thesis, the characteristics of the imple-

mented display system, the problems remaining to be solved and probable future work.



Chapter 2

Irnplem.entation

2.L Architectural features of workstation display sys-
terns

Many computer workstations have used the Xerox PARC model [33]; this model consists

of a collection of personal computers linked by a high bandwidth local network. All users

interact with the dedicated personal computers via high bandwidth graphics displays,

which provide a rapid response via text and graphics. Most tasks are served locally by the

personal computer, with occasional access to other machines for special services. The high

bandwidth and tight integration between the personal computer and its graphics display

system provide the characteristics of the architecture of this kind of workstation display

system. Several architectural alternatives, within this category of display systems, are

discussed in the rest of this section.

2.L.L RasterOp model

The R¿sterOp model of a workstation display system was fi.rst developed on the Xerox

AIto personal computer [33], which unified operations on various kinds of image represen-

tation through the manipulation of the lowest level of image representation - the bitmap

image. The principal characteristic of these systems is that, in addition to other graphics

16
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functions, they use the lìasterOp function to efl'ectively handle the manipulation of multi-

ple overlapped windows, parìning and scrolling, texture filling and text. Because of these

advantages, the display system developed in this thesis also uses the RasterOp model.

Other systems using th.is modei include the PERQ workstation, the Sun workstation, the

Apollo Domain and the Blit terminal.

The PERQ workstaiion [4], whose architecture is depicted in Figure 2.1 (which is

adapted from [31]), has a monochrome display. It uses a 16 bit bit-slice CPU, combined

with 64 bit R¿.sterOp hardrvare. The dual-ported image memory is part of the main

memory' so that the CPU can operate directly on the pixels composing the pictr:.re. The

machine is microcoded and has special graphics instructions which support image area

copying with logic operations on its pixels, and vector drawing, over the whoie memory

space. This facilitates image movement and the manipulation of muliiple windows.

Figure 2.1. The PERQ workstation.

The Sun-2/120 monochrome workstation, shown in Figure 2.2 (adapted from [35]), uses

a standard Motorola C68010 as CPU and a RasterOp processor on the CPU board for
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better integration. Its dual-ported image memory and main memory are placed on a high-

speed memory bus, the P2 bus. The MC68010 CPU and Sun's proprietary MMU support

demand-paged virtual memory. The CPU virüual address and the direct virtual memory

access (DMA) address can be translated by the MMU into physical addresses and thus be

mapped to onboard device addresses, to memory addresses via the P2 bus, or to Multibus

addresses, depending on how tags in the MMU are set. The image memory appears as a

128 l(byte contiguous memory area. Because the processor accesses image memory in the

same way it accesses main memory, it is easy to use RasterOp to move images betrveen

image memory and virtual memory, rvhich greatly increases the multi-rvindorv capability

of the system.

CPU Board

Figure 2.2. The Sun-2 workstation.

The Blit terminal [28] uses very simple hardware; the only graphics display hardware

is the dual-ported image memory. A general purpose processor, the Motorola MC68000 is

used to handle the tasks of both CPU and graphics processor. The linearly addressed frame

buffer is part of the main memory, which can store both image and program. Through
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careful design of primitive graphics procedures, the performance of the Blit [ennirral equals

or even exceeds that of some more sophisticated workstations, as shown by a series of

evaluation tests [28]. The uniform structure of frame buffer and main memory, and the

ability of the CPU to directly manipulate the frame buffer, contribute to the improvement

in graphics display performance.

2.L.2 Parallel architectures

Parallel architectures attempt to meet the demand for increased performance by partition-

ing image generation tasks among many processing elements which operate concurrently.

There are four basic types of parallel display architectures:

o a scheme which partitions graphics object spaces,

o a scheme which partitiorn image spaces,

o a scheme which partitions different operations, and

o a scheme lvhich combines the above approaches to partitioning.

Systems adopting the third scheme are nonnally implemented as pipeline systems, ar'd

systems corresponding to the remaining three schemes can simply be classified as parøIlel

imøge creation systems.

Pipeline systems

A pipeline system partitions operations among processing elements. Parallelism is

achieved by overlapping operations executed on different stages. Many modern high per-

formance display systems adopt such a pipelining approach. Take the Iris workstation for

example, whose simplified block diagram is shown in Figure 2.3 (adapted from [15]); the
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Figure 2.3. The lris workstation.

task of image generation is partitioned into graphics primitive generation (performed by a
MC68000 or MC68010 processor), geometry transformation, clipping, scaling (performed
by "Geometry Engines"), rasterization, character printing, and frame buffer updating
(performed by a frame buffer controller and an update controller). Each task is run on
a separate processor' Most of these processors are specialized function units, arranged in
a pipeline fashion' Finally, the display controller read.s the pixel values fiom the frame
buffer and displays them on the video monitor screen. In this class of system, different
function units normally communicate in a fixed order and they can provide a high level of
performance in the'context of a set of commonly used functions. pipeline display archi-
tectures can also be found in the R¿.mtek 2020 workstation [24), theGraphica system [22],
and others
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Parallel irnage creation

Parallel image creation schemes try to achieve higher performance by subdividing the

task of creating a whole image into the generation of several sub-images or objects in

parallel. For example, generating realistic three dimensional images is computationally

very intensive. If there are a lot of processors executing in parallel, each generating a small

part of the whole image (such as a scanline), the image creation task will be completed

much faster. So, many research projects have investigated different parallel image creation

schemes.

Fujitsu Laboratories have developed a cellular array processor with distributed frame

buffer for fast parallel sub-image generation [31]. The architecture of this machine is

depicted in Figure 2.4. This architecture applies 64 general purpose processors, each

working as a cell processor, to form an 8 x 8 two-dimensional processor array. Each cell has

its own local memory and a video memory, the latter forming part of the whole frame buffer.

The sub-image in the ceII image memory can be mapped onto the screen in many different

ways, a fact which.rriport, flexible image partitioning. Global communication among cells,

and between cells and the host computer, is via a common "command bns"; each cell also

has local communication lines with its four nearest neighbours. Image generation is handled

by software, so that different algorithms can be supported and so the processor array can

be used for other parallel computation. This architecture provides high bandwidth for

image updating; the distributed frame buffer largely eliminates access conflicts between

different cell processors. However, moving a bitmap image around the whole frame buffer

(such as moving a window to a new position), or scrolling a large image, can cause a

large amount of pixel data transfer across the local cell video memories, and this will be
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expensive. In summary, the disiributed frame buffer is more suitable for image creation

than for moving images.

Command Bus

Vfdeo
Bus

64 Celt (B x B)

Figure 2.4. A cellular array processor architecture.

2.L.3 Peripheral and integral display system architectures

According to the position of the frame buffer in the whole system, display systems can be

classified into two categories Í25132), which will be referred to as peripheral display systems

and integral display systems. In a peripherøl d,isplay system [14], shown in Figure 2.5, the

frame buffer is placed on a separate bus and is under the sole control of the graphics pro-

cessor or controller. The main processor handles graphics display operations by sending

commands to the graphics subsystem in a similar lvay to the way in which it woutd handle

a peripheral device. The advantage of this scheme is that large amounts of pixel data can

be off-loaded from the system bus and a specially designed graphics processor can pro-

vide a high degr"" of performance over a set of commonly used graphics operations. The

disadvantage of this scheme is that all frame buffer accesses must go through the graph-

ics processor; therefore, the manipulation of pixel values by the main processor becomes
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cumbersome' and sometimes the graphics processor tends to become overloaded. Also, the

data types and functionality defined by the structure of a peripheral display subsystem

cannot be easily extended to meet new requirements.

Figure 2.5. A peripheral display system.

By contrast, the integral display system [18,33], shorvn in Figure 2.6, places the frame

buffer onto the system bus ad.dress space. Thus, the display becomes an integral part of

the computer system, and any processing unit connected to the system bus can directly

manipulate the frame buffer and other display system components, such as look-up tables

and control registers. Other bus masters, such as DMA device controllers, also have direct

access to the display system components. This arrangement provides great flexibility;

not only can the pr'ocessor have fine control over image generation, but images can be

created and stored anyrvhere in the processorts addpess space, including the frame buffer,

and images can be conveniently transferred between frame buffer and peripheral d.evices,

such as secondary storage and frame grabbers. The disadvantage of the integral display
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system is that the voluminous pixel data stream goes along the system bus; therefore, a

very high system bus bandwidth is required for a high performance display system of this

kind. Since the integral display system can be programmed to meet the requirements of

marry different applications, it is more suitable for general purpose use.

Figure 2.6. An integral dispiay system.

2.2 The implernented display system

Consistent with the goal of designing a general purpose hardware testbed for experimen-

tation with various graphics applications, and having considered the architectural alterna-

tives described above and. the architectural features of the multiprocessor host workstation,

an experimental display system rvas built with the following architecture:

o an integral display system rvith multiple graphics processors,

o a multiple functionality mode frame buffer with buili-in RasterOp units, and
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o a large offscreen frame buffer area with a virtual frame buffer architecture'
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Before discussing the structure of the implemented display system, it is necessary to

introduce the general architecture of the host multiprocessor workstation.

2-2-L General architecture of the host workstation

The general architecture of the host workstation into which the display system is inte-

grated is illustrated in Figure 2.7 (adapted from [1t]). The system components (such as

processors' r+emory and device controllers) communicate via a locally-designed high-speed

32-bit asynchrono's multiprocessor system b's, called L-bus.

Figure 2.7. The architecture of the host workstation.

The general data processors provide a homogeneous pool of processing resource for

the execution of tasks. The device processors provide interfaces to devices in the outside

world, as servers for the other tasks. The special data processors are optional components

for improving the performance of certain functions. The system memory provides a shared

high-speed storage resource for all the processors and. controllers which are connected to

the system bus; it can also be used as a communication medium between tasks. Device
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controllcrs are device interface components. The communication to a device controller

is via the control registers of the controller, the addresses of which are mapped into the

system bus address space.

In the host system, NS32000 series processors and NS32000 paging virtual memory

management scheme are adopted. The processor uses virtual addresses which are trans-

lated into L-bus physical addresses by a memory management unit (MMU). The L-bus

address space is divided into cacheable and non-cacheable regions by address bit 26; the

I/O device buffers and registers are placed in the non-cacheable region. A general data

processor module normally consist of CPU, MMU, floating point unit, local memory and

cache. Because the local memory and cache contain most of the currently executing code

and data, the data traffic during program execution can be largely confined within the

processor board. This significantly reduces the system bus traffi.c and increases execution

speed. The host system provides hardware and software facilities for task dispatching and

inter-task communication; the means of communication with service tasks is consistent

with the general means of inter-task communication.

2.2.2 The display subsystem

A single common bus multiprocessor host system such as that described above provides

a flexible and powerful parallel processing environment. It is well suited to provide the

processing elements for the graphics display system.

NS32032 32-bit high performance microprocessorsi are used as the general purpose data

processors in the host system; these operate at a clock frequency of 10 MHz. The specifi-

cation for this processor includes a large linear address space, a powerful instruction set, a

wide data path and a high data transfer bandwidth. This processor and its floating point
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coproccssor lcnd themsclvcs to thc handling of graphics operations, such as addressing

Iarge frame buffer areas, high. precision arithmetic, and so on. Furthermore, the general

data processor's paging virtual memory mechanism can be used to implement a virtual

frame buffer.

The multiprocessor host system described above can be employed to provide a parallel

image updating system, and so use parallelism to aclúeve the required performance in a

cost effective way. In order to fully exploit the processing power of the multiprocessor host

system, the frame buffer must be made directly accessible to all processors in the processor

pool. Therefore, it was decided to map the frame buffer, look-up table and other display

control registers into the system bus address space, so that all L-bus masters can directly

access them. Thus, the display system provides a memory interface to the host system

and the host system becomes a part of the integral display system. This architecture has

several advantages:

o graphics tasks can be dynamically allocated among multiple processors and different

parallel image updating schemes can be configured by software,

o the multi-mode frame buffer (and other special function hardware) can be shared

by all graphics processors to enhance the overall performance and an increase in

processing po\Mer can be achieved by adding more processors (which may be limited

by the bus bandwidth and the memory transfer bandwidth - the L-bus bandwith is

16MB/sec and the frarne buffer transfer bandwidth is 6.6M8/sec.),

o because of the use of a general purpose processor as the graphics processor, pro'

gramming becomes easier and sufficiently f,exible to support experiments with new
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graphics algorithms, and

., because the display subsystem interfaces to the system bus, it becomes independent

of a specific kind of processor (when a better processor becomes available, the display

system can be easily upgraded), and more display boards can be plugged into the

system bus to expand the display system.

The disadvantage of this architecture is that, because of system bus arbitration overhead

and bus contention between multiple processors, the frame buffer access speed for an

individual graphics processor will be lower than the speed with which it accesses its own

Iocal memory.

The architecture of the implemented display system is depicted in Figure 2.8. Except

for the host system, the display subsystem contains four main components, namely

o the multi-mode frame buffer array,

o the display controller,

o the look-up table and D/A converters, and

o the system interface.

The multiple general data processors in the host system create and move images by

directly manipulating the frame buffer. The display controller handles the timing and

control of the dual-ported frame buffer, and screen refreshing. It scans through the frame

buffer, converts the parallel pixel values (read from the frame buffer) into a video-rate

serial pixel stream, and sends this stream to the look-up table as indices. The look-up

table converts the pixel values into intensities for the red, green and blue (referred to as
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Figure 2.8. The architecture of the implemented graphics display system.

RGB) signals. The three D/A converters convert the digital RGB signals into analogue

video signals and send them to the colour video monitor. The video synchroni zation

and blanlçing signals are also generated by the display controller. The display controller

can produce an interrupt signal for a processor, at a selected time in each vertical scan

period, to synchronize the screen refreshing process with graphics input device sampling or

dynamic image updating. The display controller also uses an interrupt to report an internal

error condition. The frame buffer, display controller and look-up table communicate with

the host system via the colnmon system bus interface. The implementation of these three

functional components will be described. in d.etail in the rest of this chapter.
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thc bus. In thc host systcm being described here, two bus arbitration schemes are used in

parallel; these two schemes are called the fairness and priority schemes. All bus masters

working in the fairness arbitration scheme have equal opportunity to use the system bus.

It is designed for a situation where processors are working on a general data processing

task and it provides for fairness between tasks. In the priority arbitration scheme, the bus

master which has the highest priority will acquire the bus. It is designed for bus masters

working on tasks which need to be processed urgently, such as data transfer to or from

fast secondary storage or an interactive display. In a particular bus arbitration situation,

if bus masters from both the fairness and priority schemes issue system bus requests, the

priority bus master will always win over the fairness bus master. The bus arbitration

type can be associated with the process; therefore, the same processor may use different

bus arbitration schemes, and may have different priorities, depending on the nature of the

process running on it. In this system, all screen updating processes will be assigned higher

arbitration priority than other processes; this guarantees that screen updating will not be

hindered by a non-display process, yielding better display responsiveness.

The display system described here was not designed for animation; therefore the as-

sumption is made that screen updating comes only in discrete bursts and so the priority

bus masters and pixel data stream will not dominate the system bus and degrade system

performance. For applications where continual full-screen updating is required, it would

be necessary to expand the display system into a double bus system which has one mul-

tiprocessor bus for updating the frame buffer and another multiprocessor bus for data

processing. If the two buses were of the same type, communication between the two buses

could be achieved by a sirnple bus adapter between them or by making each processor
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dual-ported, with interfaces to both buses.

2.3 The rnulti-rnode frarne buffer

2.3.L Frame buffer updating in a multi-window environment

Before discussing the multi-window display and frame buffer updating, an important dis-

tinction between a clipping window and screen window should be made. In computer

graphics terminology [20], image objects are specifred in world co-ordinates. A clipping

window defines a rectangular region in the world co-ordinate system; only images inside

this clipping window region can be displayed. The clipping window is mapped onto a

viewport by a scaling operation. A viewport is a rectangular portion of the screen surface

and is described in terms of a device-independent normalized device co-ordinate which is

associated with a real hardware display system. In the context of a multi-window raster

display, the screen surface mentioned above is a virtual screen surface and is associated

with a virtual pixel matrix [10]. The images are rasterized into this virtual pixel matrix.

There can be multiple virtual screen surfaces and virtual pixel matrices; a window manager

will display these virtual pixel matrices on a real screen in the form of screen windows. A

screen window is normally a rectangular region on the real screen to which a virtual pixel

matrix is being mapped.

From a virtual pixel matrix to a screen window, there may be a transformation, such

as zooming in, zooming out, or rotation. A screen window can be dragged around the real

screen, and the size and position of the screen window can be redefined by the window

management program. In a multiple screen window environment, multiple screen windows

can be displayed in an overlapped fashion - as if they exist in multiple layers, where

windows with higher visual priority obscure windows with lower visual priority.
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Thus, the viewport defines the position and size of an image in the virtual pixel matrix

and the screen window defines what part of this viewport can be displayed on the real

screen, and in what position it is displayed. Because this thesis is concerned with updating

the frame buffer, the term "window" will always be used to refer to the screen window;

the clipping window in the world co-ordinate system is referred to as the "image window".

The above conceptual model gives us an abstract view of a multiwindow display system.

Actually, the real screen is usually displayed from the contents of a contiguous region of

the frame buffer, called tlne uisible region of the frame buffer. The windo\Ã¡ manager maps

the visible parts of the virtual pixel matrix onto the visible region of the frame buffer, and

the invisible parts of the virtual pixel matrix onto an off-screen buffer area. If there are a

large number of overlapped screen windows, only a small portion of the screen window will

be visible for most of them; the rest will have to be kept in the off-screen buffer, in order to

recover the obscured parts of the screen windows when they are uncovered. Consequentl¡

a very large off-screen buffer area is needed to accommodate these obscured windows.

When the layout of the screen windows changes, the visible parts and the invisible parts

of the screen windows are rearranged using the R¿sterOp function. In our case, the frame

buffer is being accessed by graphics processors in different modes for different kinds of

image updating, to keep multiple screen windows active.

From the above description, we can see that an efficient RasterOp function and a large

off-screen buffer space are key factors in the fast manipulation of multiple overlapped screen

windows. Later, we will also see that far more data is needed to represent a colour image

than for a binary image. It is more cost effective to implement a higher data transfer rate

within the frame buffer, rather than between the frame buffer and other modules; thus,
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the scheme of maintaining the off-scrccn buffer region within the frame buffer is preferable.

A virtual frame buffer scheme can be used to implement a very large off-screen buffer. In

this case, there will be exchanges of blocks of image data between the physical frame buffer

and secondary storage.

2.3.2 The screen format and frarne buffer organization

Screen forrnat

The amount of data needed to represent an image increases rapidly with an increase in

the image resolution and colour pixel depth. For example, a 5I2 x 512 binary image is

represented by 256 I(bits, a L024 x LO24 binary image is represented by 1 Mbits, while a

7024 x 1024 full-colour 24-bit-pixel image requires 24 Mbits for its representation. The

great amount of data needed to represent a high resolution, full-colour image means that

it is very expensive to manipulate, transfer, store and display such an image. Therefore,

the selection of screen format is a trade-off between picture quality and image updating

speed, as well as the hardware complexity. We choose a 1024 x 768 high resolution screen

and 8-bit pixel depth. A colour look-up table translates the 8-bit pixel into 8 bits each for

red, green, and blue, and is thus capable of simultaneously displaying of 256 colours from

a 16 million colour palette. This screen format can produce colour images that meet the

requirements of most graphics applications with a reasonable cost, but it is not suffi.cient

for image processing tasks requiring high pixel depth.

The choice of 8-bit pixel depth also stems from the data and addressing modes of the

graphics processor. An 8-bit pixel maps to precisely one byte, and so the pixel value can

be conveniently manipulated by the byte addressing general data processors in the host

system. If some other pixel depth were selected, it would also have to match with the



CHAPTER 2. IMPLEMENTATION

addressable data unit of the graphics processor, otherwise the pixel value uranipulatiol

would become cumbersome.

Mernory components

Ideally, the full bandwidth of the frame buffer should be used for image updating.

Unfortunately, the screen refresh process usually takes up large amount of the frame buffer

bandwidth, causing image updating to be slow. For example, a flicker-free 7024 x 1024

monochrome screen needs to be refreshed 60 times a second, which requires more than

60 Mbit/sec frame buffer bandwidth; since the full bandwidth of a 16-bit word memory

with a 250 nsec cycle time is only 64 Mbit/sec, none of the memory cycle is available

for image updating. In order to circumvent this bottleneck, a number of techniques have

been developed; examples include double buffering, a shadow frame buffer, a wide memory

data path, and using memory components which have a page mode. All of these make the

display system more complex and expensive.

This design adopted a new memory component, known as video RAM, which was first

developed by Texas Instruments [29]. Figure 2.9 illustrates the block diagram for this

component. Video RAM makes use of the wide internal data path of a VLSI RAM and

transfers the data of a whole row of 256 memory cells into an internal shift register in one

memory cycle. The shift register can then work as an independent port and shifts this

data out for screen refreshing. The rest of the RAM chip works as a conventional random

access port for image updating. For our 32-bii frame buffer memory, eight 1024 pixel scan-

lines can be read in one memory cycle (256 x 32 pixels being the same as 8 x 1024-pixel

scan-lines); the video RAM cycle time is 300 nsec, and so the total time needed to refresh

a 800 line screen frame is 30 ¡rs (100 x 0.3 ¡^rs), compared with the 16667 y,s (L160 second)

34
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frame time. Thus, we can see that, by using video RAMs as frame buffer components,

almost the full frame buffer bandwidth can be used for image updating without extra cost.

The memory chips adopted in this design are NEC ¡,PD4L264 4 x 64I{ video RAMs [3]

and the scan-line organization of the frame buffer fits in well with the use of these video

RAM components.

Random access port

parallel
data transfer

Shift clock Serial output
port

Figure 2.9. Block diagram of a video RAM chip.

Frame buffer orqanization

In order to implement a mulii-mode frame buffer and meet the basic functionality

requirements of a multi-window display environment, the frame buffer is organized as a

stack of eight bit-planes, as depicted in Figure 1.4(b). AIt the bit-planes are locked to the

same co-ordinate system, so that the contents of these eight bit-planes can represent colour

images with 8-bit pixel depth. The bit-planes are organized in scan-line ord.er, as depicted

in Figure 2.10; the upper left corner of a bit-plane stands for x- and. y-coordinate pair

(0,0)' Each memory word represent a 32-pixel segment of a scan-line, but it can also be

considered as a primitive binary image rectangle with a height of 1 and. a width of 82 (called
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Figure 2.Lo. The organization of a frame buffer bit-plane.

an x-segment).

The x- and y-coordinates of the bit-planes are mapped into a linear one-dimensional

memory address space. The frame buffer has the same width as the screen, so that a simple

address range will define the frame buffer as a contiguous visible screen area and. Ieave a

contiguous area of memory for the off-screen buffer area. The frame buffer size is L024 x

2048 pixels, of which oniy 1024 x 768 are displayed on the screen; the remainder serves as

large buffer area and is used for virtual frame buffer page frames, or for double buffering

in dynamic display applications. I(eeping a large off-screen buffer area in the frame buffer

is an essential part 'of this design, for the folowing reasons.

1' In a colour raster graphics display system, the multiple functionalities an¿ the high

bandwidth of parallel RasterOp function units can only be achieved in the frame
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buffer. If there is only a small off-screen buffer (or perhaps no off-screen buffer)

available in the frame buffer, the off-screen buffer must be kept in other memory,

and frequent data transfer between the frame buffer and the other memory is needed

to move an image onto and off the screen. However, the overhead of moving an

image between the flame buffer and the other memory is much higher than moving

it inside the frame buffer, and so the power of the parallel Ra,sterOp units and the

multi-mode frame buffer will not be fully exploited.

2. The virtual frame buffer can only be used effectively in the off-screen buffer area,

and one of the major aims of this project was to use a virtual frame buffer to achieve

high perfoûnance. The screen area of the frame buffer must be a contiguous area,

so that it can be read correctly by a normal display controller and can be shared by

multiple screen windows. If there is no off-screen buffer area in the frame buffer, no

virtual frame buffer scheme can be implemented.

The advantages of the scan-line organized, linearly addressed frame buffer are as follows.

o It is convenient for the screen refresh system to read the frame buffer in

a scan-line by scan-line fashion.

o In raster operation, the unit height primitive image rectangle is easy to

map into any large image rectangle, since only the x-direction boundary

condition needs to be considered. This will simplify rectangle edge com-

putation. Also, this unit height rectangle can be conveniently mapped

into a polygon or other shaped areas.

o A two-dimensional image array of any size can easily be mapped into a
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contiguous linear one-dimensional memory array, so that in the off-screen

buffer area, pieces of arbitrary-sized images can be densely packed together

in a one-dimensional space. This significantly saves frame buffer memory

space and eases off-screen buffer management.

o The uniform structure of frame buffer memory and other system memory

simplifies data exchange between frame buffer and the rest of the system,

and makes it possible to use the paging virtual memory mechanism of the

host system to implement a virtual frame buffer.

Some frame buffer designs adopt x- and y-addressing, and a primitive image rectangle

can then be accessed to a pixel boundary [12]. This eliminates the overhead of converting

x- and y-coordinates into linear memory address, and pixel addressing also facilitates pixel

boundary image block transfers within the frame buffer. However, the peculiar structure of

the frame buffer adds extra overhead on data transfer between the frame buffer and main

memory; for example, x- and y-addressing is not compatible with DMA block transfer, nor

does it fit in with virtual memory address translation. It is difficult or even impossible to

pack arbitrary-sized pieces of image densely into a two-dimensional off-screen buffer area,

such as that which occurs with x- and y-addressing; however, to be able to dynamically

allocate and deallocate arbitrary-sized image pieces in the off-screen buffer area is essential

for a multi-window display. Lastly, it is clear that the pixel addressing mechanism increases

the cost and complexity of the hardware .

In an attempt to enhance vector drawing and the display of characters, two.dimensional

image memory cells, such as the 8 by 8 display [32] and the Disarray 127,341, have been

proposed. These schemes use an n x n pixel array as the memory access unit, so that an
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n x n character or n pixels of a vector can be displayed in one memory cycle, whereas

the scan-line word organized frame buffer scheme generally only draws one pixel on each

memory cycle. The disadvantage of a two-dimensional image cell is that it is difficult to

map these cells into an arbitrary-sized rectangle, since both x and y boundary conditions

and masks must be calculated. The boundary calculation is especially time consuming

when mapping these cells into a non-rectangular area. This two-dimensional memory cell

must be addressed using x- and y-coordinates, and this su-ffers from the problems inherent

in two-dimensional addressing, as mentioned above; these problems include the fact that

the peculiar structure introduces difficulties in data exchange between the frame buffer

and other memory areas. With future increases in the graphics processor data path width,

such as to 64 bits or more, the two-dimensional frame buffer cell is an interesting direction

to investigate, but the scheme proposed in this thesis is more suited to our current task.

Several notable research efforts have been experimenting with putting graphics proces-

sors into frame buffer memory chips. For example, the "Pixel-plane" project [21] combines

a tree processor with memory array which can evaluate arithmetic expressions for hidden

surface removal and shading. This direction of research involves building custom VLSI

chips and is out of the scope of this thesis.

2.3.3 Multiple functionality modes and their data structures

In accordance with the hypothesis discussed in Section I.2.2, the frame buffer has been

designed with three functionality modes. Each mode supports a specific category of graph-

ics operations. Different functionality modes are selected by accessing the frame buffer

through different address ranges; thus, different firnctionality modes can be used simul-

taneously, and can be used together in implementing graphics operations. Also, parallel
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graphics processes can v¡ork in different modes without the inconvenience of a mode switch.

The data formats and address formats of the three ftnctionality modes are shown in Fig-

ure 2.11; these will be explained below. The address formats given are the ones used in

programs; they are transformed by the graphics processor's bus interface to the system

bus address format during program execution.

Pixel mode

In this mode, the data structure of the frame buffer is a two-dimensional array of

pixels. The graphics processor accesses the frame buffer by pixel values. A 32-bit memory

word represents the values of four horizontally adjacent pixels, as shown in Figure 2.11(a).

The pixel values in this word come from all the bit-planes of the frame buffer, each pixel

value corresponding to a byte. The frame buffer is byte addressable in this mode, so that

individual pixels can be directly addressed and the pixel values manipulated conveniently.

The address format in Figure 2.11(a) shows that bits 0 to 20 specify the co-ordinate of

the left starting point of a 4-pixel pixel group. The processor instruction will specify how

many pixels the instruction is to access.

There is an 8-bit bit-plane write-enable control register for pixel mode in the frame

buffer controller. Each bit in this register controls the modification of one bit-plane and

so selective bit-plane modification can be achieved.

In pixel mode, pixel values can be conveniently read and manipulated. This facilitates

line drawing, area filling with shaded colour, combining colour images with operations

such as maximum or minimum intensit¡ adding or subtracting with saturation, replacing

with transparency, colour blending, and so on. These operations are much more expensive

if the frame buffer is organized in bit-plane format. This is because, in order to obtain

40
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one pixel value, all bit-planes involved in this pixel have to be accessed separately and the

pixel value has to be extracted frorn each of these bit-plane formatted memory words for

processing; the reverse process has to be used to store the pixel.

Another advantage of pixel mode is that a pixel mode transfer can read or write four

8-bit pixels in any pixel position, without setting up parameters. Thus, it is more efficient

for the copying of small image object, such as is used in displaying text, than is RasterOp

hardware.

Bit-plane rnode

In bit-plane mode, the data structure of the frame buffer is a stack of bit-planes. A

32-bit memory word represents an x-segment in one bit-plane, as shown in Figure 2.11(b).

The frame buffer is byte addressable in this mode; thus, the processor may conveniently

manipulate 8-pixel, 16-pixel, or 32-pixel biaary image segment in byte boundary. The

address format in Figure 2.11(b) shows that bits 0 to 17 specify the left starting point

of an x-segment in memory byte address; a particular pixel can be accessed using the x-

segment byte address and the pixel offset. The pixel offset corresponds to the bit number

of a pixel within the memory element being accessed. The bit-plane being accessed is

specifi,ed by address bits 18 to 20. The length of the x-segment being accessed is specifi.ed

by the processor instruction.

Bit-plane mode is efficient for moving low colour resolution images; for example, a

binary 32-pixel x-segment can be accessed by one bit-plane mode reference, but eight

references are needed to access the same binary image segment if the memory is in pixel-

packed format. Because only one bit-plane is involved in a bit-plane mode access, it is

convenient to use this mode when inserting or extracting images to or from an arbitrary
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bit-plane in the frame buffer. Thus, bit-plane mode is used for data exchange between

bit-planes and for moving blocks of arbitrary bit-plane groups between the frame buffer

and other memory areas or disc. Another interesting use of this mode is that all single

bit-planes can be drawn corì.currently by different processors, without interfering with each

other

RasterOp mode

This mode is designed for the fast movement of images; the frame buffer data structure

for this mode is a bit-plane group. All bit-planes are activated in one memory cycle,

the memory access unit being a 16-pixel colour image rectangle (which is limited to 16

pixels by the Ra.sterOp components used); this 16-pixel rectangle is aligned with a bit-

plane memory word and is called a RasterOp mode image word. Figure 2.11(c) illustrates

the data and address formats for RasterOp mode. Address bits 1 to L7 specify the left

starting point of a R¿,sterOp mode image word; up to 128 bits (16 pixels, each at 8 bits per

pixel) can be accessed in one memory cycle and so a 1024 x 768 screen can be updated in

49,I52 memory cycles. (If the RasterOp mode memory cycle time is about 600 nsec, this is

equivalent to approximately 29 msec). AII R¿sterOp data exchange and logical operations

are executed within the frame buffer module. During RasterOp mode frame buffer access,

a source colour image rectangle can be copied onto a destination with a logical operation

between source, destination and optionally halftone images; details of this operation will

be described in Section 2.3.5.

2.3.4 Other multi-rnode frarne buffers

There are other computer systems which adopt a multi-mode frarne buffer within their

display systems. The Symbolics 3600 system [7] has a three-mode frame buffer, in which

43
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the processor can do any of the following in a single memory cycle:

. access a 32-bit pixel for an image processing type application,

. access four 8-bit pixels for graphics applications including pseudo-colour, or

¡ fill thirty two 32-bit pixels with a single colour.

Together with pixel masks and bit-plane masks, the last mode can be used to display text

characters and fill areas with colour.

The recently released Sun-3 workstation [6] has a frame buffer with two addressing

modes. The processor can access this frame buffer by pixel value or by bit-plane; RasterOp

devices are incorporated into each bit-plane. The frame buffer size is 1048576 pixels, just

a little larger than the Sun-3's 1152 x 900 screen. No description of the structure and the

mode format for this frame buffer is given in the literature.

2.3.5 The design of the multi-rnode frame buffer array

The data path of the multi-mode frame buffer array is a direct consequence of the multi-

mode data structure. The main effort in the design of the data path is to enable the frame

buffer to be accessed in different formats, and to enable raster operations to be executed.

Effort has also been put into ensuring that the pixel co-ordinates in the different modes

are kept consistent, and that no data corruption can be caused by any access mode.

Data path for screen refresh

The basic arrangement of the frame buffer memory a ray is depicted in Figure 2.12.

It is composed of eight bit-planes, each of them a contiguous linearly addressed area of

memory with 32-bit memory words. In a linearly addressed frame buffer, the horizontal
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dimensiorr must be an integral number of memory rvords, so that each scan-line can start

at the beginning of a new memory word. For a video RAM frame buffer, the horizontal

dimension should be chosen that an integral number of scan-Iines can be accommodated in

the internal shifi register of the video RAM. Thus, the data used for screen refresh can be

prepared during screen blanking time; this signifi.cantiy simplifies the control and timing

logic of the screen refresh system.

Rcd

Look-up table
data bus

Pixel data stream

Figure 2.L2. Basic amangement of the frame bufier memory.

The display system described in this thesis uses 1024 pixels (corresponding to thirty
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screen and satisfying the above mentioned screen refresh requirement. The acldress lines of

these eight bit-planes are tied together so that all the bit-planes can be kept pixel aligned.

During a screen refresh operation, eight memory words with the same co-ordinates are

shifted out from the serial ports of the eight bit-planes. These eight words are then sent

to eight external shift registers to be converted into a video-raie 8-bit pixel vaiue data

stream.

The video-rate pixel stream is routed via a multiplexer to the index of three colour

look-up table chips, which convert the 8-bit pixel values into three 8-bit red, green and

blue signals (which can specify approximately 16 million different colours). These digital

signals are converted into analogue RGB video signals by the internal D/A converters of

the look-up table chips. The RGB video signals then drive the video monitor to display the

image stored in the frame buffer. The contents of the look-up table can be read or written

from the system bus; in such cases, the system bus addresses are used as the indices of the

look-up tables. The look-up table data goes to the system bus via the look-up table data

bus. Look-up table access from the system bus will interfere with displaying the image on

the screen and hence should only take place in vertical retrace time.

Data path for pixel mode and bit-plane mode access

The basic structure of the multi-mode frame buffer is a stack of bit-planes. As illus-

trated in Figure 2.L3, a bit-plane is composed of eight 4 x 64k video RAM chips. The

RAM chips of the eight bit-planes are arranged into a matrix along eight plane buses and

eight pixel buses.

The byte addressable capability in pixel mode and bit-plane mode is jointly handled

by the drawing processor and the frame buffer. On receiving a frame buffer address on
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instruction, the drawing processor will put an address from bit 2 to bit 31 onto the system

bus with byte enable signals (that is, the drawing processor extends its 24-bit CPU address

into a 30-bit system bus word address with byte enable signals). If a machine instruction

specifies a 32-bit word which is not aligned with the 32-bit systen bus word, the processor

will perform two successive partial word data transfers to complete the data access. Bits

23 to 31 in a system bus address select the display module board; bits 2 to 22 select a

32-bit word from this board and the byte enable signals determine which bytes of the word

0

Systcm bus

Bus gatc

Pixcl gatc 28..31Pixel gatc 0..3

Pixcl bus
for pixcl 28..31

Plane bus 7

BLT gate

BLT
chip

Vidco
Ram

4 x64K

Vidco
Ram

4 x64K
PIanc
gate 7

Planc bus 0

BLTgate

Inæmat data bus

BLT
chip

Vidco
Ram

4 x&K

Vidco
Ram

4 x64K



CHAPTER 2. IMPLEMENTATION 48

are being accessed.

For the sake of convenience, we will first describe the data path for bit-plane mode. In

bit-plane mode, a selected bit-plane is connected to the system bus via its plane bus and the

appropriate gate. The memory chips in each bit-plane have their individual row address

strobe (RAS) signal; thus, in bit-plane mode only the selected bit-plane is activated. The

memory contents of the other bit-planes will not be disturbed by a bit-plane mode write

cycle. Bits 2 to 17 on the system bus specify the address for a 32-bit memory word in a

bit-plane, such a word being divided into four bytes; each byte has its own write enable

signal which is under the control of system bus byte enable signals, so only the selected

byte can be modified. The bus gate ensures that only the enabled byte can be connected

to the system bus.

In each pixel mode frame buffer cycle, 32 pixels (8 x 32-bit words) are activated with the

address taken from system bus bits 5 to 20; among these, up to four pixels (corresponding

to a 32-bit system bus word) can be accessed through the system bus. So, system bus

biis 2 to 4 are used to select which pixel group within these 32 activated pixels is being

accessed. The system bus byte enable signals specify which pixels in this pixel group are

being accessed. Each individual pixel can be accessed as a byte and each 4-pixel group

can start at any pixel position.

In a pixel mode read cycle, one of the pixel buses and appropriate gates link the selected

pixel group with the system bus. Up to four 8-bit pixel values can be read from the frame

buffer, since all eight bit-planes are activated so that the processor can read and. process

image data from all bit-planes. In a pixel mode write cycle, the pixel mode plane write

enable register controls the RAS of each bit-plane, so that only enabled bit-planes can be
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modified. Among the 32 activated pixels of the frame buffer memory, only selected pixeis

can receive memory chip bit write-enable signals, ensuring that the other pixel values can

remain intact.

Executing RasterOp in a scan-line word organized rnernory

A simplified raster operation can be expressed by the Pascal code depicted in Fig-

:ure 2.14 (adapted from [26]). RasterOp contains two nested loops, the inner one going

across pixeis in a scan-Iine and the outer one running over scan-ünes. The execution speed

of the inner loop has considerable effect on the overall performance of the RasterOp.

type raster-op: 7..4; {t * destination:: colout }
{2 - if source f 0 then destination:: colour}
{3 - if source f transparent then }
{ destination'-- source }
{4 - destination:: source }

procedure RasterOp (operation: raster-op;
var desúination: rasteq xd, yd, width, height: integer;
var source: tasteq xs, ys, colout: integer);

var X, Y: ínteger;
begin

for Y::l to height do begin
for X::l to width do begin

case operation of
7: SetPixel(destination, xd, yd, colour);
2: if GeúPixel(source, xs, ys) <> 0 then

SetPixel(destination, xd, yd, colour);
3: if GetPixel(source, xs, ys) 1) transparent then

S etP ixel( destinat ion, xd, y d, GetP ixel(soutce, xs, ys ) ) ;
4: SetPixel(destination, xd, yd, GetPixel(sotirce' xs, ys))

end;
xd:: xd * 7; xs:: xs * I

end;
Id:: yd + 1; ys:: ys f 7

end;
end; {RasterOp}

Figure 2.L4. Procedure RasterOp.
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The above algorithm explains how RasterOp works, but if RasterOp were to copy

only one pixel at a time, its speed of execution would be very slow. An important factor

in improving the speed of the RasterOp inner loop is to operate on as many pixels as

possible in one memory cycle. Now, we examine how this is achieved in one bit-plane of

our scan-line word organized frame buffer.

From Figure 2.10, we can see that each memory word corresponds to a unit height

binary image rectangle; thus a primitive image rectangle can be defined as a string of

horizontally adjacent pixels, with the longest length of such a string equal to the size of a

memory word. One memory cycle can hence simultaneously access up to 16 or 32 pixels,

since the memory word consists of either 16 or 32 bits. Thus, the full bit-plane bandwidth

can be exploited for image transfers. For clarity, we will only examine the process of

copying one source primitive image rectangle onto a destination at a pixel boundar¡ as is

illustrated in Figure 2.15(a). In this figure a unit height primitive source image rectangle,

which is covered by two memory words (source word 1 and source word 2), is going to be

copied onto a destination area at a pixel boundary position; this destination position is

also composed of two memory words. Dr:ring the copy process, a bitwise logical operation

can be applied between the source, destination, and halftone primitive image rectangles

(the halftone image works as a mask or colour). In the destination, only the dark shaded

rectangle is replaced by the result of the logical operation, and the light shaded part remains

intact. The copy operation is executed in a logical unit, as shown in Figure 2.15(b), where

o a source register queue contains two consecutive source memory words,

o a destination register contains a destination memory word,

o a halftone register contains a halftone primitive image rectangle,
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¡ a destination merge unit enables only those pixels of the destination which are covered

by the source image being copied.

This copy process can be expressed by the algorithm in Figure 2.16. Larger image rect-

angles can be mapped by these primitive image rectangles, in which case the RasterOp

inner loop will execute the algorithm in Figure 2.16 repeatedly over the width of the large

image rectangle.

Calculate the shift amount;
Calculate the left and right mask;
Read a pattern into the halftone register;
Read sou¡ce word 7 into the source register gueue;
Read source word 2 into the source register queue;
Shift the concatenated long sou.rce word to make it pixel-aligned

with the destination position;
Read destination word 7 into the destination register;
Appiy a logical operation between the shified source rcgister,

the halftone register, and the destination register;
Use the left mask to merge the resuiting word and the destination regíster;
Store the merged word into the address given by destination word 7

Shift source word 2 to the top position of soutce register queue;
Shift the long source register queue to make it pixel aligned

with the destination position;
Read destination word 2 into the destination register;
Apply a logical operation between the shifted source rcgister,

the halftone register, and the destination register;
Use the right mask to merge the resulting word and the destination registeq
Súore the merged word into the address given by destination word 2 ;

Figure 2.L6. RasterOp in a bit-plane organized memory.

The algorithm in Figure 2.16 can be accelerated by a hardware barrel shifter, a logic

function unit, and a mask and merge unit. Pacific Mountain Research Inc. produces

a VLSI RasterOp chip, called the BLT chip [13]; this has a functional data path which

includes all the functional units for bit boundary image block transfer, as is depicted in

Figure 2.L7 (which is adapted from [2]). In the BLT chip, there is

o a source register queue to store consecutive source image words,
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Figure 2.L7. The block diagram for the BLT chip.

¡ a rotator and a skew mask rvhich shift the source image in the source register queue

to the destination position,

o a halftone register which contains a pattern mask or colour,

o a destination register which contains the destination image word.,

o a logical function unit rvhich can perform 256 logical operations on data from the

shifted source register, the halftone register and the destination register, an¿

o a merge mask and a destination merge unit, which merge the results from the logical

operation and the destination register at a pixel boundary, and outputs the merged

data into frame buffer destination word.
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If all the parametels needed for RasterOp are set up and source words 1 and 2 have been

read into the source register queue, then only one read-modify-write memory cycle will

be required to move ihe bit boundary source image rectangle into the destination word.

Hardware units such as BLT chip increase the speed of a RasterOp in three ïvays:

o they operate on multiple pixels at once,

o they execute shift, mask and merge in one operation (in less than 100 nsec), and

o they replace separate reading and writing (destination) cycles by a single read-

modify-write cycle.

Although the data path of the BLT chip is only 16 bits wide, its functionality is quite

suitable for our purpose. Furthermore, using VLSI units can save a large amount of circuit

board area, which is a considerable advantage. Consequently, the BLT chips were used in

our experiment.

In our implementation, each bit-plane has a BLT chip attached as a RasterOp acceler-

ator, as shown in Figure 2.13. The data path can be used in the following ways.

1. In a normal RasterOp, the system bus and ail the plane buses are separated from

each other and the data exchanges are only carried on between each bit-plane and its

BLT chip. During a RasterOp mode read cycle, all bit-planes are activated and eight

binary source image words from these bit-planes are read into the source registers or

halftone registers of the BLT chips, respectivel¡ depending on the control informa-

tion field of the RasterOp mode address. A collection of these binary image words

represents a RasterOp mode colour image word. During a RasterOp mode write

cycle, the frame buffer controller starts a read-modify-write cycle which executes a
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one word RasterOp in the BLT chips and stores the output of the BLT chips into

the destination colour image word. Thereby, RasterOp mode performs RasterOp

on a colour primitive image rectangle at the same speed as on a binary image, the

performance thus being independent of the pixel depth.

2. The system bus can transfer data to BLT registers. In this case, all plane buses

are connected to the system bus and control parameters can be sent to BLT control

registers; also, data from the graphics processor, or an image word read from another

memory area or from a certain bit-plane, can be sent to the source or the halftone

registers in all BLT chips. Thus, a binary image pattern can be sent to all BLT

chips as a mask. If the BLT chips have an image word or a colour stored in their

source or halftone registers, the mask can selectively copy the image or colour onto

the destination. In the first case, the mask gives the image a texture, and in the

second case the binary mask pattern is extended into a colour pattern. In this way,

fonts, menus and other patterns can be kept in binary form and stored in some other

memory area,'thereby saving the valuable frame buffer resource.

3. Special operations have been designed to overlap the operation of loading the BLT

source register from the system bus and reading the destination image word in a

read-modify-write cycle, so that using RasterOp to copy one image word from other

memory to the frame buffer, or between bit-planes, can be accomplished in one

MOVE instruction.

4. The pixel buses can be used to transmit colour values to the halftone registers in

the BLT chips. One MOVE instruction can load L6 colour pixels into a BLT chip;
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therefore, no spccial colour rcgister is needed for area filling or colour extending.

Pixel mode and RasterOp mode have separate bit-plane write enable control registers,

so that RasterOp cán work in a bit-plane group different from pixel mode. This provides

more efficient use of the multi-mode frame buffer in an environment consisting of multiple

graphics processors performing parallel image updating; for example, a drawing process

which currently owns the RasterOp hardware can freely change its working bit-plane group

without disturbing other parallel drawing processes. This facilitates better concurrency,

and eliminates unnecessary waiting and synchronization.

The 16-bit BLT chip is connected to the lower 16-bit word in each bit-plane and com-

municates with the higher 16-bit word via a gate, depicted in Figure 2.13. In RasterOp

mode, the frame buffer can only be accessed by 16-bit word size and bit 0 of the address

must always be '0' (otherwise the access will be rejected by the frame buffer).

2.3.6 The display controller

Functionally, the display controller can be partitioned into the frame buffer memory con-

troller, the frame buffer updating controller and the screen refresh controller, as illustrated

in Figure 2.18. The screen refresh controller generates a frame buffer address for screen

refreshing, and it generates video synchronization and blanking signals for video monitor;

it also generates signals to control the screen refresh data path. The frame buffer updating

controller generates signals to control the updating port of the frame buffer and to han-

dle the multi-mode functionality. The frame buffer memory controller provides address,

control and strobe signals for the video RAM memory chips in the frame buffer memory;

it also handles the dynamic RAM (DRAM) refresh operation for these chips. The screen

refresh controller and updating controller share the frame buffer controller.
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Figure 2.18. Functional partition of the display controller

In the implemented system, a Texas Instruments TMS 34061 video system controller

(VSC) was adopted for the frame buffer controller and part of the screen refresh controller.

During horizontal blanking time, it performs special data transfer cycles to transfer the

image data in a whole row of frame buffer memory cells into the internal shifi register of

the video RAM for screen refreshing. It also provides video synchronizationand blanking

signals. When activated and provided with a memory address and other appropriate

control signals, the VSC can perform the frame buffer memory read or write cycle. In

addition to the above functionalii¡ the VSC assumes the responsibility of frame bufier

memory access arbitration. There are three processes that access the frame buffer; they

are the screen refresh process, the DRAM refresh process, and the frame buffer updating

port access. The first two are handled inside the VSC, while the last is handled from the
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system bus. rWhen an updating access request is applied to the VSC, but there is a frame

buffer memory cycle in progress or there is another higher priority access request, the VSC

will negate its ready pin, thus informing the updating controller to wait until the memory

is free.

The updating controller is show in Figure 2.19. The heart of this controller is an access

controller which is implemented by a state machine programrned into programmable logic

arrays (PLAs). The access controller receives operation codes and addresses from the

system interface, and generates appropriate sequence and control signals to control the

frame buffer data path and to activate and control the VSC.

System bus
actslo'rvleogement

System interface

Address decoder

Synchronization
register

Hand-shaking

operation
&.

Mode

Data

Access
controller

vsc

VideoRAM
control

Activate
c

Control signal decoder
PALs

Microoperation

\

1

Data path

Figure 2.L9. The updating controller
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A group of PALs serves as micro-operation decoder which take the control signals from

the access controller, the VSC, and the address decoder, and interpret them into micro-

operation control signals which directly drive the data path. Hand-shaking logic between

the access controller and VSC handles the synchronization between these two controllers.

The access controller and the VSC use the same clock source, so that intermediate synchro-

nization latches for their state machines and their associated delay can be avoided. The

frequency of the access controller is twice the frequency of the VSC, in order to reduce

synchronization time between system bus signals and the access controller. The access

controller also sends an acknowledgement signal to the system inter{ace, signalling the

completion of its task. A synchronization register is placed between the input of the access

controll.er and the asynchronous input signal sources, to eliminate metastable conditions.

The block diagram for the screen refresh system is shown in Figure 2.20. For non-

interlaced high resolution raster display systems, the pixel dot rate is very high. In our

case, the pixel dot frequency is about 70Mhz and the cycle time is about 14 nsec, depending

upon the video monitor being used; the pixel dot frequency could be even higher. This

frequency is near the upper limit of fast Schottky TTL circuits. Their propagation delays

and set-up time requirements make it very difficult to generate adequate combinational

control signals with the correct timing. In the timing section, therefore, we have used fast

ECL technology. ECL components have a typical delay and set-up time of around 7.7 to

2 nsec; hence, they can be used more comfortably at the high pixel dot frequency required.

During active horizontal scan time, image data in the video RAM's internal shift register

is shifted out and loaded into eight 16-bit external shifters, to be converted into a video-

rate pixel stream. This pixel stream is routed through the colour look-up table, the D/A
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Figure 2.2O. The refresh controller.

converter and becomes RGB signals to be displayed on the colour monitor. The 32-bit

frame buffer word is divided into two 16-bit half-words and the 16-bit external shifter is

loaded from each of these half words in turn. After a 32-bit image rvord has been shifted out

of the external shifter, a ne,ñ/ image word will be shifted out of the video RAM serial port

to load the external shifter. The clocks and control signals are handled by the ECL timing

control. The video RAM internal shift registers hold several scan-lines; thus, during screen

blanking time, there must not be any video RAM shift clock signals, otherwise image data

in the internal shift register will be shifted out and hence will be missing. Therefore, the

video RAM shift clock is gated by the blanking signal. A 1132 pixel dot clock (VDCLI{) is

used to drive the VSC.screen refresh controller, so that the VSC can generate appropriate

screen refreshing addresses and vertical and horizontal video timing signals, which are

synchronized with the pixel dot stream. The blanking signal generated by ihe VSC is
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controller
(vsc)
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circuit
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one VDCLI( period time ahead of the real blanking time, so that the blanking signal can

be synchronized exactly to the pixel stream. Hence, pixels at the horizontal margin of

the screen are correctly displayed. In order to reduce the skew between the different bits

of the digital pixel value from the output of the external shifter and the colour look-up

table, two sets of pipeline registers are provided in both the input and output stages of

the look-up tabies in the colour palette chips. The blanking signal can output separately,

or as a composite signal with video output signals.

2.3.7 The systern interface

The system interface links the display subsystem and the system bus of the host work-

station. It appears as a slave interface to the system bus; as shown in Figure 2.27, it

includes address logic (system bus address register/counter and module select logic), an

address and operation decoder, status and acknowledgement logic, and bit-plane enable

control registers. The display subsystem receives all control information via the interface

in Fignre 2.27. The display subsystem is piaced in a non-cacheable area of the system bus

address space; the address allocation of its multi-mode frame buffer, colour look-up table,

and control registers is given in Appendix A.

The system interface handles the bus transfer protocol and handshaking of the asyn-

chronous system bus. If the bus master requires operations that the display subsystem

cannot perform, it will report an error status. The system interface also supports block

data transfer. That is, after each data transfer, the internal address register of the display

subsystem iill automatically increment itself for the next data transfer. Thus, a block of

data can be transferred continuously with only one address transfer and one bus arbitra-

tion. This effectively increases the data transfer speed between the frame buffer and other
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to frame buffcr f.o display conf¡oller

to dalå patfr array

Figure 2.2L. Block diagram of the system interface.

memory areas or a disc, such as occurs with page transfers during virtual frame buffer

operation, and with image loading or dumping.

The vertical video retrace interrupt signal and any internal error report interrupts will

go to a special processor which handie these particular tasks, so that these interrupts

will not disturb the system and cause unnecessary context switching. In response to the

display subsystem interrupt request, the special task server will acknowledge the display

subsystem by reading its status register to determine the cause of the interrupt and clear

the interrupt request at the same time. The interrupt can be masked. by software.
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Virtual frarne buffer

3.L The virtual frarne buffer scherne

3.1-.L The motivation for using a virtual frarne buffer

There are three main factors that motivate the extension of the virtual memory manage-

ment technique to implement a virtual frame buffer.

1. It is desirable to keep the multi-mode frame buffer large, so that its special function-

alities can be fully exploited. However, the size of the physical frame buffer is always

limited. A virtual frame buffer can provide an image store which is much larger than

the physical frame buffer, so that more obscured windows, icons, menus and images

from an image library can be accommodated. Also, a large virtual frame buffer can

accommodate images larger than the size of physical frame buffer.

2. The virtual memory mechanism can enforce memory protection among various draw-

ing processes.

3. A paging virtual memory mechanism can join non-contiguous memory pages into a

contiguous memory area, easiug the fragmentation problem for the off-screen buffer

area.

63
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3.L.2 Ordinary paging virtual rnemory systerns

Before proceeding with the discussion of virtual frame buffer management, we first revie'"v

how an ordinary paging virtual memory system works. In the context of a paging virtual

memory system, the term airtual address refers to memory addresses used in programs

and the ph'ysical address is the address used by the hardware to access a physical memory

location. Both virtual and physical addresses are divided into two fieids, known as the

page number field and the in-page offset field, as shown in Figure 8.1.

Vi¡tual memory add¡ess

in-page offset fieldpage number field

Figure 3.1. The composition of an address in a paging virtual memory system.

A page is a fixed size contiguous memory block, the page size being determined by the

memory management unit. The page number specifies a particular page in the memory

and the in-page offset locates a byte address wiihin a page. Physical memory pages are

used as page frames to contain virtual memory pages. By means of dynamically mapping a

virtual page onto a physical page (that is, mapping a virtual page number onto a physical

page number), the paging virtual memory mechanism decouples the virtual address from

a fixed physical memory location.

When a non-resident virtual page is referenced, the virtual memory mechanism will

find a physical page frame for this virtual page from the free page list and. record the

mapping between virtual and physical pages in an address translation table. If there is no

free page frame left for the process, the virtual memory system will swap a virtual page

out to backing store, commonly the least recently used, and use the vacated physical page
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frarne for the new virtual page. In this way, a program can eft'ectively utilize a memory

space which is much larger than the physical memory space, and concurrent prograûls ca¡.

use the same virtual address in different address spaces without interference.

The process of mapping a virtual page to a physical page is called address translation.

In a paging system, address translation is handled by looking up a page table, as shorvn

in Figure 3.2.

Vktual address

Physical address

Figure 3.2. The address translation.

When a virtual address appears, the ui,rtual page number (VPN) is used as the index

to a page table entry. The page table entry has several fields:

o the V flag indicates whether this page is currently resident in physical memory,

o, the protection (P) field specifies whether this page is accessible to this program and,

if so, the legal access operation,

in-page offsetPFN

VPMPFN

Page table

Index

in-page offsetVPN

¡ the M flag indicates whether this page has been modified, and.
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o the page frame number (PFN) fi.eld stores the physical page number of the corre-

sponding page frame, if the virtual page is valid, or the location of this virtual page

in backing store if the page is not in physical memory,

The address translation algorithm can be expressed as shown in Figure 3.3.

using the virtual page number and the page table base,
frnd the page tab)e entry;
if a protection violation has occurced then

branch to the appropriate trap;
elsif ¿åe page is valid then

assemble PFN and in-page offset into the physical address;
use úåis address to reference physical memory;

else
generate a page fault and trap the current process;
swap in the required virtual page into physical memory;
validate the page table entry;
wake up the faulted process and try again;

end;

Figure 3.3. The address translation algorithm.

Thus, in addition to extending the physical memory space, a paging virtual memory

system can protect memory pages from unauthorized access, and can join discrete physical

page frames into a contiguous memory area.

66

3.1.3 The difficulties
buffer

of irnplernenting a virtual colour frame

The frame buffer is, by its nature, a piece of memory. It is desirable to extend the basic

virtual memory mechanism to manage a virtual frame buffer. In fact, the SUN-21L20

workstation uses virtual memory as an off-screen buffer to store binary images.

Unfortunatel¡ the implementation of a colour virtual frame buffer is difficult. The

difficulty arises because of the fl.exible use of the colou¡ frame buffer does not fit into the

ordinary paging virtual memory mechanism.
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In Section I.1.4, it was p<-rirrted oul, that a multiple bit-plane colour frame buffer can be

used in a very flexible way. For example, an eight bit-plane frame buffer can be configured

into, sa¡ three groups:

o bit-plane 0 to 3, inclusive,

o bit-plane 4 to 6, inciusive, and

o bit-plane 7.

Each group may contain images of pixel depth equal to the number of bit-planes in the

bit-plane group.

Suppose, for example, that the frame buffer memory word and page are defined in

pixel-packed format (see Section 1.1.a). If a binary image needs to have a page swapped

in, then only one eighth of the page contains valid data; obviously, the page transfer is very

inefficient and so is the utilization of the secondary storage. Furthermore, since the data

transfer to an appropriate bit-plane group is governed only by a bit-plane enable control

register, that virtual page can be swapped between the frame buffer and backing store only

when the bit-plane enable control register is set to this particular bit-plane group. This

means that if there are two drawing processes working in different bit-plane groups and

one process is suspended waiting for a virtual frame buffer page, the required page cannot

be swapped in until the other process is suspended, since a different bit-plane enable has

to be set for the latter process.

Implementation of virtual memory for a multi-mode frame buffer is even more difficult.

In our case, the frame buffer can be accessed by pixel value (pixel mode), by bit-plane

(bit-plane mode), or by colour image rectangle (RasterOp mode); according to their corre-
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sponding data and address formats, each access mode will associate its o'wn nleaning with

its memory pages, and the meanings of memory pages in different modes are incompatible

with each other. If the different modes swap their own pages independently, the same

pixel data in different modes may map to different physical frame buffer locations at the

same time and different values may be kept for each mode. This will inevitably lead to

erroneous results. After tiris kind of address translation, there would be no guarantee that

the same pixel data can be correctly accessed using different modes.

If a common frame buffer memory page were defined in one frame buffer mode, such

as bit-plane mode, then each page would be in one bit-plane and multiple bit-plane op-

erations, such as a pixel mode frame buffer reference, would involve multiple pages in

one memory access. This situation obviously cannot be handled by the ordinary virtual

memory mechanism described above. This is especially true in RasterOp mode, where one

memory address corresponds to a colour image rectangle, which may involve multiple mem-

ory words in different bit-planes; the meaning of a page in this mode has little resemblance

to the ordinary memory page. AI1 of the above matters complicated the implementation

of a virtual multi-mode colour frame buffer.

3.L.4 The solution - the page group concept

Because of the above difficulties, a new concept and mechanism are needed to map the

multi-mode colour virtual frame buffer into the physical frame buffer memory. From

Section L.1.4, it can be seen that a colour image can be considered as composed of a stack

of binary images; each of these binary images resides in one bit-plane and can be handled

by several ordinary memory pages defined in bit-plane format, as sho\4rn in Figure 3.4.
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Memory
pages

A stack of binary images

Figure 3.4. A stack of binary images forms a colou¡ image.

We define a bit-plane group to be a collection of bit-planes in the frame buffer; this

collection is used to store colour images with a pixel depth equal to the number of bit-

planes in this bit-plane group. If we gather together pixel-aligned pages from the different

bit-planes of a colour image into a group, then this group is called a page group, and is

depicted in Figure 3.5; each page group rvill thus represent a part of the colour image.

The memory pages referred to here are defined in bit-plane format (bit-plane mode) and

so each rnemory page corresponds to a contiguous memory block in a bit-plane. Thus, the

definition of a page group can be expressed as a group of pixel-aligned pages in a bit-plane

group.

A pixel

\

A page goup

Figure 3.5. The page group concept

The multi-mode address format can be designed so that any mode of frame buffer

access can be encompassed by one page group; if this is done, a page group can be used as

the image swapping unit in virtual frame buffer management. Thus, for all frame buffer

A memory page
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access modes, tire concept of page only exists in name for address translation, since the

entity being managed by the virtual frame buffer mechanism is actually a page group. In

this way, the nominal page in each frame buffer mode can keep its own meaning and its

o\Mn page number for a specific frame buffer co-ordinate, but all of them will map into the

same page group. For example, a pixel mode memory page represents a contiguou.s area

of pixels in a page Broup, a bit-plane mode page represents a page in one bit-plane of a

page group, and a RasterOp mode page corresponds exactly to a page group. Whenever

a frame buffer page fault is encountered, the virtual page group number can be extracted

from the faulted virtual address and the required page group can be swapped in for the

continued execution of the program.

The size of a page group may vary from one binary image page to eight binary image

pages, depending on how many bit-planes the colour image involves. So, the unit of image

swapping becomes programmable and the page group image swapping scheme guarantees

that the faulted image fragment is swapped into the physical frame buffer, without trans-

ferring invalid data in irrelevant bit-planes. Thus, the page group concept solves both the

page transfer efficiency problem and the problem of mapping multi-mode colour virtual

frame buffer to physical memory.

3.1.5 Address translation for the rnulti-rnode frarne buffer

For a multi-mode colour virtual frame buffer, two basic requirements must be met by the

address translation scheme:

1. The data corresponding to every pixel must be accessed correctly by all modes after

address translation.
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2. One frame buffer reference f<rr any r¡rocle r¡rust be covered by one page gÌoup.

The multi-mode frame buffer address format has to be carefully designed to be compat-

ible with the page group concept. The frame buffer address format consists of a number

of fields, as shown in Figure 3.6:

c a mode code fr.eld, which distinguishes a frame buffer reference frorn other kind of

reference and specifies the functional mode,

o a co-ordinate frel{ which specifies the position of the image data element being ac-

cessed, different modes access different data element of an image in different formats,

and

o other fields, depending on the mode: in pixel mode, ihere are no more fields; in bit-

plane mode, there is a bit-plane select field; in RasterOp mode, there is a fv'nction

selecl field.

Co.ordinate field
Conu'ol

information
Mode
code

Non-cacheable
area flag

Figure 3.6. Fields of the frame buffer address.

First, we examine the bit-plane mode address format, shorvn in Figure 3.7(a). The

co-ordinate field for bit-plane mode specifies the starting pixel location for a string of eight

horizontally adjacent pixels in a bit-plane, rvhich is equivalent to a byte. This address

format can also be considered to be composed of a page number freld and an in-page offset

field; the lowest order 9 bits of the address specify the in-page offset of. a 5L2 byte memory
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Bit-plane mode address fomat

23 22 2t 20 18 17

(a)

Pixel mode address format
2322 2120

(b)

RasterOp mode add¡ess format

2322 19 18 L7

(c)
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1098
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0
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In page
offset

Page number

7 bits11 bits3 bits2 bits

X (byte)Ybit-plane
select

mode
code

I

In page
offset

Page
number

10 bits11 bits2 bits
I

XYmode
code

In page
offset

Page
number

0
6 bits11 bitsl bir4 bits

1

Ycontrol
information

mode
code

Figure 3.7. Frame buffer address format.
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page, and the remainder is th.e page number field. From the bit-plane mode address format,

we can see that only bit 9 to bit 17 of the co-ordinate field is transformable and this is

called the T-field. It can be substituted by a translation value for address translation. The

rest of the page number fields, such as the mode code and the bit-plane select fields, must

be directly mapped from a virtual address to a physical address to maintain its meaning.

Now, from the definition of a page group, we can see that, in bit-plane mode, memory

pages with the same T-field value are pixel-aligned, and can be included in a page group.

Thus, the T-field represents the page group number, and the virtual frame buffer address

translation is actually mapping a virtual page group onto a physical page group. Analogous

to a physical page being used as a page frame in an ordinary virtual memory system, the

physical page group in the virtual frame buffer system is used as page group frame to

accommodate virtual page groups.

Similarly, we can find a field in the pixel mode and RasterOp mode address formats

which corresponds to the bit-plane mode T-field, as shown in Figures 3.7(b) and (c).

That is, the higher 9 bits of the co-ordinate field of these address formats specifies the

page group number. The frame buffer addresses that refer to different parts of the same

16-pixel colour image rectangle which is aligned with a 16-bit memory short word in a

bit-plane (see Section 2.3.2) are defined to be conjugate ad,dresses. Fo¡ example, pixel

mode, bit-plane mode and RasterOp mode addresses which share the same high order 17

bits of the co-ordinate field are conjugate addresses. Similarl¡ v¡e can define all frame

buffer nominal pages, those falling into one page group, to be conjugate po,ges.

The address translation rule for the multi-mode virtual frame buffer is that a phys-

ical page group is first found for a virtual page group, then the virtual page group number
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is replaced by the physical page group number in all conjugate pages of the virtual page

group, and the remainder of the virtual address is mapped directly to physical address,

to obtain the physical frame buffer address. Because the same translation value is used

for all conjugate pages, a set of conjugate virtual frame buffer addresses can be translated

into a set of conjugate physicai frame buffer addresses.

Figure 3.7 also slr.ows that a page group, specifi.ed by a T-freld value, is eight times

larger than the nominal memory page in pixel mode and so a pixel mode frame buffer

access can always be covered by a page group. A bit-plane mode memory page is always

one of the pages in a page group, and a RasterOp mode page is equivalent to a page group.

Therefore, one frame buffer reference must fall into a page group, no matter which mode

is used. Hence, the frame buffer address translation scheme described above meets the two

requirements mentioned earlier.

3.2 A virtual frame buffer managem.ent sirnulator

3.2.L Introduction

A virtual frame buffer management simulator was implemented to enable experimentation

with, and verification of, the virtual frame buffer mechanism proposed for the multi-mode

multiple bit-plane colour frame buffer.

Virtual frame buffer management can be divided into two parts: the mechanism and

the policy. The mechanism includes the way that virtual frame buffer memory is mapped

into physical'frame buffer memory, the way that address translation from multi-mode

virtual frame buffer addresses to physical addresses is handled, and how pages are swapped

between physical f¡ame buffer memory and the backing store so that all demanded pages

can be placed into physical memory for program execution. The virtual frame buffer
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managcmcnt mcchanism also includes page frame managemcnt for thc physical frame buffer

memory, memory protection, virtual page locking, and sharing of address spaces between

different processes.

The policy part of virtual frame buffer management is concerned with page replace-

ment strategies, frame buffer resource allocation, process swapping, frame buffer resource

reconfiguration, frame buffer working set allocation, dynamic adjustment of the size of

working set, and so orì.

The purpose of the simulator to be described here is to provide a means of realizing the

idea of a multi-mode colour virtual frame buffer and to verify the correctness of the virtual

frame buffer management algorithm. The policy part of virtual frame buffer management

will be left for the window management system or operating system kernel to determine.

The simulator allocates the off-screen physical frame buffer as physical page frames for

virtual frame buffer management. Different kinds of images can then be written into this

virtual frame buffer, using each of the function modes, and copied to a contiguous physical

frame buffer area which is directly mapped to the screen. A normal memory area is used

to simulate the backing store. This simulator is primarily designed to simulate the frame

buffer address translation in ordinary memory. However, it can be migrated to the real

colour graphic display system, so that the behaviour of the virtual frame buffer can be

examined visually.

The simulator consists of a number of functional modules; these are:

1. An ad,dress trønslator, which simulates the function of the memory management unit

(MMU) looking up the page table and translating a virtual frame buffer address into

a physical frame buffer address.
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2. A, frame buffer confi.gurator, which confrgures the frame buffer into a set of bit-plane

groups to store images with different pixel depths.

3. A pagi,ng hand,ler, which handles virtual frame buffer page group swapping, so that

demanded virtual page groups can be called into the physical frame buffer for image

access.

4. A shared area handler, which enables a process to share part of another process'

address space, and dynamically creates and deletes shared areas.

5. An inítializer, which initializes the virtual memory management data structures,

specifying the working address spaces with appropriate protection types for the var'-

ious processes.

3.2.2 The address translator and its data structures

In the implemented graphics display system, the general purpose graphics processor uses

the same address translation hardware to access its general purpose virtual memory and the

virtual frame buffer. The virtual frame buffer mechanism must be made compatible with

this address translation hardware and its basic data structures. Therefore, it is necessary

to examine the address translation scheme of the NS32000 family of processors, which are

used in the host system as general purpose data processors (as discussed in Section 2.2),

and find a \Ã/ay to fit virtual frame buffer management into the framework of the host

processor's address translation scheme.

The NS32000 paging virtual memory scheme divides an virtual address into a page

number field and an in-page offset fietd. The virtual page number field is further divided

into indexl and index2, as shown in Figure 3.8. The page table has two levels: the indexl
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page table (PTl) and the index2 page table (PT2), as depicted in Figure B.g. .I.he address

translation hardware, which is built into the memory management unit (MMU), first uses

PT1's base and indexl to locate a PT1 entry; if this entry is valid and. no access violation

is detected, the PFN field rvill contain a pointer to PT2. By using this pT2 pointer

and index2, a PT2 entry can be found by the MMU. Following the address translation

algorithm (described in Section 3.2), if this entry is valid then the page frame number

(PFN) field of the PT2 entry and the in-page offset field of the original virtual address are

assembled by the MMU to yield the physical address.

23

Virtual add¡ess

1615 98 0

Physical add¡ess

Figure 3.8. The NS32000 address translation scheme.

The virtual frame buffer management simulator simulates the functions of the NS32000

MMU and maintains the address translation data structure (that is, the page tables) in

a manner compatible witir the NS32000 family virtual memory architecture. Thus, the

algoriihm described here will mirror precisely the activities on real hardware and the

virtual frame buffer management scheme can easily be migrated to real hardware. For

PFN offset

PvlnPFN

PT2 entry
PT2 base

PT2 base index2

PTI base

indexlPTI base PRPFN

PTI

index2 page table (PT2)

indexl page table (PTl)

offsetindex2indexl
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sirnplicity and to facilitate the analysis of its behaviour, the simulator concentrates on

handling the virtual frame buffer and bypasses all references to other address areas.

The main data structure for address translation is the two-level page table represented

by the arrays PT1 and PT2. This table is maintained by the paging handler. As specifi.ed in

Figure 3.9, PT1 includes three arrays of PT1 entries corresponding to the three different

frame buffer modes. (The notation used in Figure 3.9 is the Modula-2 programming

language [36], which is the language in which the simulator is written and will be used

as the notation throughout this discussion.) Indexl from the virtual address is the offset

of a particuiar PT1 entry relative to the top of the array PT1. A PTl entry (defined by

the type "T-PTEl").contains two fields: the access field, specifying access protection, and

"PT2-ptr", which contains a pointer to the PT2 table.

The PT2 table is an array of PT2 entries (defined by "T-PTE2"). Index2 from the

virtual address locates a PT2 entry in the PT2 table. A PT2 entry contains eight fields.

The access field specifies access protections of write and read, read only, and no access.

The modify freld marks whether the page is being modified. The class field shows whether

the page is "valid", "orlt" of physical memory, or "in transition" (meaning that the page is

not in the process' working set, but still in physical memory in a temporary list, and can

be easily moved back into the working set). The PFN2 field contains the physical page

frame number if the virtual page is valid or in transition; otherwise, the backing-block

field contains a pointer to the location in the backing store where the virtual page ìs stored

(this field is only significant for bit-plane rnode PT2 entries). Other fields relate to the

sharing of the address space between different processes; the shared field indicates whether

this page is a shared page, and the same€roup field marks whether this shared page belongs
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type
T-a.ccess : (ws, r, no); (* Kinds of protection *)
T-cJass : (valid, trans, out); (* Staúus cJasses of a virtual page *)

TITEL -- record (* PTl entry *)
access.' T-a,ccessl
PT2-ptr: PT2-pointer;

end;

TITE2 -- record (* PT2 entry *)
access: T-a,ccess ;
shared: boolean ;
sameg,roup: boolean ;
modify: boolean;
case c]ass: T-cJass of

valid, trans: PFN2: integer 
I

out: backing-block: pointer-to-block 
I

end;
end;

var
PTi : record

pixel-rnode.. array [0..31] of T]TEI;
case .' boolean of

ú¡ue.' plane-rnode.' array [0..31] of T]TEI;
RasterOp:node : artay [0..7] of T-PTELI

false: plane-rnod.' array [0..7],[0..3] of T]TEl;

errd; 
Rasterop-rnod: array [0"1]'P"31 of r]TBll

end;
PT2 : array [0..PT2size] of T]TE2;

Figure 3.9. The structure of PT1 and PT2 for the simulator.

to a bit-plane group the same as the process' private bit-plane group.

The procedure "Address-translator", whose algorithm is shown in Figure 3.10, handles

virtual frame buffer address translation whenever a frame buffer reference is issued. The

procedure is called to translate a virtual frame buffer address to a physical frame buffer

address
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Procedure ,Address -translator (vbtual address, physical addtess);

begin
if úåis is not a frame buffer reference then

reúurn physical address as the virtual address;
else

extract mode, indexT and index2 from the virtual address;
use mode, indexT and index2 as table indices to look up PT7
and PT2 and hence obtain a PT2 entry;
if access protection ß violated then

etrot report;
set the physical address to some dummy address;

elsif úåe virtual page is invalid then
generate a page fault and call the paging handler
to swap in the virtual page group;
inforrn the Address-úranslat or to try again;

else
assemble the page frame number freld of the PT2 entry and the
in-page offset of the virtual address into a physical address and
reúurn this address;

end;
end;

end;
end Addre ss-translator;

Figure 3.10. Procedure Address-translator.

The algorithm is almost the same as the ordinary paging virtual memory address

translation algorithm given in Figure 3.3, and so it could be executed by conventional

hardware in the host system. An important trick in this algorithm is that each valid

frame buffer PT2 entry is provided with a nominal physical page number which is derived

from a physical page group frame number, so that the translated address will reference

the appropriate pixel data in that page group. Details of the derivation of these nominal

physical page numbers for the various frame buffer modes will be discussed in Section 3.2.4.
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3.2.3 Frarne buffer resource rnanagernent - the frame buffer con-
figurator

The color:r frame buffer memory is modelled as a two-dimensional array of 8-bit pixels, as

a stack of 8 bit-planes, and as a set of bit-plane groups (see Section 1.1.4). The motivation

for using the frame buffer as a set of bit-plane groups to store low colour resolution images

is to use the frame buffer resource efficiently; this will also reduce the size of these images,

so that they can be transferred and manipulated more efficiently.

However, if images with arbitrary pixel depths and sizes are piled into the frame buffer

randomly, it will be very difficult to manage this multi-dimensional frame buffer resource

(the dimernions include the size, shape, position, and bit-plane combination of each indi-

vidual image being stored) and also it will be very difficult to manage the colour look-up

table to display these amorphous images with the correct colour and visual priority (pre-

suming that some images in different bit-plane groups are overlapping on the screen).

In order to handle the task of managing the physical frame buffer resource in a paging

virtual frame buffer environment, where different processes may create images of different

pixei-depths and sizes in the frame buffer, the frame buffer is managed using the concept

of bit-plane group and the concept of page group, which were defined in Section 3.1.4.

The physical page frame resource is initially configured into several bit-plane groups.

The iniiial configuration of the frame buffer can be extended later if enough bit-planes

remain. The frame buffer can be configured in one of two different ways.

In the first type of configuration, different bit-plane groups must be allocated in different

bit-planes, each group consisting only of adjacent bit-planes, and each bit-plane group

including all the page frames in these bit-planes. For example, it is possible to form four
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bit-plane groups, consisting of bit-planes 0 to 3, bit-planes 4 to 5, bit-plane 6 by itself, and

bit-planes 7 and 8.

In the second type of configuration, the collection of physical page frames in the frame

buffer is split into two halves, each of which can be independently configured into bit-plane

groups. In this way, \¡/e can have, sa¡

o four bit-plane groups, consisting of bit-planes 0 to 3, bit-planes 4 to 6, bit-plane 7

by itself and bit-plane 8 by itself, in one half, and

o two bit-plane groups, consisting of bit-plane 0 by itself and bit-planes 1 to 7, in the

other half.

The second type of configuration can accofi).modate a greater variety of bit-plane groups

than the first one, but provides only half the physical page frames for each plane group.

A bit-plane group can be specified by its top bit-plane (the first bit-plane of the group)

and its span (the difference between the number of the first bit-plane and that of the last

bit-plane of the group). A data structure called the "page-framelistJread" is defined, as

shown in Figure 3.11, to record the bit-plane groups in this way. By specifying its top and

span, the page frame list of a particular bit-plane group can be found. Thus, the physical

frame buffer resource is managed as a set of independent bit-plane groups, as if it were

a collection of several separate frame buffers. Because each bit-plane group maintains its

own one-dimensional page frame group list, the colour frame buffer resource becomes quite

manageable and the concept of configuring the colour frame buffer into bit-plane groups

enables the application to use the frame buffer in a structured and efficient way.
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typc
T-CÐLL -- record

HEAD, TAIL: integer ;
end;

HEADER record
free, modifred: T-CELL;

end;
var

top-number, spanJtumber: [0..4;
pageJrameJistJtead:

array [top-number],[span:tumber] of HEADER;

Figure 3.11. The page frame list data structu¡e.

As described in Section2.3.2,, the size of the physical frame buffer is 1024 x 2048 pixels,

of which only 1024 x 768 are displayed; so, functionalt¡ the frame buffer is partitioned into

screen area and off-screen area as shown in Figure 3.12. The screen area is a contiguous

memory area, and its address is directly mapped onto the virtual address space and its

pages never enter the free page frame list. Page frames for virtual pages are allocated from

the off-screen part of the physical frame buffer.

Screen
area

Off-screen
afea

tf
l-

768
lines

2048
lines

Figure 3.L2. Partitioning the physical frame buffer.
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3.2.4 The paging handler and related data structures

Overview

From the previous section, we can see that the concept of configuring the colour frame

buffer into bit-plane groups simplifies virtual frame buffer management; consequently, for

any one particular frame buffer reference, only one bit-plane group needs to be considered.

However, because there may be many different bit-plane groups existing at any given time,

the virtual frame buffer management mechanism must be able to distinguish the relevant

bit-plane group for each individual frame buffer reference.

The process header of a process records the top and span of its private bit-plane group,

to identify its "working" bit-plane group. On a frame buffer page fault, the top and span of

the process' working bit-plane group are copied to TOPC and SPANC (which together form

the current bit-plane group indicator), so that a frame buffer reference can be associated

with its working bit-plane group. (A process can also reference a shared area in another

process' address space in other bit-plane group, as will be discussed in next section.)

Each image drawing process has its own working set list. Page group replacement

in the working sets follows a first-in-first-out algorithm. A page group evicted from the

working set will be appended to the tail of the free list or modified list of its bit-plane

group, depending on whether it has been modified. The free lists and modified lists are

maintained with a minimum length so that a page frame attached to the list tail will not

be taken immediately for another process to use. A new page frame will be taken from

the head of the free list if free page group frames are available; otherwise, a nev/ page

frame group will be taken from the modified list. On a frame buffer page fault, the paging

handler is activated to call a new virtual page group into physical memory, and to write
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the swapped out page group onto backing store if it has been modified. If ihe faulted page

group is found to be in the free or modified lists, then this page group is simply moved

from the list back into the working set. The advantage of this page swapping algorithm is

its simplicity. Also, since an evicted page has to move from the tail of a list to the head, it

will be in the list for a while, and frequently used page groups have good chance of being

moved back into the working set, thus maintaining a reasonable page fault rate.

The paging handler

\Me now examine how the paging handler validates an invalid frame buffer address. An

important aspect of the virtual frame buffer mechanism is the fact that the same frame

buffer is accessed from three different address areas, using three different modes in different

data formats, and the data swapping between the physical frame buffer and the backing

store is handled by the page group swapping mechanism (described in Section 3.1.4) using

a single memory format (bit-plane mode). An interface must be worked out between the

multi-mode page table based address translation mechanism and the single mode page

group swapping mechanism.

The general idea is shown in Figure 3.13. In performing frame buffer address transla-

tion, the address translator looks up the page table for the information on a virtual address.

If the page table entry is valid, the address translator will produce the translated physical

address using information stored in this entry. If this frame buffer reference violates access

protection, the address translator will abort the translation of this address and give an

error report. If the page table entry is invalid, the address translator will generate a page

fault and thereby call the pagrng handler to validate this virtual page.
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Figure 3.13. Overview of the virtual frame buffer scheme.

On a frame buffer page fault, the paging handler first calls the multi-mode to bit-plane

mode interface to translate the faulted multi-mode virtual address into a corresponding

bit-plane mode page number. Then, this bit-plane mode virtual page number is used as

a parameter by the page group swapper to reorganize the appropriate page groups. The

page group swapper uses only bit-plane mode for page group swapping. This enables the

page group to have a uniclue representation in the mulii-mode frame buffer and to be

handled in a consistent way. Whenever there is a need for the page group swapper to

communicate with the page table, a bit-plane mode to multi-mode interface rvill be called

to bridge the multi-mode page table and the single mode Page group srÀ/apper. After the

required virtual page group has been swapped into physical frame buffer memory, the

interface transforms the bit-ptane mode representation of the page group into the contents

of the corresponding conjugate muiti-mode nominal page table entries. Thereupon' an
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invalid virtual frame buffer address becomes valid and so do all other virtual frame buffer

addresses which relate to the same page group.

The function of the paging handler is performed by procedure "Pager", whose algo-

rithm is outlined in Figure 3.14. The role of the multi-mode to bit-plane mode inter-

face is played by procedure "Get-plane-rnode-PT1-entry", âs shown in Figure 3.15. On a

Procedure Pager (virtual address) ;
begin

(* Extract úåe VPGN from the viúual address; frnd the
cortesponding PTl entry and index2 for bit-plane mode. *)

G et -plane -no de j T 7 -ent ry (v irtu al addre s s, P T 7 ent ry,
VPGN, index2);

witlr PT7 entry do
if PT2-ptr -- nil then

allocate space for PT2 and initialize PT2
end;
(,r Use PT2-ptr and index2 to frnd a bit-plane mode PT2 entry
and validate the virtual page gtoup indícated by VPGN. *)
Lo ok -up -plane -rno de ] T 2 (P T 2 -pt r, index2, VP GN ) ;

end;
end Pager;

Figure 3.L4. Procedure Pager.

Procedure Get-plane-rnodelTT-entry $irtual address, var PTI entry,
var VPGN, var index2);

begin
from the virtual address, extract the mode code and the VPGN;
if not bit-plane mode then

extract bit-plane mode indexT and index2 from the VPGN;
using the top plane number of the process' private
bit-plane grcup and indexT to frnd a plane-rnode PT7 entry ;

else
extract bit-plane mode indexl and index2 from virtual address;
use indexl to fr.nd a plane-rnode PT7 entry;

end;
e nd Geú-pI ane -rno de P T 7 -ent ry ;

Figure 3. 1-5. Procedure Get-plane-rnode-PT1 -entry.
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frame buffer page fault, the procedure Pager will call procedure Get-plane-¡node-PT1-entry

to do the multi-mode to bit-plane mode translation. Then the procedure Pager will call pro-

cedure "Look-up-plane-rnode ]T2" (the page group swapper, whose algorithm is shown in

Figure 3.16) to swap in the virtual page group and validate the relevant page table entries.

P rocedur e Look-up -plane -rno de Î T2 (P T2 -pt r, index 2, VP GN ) ;
begin

use PT2-ptr and index2 to fr.nd the appropriate entry in PT2;
if úåis is a shared page then

set shared-fl,ag to true;
(* Examine global entry. *)
check4lob al (VP GN, b acking-blo ck) ;

else
set shared -flag to false;
íf the viriual page is out of memory then

if iú rs in backing store then
C al/jn -page -group (VP GN )
put it into the working set;

else
(x Iú rs a rnew virtual page group allocate a physical page group
to the virtual page group and allocate a backing storage

úo úhis virtual page group. *)
A11o cat e -p age -grcu p (VP G N ) ;
put it into the working set;

end;
elsif ú.he virtual page is in transition then

extract the bit-plane mode page frame number PFN from
the PFN2 freld of the PT2 entry;
use PFN as an index to retrieve the in transition
page group from a page frame list;
put it back into working set;

end'
end;

end;
end -Look -up -plane -rno de Ì T 2 ;

Figure 3.16. Procedure Look-up-plane-¡nodelT2

As explained earlier, a bit-plane group in this simulator is denoted by its TOP and

SPAN. A virtual page group is represented by its virtual page group number (VPGN) and
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its bit-plane group; a physical bit-plane mode page frame is determined by its page frame

number (PFN), corresponding to the T-field (see Section 3.1.5), and its plane number. In

Section 3.1.5, we noted that all bit-plane mode pages in a page group have the same T-field

value; therefore, in a given bit-plane group, the PFN can be used to identify different page

group frames, and represents the physical page group frame number in a given bit-plane

group.

Procedure Get-plane-rnode-PT1-entry takes a multi-mode virtual frame buffer address

and finds its corresponding bit-plane mode PT1 entry, index2 and VPGN, for further

processing. Procedure Look-up-plane-rnode-PT2 examines the bit-plane mode PT2 entry

and calls the page group swapping mechanism to move the required virtual page group

into physical frame buffer memory. The page group swapping mechanism will then call

the bit-plane mode to multi-mode interface to validate the PTl and PT2 entries related

to this virtual page group.

Procedure CalUn-page-group, which is used in procedure Look-up-plane-rnode -entry,

calls the virtual page group designated by its argument VPGN, which presently resides

in backing store, into the physical frame buffer; the algorithm of this procedure is given

in Figure 3.17. Procedure Allocate-page€roup, also referred to in Figure 3.16, allocates

a page group frame and also space in backing store for a new virtual frame buffer page

group. The algorithm used in this procedure is very similar to that in Figure 3.17 and will

not be presented here.

Data structures

Before going on to further description of the algorithms for paging management, it is

necessary to introduce some important data structures. After the page table, which has
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Procedur e Calljn-pagegroup (\rP GN );
begin

if a free page gtoup frame is available in the free list then
take a page grcup frame (PFN) ftom the head of the free lßt;

else
take a page group frame (PFN) from the head of the modifred list;
write the old contents of the page group frame to backing store;

end;
move the backing store address of the old virtual page from
PFN database to its bit-plane mode PT2 entries;
change the class of the old viñual page from "in transition" to uolttu'

(* Now the vacated page group frame is ready
for a new virtual page group. *)

(* Copy the new virtual page group frorn backing store
to the vacated page group ftame; use the page group frame
number PFN to derive the address translation values, and
validate the conjugate PT2 enúries for 3 frame buffer modes. *)

Derive (VPGN, PFN, CalUn-block);
end Calijn-page-grcup;

Figure 3.L7. Procedure Calhn-page€roup.

already been.discussed, the next most irnportant data structure is the "PFN database",

shown in Figure 3.18. The PFN database is organized as a two-dimensional array whose

entries can be retrieved by specifying a bit-plane number and a PFN. Each physical bit-

plane mode page has an entry in the PFN database and each entry contains six fields:

"backing-ptr" stores the backing store location of the virtual bit-plane mode page in this

page frame, "PTE2-a.dr" contains a pointer pointing to the page table entry for the virtual

page, "state" marks whether the page frame contains a modified virtual page, "ref-count"

records how many processes are currently using this virtual page (ref-count thus becomes

zero when this virtual page is not in any process' working set), and "last" and "next"

contain the PFNs of the neighbouring page frames if this page frame is in a page frame

iist.

The page frame list, as mentioned in Section 3.2.3, is another important data structure

and represents the physical page group resource. As shown in Figure 3.11, the page frame
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type PFJV-entr¡¡ : record
b acking-pt r: p o int er -t o -b[o ck;
PTE2-adr: pointer-tolT2-entry ;
state: kind;
ref-count: integer;
last: integer;
next.' integer;

end;
var PFN-data-base.' array [plane],[PEN] of PFN-e ntry;

Figure 3.18. The PFN database.

list header is organized as a two-dimensional array of list headers. Each bit-plane group

has its own page frame list, called a page group /isú, which can be found by specifying its

top plane number and its span. Page group lists are managed by the virtual frame buffer

marl.agement system. Each page group list consists of two linked lists: a free list and a

modified list. During initialization, all free page group frames in a bit-plane group are

organized into a free list. This is done by linking the PFN database entries for the pages

in a bit-plane group into a list, using their "last" and "next" fields. The head and tail of

such a list contain the PFN of the first and last page group frames, respectively. A page

group frame can be retrieved from a list by specifying its PFN and its bit-plane group

(that is, its top and span).

The third data structure is the working set list, shown in Figure 3.19. It is a circular

list, with a pointer "NEXT" always pointing to the current entry in the list. A working

set list entry has three fields:

o the "VPGNC" field contains the VPGN of the virtual page group which can be used

to access the relevant page table entries when the current page group is evicted from

working set,
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o the "state" field indicates whether this entry is empty, valid or contains a locked

page group, and

o the "same-group" field shows whether the virtual page belongs to the private bit-

plane group of the process, or to a different shared bit-plane group

type t,state : (valid, empty, Iock);
WSLE -- record (* Working set list entry. *)

VPGNC: integer;
state: t-state;
samegÍoup: boolean ;

end;

var working-setJist: array [O..Limit] of WSLE;

Figure 3.19. The working set list

Bit-plane rnode to multi-mode interface

Now, we resume the discussiou of the paging management algorithm. The bit-plane

mode to multi-mode inter{ace is used to bridge the bit-plane mode based page group

swapping mechanism with the multi-mode frame buffer and its address translation page

table.

As described in Section 3.1.5, a page group number can be extracted from a frame

buffer nominal page number; therefore, the page group number can be expressed as a

function of the frame buffer nominal page number

PageGroupNo- F(FrameBufferPageNo) (3-1)

and the frame buffer nominal page number can be expressed as the inverse function of

above function

FrameBufferPageNo : Q (Page?roupNo, t) (3-2)
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where ú represeul,s l,he reruainirrg ¡rer.rametels in the frame buffer page number, such as mode

code, bit-piane number, the directly mapped part of the co-ordinates, and so on. Frame

buffer pages derived from function (3-2) by the same page group number are conjugate

pages.

The bit-plane mode to multi-mode interface is implemented as a procedure "Derive".

It takes three argurnents, namely:

o the virtual page group number (VPGN),

o the corresponding physical page group number (PFN), and

o the operation required to be performed.

Scanning through all frame buffer modes and other ú parameters, procedure Derive uses

function (3-2) to derive relevant conjugate virtual and physical frame buffer page numbers

from the given page group numbers VPGN and PFN, and applies the designated operation

on their related data structures. The algorithm used in procedure Derive is described in

Figure 8.1 of Appendix B.

Since the operation is passed as a parameter to the interface (that is, to procedure

Derive), the same interface can be used to perform diverse activities in virtual frame buffer

management. As an exa¡nple, we consider the operation of moving a virtual page group

from backing store into physical frame buffer memory. This is performed by procedure

"CalUn-block", which takes different measures in different modes. In bit-plane mode, the

operation procedure

o copies virtual page group VPGN from backing store into the corresponding physical

page group PFN, one bit-plane mode page at a time,
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o saves backing store addresses of these bit-plane mode virtual memory pages frorn

their PT2 entries to the corresponding PFN database entries,

o stores the derived physical page number into the PT2 entries, and

o sets these PT2 entries and their corresponding PFN database entries into valid and

unmodified states

In other frame buffer modes, the operation procedure simply fills in the relevant PT2 entries

with derived nominal physical page nurnbers and set these entries into valid and unmodifred

states. The algorithm for CalUn-block can be found in Figure 8.2 of. Appendix B.

'Working set related operations

When a ner,¡¡ virtual page group is validated, it should be put into the working set of the

faulted process. This task is performed by procedure "Putjnto-working-set". When the

working set is not full, there are empty entries in the working set list. A new virtual page

group can be put directly into an empty entry. However, when the working set is full, a

virtual page group must be evicted from the working set list to make room for the incoming

page group. Procedure Putjnto-working-set selects the page group which has stayed the

longest in the working set as the candidate, and calls procedure "Evict-page-group", to

evict it from the working set.

Procedure Evict-page-group extracts the virtual page group number (VPGN) of the

evicted page group from its working set entry (see Figure 3.19) and calls the interface

(procedure Derive) to scan through all its related PT2 entries. The interface uses operation

procedure "Evict-3-rnode" to check whether this page group is still in any other process'

working set, and whether any part of this page group has been modified. If this page

94
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group is not in any other process' working set, it will be appended to the end of the free

page frame list or the modified page frame list depending on whether it has been modified;

otherwise, it will not go onto page frame list. If a virtual page group is being evicted from

the working set, the states of its related PT2 entries will be changed to "in transition". A

page group can be locked in the working set, and it will not be evicted until it is unlocked.

Because a process may work on two different bit-plane groups, the same-group fi.eld of

the working set entry plays the role of indicating if this page group belongs to the same

bit-plane group as the process' private bit-plane group, or to a different shared bit-plane

group. Procedure Evict-page€roup checks this freld and then adjusts the current bit-plane

group indicator (consisting of TOPC and SPANC) to the bit-plane group of this evicted

page group, so later the interface (procedure Derive) can access the correct page group and

its related PT2 entries. The algorithms for Putjnto-working-set, Evict-page-group, and

Evict-3-rnode are given in Figures 8.3, 8.4 and 8.5, respectively, in Appendix B; details

about evicting shared page groups will be discussed in the next section.

The 3'in transition" virtual page group

On a frame buffer page fault, the faulted page can be found in the class "in transition".

This means the relevant page group is in one of the page group frame lists. In this

case, the page group s\¡¡apper (procedure Look-up-plane-rnode-PT2) will call procedure

"Get-page-frame-back" to move the demanded page group back from the page frame list

to the working set. Procedure Get-pageJrame-back

o identifies the page group list by current bit-plane group indicator,

o removes this page group from the identified page group list,
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. changes the states of the related PT2 entries of this page group into valid by using

the interface (procedure Derive), and

o puts this page group back into the working set list.

Because an "in transition" PT2 entry still holds a valid nominal physical page number, no

other processing is necessary. The algorithm for procedure Get-pageJrame-back can be

found in Figure 8.6 of Appendix B.

The above description shows that the paging handler can guarantee that the multi-mode

frame buffer maintains its multi-mode properties in a virtual addressing environment. On

a frame buffer page fault, only pages in the relevant bit-plane group are s\Mapped, keeping

the page swapping of the colour frame buffer efficient, even when the image's pixel depth

is low.

3.2.5 Sharing of the virtual frarne buffer address space

General description

The virtual frame buffer mechanism allows a drawing process to not only work in its own

private address space, but also to share other process' address spaces. The purpose of

sharing address spaces between processes is to permit image exchange. For each shared

area, there is a distinction between the owner and the sharer of the area; the owner can

freely read or write in the area, but the sharer can only read in the area. There are two

reasons for this arrangement. Firstly, allowing multiple processes to modify shared image

memory space creates a situation which rnay result in the corruption of image data in this

area. Secondly, one process is unable to create images in more than one bit-plane group

using three function modes (as explained later), but it can access images in other bit-plane
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groups using bit-plane rnode. In this virtual frame buffer scheme a process can both be an

o\Mner of its own image and a read-only sharer of other process' image. Thus, images can

be safely transferred between different processes and bit-plane groups.

A process can access shared images located in a bit-plane group different from its own

private bit-plane group. In this case, however, only bit-plane mode is allowed to access

the shared area, because operations of the other modes involve multiple bit-planes and

multiple bit-plane references are confined to the process' private bit-plane group. The

contents of the bit-plane enable register enforces this limitation to prevent these multiple

bii-plane operations from corrupting images in other bit-plane groups. Consequentl¡ pixel

mode and RasterOp mode are not available for accessing bit-planes outside the process'

private bit-plane group; therefore, the virtual frame buffer mechanism prohibits pixel mode

and RasterOp mode from accessing a shared bit-plane group which is different from the

process' private bit-plane group.

An important aspect of using this multi-mode virtual frame buffer is that any virtual

frame buffer address is associated with only one bit-plane group. So, if a shared area is

from a different bit-plane group, then the process' private bit-plane group in this area

is undefined. Normally, irnages can be copied from another bit-plane group to a private

bit-plane group, and then manipulated using all three modes, if this is necessary. A sharer

can create many shared areas in its private bit-plane group, but it can create shared areas

in only one other bit-plane group at a time. This limitation simplifies bit-plane group

identification on a random page fault, but does not prevent any kind of image copying.

Shared areas can be dynamically created and deleted, and so a process can access any

sequence of bit-plane groups by accessing them one at a time.
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Problems with sharinq the address space

There are several problems to be solved in the sharing virtual colour frame buffer

address spaÆe; they are:

o at any time, only one copy of a shared virtual page group must be kept in physical

memory to maintain the consistency of its contents,

o it must be possible for different sharing processes to access a shared area through

different address areas,

o a shared page group should not be evicted from a process' working set by another

sharing process,

. on page group swapping, the paging handler must be able to identify to which bit-

plane group the swapped page group belongs, and

o when a previously shared page group is no longer shared, there should be a way to

change it into the owner's private page group.

Mechanisrns for sharing the address space

In order to handle the problems with sharing the virtual frame buffer address space,

a global entry is created for each shared virtual bit-plane mode page and a number of

special mechanisms are embedded in the paging handler. These will be described in the

remainder of this section.

The form of a global entry is shown in Figure 3.20. It has the same format as a

PT2 entry with the addition of a "shared-count" field showing how many sharer processes

are sharing this page. In a PT2 entry, depicted in Figure 3.9, the shared fi.eld indicates
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PT2 entry
Global cntry

PFN data base entry

Figure 3.2O. A global entry and its relation to the other data structures.

whether this virtual page is shared or not, and the same-bit-plane-group field indicates

whether this virtual page is in the process' private bit-plane group. If a shared virtual

page is of class "out", then the backing-block field of its PT2 entry in bit-plane mode will

contain a pointer pointing to the corresponding global entry, as shown in Figure 8.20. If

the class field of a global entry is "valid" or "in transition", then its PFN2 field contains

the nominal bit-plane mode physical page number; if its class is "out", its backing-block

field rvill contain the locaiion of this virtual page in the backing store.

The address translation process for a shared page group is very similar to that for

a private page group. The address translator, outlined in Figure 3.10, does not behave

differently depending on whether the virtual adclress is in a shared area or not. If the page

is valid, the translator produces the translated physical address; if the page is invalid, the

translator will generate a page fault.

On a frame buffer page fault, the Pager first derives the correspond.ing PT2 entry in

bit-plane mode from the faulted virtual address as usual, and as shown in Figure 8.14.

If it is a shared PaBe, the page group swapper (proceclure Look-up-plane-rnode-PT2

given earlier, in Figure 3.16) rvill set a global "sharedfag". Depencling on whether the

-@

ref countYTEZ adr

sha¡ed_count
@/-@@

backing_blockoutshared PT2 entry format
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s¡nrre-biL-plane-group field in the PT2 entry is set or not, procedure Look-up-plane-rnode-PT2

also adjusts the current bit-piane group indicator (TOPC and SPANC) to that for the pro-

cess' private bit-plane group or for a shared bit-plane group; these values are recorded in

the process'header. Then, procedure "Check-global", whose algorithm is given in Fig-

ure 3.21, is called to examine the global entry.

P ro c edur e Check-glob aI (VP GN, glob al-pointer) ;
begin

case class of the entry indicated by global-pointer of
out, trans: same algoúthm as used for private pages

in Look-up -plane -rno de -PT2 |

valid: (* Use the physical page frame number (PFN2) of the
globaL entry to derive the relevant sharer's PT2 entries. *)

extract PFN from PFN2;
D erive (V P GN,P FN,copy P T 2 -ent ry )

end;
end Check4lobal;

Figure 3.2L. Procedure Check-global.

Procedure Check-global uses a global-pointer (found in the "backing-block" field of the

PT2 entry as shown in Figue 3.20) to find the corresponding global entry. According

to the class of this entry, different actions will be taken. In the case of "out" or "in

transition", the operations applied are almost the same as in the case of a private page.

However, because the sharedfag is "ot", the page group swapping mechanism references

the global entry for the backing store location and PFN2, instead of referencing the PT2

entry.

On a frame buffer page fault, if the corresponding global entry is found to be of class

"valid", then the current page group is in some other process' working set. In this case,

the physical page number (PFN2) value of the global entry is used to derive the physical

page number of the other relevant conjugate PT2 entries for the faulted process.
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AIso, the various "operation procedures" whicL carr l-re passed as arguments to the inter-

face (procedure Derive) will now need to be modified to take account of shared page groups.

As an example of the additional actions needed, we examine procedure CalUn-block (given

in Figure 8.2). As described earlier in Section 3.2.4, procedure CalUn-block takes differ-

ent measures for different PT2 entries. For a pixel mode or R¿sterOp mode PT2 entry,

CalUn-btock simply derives the nominal frame buffer page number from the allocated

physical page group number and validates that PT2 entry. For a bit-plane mode entry,

however, in addition to the above operation, Calljn-block also copies the corresponding

bit-plane mode virtual page from the backing store into the allocated bit-plane mode phys-

ical page. If, during this operation, the PT2 entry concerned is found to contain a shared

page, additional measures will be taken which involve:

o extracting the global entry pointer from this PT2 entr¡

o extracting the backing store address of this virtual page from the global entry,

o saving the global entry pointer and backing store address of the virtual page in the

corresponding PFN database entry as links,

o deriving the physical page nunrber from the given physical page group number and

validating this PT2 entry and its global entry, and

o initializing the "ref-count" field of the physical page frame to "1", for later use.

Additional operations check whether the shared-count of this shared page group is zero

and also whether this page group is in the process' private bit-plane group. If it is so,

that means this virtual page group is no longer shared by anv other process. In this
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case, Calljn-block will change this page group into a private page group and delete its

global entry. Thus, a page group which is no longer shared can be changed into a private

one. After these additional operations, the PT2 entry and its related data structures are

correctly set up, and the virtual page will be copied from backing store into the given

physical bit-plane page frame as usual. The algorithm for the additional operations in

procedure Calhn-block is given in Figure B.7 of Appendix B.

The ref-count field of a page frame, as illustrated in Figure 3.20, indicates how many

processes include this page frame in their working sets. Whenever a shared page frame is

put into a working set, the ref-count field in its PFN database entry will be incremented

by one; whenever a shared page frame is evicted from a working set, its ref-count fi.eld

will be decremented by one. The ref-count field is checked by procedure Evict-3-rnode (as

described earlier) whenever a shared page group is evicted from a working set. Only when

the ref-count field equals zero will this page group be put into the page frame list ready

for other uses; otherwise, this page group is simply removed from the current working set.

Thus, for a particular process, its shared page group will never be invalidated by another

process.

Creating and deleting shared areas

A shared area is created by specifying the process header of its olvner process and

sharer process, the shared length (measured by the number of shared page groups), and

the starting page group in both the owner's and the sharer's address spaces. Creation

of a shared area is 'performed by procedure "Create-shared.-a,rea". This procedure first

checks the sha¡er to make sure that it is not attempting to work on more than two bit-

plane groups at once. If the owner's bit-plane group is different from the sharer's private
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bit-plane group, it will be recorded in the sharer's process header as a "different shared

group", for later use. Procedure Create-shared-a,rea uses procedure ttCreate-shared-table"

to set up a global area in the owner's address space. After this has been done, procedure

"Map-to-global" is called to map the sharer's address space onto the orffner's global area.

Because the page group swapping mechanism only references bit-plane mode PT2 en-

tries for page swapping information, it is not necessary to set up an address sharing mech-

anism in PT2 entries other than bit-plane modes. Procedure Create-shared-table scans

through all the relevant bit-plane mode PT2 entries in the owner's shared area, and calls

procedure "Create-shared-entry" to change them into the shared state and create a corre-

sponding global entry for each of them. Algorithms for procedure Create-shared-area, pro-

cedure Create-shared-table, and procedure Create-shared-entry are given in Figures B.8,

8.9 and 8.10, respectively, in Appendix B.

On creating a global entry, the shared-count of a global entry is initially set to zero;

with every additional sharer process, this count will incremented. If the owner's virtual

page has a corresponding page frame, the global entry pointer will be stored in the related

PFN database entry, as shown in Figure 3.20, to liuk this page frame and its translation

table entry. A process may allow many sharers to share the address space in its private

bit-plane group, but will refuse any attempt to share such address space, where the process

itself shares from another process in a bit-plane group different from the process' private

bit-plane group.

Procedure Map-to-global scans through every shared virtual page group and uses an-

other interface procedure (called "Derive-shared", which is very sinrilar to the procedure

Derive discussed earlier) to copy the contents of the owner's shared PT2 entry to the
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corresponding sharer's PT2 entry in the three frame buffer modes.

For each shared virtual page group, procedure Derive-shared scans through all related

owner's PT2 entries and related sharer's PT2 entries in three frame buffer modes, and

applies "operation" on them. If the sharer is found to be sharing an area outside its

private bit-plane group, then the sharer's relevant PT2 entries of its private bit-plane

group in this shared area, are set to "no access" status (by setting the access field to

"to"), so that the sharer's private bit-plane group in this address area becomes undefined

and inaccessible. Algorithms for procedure Map-to-global and procedure Derive-share can

be found in Figures 8.11 and 8.72, respectively, in Appendix B.

A sharer cannot create a new shared area in a previously defined address area. In order

to use this address area for a new shared region, the old definition of this region must be

deleted. Procedure delete-old-region is designed for this purpose. It scans through the

specified page groups and uses the interface procedure (that is, procedure Derive, given in

Figure 8.1 of Appendix B) and the operation procedure "Delete-entry" to change the class

field of all relevant page table entries into "out", to discard all related virtual pages, and

to dispose the corresponding backing store blocks, page frames and global entries. This

permits the address region to be redefined for other purposes. Also, because a process

is only permitted to work on two different bit-plane groups at a time, the old (different)

shared plane group must be deleted completely before the process can work on another

bit-plane group. The procedure "Delete-different-group" first finds the specifi.cation of the

shared area being deleted (from the process header) and then deletes the whole area, as

described above. In addition to deleting the area, the procedure restores the previously

blocked private bit-plane group of this region into a read-and-write-accessible area. Algo-
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rithms f'or procedure Delete-old-region, Delete-entry and Delete-dift'erent-group are given

in Figures 8.13, 8.14 and 8.15, respectively, in Appendix B.

3.2.6 Experimentation

The simulator described above is written in Modula-2 a¡d was tested on a VAX-LI1750

under the VMS operating system. A test program configures the simulated colour frame

buffer into a series of bit-plane groups and issues virtual addresses in different modes

and from different processes working in different bit-plane groups. The physical addresses

produced by the simulator have been checlçed to see whether the address translation scheme

translates conjugate frame buffer addresses properly.

In this experiment, data was stored into the virtual page groups and then these were

forced to be swapped out during paging. Later, these data were retrieved and checked

against the original values to verify that the page group swapping mechanism moves data

between the physical frame buffer and backing store correctly. Because the multi-mode

feature of the target hardware is not available on the VAX, the data could only be stored

and retrieved using bit-plane mode.

Shared address regions were created between processes working in the same or differ-

ent bit-plane groups. Tests similar to those used for private address areari were applied

to shared areas. Additional tests for the correctness of address translation, page group

swapping and access protection in a multiple bit-plane group environment have been tried,

to verify the address sharing mechanism. The experiment showed that the virtual frame

buffer ma^nagement scheme met the requirements discussed in this chapter.
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Using the display systerrr

4.L The prograrnrning model of the display system
4.L.L Overview

In view of the architecture of the graphics display system, described in Section 2.2.2 or

Chapter 2 and shown in Figure 2.8 in that chapter, a programming model of the display

system hardware can be outlined as shown in Figure 4.1. The programmable items are as

follows:

o a stack of eight bit-planes of bit-map memory, constituting the colour frame buffer,

and which can be accessed' by all the drawing processors via the three mod.es,

o the hardware Rasterop units, which assist Rasterop mode operations and present a

set of control registers as interface to the drawing processor,

o two bit-plane write-enable registers for pixel mode and RasterOp mode respectively,

which control the selective modification of bit-planes during multiple bit-plane oper-

ations,

¡ the colour look-up table, which can be accessed. by all drawing processors as a 256

x 24-bit array (each 24-bit cell of this array occupies a B2-bit word location in the

system bus address space with byte 0 assigned to red, byte 1 to green, and byte 2 to

blue),
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Figure 4.L. A programming model of the display system.

o the video system controller (VSC), which performs the role of screen refresh controller

and bit-map memory controller, presents eighteen control and status registers as a

system interface, through which the screen format, the location of the screen area

in the frame buffer, the video timing function, the dynamic RAM refresh function,

the synchronization and error interrupt function, and the VSC working mode can be

specified, and

o the board' ID directory occupies the first 512 words of the address space of the

board and contains information about the function of the boa¡d for automatic system

configuration.

AIl these programmable items are mapped into the system bus address space; the actual

addresses of these items in a drawing processor's address spa,ce are shown in Appendix A.

Programming details of the RasterOp unit (the BLT chip) and the VSC unit can be found.

in their respective manuals [2,8].
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4.L.2 The co-ordinate system

The most natural co-ordinate system to use to represent a raster image is the two-

dimensional cartesian co-ordinate system, normaliy with the x-axis along the scan-line

direction and the y-axis along the vertical scan direction. A pixel in this system can be

located by its x- and' ¡-coordinates. As described in Section 2.8.1 of Chapter 2, our frame

buffer is organized as a stack of eight bit-planes. Each bii-plane is organized in scan-line

order' the scan-lines being horizontal on the screen (along x-direction). The upper left

corner of a bit-plane is its origin. In each bit-plane, a scan-line is composed of a number

of S2-pixel segments' Each segment corresponds to a memory word in that bit-plane, as

shown in Figure 2'10 in Chapter 2. In our system, a memory word. can be partitioned into
two 16-bit short words or four g_bit bytes.

The frame buffer adopts a linear addressing scheme: the x- and y-coordinates of a
picture data element are mapped into a frame buffer memory address. Th's, the frame

buffer can also be considered as a one-dimensional contiguous array of memory cells.

The eight bit-planes of this frame bufier are all pixel-aligned., so that colour images

can be stored in the frame buffer as a stack of binary images and be correctly displayed

on the screen' The multi-mode frame buffer is accessed to different memory granularities

via the different modes' For example, in bit-plane mod.e, a bit-plane can be accessed

at the level of an 8-, 16-, or S2-pixel binary image segment at a memory byte-aligned

position; the smallest addressable position in this mode is the memory byte position in a
bit-plane' In pixel mod'e, the frame buffer can be addressed to the granularity of one, two,

or four horizontally adjacent 8-bit pixels; the smallest addressable position is the pixel.

In R¿sterOp mode, the drawing processor operates the frame buffer via its eight built-in
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16-bit RasterOp units; therefore, the frame buffer is addressed at the level of a 16-pixel

image rectangle which is aligned to the short word boundary of a bit-plane memory word.

The address and data forrnat were given in Figure 2.11 in Chapter 2.

In a program, the frame buffer pixel mode and bit-plane mode address areas are de-

clared as two contiguous arrays of bytes to allocate memory space for the program to store

bit-map images. The RasterOp mode address area is declared to be an array of short

words, with each element aligned with memory short word boundaries in the bit-planes.

This arrangement reflects the short word oriented nature of the RasterOp mode hardware

organization and the programming language must guarantee that all RasterOp mode op-

erations are memory short word aligned without error. One point to be noticed is that

modelling the R¿sterOp mode frame buffer as an array of memory short words provides

a way to allocate image memory for the program, and a mechanism to address Ra.sterOp

mode image rectangles; the actual data element being processed is not a memory short

word but a R¿sterOp mode image rectangle, as described in Section 2.3.3 of Chapter 2.

If a bit-map image is going to be stored in a linearly addressed raster storage, the x-

and y-coordinate. values of its pixels must be converted into the addresses of the memory

array. Referring to Figure 4.2., tlr'.e conversion can be expressed by

PixelAddress:BaseAddress *Width x y *x (4-1)

where BaseAddress is the start address of this raster rectangle, and the memory can be

directly addressed to an individual pixel. Because the raster position and dimension are

required for pixel address calculation, they should be recorded in the raster description to

facilitate the image updating operation.
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Figure 4.2. A pixel in a linearl5, addressed raster storage.

In order to give a raster storage a certain structure, we use lirie form concept (adapted.

from the Smalltalk graphics kernel [23]) to describe a raster storage. A "form" represents

a rectangular raster mem.ory area rvhere a bit-map image can be stored. Primarily, a form

contains th¡ee components, width, h,cigltt and RaseAd.dress, as shown in Figure 4.3.

height

width

Figure 4.3. A 'fo.m' representation of image storage.

The BaseAddress points to the ûrst memory grauule of the bit-map storage of the

form, and stands for the origin of the form. The boundary of a form is always aligned to

the bor¡ndary of a certain memory grauule. The width, which is specified. as a number of

pixels, is a multiple of that granule, so that memory space cain be allocated. to this form.
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The height is represented by the number of scan-lines.

Since the multi-mode frame buffer corresponds to different address areas for different

modes, with different memory granules for different modes, it is necessary for the form

to reflect this property and facilitate the calculation of frame buffer addresses from co-

ordinates in all modes. Therefore, in our new form definition, as shown in Figure 4.4,

a coû1.ûl.on memory granule is chosen to be a 16-bit memory short word in a bit-plane.

Because of this, the memory granule can be directly addressed by ali three frame buffer

modes. The BaseAddress and width are specified as a multiple of 16-bit memory short

words in the bit-plane.

' type (* Nerv form defrnition. *)
form : record

BaseAddressPixel,
BaseAddressP/ane,
BaseAddre.ssR-Op,
width, height, size: int ;.c-r;
top, span: [0..7];

endr'
planeJorm: F€cord

BaseAddress,
width, height: integer;

end;
pixeJJo : record

BaseÁddress,
width, height: integer;
top, pan: [0..7];

end;

Figure 4.4 New t'form" representations of raster storage.

In order to facilitate the co.ordinate to address conversion in equation (4-1), BaseAd-

dress has a set of conjugate r¡alues corresponding to base addresses for each mod.e. The

width and height of a form are specified by pixel numbers, and two new components "top"

and "spad' specify the bit-plane group of this form. If we substitute, in equation (41),



CHAPTEP" 4. USI]VG THE DISPLAY SYSTEM 71.2

the value of BaseAddress for a speciflc mode, and the values of width and x both divided

by a factor equal to the number of pixels involved in the smallest addressable image data

element of that mode, the frame buffer address of a specific mode can be obtained.

Colour and binary images may be stored in general purpose memory. In that case, these

images cannot be handled by multi-mode function, so another two forms - planeJorm and

pixelJorm - are defined as shown in Figure 4.4 to distinguish ordinary memory from the

frame buffer, as well as to distinguish bit-plane format from pixel-packed.

4.2 Prograrnming the display subsystern

4.2.L Basic drawing procedures

A number of basic drawing procedures are implemented; each of them performs a primitive

drawing operation, such as copying bit-map image rectangles, line drawing, or painting

a string of characters. These graphics primitives can be used by higher level graphics

functions to build graphics packages, and they also serve to illustrate how to use this

display subsystem. The implemented drawing procedures include:

o RasterOp type primitives, which copy source image rectangles to destinations, and

apply bitwise logical operation between source, destination, and halftone images, as

described in Section 1.1.5 of Chapter 1,

o line drawing type primitives, which draw lines and points in absolute co-ordinates

and relative co-ordinates,

o polygon filling primitives, which filI a polygon with solid colour or a pattern,

o image storage management primitives, which allocate and deallocate forms of colour

image storage, and
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o au au[i-aliasirrg line drawing procedure and colour picture rectangle blending proce-

dure, which are used as examples to illustrate the pixel value manipulation operation.

Algorithms for these procedures and methods of programrning the multi-mode frame buffer

are described below for each frame buffer mode, so that the characteristics of each mode

can be clearly illustrated. The notation used in this chapter for the description of ma-

chine instruction level matters is NS32000 series processor assembly language [5], which

represents the instructions actually used to drive this display subsystem.

4.2.2 RasterOp rnode operation

As described in Section 2.3.4 of. Chapter 2, RasterOp mode is designed to accelerate R¿s-

terOp type operations with the assistance of hardware RasterOp units - the BLT chips.

The programming model of the BLT chip is shown in Figure 2.75 of. Chapter 2 and the

frame buffer data path is shown in Figure 2.13 of that chapter. During a RasterOp mode

read operation, all bit-planes in the frame buffer are separated from the common internal

data bus and a primitive binary image rectangle in each plane is read into its correspond-

ing BLT chip register. Therefore, after a RasterOp mode read, the BLT chip set holds a

colour image rectangle. If the control bit (address bit 18) is "0" hen the colour image

rectangle will be held in BLT source registers, otherwise it will be held in BLT halftone

registers. This operation loads a primitive source image rectangle, a colour, or a colour

pattern into the BLT chip. Since this operation separates the system bus from the frame

buffer, no valid data can be read into the drawing processor. So, if we only want to load

BLT registers with colour or image, we can use an instruction of the form

nrovw modeS -src -address, dumrny;

where "dummy" is a local fast scratch pad memory address, or a register whose content is
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of no significance.

AII the BLT registers, except destination registers, can be loaded from the system bus

by writing into specifrc system bus addresses (details of the BLT register to system bus

address mapping are included in Appendix A). However, in this case, the registers of all

BLT chips are loaded with the same data from the system bus. This kind of operation is

used to load a BLT chip with binary image, image mask, or control information, such as

skew, operation code, merge mask, and so on.

If the control bit (address bit 13) is "0", the RasterOp mode "write" operation first

reads a destination memory word from each bit-plane into BLT destination registers, then

it applies a logical operation between the shifted source image, halftone image and des-

tination image. The bit pattern of the BLT merge mask register specifi,es the portion of

the destination memory words to be modified; a *0' bit in the merge mask selects the

corresponding bit of the logical unit output, while a ((1" selects the bit of the destination

register. The output of the merge unit is used as BLT output and is written into the

destination memory word for each bit-plane. Corresponding to this operation, the frame

buffer actually performs a read-modify-write memory cycle.

The RasterOp mode plane enable register controls which bit-plane can be modified.

The skew register specifies the shift amount of the source primitive image, so that the

source image can be copied to any pixel location in the destination area. Thus, with one

instruction

rrrovw modeS-src-a,ddress, modeS-dest-addressi Ø-2)

a primitive source image rectangle can be copied to a destination with a logical operation.

In this operation, the data communication only involves BLT chips and bit-plane memories;
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there is no valid data tlansfer tretween franr.e buffet rrrerrory and the system bus.

If the control bit (address bit 18) is "1", the RasterOp mode write operation will load

the data on the system bus into the source registers of all BLT chips before the read-

modify-write of the destination memory words. Thus, with the move instruction (4-2), if

the source address specifies a binary image in a bit-plane or in the general purpose memory,

this source image can be copied to any frame buffer bit-plane by RasterOp. Binary images

copied by this method can be used as a mask and extended into a solid colour image

or an image with a colour pattern, depending upon the contents of the halftone register;

this operation is known as a brush-paint operation, with the source register containing

the brush and the halftone register containing the paint. The brush-paint operation can

significantly save image memory space, since many images (such as fonts, menus and icorn)

can be kept in a highly compact binary form and stored in an ordinary memory area. Later,

when painted onto the screen, these binary image patterns can be extended into colour

images by the brush-paint operation. The above operation can also be used for RasterOp

between the frame buffer bit-planes.

A variant of brush-paint operation can be used to paste arbitrary shaped colour images

onto another colour image to form a combined image. The image being pasted is associated

with a mask which specifies what portion of the source image should be pasted on to the

destination. Some high perforrnance microprocessors, such as NS32032, support bit field

instructions, and with these instructions a bit string (with a length of up to 25 bits in the

case of NS32032) can be extracted from or inserted into a memory word in an arbitrary bit

position. The paste algorithm can be significantly simplified and accelerated by employing

bit field extracting instructions. Since the binary image mask can be loaded into the BLT
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halftone register by the bit string extracting operation in a position which is aligned to

the destination at a pixel boundary, operations such as mask fetching, shifting and BLT

register loading can be completed in one instruction. The inner loop of the paste algorithm

is depicted in Figure 4.5. In this operation, although the RasterOp copies a rectangular

area onto destination, only pixels corresponding to mask bit "1" are modified

set the BLT operation to
(dest:: (source and halftone) or (dest and not (halftone)));

; Extract mask and load it into BLTJtaIftone register
extw mask-address, BLT Jtalftone ;
rno vw mo de 3 -s rc -a.d d re s s, mo de 3 -de s t -ad d res s ;
advance to next mask-address;
advance to next modeS-src-address;
advance to next mode7-destaddress;

Figure 4.5. The paste algorithm.

In order to appreciate the advantage of using the RasterOp mode RasterOp function,

we make a comparison of executing RasterOp in an 8-bit pixel frame buffer using RasterOp

mode (Figure 4.6), using pixel mode (Figure 4.7), and using bit-plane mode (Figure 4.8).

For clarit¡ this example only copies a single unit height image rectangle from the source

area onto a destination area, as depicted in Figure2.I4 of Chapter 2. In the comparison, the

word length of the bit-plane frame buffer and the pixel-packed frame buffer are supposed

to be the same as RasterOp mode data format (16 bits), and we also presume bit fi.eld

instructions are not used.

In the above comparison, RasterOp mode uses 7 instructions, 2 frame buffer read

cycles and 2 frame buffer read-modify-write cycles. The pixel-packed mode uses 24 (8 x

3) instructions, 8 frame buffer read cycles, and 8 frame buffer write cycles. The bit-plane
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,' Assume skew and operation code are already in BLT chip.

; Load source wordT into BLT source register.
llrovw modeS-srca"ddress, dummy
advance modeS-src-a.ddress to next memory word;
movw left mask, BLT -tnerge-rnask;
; Copy shifted source word into destination word 7.
movw mo de? -s rc -ad dres s, mo de3 -des t addre s s ;
advance modeÎ-dest-address to next memory word;
rnov w ñghtmask, B LT -rnerge -rnask;
; Copy shifted sou.rce word into destination word 2.
mo vw mo de 3 -s rc -ad d re s s, mo de7 -de s t -ad d re s s ;

Figure 4.6. Copying a 16-pixel segment using RasterOp mode.

; Repeat the following operatio.n n úimes {n -- (image-width div 2) : 8}
; Copy source image onto destination two pixels at a time.
ntovv¡ src -address, dest address;
advance srcaddress to next two-pixel segment;
advance dest-addre.ss úo nexú two-pixel segment;

Figure 4.7. Copying a 16-pixel segment in pixel mode.

mode uses 144 (8 x 13) instmctions, 40 (8 x 5) frame buffer read cycles and 16 (8 x 2)

frame buffer write cycles.

This example is actually an unfavourable case for RasterOp mode and bit-plane mode,

because in this case all the image memory words are at boundaries and so both left and

right boundary conditions need to be processed. Much fewer instructions are needed to

copy a 16-pixel segment in the middle of a horizontal line with RasterOp mode and bit-

plane mode, as shown in Figure 4.9. In this situation, RasterOp mode only needs three

instructionsr one frame buffer read cycle and one frame buffer read-modify-write cycle

to copy a 16-pixel segment. Bit-plane mode needs 40 (8 x 5) instructions, 16 (8 x 2)

frame buffer read cycles and B frame buffer write cycles. Pixel-packed mode uses the same

operation as in Figurc 4.7.
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; For each of the I bit-planes, do the following.
; Read source word 7 and source word 2 into a long word in buffen
movd src-address, buffe4
; Shift the source longword to align it with its destination position.
lslrd skew, buffer;
advance src-address to next memory word;
movw dest-address, accumulator;
; Mask off modifred part of destination.
arrdw leftmask, accumulator;
co rrrv¡ left mask, inv ert e dM a.sk; Invert left mask
; Mask off unmodifred part, from source word.
andw invertMask, buffer;
; Merge shifted source image into destination word.
addw buffer, accumulator;
; Copy new destination word back into memory.
movw accumulato4 dest -address;
advance dest-address úo nexú memory word;
,' Process the rcmainder of source and destination images.

; Read source word 2 into buffer.
rrrovw src-a"ddrcss, buffer;
lslrd skew, buffer;
movw dest-address, accumulator;
andw rightmask, accumulator;
; Invert rightmask.
co rrrw right mask, invertM ask;
andw invertMask, buffer;
addw buffer, accumulator;
lrrovv¡ accumulato4 dest -a"ddress;

Figure 4.8. Copying a 16-pixel segment in bit-plane.

If we take the number of instructions and frame buffer cycles used by RasterOp mode

as one, we obtain the relative number of instructions and frame buffer cycles used in the

above two examples as a benchmark to compare the performance of the different frame

buffer modes, as shown in Figure 4.10. For simplicity, we assume that the frame buffer

read and write cycles use equal amounts of time, and that a read-modify-write cycle is 1.3

times longer than a read cycle.
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I Using RasterOp mode. 
I

rnov w mo de 3 -s rc -ad dre s s, mo d e 3 -de s t -a.d d re s s ;
advance modeS-src-address to next memory word;
advance mode?-desú-address to next memory word;

; I Using bit-plane mode. 
I

; For each of the eight bit-planes, do the following:

; read source wordT and source word2 into a longword in buffer
rnovd src-address, buffer;
; shift the source longword to align it with its destination position
lslrd skew, buffer;
advance src-address to next memory word;
nlov\il' buffer, dest -address ;
advance dest-addre.ss úo nexú memory word;

Figure 4.9. Copying an image in the middle of a horizontal line.

From the above comparison, we can see that RasterOp mode is much faster than exe-

cuting the same operation in bit-plane or pixel-packed mode, and also that the performance

of RasterOp mode is not effected by the pixel depth, whilst the performance of bit-plane

mode is inversely proportional to the pixel depth.

In a complete RasterOp mode RasterOp procedure, other operations are required in

addition to image copy, such as to calculate the amount of skew, the value of the merge

mask, and the address increment, to deal with image boundary conditions, and so on. The

algorithm for procedure "RasterOpJLT" is given in Figure 4.11 to show the whole process.

This simplified procedure copies a source image from a buffer area to a destination area

with no overlap between source and destination image, so that the copy can be executed

in any order (in this case, from top to bottom in the y-direction and from left to right in
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Copy in the middle of a lincBoundary copy

Figure 4.10. Performance comparison for copying a 16-pixel segment, with a pixel-depth
of eight.

the x-direction). A more general RasterOp procedure would include the test of a correct

copy direction, so that u'hen the source image overlaps wiih destination, it wili not be

destroyed before copying to the destination, and a clipping firnction which only copies

images which are rvithin a clipping rectangle in the destination area. This procedure can

handle unclipped and overlapped source and destination images, but is slower than the

one in Figure 4.11.

Referring to Figure 2.L7 of. Chapter 2, "skew" in the procedure RasterOp-BLT specifies

the shift amount of the BLT rotator from low significant bits to high significant bits. A

"1" bit in the skew mask selects the corresponding bit of the previous source register to

participate in the rotation, whilst a '0" bit in the skew mask selects the corresponding

source register.

A variety of bit-map image tra¡rsformations can be implemenied by RasterOp, such as

"zoom in", "zoom out", rotating by 90 degrees, and so on, as d.escribed. in [23]. In addi-

tion, an image rectangle can be copied along two vectors, as described in [9] and. shown
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Procedure RasterOp-BLT (operation: integer; src, dest: form;
Xs, Xd, Ys, Yd, w, h: integer);

(* X", Ys and Xd, Yd are the upper-Ieft corner co-ordinates of source
and desúin ation rectangles, respectively. w and h are the width and
the heiglú of the rectangle. *)

const noMaskin1: 0;
type RasterOpModeAddre.ss : Pointer to shorlword;
var src-ol?ls et, dest -offset, d-S tartB it s, d J'astB its, skew,

leftMask, ri ghtM ask, word -sp an, Y s -dlt, Y d -dlt, Y s Jine -dlt,
YdJine-dlt, src-start, dest-start, i, j: integer;
preload: boolean; dummy: shortword;

begin
(* Calculate skew for source/destination image alignment *)
src-offset:: )G rnod 16; dest-offset:: Xd mod 16;
skew.': (src-orllset - dest-offset) rrod 16;
(* Skew is úJ:e difference between source and destination posiúions

within the range of pixel offset *)
(* Deterrnine whether the source register queue needs to be preloaded *)
preload:: src-oíßeú > : dest-offset;
d-StartBits;-- 16 - dest-offset;
dJ,astBits:: ((Xd * (w - I)) mod 16) +1;
(* Look up corresponding merge mask. *)
leftMask: : Masl<Left [d-StartB its];
rightMask: : MaskRight [dJ,astB itsJ ;
(* word-span is tb.e number of 76-bit sirorú word needed to cover

the width of the destination rectangle, except for the d-StartBiús. *)
word-span,: (* + 15 - d-StartBits) div 16;
ifword-span:0then

(* Fbrone såorú word wide destination image, the merge mask is tåe
Iogical "or" of left and nþhú mas.[es. *)

leftMask:: leftMask { rightMask;
end;
(* Y-dlt is the frame buffer address increment when the Y coordinate

is increased by one, YJine-dlt is úhe frame buffer address
increment when the image word at the end of a image scan-Iine
advances to the start of next scanline. *)

Ys-dJú:: src.width div 16;
Yd-dlt:: dest.width div 16;
YsJine-djt:: Ys-dlt - word,span;
YdJine-dlt:: Yd-dlt - word-span;
(* Calculate the staúing address of the source and destination

image rcctangles. *)
src-súarú.': src.BaseÁddressR-O p * (Ys-dlt * Ys) + (k div 16);
desú-start:: desú.Base/.ddressR-Op + (Yd-dlt * Yd) + (Xd div 16);

L2I

Figure  .LL. Procedure RasterOpJLT
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ion code to the BLT registers. *)

*)
th.e image to tlte bottom *)
e word into the BLT source register *)dummy: : RasterO pmo deAddress (src_start )f ;

uriil-t"tt:: '"'¿urt * 1;

from the source area

..-- Rasúer O pmo deAdd¡ess (s rc _st art )l ;

1 :-- Rasúe rO pmodeAddress (s rc _,st art )l ;

)l ,-- RasterOpmodefiddress (src_s turt)T;

;

Figure 4.LL. (continued.)

in Figure 4'12' Thus' a rectangular source image can be transformed into a paralrelogram
and rotated through any angle, u.nã dnring this process a scaring factor can be applied to
the image to enlarge or reduce it.

In our display subsystem, since the addresses of image elements in a Rasterop are
generated by the drawing processor using software, it is flexibre enough to support exper-
iments with various new algorithms. If an image pattern is copied along a trajectory, a

722
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source

L23

M

destination

Figure 4.L2. RasterOp with transformation.

line of arbitrary width and pattern can be generated. Also, a polygon can be decomposed

into a collection of horizontal lines and each line can l:e filled with colour or pattern using

RasterOp. Thus, RasterOp mode can also be used for line drawing and polygon filling.

4.2.3 Pixel mode operation

As described in Section 2.3.3 of Chapter 2, the frame buffer is accessed by pixel value in

pixel mode. In this mode, individual pixel values can be directly read and written. A frame

buffer reference can transfer up to four horizontally adjacent pixels in any pixel position,

and pixel values can be directiy manipulated by the drarving processor; so, arithmetic op-

erations and other operations, such as maximum, minimum, addition and subtraction with

colour saturation, and colour blending, can be implemented using pixel mode. Because of

these features, pixel mode is used to implement line drawing, polygon filling, antialiasing

figure drawing, and RasterOp with special functionalities. A number of procedures have

been implemented to experiment with the characteristics of this mode.

In graphics algorithms, it is desirable to use an arbitrary pixel add.ress to access pixel

segments of different.lengths. For example, in pixel mode, one frame buffer reference can

access one pixel, trvo pixels, or four pixels; if we were to access the frame buffer as an array,

the length and position of the pixel segment being access will be constrained by the array

definition and become fixed. So, instead of using an array, we use a special pixel pointer as
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a vehicle for access to the pixel-packed image memory. The definition of the pixel pointer

type is given in Figure 4.13

type pixel-ptr -- record
case cåoice of
0: C: integer I

1: L: pointer to integer I

2: S: pointer to shortword I

3: B: pointer to byte I

end;
end;

Figure 4.L3. The pixel pointer type.

This pixel pointer has four variant definitions for the same piece of data. Assuming a

variable "pixel-pointer" of the type defined in Figure 4.13,

o "pixel-pointer.C" is used for address calculation and assignment,

o "pixel-pointer.Lf" is used to access a four-pixel segment using its starting pixel

addrcss,

o "pixel-pointer.Sf" is used to access a two-pixel segment using its starting pixel ad-

dress, and

o "pixel-pointer.Bf" is used to access an individual pixel by using its own pixel address.

Thus, by changing the field name used, pixel segments with different lengths can be refer-

enced with the same starting address. Similarly, this pixel pointer can be used in bit-plane

image memory to address 8, 16, or 32 pixel binary image segments.

The line drawing procedures

Line drawing procedures draw lines and move the t'pen" from the current pen position

to an end point specified by relative or absolute co-ordinates. A widely used incremental
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line drawing algorithm, Bresenham's algorithm lZU,ZAl, is adopted in our line drawing

procedures. In this algorithm, for each iteration step, the pen co-ordinate along the major

increment direction will be incremented by one and the co-ordinate increment along the

minor increment direction is determined by a decision variable which is used to keep track

of the error factors associated with rounding to an integer pixel grid. As an example

of using pixel mode for line drawing, an outline of Bresenham's algorithm is given in

Figure 4.14. Since a line can be drawn into any image area, an environment descriptor is

used to specify a particular drawing environment, including the form being drawn into,

the width of the form, the current pen position co-ordinate and its corresponding address.

A pointer to this descriptor is passed as a parameter to the line drawing procedures. In

Figure 4.\4, it can be seen that line drawing in pixel mode is simply a matter of setting

the value of the pixels under the pen to a given colour; it can be executed as fast as the

next pixel address can be generated.

Antialiasing line drawing can be achieved by modulating the intensity of the pixels of

the line, according to how much of this pixel is covered by the line and. how much it is

covered by back-ground colour, as illustrated in Figure 4.15. In this figure, S is used. to

represent the deviation of the centre of the rounded pixel from the theoretical centre of

the line, and using a simple antialiasing algorithm, the intensity of pixels P1 and P2 can

be obtained by the equations

intensity of Pl : (1 - S) x colour + S x background

intensity of P2 : S x colour + (1 - S) x background

where P1 and P2 are the two pixels involved in one step of the incremental algorithm.

Pixel Pl is the pixel chosen by the algorithm for a point on the line; that is, it is the
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type draw-environment -- record
form-ptr: pointer to form;
vidtlt,
pen), pen-y: integer;
pen-a.dr: pixel-ptr;

end;

Procedure Line-¡elative (Dx, !1, colour: integer;
env n-:.nment : draw-ent' iro nment ) ;

var yjncrement, xjncrement, i: integer;
begin

set yjncrement to environment.width;
set xjncrement to one;
calculate line draring direction for Bresenham's algorithm;
for i:: current point to the end of úåe Jine do

p en-adr.bl : : byte (colour) ;
calculate nexú pen coordinates using Bresenham's algorithm;
update pen-adr to the value corresponding to next
pen coordinates;

end;
end .ljne-¡elative;

Figure 4.L4. Procedure Line-¡elative.

Figure 4.15. Drawing an antialiasing line.

"p"tr". Pixel P2 is the other of the two alternative pixels; that is, it is the "auxiliary

pen". In pixel mode, this pixel intensity modulation can be conveniently implemented as

illustrated in the algorithm used in procedure"smoothJine", a part of whose algorithm is

given in Figure 4.16. In this algorithm, a pixel pointer type r¡ariable "pen-adr" holds the

S

\,é J
(riì

-
P2L
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address of the pen pixel PI and another pixel pointer "pcn-a.ux-¿.dr" holds the address of

the auxiliary pen pixel. For sirnplicity, this procedure draws only a monochrome image

with grey scale. Similar operations can be used for linear colour blend.ing of two colour

images and also for colour image transformation [1g].

Procedure SmooúJr Jine (Dx, Dy, colour, environment);
(* pen-adr is a pixel pointer wltich specirles the address of

current pen position, pen-aux-adr is a pixel pointer which
specirles the address of the auxiliary pen posiúion *)

var S: real; pen-aux-adr: pixel-pointer;
begin

set initiai S value; (* S is line drawing rounding error *)
(* Draw a smooth line. x)
from current pen posiúion to end of the line do

calculate the value of pen-adr, pen-aux-adr, and S
using increment aI algorithm;
(* Get the background colour unde¡ the pen. *)
background: : integer (pen-adr.Bl );
(,* Write the pixel Pl *)
pen-a.dr.Bf:: byte (trunc (S * float (colour)

+ (1.0 - S) * float (background)));
(* Get ba.ckground colour under the auxiliary pen *)
b ackground: : integer (p en-aux-adr.Bl ) ;
(x Write the pixel P2 *)
pen-a.uxâdr:- byte (trunc ((1.0 - S)) * float (colour)

* S * float (background)));
end;

end SmoothJine;

Figure 4.16. Procedure Smoothline.

Perforrning RasterOp in pixel rnode

In procedure RasterOpJLT, we can see that in addition to image copy, a series of

parameters needs to be calculated, such as skew, skew mask, merge mask, and. so on. In

order to handle the left and right boundary conditions, additional tests and additional
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frame buffer cycles are also needed on copying an image rectangle. For larger images, this

overhead is negligible compared with the time used for the image copy. But, if the image

being copied is very small (such as a character), copying only needs a few cycles, and

the parameter and boundary condition calculations result in comparatively higher set-up

overhead.

In pixel mode operations, however, individual pixels or pixel segments can be directly

addressed, eliminating the need for the shifting, merging, masking and read-modify-write

memory operations required for performing RasterOp in bit-plane format, and the handling

of boundary conditions is much simpler. Although one pixel mode frame buffer reference

can access only at most four pixels, copying a small or horizontally narrow image using a

RasterOp-like operation in pixel mode can be more efficient. The algorithm used for this

operation is given in Figure 4.17, where

o "src-,a,dr" and "dest-a,dr" are pixel pointers pointing to the source and destination

segment to be copied,

o "srcJtart" and "dest-start" are the start address of a horizontal line of the source

and destination images respectively and

. "w" and "h" are width and height of the image rectangle being copied.

Copying a segment from the source area to the destination area is simply done using a

statement of the following form over the whole image rectangle.

dest -a,dr. Lf : : src,a.dr. Lf ;
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Procedure RasterOp_pixel (src, dest: pixelJorm;
Xs, Xd, Ys, Yd, w, h, colour: integer);var src-súart, dest-start, i, w0: integer;

_ src-adr, dest_a.dr: pixel_pointer;
begin

(* Cahculate starting addresses of the image areas- *)
src_start:: src-BaseAddressprxel * src.width * ys * Xs;
dest-star-t:-- desÉ.BaseAddresspixel * dest.width* ys f Xs;(: C"O, image rectangles from top to bottom *)
for i:: I to Jr do

src _a.dr. C : : src_start;
dest -adr. C : : dest _start ;
w0:: wi

four pixe/s at a time *)
*)

src_a"dr.C:: src_a.dr.C * 4;
dest_a.dr.C:: dest_a.dr.C * 4;

end; (,i while *)
wlrile w0 ) 0 do (* copy the remaind.er one pixer at a tftne *)

desú_adr.Bf:_- src_adr.Bf; (,r * *)
w0:: w0 - l;
src_a.dr.C:_- src_ad¡. C + 1;
dest-adr.C:: dest_a.dr.C + 1;

end; (* while *)
('* Advance to the next bine x)
src_súarú..: src_súa¡t * src.tvidth;
dest -start :: dest -start * dest.width;

end; (* for *)
end RasúerOptixel;

Figure 4.L7. Procedure RasterOp_pixel.

When combining colour images, the following operations are sometimes useful:

t rePlacing the åestination pixel with the maximum or minimum of the source and

destination pixels,

o combining the source and d'estination images using addition or subtraction with a
saturation, and
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o linear blending of colour images

These and other graphics operations require arithmetic operations on pixel values which

cannot be handled by bitwise logical operations. In pixel mode, however, since pixel values

can be directly accessed and manipulated by the drawing processor, RasterOp can perform

the above operations while copying source image rectangles onto the destination. In order

to do this, the statements marked (x * *) in Figure 4.I7 are replaced by calls to a procedure

which performs an operation between source and destination pixel values and stores the

result into the destination pixel. As an example, a simplified procedure "Maximum" is

given in Figure 4.18; this selects the larger of the source and destination pixel values to be

the destination pixel value.

This procedure can be passed as a parameter to the procedure "R¿sterOp-pixel" in

Figure 4.17, so that different operations can be performed. Bit-field instructions can

extract or insert a particular bit-field in a memory word; these instructions are used in

procedure Maximum to obtain a particular colour component from the pixel value. The

distribution of the colour components is specified by the offsets of the components from the

first bit of the memory word and the lengths of the components. The colour distribution

of a specific image is recorded in a variable of type "colour-¡ecord", which is passed as a

parameter to the operation procedure for insertion and extraction of colour components.

For simplicit¡ procedure Maximum only perforrns operations on pixels one at a time.

Polygon filling

A widely used graphics primitive is polygon filling. The procedure "Fill-polygon",

which adopts an edge coherence and scan-line algorithm[20], has been implemented to fill

convex polygons; each scan-line only intersects with two edges of the polygon. Concave
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type ColourMa-sk -- record
offset, Iength: [0..8J;

end;
colour-record: record

red, green, blue: ColourMask;
en.d;

P ro cedur e Maximum (src -adr, dest _ad r: pixel _p o int er;
colour-descriptor: pointer to colour-¡ecord);

var src-buffer, src-colour, dest-buffer, dest_colour: integer;
begin

(* Read source and destination pixel values *)
src-burlbr - src-a.dr.Bl ;
desú -b u¡fe r : : des t -.adr. Bf ;
(* Manípulate pixel value +)
extract uredu bit-freld from src-buffer and put into src_co,lour,.
extract ured" bit-freld from dest-buffer and put into dest-colour;
if src-coJour ) desú-colour th.en

inserú src-coJour into the ured' bít-freld of dest_buffer;
end;
extract "green" bit-freld from src_b uffer and put into src_co.lour;
extract "green" bit-freld from dest-buffer and put into dest-colour;
if src-coJou¡ ) desú-cojour then

inserú src-colour into the "green" bit-freld of destbuffer;
end;
extract "blue" bit-freld from src-buffer and put into src-colour,.
extract "blue" bit-freld from dest-buÍbr and put into dest-colour;
if prc-cojour ) dest-colour then

inserú src-colour jnto úJ¡e "bhue" bit-freld of dest_buffer;
end;
(* Replace destinatio.n pixel 'vith the result of the operation *)
d e s t -a.d r. Bf : -- des ú -b u fer;

end Maxl'rnurn,.

Figure 4.1g. procedure Maximum.

polygons can be decomposed into convex polygons.

In procedure Fill-polygon, a polygon is represented by a list of adjacent vertices, each

pair of vertices defining an edge. The procedure first creates an ed.ge table (ET) from

the vertex list, each ET entry holding a pointer to a list of edge records with the same

lower y-coordinate. In the ET, these edge lists are sorted with the lower y-coordinates in
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au ascelrdiug order. An active edge table (AET) holds the polygon edges which intersect

with the current scan line. The filling scans the polygon from the lowest to the highest y-

coordinate; edges that intersect with the current scan-line are put into the AET and their

intersecting points with the scan-line are derived. Since each scan-line can only intersect

with the polygon .t t*o points, these two points define a line which composes part of the

polygon. After fi.lling this line with colour, the y-coordinate is incremented and the AET

updated.

Thr:s, by scanning the polygon along the y-direction, the problem of filling a polygon

becomes a matter of filling a series of horizontal lines. A degenerate form of RasterOp

is suitable for filling horizontal lines with a solid colour or pattern, and so pixel mode

and RasterOp mode RasterOp function can both be used for polygon filling. However,

for shading a polygon, individual pixel values need to be calculated, and only pixel mode

operations can be conveniently used.

4.2.4 Bit-plane mode operation

From the discussion of pixel mode and RasterOp mode operations, it seems that almost

all graphics operations can be conveniently performed between them. \Mhat then is the

point of having bit-plane mode? The main function of bit-plane mode is to transfer images

between the bit-planes of the multi-mode frame buffer and other memory areas or disk,

and to transfer images between different bit-planes of the frame buffer iiself.

Bit-plane mode operations can directly transfer a 8- to 32-pixel binary image segment

from a bit-plane of ihe frame buffer to any memory area within the drawing processor's

address space. \Mith the assistance of bit-field instructions, a binary image segment (with

a length of between one and 25 pixels) can be extracted from the source image in an
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arbitrary pixel position and inserted at any pixel position in the destination area. The

operation of copying a 16-pixel binary image segment from a source region to a destination

region can be simplified into executing the following pair of instructions:

extd src-offset, src-address, buffer, length;

insd dest-offset, buffer, dest-address, length;

where "src-offset" and "dest-offset" are the pixel offsets of the image segment in the source

and destination memory words, respectively, and "length" is the length of the segment. The

total operation only needs two instructions and three to six memory cycles. In addition to

this, the maximum number of pixels that can be handled by one instruction is 25, instead

of 16 for a RasterOp mode operation. Taking the average number of memory cycles used

to copy 25 binary pixels in this operation as 4.5, the average number of pixels copied in

one cycle is 25 pixels divided by 4.5, that is, 5.56 pixels. In R¿sterOp mode, this figure is

16 pixels divided by 2.3, or 6.96 pixels. So, we can see that copying a binary image using

bit-field instructions can be performed at about the same rate as with RasterOp hardware.

Without bit-plane mode, image transfers between frame buffer bit-planes and other

memory areas, or between frame buffer bit-planes themselves, would be difficult. For

example, there is no communication between bit-planes in RasterOp mode. In pixel mode,

transfer of an image from one bit-plane group to another needs bit-field extraction and

insertion operations, and the number of bits that can be moved in one memory reference is

normally much less than that possible when using a bit-plane mode operation, especially

when the pixel depth is small. In the virtual memory management simulator (described

in Section 3.2 of. Chapter 3), it can be seen that bit-plane mode is a convenient vehicle

for the manipulation and management of bit-plane groups in a multiple bit-plane frame
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buffer.

4.2.5 Off-screen buffer management

As described in Section 2.3.2 of. Chapter 2, in a multi-window display environment, a

large off-screen buffer area is required to store fonts, menus and so on, as well as to

provide temporary storage for obscured windows and other image objects. Therefore., the

off-screen buffer resource should be efficiently allocated and deallocated. In order to do

this, a frame buffer heap manager is required so that image forms can be dynamically

allocated and deallocated. The frame buffer adopts a linear addressing scheme, which has

two advantages for frame buffer heap management:

1. two-dimensional image rectangles can be mapped into pieces of a one-dimensional

memory array and therefore can be densely packed together regardless of their shape

and size, giving efficient storage utilization, and

2. the linear addressed one-dimensional frame buffer memory is very similar to gen-

eral purpose memory, and so well-understood heap management algorithms can be

adapted for image memory resource management.

The problem of managing a multi-plane colour frame buffer is the fact that it is very

difficult to manage the storage resource for randomly piled images which have arbitrary

pixel depth, shape and size. As described in Section 3.2.3 of Chapter 3, this problem can

be overcome by using the bit-plane group concept descril¡ed in Section 3.1.4 of Chapter 3.

So, this concept is also used as a tool to implement the frame buffer heap manager.

The frame buffer heap manager is written for an environment where no other frame

buffer management (such as virtual frame buffer management) is used. So, the heap
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manager assumes sole responsibility for the management of the physical off'-screen frame

buffer memory.

The off-screen frame buffer resource is firstly configured into a series of independent

heaps, one for each bit-plane group. Further configuration is possible if enough remaining

bit-planes are available. As defined in Section 3.2.3 of Chapter 3, a bit-plane group consists

of adjacent bit-planes, different bit-plane groups do not overlap, and the heap for a specific

bit-plane group can be simply found by specifying its top bit-plane. Thus, the off-screen

frame buffer resource can be managed as a set of independent heaps, as though they were

separate frame buffers. Conventional heap management algorithms can be adoptcd to

handle these one-dimensional memory resources for each bit-plane group.

The data structures for the frame buffer heap manager are given in Figure 4.19. Each

heap for a bit-plane group has a list of storage block records that represents all the.off-

screen frame buffér storage for that group. The collection of these heap lists is represeirted

by an array called "HeapRecord". A storage block is a contiguous image memory area

which can contain colour images with pixel depth specified by the bit-plane group. In a

block record, the field "bsize" specifies the size of the block in terms of the size of. a single

bit-plane involved in the bit-plane group; the field "next"points to the start address of the

next block in the list. The block lists are stored in the bit-plane mode address area, since

the bit-plane mode data structu¡e lends itself well to representing the bit-plane group,

while the other two frame buffer modes do not.

The calculation from a "form" specification to the corresponding image memory size

and frame buffer address is as follows. The block size is specified by the number of 16-bit

memory short words in a bit-plane and so the corresponding block size can be obtained
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type block-ptt': pointer to b/ock;
block: record (* A storage block. *)

next: block-ptr;
bsize: integer;

errdr'
HeapLíst: record (+ Representation for tlte storage resource

for a particular bit-plane group. *)
ListHead: block-ptr;
top,span: [0..7];

end;

var I{eapRecord: array [0-.7] of HeapList;
(* Representation for ilte collection of all åeaps îor bit-plane groups. *)

Figure 4.19. The data structure for frame buffer heap.

from the rvidth and height of a form as follorvs:

block size : (width / f0) x height.

The algorithm for the heap manager, procedure "NervForm", is given in Figure 4.20.

This algorithm fi¡st fi¡ds an appropriate memory block for the form required; horvever, the

starting address of the memory block at this stage is specified as a bit-plane mode address

in the top bii-plane, of the bit-plane group, and so the calculation shorvn in Figure 4.2L js

necessary to obtain the BaseAddress for each ind.ivid.ual mode in ihe "form" specifi.cation.

In the calculation, the x- and y-coordinate portion must first be extracted from this

bit-plane mode starting address by masking out other fields of the ad.dress. Referring to

the frame buffer address format (shown in Figure 2.LL of.Çhapter 2), the co-ord.inate field

in the bit-plane mode'address format speciûes the position of an 8-pixel segment, while in

pixel mode it specifi.es a single pixel position; so, the co-ordinate value in bit-plane mode

format needs to be left-shified th¡ee bit positions, to obtain the corresponding value in

pixel mode. The RasterOp mode address forrrat ad.opts the same co-ord.inate ûeld as used
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in bit-plane mode. After the co-ordinate values for pixel mode and RasterOp mode have

been obtained, the calculation for their BaseAddresses becomes a matter of assembling the

mode code and co-ordinate field into the corresponding ad.dresses.

Procedure NewFo¡m (var fonnspec.. [orm): boolean;
var size: integer;
begin
(x Calculate the size or the formspec from its width and height *)
size:: height * width /16;
(* Use the "top" plane number of formspec to frnd the head of the

relevant heap. *)
heapJtead:: heaprecord [top]. heapäead;
if a memory block js found in the heap block l'st ¡vJrose size is equa|

or larger than the required forrnspec
then

set B aseAddressPjxe I, B ase A ddressP lane, B ase AddressR-op fi eid
of the formspec to tlte value derived from the start address of that block;
take a memory block of the "size" from that block.
if ¿åe remainder of the block becomes zero tlten

delete that block from the block list;
end;
return úrue,'

else
return false;

end;
end NewForm;

Figure 4.2O. Procedure NervForm.

PlaneModeCoordinate : BlockstartAddress mod CoordinateMask

BaseÁddressPixel : PixeModeCode * planeModeCoord.inate * B

Base.,4.ddressPjane : P laneMo deco de * p laneMo d,eco ord inat e

BaseÁddressRasúerOp : RasterO pMo deCo de * p laneMo deCo ord inate

Figure 4.2L- Calculating frame buffer base address for the three mod.es.
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For images stored in the general purpose memory area, we can use a similar method to

calculate the block size of pixelJorm and plane-form from the form specification, and call

standard memory allocation and deallocation procedures to acquire or dispose of memory

space for images.

4.2.6 Multiprocessor environments

This graphics display system was designed for use in a multiprocessor environment, where

multiple drawing processors have direct access to the display system components, such

as frame buffer, RasterOp hardware, bit-plane enable registers, and so on. Accesses from

these multiple processors can be interleaved, and frame buffer memory space can be shared

between different processes as well. This can give rise to special problems.

In such an environment where multiple drawing processors can be simultaneously up-

dating the frame buffer, care should be taken to avoid conflicting operations on shared

image data. Normally, if each drawing processor draws into its own image area, there

is no conflict, but in a situation such as displaying multiple windows, the screen area is

shared among many drawing processes and a memory word may contain different drawing

processes' images. For example, a processor may execute a bit-plane mode instruction

on the frame buffer memory involving a read-modify-write operation; just before the first

processor updates the frame buffer, a second processor may also access the same mem-

ory object using a read-modify-write operation. \Mhen the second processor completes its

read-modify-write operation, it will overwrite the result of the update performed by the

first processor.

Similarl¡ in pixel mode, if all bit-planes are enabled and there is more than one bit-

plane group, several processors may use read-modify-write operations, such as bit-field
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ilserli<.¡u iustructions, to update the same frame buffer memory object simultaneously,

resulting in damage to each other's images in the different bit-plane groups.

Since this kind of read-modify-write cycle cannot be made an indivisible bus oper-

ation, instructions such as bit-field insertion instructions, should be avoided on shared

image areas. Horvever, since the RasterOp mode RasterOp read-modify-write operation

is guaranteed by hardware to be an indivisible operation, it can be safely used on shared

multi-windorvv area.

Another point to be noticed in the context of a multiple drawing processor environment

is that the RasterOp mode RasterOp hardware has internal registers which can only hold

the context of one executing instance at a time, preventing its use by concurrent drawing

processes. The opprating system should therefore manage the RasterOp mode frame buffer

area as a non-shareable resource, viz. only one process can execute in a RasterOp mode

area at a time.

It is too expensive to save all the contexts in R¿sterOp hardware registers, and. so if a

RasterOp mode operation encounters a page fault, the RasterOp hardware will be forced

to wait for that page and no other process will be able to use it. Fortunately, the working

area of a RasterOp mode operation can be exactly determined before its execution; thus,

a better strategy is to call all memory pages required by a RasterOp mode operation into

physical memory before dispatching the process.

The pixel mode and RasterOp mode bit-plane enable registers also need to be managed

by the system, using semaphores; each bit-plane group has a semaphore ancl its correspond.

ing bii-plane enable välue. If a drawing process uses pixel mode or RasterOp mode, it can

be made ready only when its working bit-plane group conforms with the current value of
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the bit-plane enable register. The value of ihe bit-plane enable can be changed only when

there are no running processes using that bit-plane enable value, otherwise drawing pro-

cesses may draw pictures into the working bit-plane group of another process and destroy

each other's images.

4.3 E*perirnentation and perforïnance issues

4.3.L Performance estirnation

The performance of a hardware display system is determined. by the level of hardware

support for graphics operations, by the speed of the frame buffer and the drawing processor,

and by the way that they communicate with each other. The overall performance will also

be greatly influenced by the design of the graphics software. In an environment in which

a multi-processor system is updating images in parallel, it is possible for the processing

components to keep the frame buffer busy. Thus, the frame buffer performance will have

significant influence on the overall performance. So, we assume the frame buffer can be

kept busy, and base our performance estimation on an examination of the frame buffer

alone.

The sequence of the frame buffer operation is outlined in Figure 4.22. On the system

bus, an ordinary data transfer from a bus master to a non-cacheable bus responder consists

of an address transfer cycle and a data transfer cycle. A block data transfer consists of a

starting address transfer cycle and a series of data transfer cycles. The bus master starts

an address transfer by asserting an t'Astrobe" signal. After completing the address and

operation decoding, the responder acknowledges the bus master. On receiving an address

acknowledgement, the bus master starts a data transfer cycle by asserting a "Dstrobe"

signal. Referring to Section 2.3.6. of Chapter 2 and considering the frame buffer side, the
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Dstrobe signal needs to be synchronized bcfore activating the synchrorì.ous access controller

state machine. The access controller, in turn, activates the VSC (Video System Controller)

and waits for the VSC to be ready; this is necessary qince the screen refreshing process

and the DRAM refreshing process rnay also request a frame buffer reference at that time,

or a frame buffer operation might be in progress. This access conflict is arbitrated inside

the VSC, and the VSC wili acknowledge the access controller with a "read.y" signal if the

latter's request is granted.

Addrcss
Ast¡obe Dst¡obc

Figure 4.22. The sequence of frame buffer operation.

There are trvo categories of frame buffer operation cycles at its updating port; they

are read/write cycle and read-modify-write cycles. Having completed its operation, the

display subsystem acknowiedges the bus master. In response to this, the latter negates

the Dstrobe signal and the display subsystem returns to the idle state waiting for the next

data transfer.

With the current design, the address transfer cycle time is about 120 nsec, the read./write

cycle is 390 nsec and the read-modify-write cycle is 520 nsec. Thus, a complete data trans-
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fer cycle is 510 r¡sec for read/write operation and 640 nsec for a read-modify-rvrite cycle.

Using tlr.ese frame buffer cycle times, we can derive the estimated performance figures

for the frame buffer. We consider that basic graphics operations are achieved by the

repeated execution of certain atornic operations. For example, the atomic operation for

vector drawing is writing a single pixel value to the frame buffer, and the atomic operation

for rectangle image copy in pixel mode is reading a four-pixel image segment from the source

image area and writing it into the destination area of the frame buffer. The maximum

performance frgure for the frame buffer can be represented by the number of pixels or

frame buffer bits that can be updated per second. So, the performance figure becomes the

product of the number of pixels or bits which can be updated per atomic operation, and

the number of atomic operations per second, which is the inverse of the cycle time of the

atomic operation, as shorvn in the following expression.

Maximum image updating tâ.te :
(PixeJs or bits/per atomic operation) x 7/atomic operation cycle

The atomic operation cycle can be obtained by summing up all frame buffer cycles involved

in this operation. The estimated maximum performance figures for the multi-rnode frame

buffer and their related atomic operation parameters for typical graphics operations are

given in Figure 4.23.

4.3.2 Experimentation

The prototype hardware for this project was implemented by wire-wrapping on one mother

boa¡d and one small daughter board, as shown in Figure 4.24. Because of the unar¡ailabiliiy

of multiple high speed 32-bit L-bus compatible processors at the time of the experiment, the

implemented display subsystem was tested with a single processor board using a SMHz
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Figure 4-29- Estimation of the performance of the frame buffer.

16-bit NS32016 CPU; this processor board was, in fact, designed for QDS-1000 image
processing display terminal[16]' The processor board was used. as the drawing processor,
communicating with the display subsystem through the system bus (L-bus). The output
of the display subsystem rvas used to drive a high resolution 1g-inch RGB colour monitor
with a 1,024 x g60 screen.

Experiments have been carried out on the prototype to verify the hypothesis described
in chapter 1 and to find out the bottle-neck in such a system. Although the prototype
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Figure 4.24. The prototype hardware.

adopts a straight-forward timing scheme and the display subsystem is driven by a single

SMHz 16-bit general puqpose processor, the advantages of the multi-mode frame buffer

have still been demonstrated by these experiments. The performance has been improved

on three main pixel-intensive operations: video generation, pixel value manipulation, and

bitmap image manipulation.

o The video generation only takes a very small fraction of the frame buffer cycle so

that, even allowing for screen refresh and dynamic RAM refresh operations, there

is still more than ninety percent of frame buffer memory cycles left for frame buffer

updating.

o The Ra"sterOp mode moves a colour bitmap picture fairly fast; together with the

bit-plane mode, it provides flexible image data exchange and logical operations on

bitmap images.

o The pixel-packed mode facilitates pixel value manipulation, line drawing and Ras-

terOp on small objects.
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. Because of the mulbi-rnode structure, the performance of graphics operation in the

frame buffer becomes independent cf pixel depth that means colour pictures can be

manipulated at the same speed as binary monochrome pictures.

¡ The very large off-screen buffer area provides a high bandwidih multi-mode memory

space for obscured wind.ows, picture templates, fonts, double buffering, and so on;

it also provides physical page group frames for a virtual frame buffer scheme. In

addition, the linear addressing scheme of the frame buffer makes the off-screen buffer

especially flexible.

The basic graphics operations described in Section 4.1 have been impiemented on the

prototype as function test. Examples of these are sb.own in Figure 4.25.

¡
T

t

(a) (b)

Figure 4.25. Examples of basic graphics operations

An experiment lias also been designed to test the concurrent use of multiple modes.

In this experiment, illustrated. in Figure 4.26, one procedure draws random sized and

positioned colour boxes using bit-plane mode and RasterOp mode in the top left part of

the screen; the second procedure draws a dynamic pattern of coloured lines on the bottom
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part of the screen using pixel-packed mode. A third procedure r:ses RasterOp to make

a copy of the pattern of coloured lines to the top right part of the screen. Since there

is no mode switch and the various modes share the same data structure - the form data

structure described in Section 4.L.2 - to describe their drawing environment, no extra

overhead is introduced by the multi-mode structure.

Figure 4.26. Example of concurrent multi-mode operation.

Now that the functionality of the prototype has been tested, th.e next step is to inves-

tigate the behaviour of the display system to discover the performance bottle-neck in the

system and to remove it, to further improve its performance. Experiments for performance

evaluation include measuring the frame buffer memory data transfer cycle time, the image

updating speed and the system bus utilization in different graphics operations.

As illustrated in Figure 4.27,we can see that a significant performance improvement

can be gained by fine-tuning the timing systems of both the drawing processor and the

frame buffer. The real frame buffer data transfer cycle is about 900 nsec longer than the

estimated frame buffer data transfer cycle. The reason is that the processor used in this

experiment is not designed for very fast graphics operation; thus, of the 900 nsec, about
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Idle

240 nsec

Figure 4-27 - The frame bu.ffer data transfer cycre time.

700 rrsec is consumed by the processor bus interface for synchroni zationand state transfer.

The remainder of the extra cycle time is mainly caused. by the (stow) VSC. It takes 200

nsec to assert ihe RAS signal after each invocation. The synchroni zation of the access

controller state machine and the long rvire connections of the temporary rvire-rvrapped

implementation also contributes a small amount to the extra cycle time. After fine-tuning,

this latter part of the extra cycle time can be eliminated or overlapped rvith other activities

of the frame buffer cycle. Through appropriate adjustment, a cycle time faster than the

estimated one can be achieved. With a fast processor and bus interface, it should be

possible to largely eliminate the first 700 nsec mentioned above. Thus, we can expect the

performance to be significantly improved.

From the system bus utilization figures shown in Figure 4.28, given for different graphics

operations' we can see that for most of them only a small portion of the bus bandwidth is

being used' That means the performance of this graphics display system is determined by

the processing power of the drawing processor. According to the current bus utilization

figures, more than three drawing processors would be required to keep the frame buffer

b*y' This supports the assertion in the hypothesis that multiple drawing processors

updating the frame buffer in parallel will enhance the per{ormance of the display system.

Frame buffer
active

120 nsec

Dsu'obe period
800 nsec

Astrobe period
380 nsec
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Figure 4.28- The system bus utilization for various graphics operations.

'We 
choose the full screen updating and character printing speeds to represent the image

updating speeds, since they represent two typical difficult aspects of memory intensive

image updating. The first requires the transfer of a huge amount of image data in a very

short time; the second constrains the image data transfer in a form of scattered bits and

bytes and still requires great speed. The perfonnance figures are listed in Figure 4.2g.

The above experiment shows that it is very important for a large high resolution colour

raster display to increase its frame buffer upd.ating bandwidth, as is emphasized. in this

thesis. Wiih the current prototype timing arrangement, the ordinary bit-plane mode or

pixel-packed mode requires 1.3 sec to paint a full colour screen using a single 10MHz
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Figure 4.29. Measurements of tire image updating speed.

processor' During the same period of time, the R¿sterop mode could paint more than

10 full screens (with 46% bus utilization). \Mithout this high bandwidth, it is difficult to

maintain a good interactive response. The implementation of a large frame bufier with

a very high internal image transfer bandwidth in this design provides suitable hardware

support for a fast interactive colour graphics display.

In the experiments, we also found ihat using Rasterop to copy very smaJl objects such

as characters can result in a frame buffer updating speed which is much slorver than ii
is when copying a large image. One reason for this is that an external procedure call is
executed for each character to be prinied; this external procedure call switches the module

table and link table pointers, creates a new frame on the stack, and saves the old stack
pointer' frame pointer and the contents of a number of registers as well. on returning to
the calling environment, all the previous context needs to be restored. since printing a
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character only needs to copy a few bytes of image data, the context switch of an external

procedure call represents a fairly high overhead. Similarlg the co-ordinate to frame buffer

address conversion and other set-up parameter calculations must be performed for each

small character, also contributing to the high overhead for character printing. In order

to circumvent this problem for the printing of a string of characters, a string printing

procedure has been implemented; the entire string of characters can then be printed by

only one procedure call. Instead of using an external procedure call to print each character,

a subroutine call is used which does not switch context at all. In this procedure, the result

of the co-ordinate to frame buffer address conversion can be used by many subroutine

calls, thereby eliminating the repeated calculation. Thus, the speed of printing of small

characters can be improved. For interactive single character input, the procedure for

printing a single character can still be used.

The experimental results show that pixel mode RasterOp is slightly faster than Ras-

terOp mode for printing a 8 x 9 pixel character with a 16-bii drawing processor. When

a 32-bit drawing processor is used, the difference will become significant; this is because

each pixel mode transfer handles twice as much image data as can be handled by 16-bit

processorr while the R¿sterOp mode transfer handles the same amount of image data.

However, pixel mode RasterOp must use a colour font, which requires more memory to

store, to print colour characters, while RasterOp mode can extend a binary font to any

coloured characters and thus uses fewer system bus cycles. This display module provides

alternative ways for printing small objects; which one of them is more efficient will depend

upon the specific requirements of an application program.



Chapter 5

Conclusrons

5.1- Concluding rernarks

The issues which concern the performance of a colour raster graphics display system, and

which have been addressed in this thesis, can be listed as follows.

o High resolution colour raster graphics displays require significant processing band-

width for the high speed updating of their frame buffers.

o The fi.exible use of a multiple bit-plane frame buffer gives rise to the need to reference

and manipulate the images from different points of view with different data formats.

An ordinary frame buffer memory, however, cannot satisfy the data formats and

functionalities required, because it has a fixed data type and format. It can only

optimize its organization to one type of application, to the neglect of the needs of

other applications.

o A large frame buffer is essential for the display of multiple active overlapped windows.

It is also essential for panning and scrolling of very large images.

In this project, a special structured frame buffer has been designed and fabricated. It

features three firnctionality modes; the frame buffer can be accessed by pixel values, by

151
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individual bit-plane, and by hardware RasterOp functions. Since the hardware RasterOp

function has been distributed in the bit-planes of the frame buffer, very high image manip-

ulation bandwidth can be achieved and the RasterOp performance becomes independent

of the colour resolution.

A number of sample progranxi have been written for this display system to explore its

hardware features. An experimental colour graphics display system has been built to test

the hypothesis and find the system bottle neck. The result shows that the multi-mode

functionality of the frame buffer enables the frame buffer to be used in a most convenient

and efficient way for various basic graphics operations. The design meets the goal of

providing basic graphics capabilities, including fast RasterOp, pixel value manipulation, a

large image buffer and efficient image data transfer. Since the multi-mode functionality is

achieved by referencing the frame buffer via different address areas, different modes can

be used simultaneously to achieve special functionality. For example, joining bit-plane

mode and RasterOp mode enables RasterOp to be performed between different bit-planes

and brush-paint type operations; also, bit-plane formatted image data and pixel-packed

formatted image data can be transformed to one another through accessing the frame

buffer via different modes. In addition, one function mode cau be used to prepare image

data for the later operations in the other modes; examples of this include the fact that

colour fonts created by a brush-paint operation using bit-plane mode and RasterOp mode

can be used by later pixel mode character printing operations, and a colour pattern created

by a pixel mode operation can be used by later RasterOp mode raster-operations.

In spite of the special functionality of the multi-mode frame buffer, it provides a very

flexible interface to the rest of the system; images can be transferred in bit-plane group
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form or in pixel-packed form between the frame buffer and the ordinary system memory or

peripheral devices, without the need for peculiar operations. The "memory typ"" interface

of the display system to the workstation facilitates multiprocessor parallel image updating

and enables the display system to be used as a test bed for experimentation with various

graphics algorithms.

The bit-plane group concept developed in this work proves to be an convenient vehicle

for storing and manipulating images with different pixel depths in a structured way. Based

on this. concept and the page grouþ concept, a multi-mode colour virtual frame buffer

management scheme is built. The virtual frame buffer simulator shows the feasibility

of managing a multi-mode multiple bit-plane frame buffer in a demand-paging virtual

memory fashion. The multi-mode feature, previously thought might be a difficulty for the

implementation of a paging virtual frame buffer, turns out to be a convenient tool for the

management of a frame buffer resource based on the bit-plane group organization.

In addition to extending the physical frame buffer space to a much larger virtual frame

buffer space, the virtual frame buffer management scheme creates an environment which

enables various drawing processes to work in their own bit-plane groups and address spaces,

independent of each other. Other advantages of paging virtual memory management, such

as joining discrete pages into contiguouri memory space for better management of image

storage and memory space protection, can also be obtained in this virtual frame buffer

scheme.

The design shows that the implementation of this multi-mode frame buffer is not very

expensive, and the very regular data paths can be easily merged into the \/LSI RasterOp

chip. The temporary adoption of the available 16-bit RasterOp hardwarc uuiü irrt<,¡ '¿.32-
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bit word frame buffer memory complicated the implementation to some extent, but this

problem will disappear with the adoption of a new 32-bit Ra,sterOp unit.

This design trades memory address space for better functionality and flexibility. With

the arrival of the new 32-bit microprocessors, a 32-bit address space (or an even larger

one) will become a stanclard facility. Then, using more ad.dress space, such as in this

multi-mode frame buffer, will no longer be a problem, and hence a much larger virtual

frame buffer space can be achieved.

Having programmed this display system, we feel that it would be better to provide

local temporary storage in the hardware RasterOp unit; this would be used to save the

execution status of the RasterOp hardware in a stack or in some other fashion. Then R¿ster

Operations can be interrupted and nested. For example, while the RasterOp hardware

units are busy scrolling a large image, an urgent request to move the cursor to a new

position may occur; when the RasterOp hardware can suspend its current task, it could

save its context, and serve the urgent cursor request. Later, the interrupted RasterOp

task could be resumed. Also, when a page fault, is encountered, the context of a blocked

RasterOp process.can be saved and another process would be able to use the RasterOp

hardware. This makes the utilization of the RasterOp hardware and the multi-mode

frame buffer much more efficient. The context saving of the RasterOp hardware should be

implemented locally in the RasterOp hardware itself, otherwise the transfer of this context

between multiple RasterOp units and memory will become a considerable overhead.

We also feel that the multi-mode frame buffer can be used more efficientl¡ in an

environment where multiple drawing processors update the frame buffer in parallel, if the

individual drarving processors can identify themselves when aecessing the frame buffer.
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Since different drawing processors may address different bit-plane groups, the frame buffer

would be able to adjust its bit-plane enable control to the appropriate bit-plane group, if the

master of each access can be identified. This would enable concurrent updating of different

bit-plane groups and the concurrent use of RasterOp hardware in different bit-plane groups

Furthermore, if the R^a.sterOp hardware could have multiple sets of working registers, then

different sets of working registers could be allocated to different drawing processors and

be adjusted dynamically. For example, while the address and set-up parameters of one

RasterOp are being calculated in a processor, the other drawing processor can use the

RasterOp hardware with its own set of working registers without disturbing the context

of the previous one. Thus, the scarce RasterOp hardware resource can be shared among a

couple of drawing processors and be used more efficiently. Unfortunately, no such RasterOp

chip is currently available.

5.2 Further \i\¡ork

The implementation and fabrication of this display subsystem provides a hardware testbed

for future experimentation. Future work might involve the development and investigation

of graphics algorithms to explore the potential of the multi-mode frame buffer and mul-

tiprocessor parallel image updating. System bus contention may be a ümitation on the

performance of this display system in a single bus configuration. An investigation of this

issue may provide instructive information to show the range of applications suitabie for

this configr¡ration and what type of application will cause a multiple bus confi.guration to

become necessary.
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The virtual frame buffer scheme described in this thesis shows many promising mer-

its. However, an essential prerequisite is that the address translation must be conducted

efficiently. In practice, this is achieved by using a look-aside address translation cache.

This cache holds the most recently used address translations so that if the memory refer-

ence range can be covered by this address translation cache, the time needed for address

translation is only the fast cache access time and represents very little overhead.

However, limited by silicon real estate, most rnicroprocessor memory management unit

(MMU) chips have a fairly small address translation cache. For example, the NS32081

MMU only has 32 cache entries, with one half for supervisor mode programs and the other

half for user mode programs. For normal program execution, the locality of references is

such that this small translation cache maintains a reasonably high hit rate.

The address range being referenced during a graphics operations can be much larger

than that in program execution. As an example, we consider the process of drawing a long

vertical line in our scan-line organized frame buffer. In the screen region, a page group

covers 8 scan-lines and so a 800-pixel vertical line will involve 100 page groups. It is obvious

that, for a 16-entry translation cache, the miss rate will be almost 100 percent. Thus, for

each frame buffer reference, two levels of page table references must be carried out to find

the address translation value before the actual frame buffer reference can proceed. Even if

all the pages being referenced reside in physical memory, the address translation imposes

heavy overheads on graphics operations.

In order to mitigate this problem, a nervr¡ MMU with a very much larger translation

cache is required. As an example, the architecture of Fairchild's new "Clipper machine"

is quite suitable. In this architecture there are two MMUs for each processor', one for



CHAPTER 5. CONCLUSIONS Ló7

instruction reference and another for data reference. Each of these MMUs has a 128-entry

address translation cache and supports a 1K byte page size. \Mith this kind of MMU, the

extra address translation overhead in graphics operation can be virtually eliminated.

I
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Appendix A

Address rnapping

Figure A..1. Address mapping for the display system.

SOOOO .. FFFFF880000 .. SFFFFF
RasærOp mode

frame buffe¡

400000 .. sFFFFFCOOOOO.. DFFFFF
Bit-plane mode

f¡ame butfer

200000 .. 3FFFFFAOOOOO .. BFFFFF
Pixel mode
f¡ame h¡ffer

c00 .. r'pF800c00.. 800F¡¡. Colour
look-up table

M4800A24
RasærOp mode
bit-plane enable

MO800A20Pixel mode
bit-plane enable

400800A00
BLT regisærs'

base add¡ess

800800800
VSC registers'

base add¡ess

0 .. 200800000.. 800200Board ID

System bus add¡ess
(slotaddress+_)Logtcal add¡essProgramming object
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Figure 4.2. Mapping for BLT register select bits.
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00111
BLT source

register

00A1A2A3
BLT register
select pins

01254

Ingical add¡ess bits

ca0calca2ca3ca4ca5ca6VSC register
select pins

)J45678

I-ogical address bits

Figure 4.3. Mapping for VSC register select bits.



Appendix B

Virtual frame buffer algorithrns

Procedure Derive (\/PGN, var PFN, operation);
begin

(* Derive the PT2 entries for pixel mode. *)
from the VPGN, deñve indexT and index2 for pixel mode ;
from the PTl [indexT] entry, get the PT2-ptr;
for i;-- 0 to 7 do
(* i is the pixel mode low order nominal virtual page number. *)

operation (PT2-ptrl [index2 + i], i, pixel_rnode, PFIü, result);
end; (* for *)
(* Derive the PT2 entries for bit-plane mode. *)
ftom the VPGN derive indexT and index2 for bit-plane mode ;for i:: top bit-plane to (top * span) bit-plane do
(* i is the bit-plane number in the bit-plane mode address. *)

frnd the bit-plane mode PTl [i, indexlJ entry;
from the PT7 entry, get the PT2_ptr;
operation(PT2-ptrl [index2], i, plane_rnode, PFN, rcsult);

end; (* for *)
(* Derive the PT2 entñes for RasterOp mode. *)
from the VPGN, derive indexi and index2 for Raster2p mode ;
for i;-- 0 úo I do
(* i is the control code in the RasterOp mode address. *)

fr,nd the RasterOp mode PTl [i, indexl] entry;
from the PT7 entry, get the PT2_ptr;
operation(PT2-ptrl [index2], i, RasterOP mode PFN, rcsult);

end; (* for *)
end Derive;

Figure El.l. Procedure Derive
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Procedure Calån-block ef2 entry, index, rnode,' var PFN, var result);
begin

case PT2 entry mode of
pixel-rnode, RasterOp mode: class:: valid;

assemb/e the mode code, P.F'N and index
into the PFN2 freld of the PT2 entryl

plane-rnode: store the backing store address of the bit-plane mode
virtual page into tåe PFN database entry of the
corresponding page frame ;

(* Because the space in PT2 entry will be used
to store valid physical page number (PFN2). *)

cJass.'-- valid;
assemble the rnode code, PFN and index
into the PFN2 freld of the PT2 entry;
copy the virtual page from backing store to page frame PFN;
set the page frame state to valid;

end;
clear PT2 entry's modify flug;

end Calljn-block;

Figure B.2. Procedure CalUn-block.

Procedur e Put into-working-set (VP GN ) ;
begin

if úåe current working set entry is empty then
puú VPGN in the curcent entry;

else
advance to the next entry;
(* Skip hocked entries. *)
wlrile entry contain a locked page group do

advance to the next entry ;
end ;
if the current entry is empty then

put VPGN in the curcent entry
else

Ev ict -page group (cwrent) ;
puú VPGN in the current entry;

end;
end;

errd Put j nto-working-set ;

Figure E}.3. Procedure Putjnto-working-set
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Procedur e Evict -page-group (index) ;
var VPGII, modifyJocal: integer;
begin

seú VPGN to the VPGNC freld of the entry in the
working set /isú indicated by current entry pointer "index";
(* When evict page group "index" points to the entry

whose cöntents stay the longest in the working set list. *)
set the state freld of working set fisú entry to empty ;
save TOPC and SPANq
if same-group then

(x Tåis evicted page grcup belongs to
the private group of the process. *)

set TOPC and SPANC to the corcesponding value of the private page group;
else

(* Tlris page group belongs to
a different shared gtoup of the process. ,r)

set TOPC and SPANC to the corresponding value of
the different shared group;

end;
(x Initialize global and local fl.ags. *)
set the modifred-flag and the evict_fl.ag to false;
set modifyJocal to zero;
(* Evict the page group "VPGN" from the working set. *)
derive (VP GN, PF^I, modifyJocal, evict _S_rnode);
if modifyJocal: I theu
(* After "derive" scanning aLl the relevant pT2 entries,

this page group is found to be modifred. *)
the "state" fr.eld of the P.F'N database entry for
the page frame in the top bit-plane, set to modifred;

end;
if the'evict-flag is úrue then
(* After "derive" scans through all the relevant pT2 entries,

this page grcup is found to be not in any process, wor/<¡'n g set;
so EvictS-rnode sets the evict_flag to true indicating
this page grcup should be put into page group Jr'sú. *)
P ut jnto-pagegroupJist (PFN, mo difred _fl ag) ;

end;
resúore TOPC and SPANC;

end;

Figure 8.4. Procedure Evict_page€roup.
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Procedure EvictS-node (PT2 entry, inclex, mode, var pFN,

begin 
vat modirYJocal);

if PT2 entry's modify freld is úrue ilren
set modifyJocal to onp;
(* Mark this page group being modifred.. *)

end;
if mode is not bit-plane mode then

set PT2 entry's class freld to trans;
else (* fliis is a bit-plane mode pT2 entry. *)

extract úåe PFN from the PT2 entry,s pFN2 freld;
use PFN and index to fr.nd the corresponding entry in the PFN database;
(* Here index súands for the bit-planà numbár of ihe bit-plane mode page. *)if úlx's is not a shared page group then

set the PT2 entry,s class freld to trans;
set the evict_flag to true;
(x The evict-fl.ag is a global flag to inform Evict_pagegrcup

whether the 
_evicted page group should go into "þ"g. gioup list. *)

else (* ?åis is a shared page. *)
get the pointer of the *globa| entry,' from
the PTE2_adr fr,eld of the p.F'N database entry.;
súore the global entry pointer in the
backing_block freld of the pT2 entry;
if úåe modiþ freld of the ,,global entry,, is úrue then

set modifyJocal to one;
elsif modíþJocal is one then

set the modífy freld of the global entry to true;
eud
decrement the rer-count freld in the pFN database entry;
if ref-count is zero then
(x Tåié page grcup is noú in any workingseú Jrst and

so it can be moved into the free or mod.ifred Jrst. *)
set the evict_flag to trae;

end;
change úåe cJass freld in the pri zte pT2 entry to ,,out,,;
change the class freld in the global entry to ,,irans";

end;
end;

end Evicú 3_rnode;

Figure 8.5. Procedure Evict_B_¡node.
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P ro c ed ur e Get -page_frame _b ack (p FN ) ;
begin

using the current bit-plane grcup indicator (Topc and spANC)
and the PFN, Iocate the in trarnition page group in a free
or modifred list of the current bit-plane group;
take this page group from the appropriate list ;
(* Defive and validate the conjigate pT2 entries for

mode-7, mode-2 and mode-J. ")d eriv e -tno de -1 2 _3 t T 2 _ent r ie s (Vp G N, .PF¡¡, vali d at e ) ;(* Pyt this page gr2y?_(!eCM¡ into the process' *orkiogseú. *)
put jn-working-set (VP GN ) ;

end Geú-p age Jrame_back;

Figure 8.6. Procedure Get_pageJrame_back.
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Procedure CalUn-b\ock (PT2 entry, index, mode,
var PFN, var resulú);

(* PFN is úire allocated page frame number, mode is the mode oî the
PT2 entry being processed. *)

begin
case PT2 entry's mode of

pla.ne mode: if the shared fl.ag is true then
(* We are currentJy dealing with a shared page group. *)
(* Process the shared entry. x)

get the globaL pointer ftom the backing-block;
' assemble the mode code, PFN, and index into

physical page number (PFN2) freld;
get the backíng súore location from the global entry;
save it in the PFN database entry;
validate the PT2 entry;
if úåe shared-count is non-zero then
(* This page is still shared. *)

validate the global entry;
set ref-count freld for this page frame to 7;

elsif samegîoup then
(* The page is no longer shared and

is in the process' private bit-plane group. *)
set the PT2 entry's shared freld to false;
(* Change this page into a private one. *)
delete the global entry;
set ref-count freld lor this page frame to 0;

end;
else (x Process private entry. *)

end;
copy the virtual page from backing store to the page frame 

I

end; (* case *)
end CalUn-block;

Figure 8.7. Additional actions for Proðedure CalUn-block.
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P roced ur e Create -shared -a,rea (owner, sharer, length,
owner-start, sharer-start): bo olean;

begin
adjust the bit-plane group indicator (TOPC, SPANC)
to the value of the owner's private bit-plane group;
if t.he sharer's private bit-plane group is the same

as the owneÍ's private bit-pJane group then
set the same-group:lag to true;

elsif tåe sharer already has a differcnt shared bit-plane group,
but it is different îrom the owner's private bit-plane group

tlren(* The sharer is trying to share too many bit-plane groups. *)
report an erÍor; return false;

else
set the same-groupÅag to îalse;
record (TOPC, SPANC) as a different shared group
in the sharer's process header, together with its start and length;

end;
(x Create a shared area in the owner's address space and create
corresponding global enúries. *)
if not Create-sha¡ed-table (owner-start, Iength) then

return false;
end;
(* Copy the owner's shared PT2 entry to the sharer's PT2 entry. *)
ret ur n M ap -to -glob aI (owner-st art, sharer,st art, Ien gt h) ;

end Creaú e -shareda.rea;

Figure 8.8. Procedure Create-shared-¿rea.
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P ro c ed ur e C reat e,share d -t able (ow ner-st art, lengt h) : b o ole an;
var VPGÀtr, j, i: integer;
begin

VPGN:-- owner-start;
(* Scan through related bit-plane mode PT2 entries. +)
for j:-- 7 to lengtå do

derive r¡dexf and index2 from VPGN;
(x For all planes in the ownefs private bit-plane group. *)
for i:: TOPC to (TOPC * SPANC) do

frnd the relevant bit-plane mode PT2 pointer;
if not Cre ate -shared-entry (P T2 pointerl [index2], i)
then return false;
end;

end;
VPGN;: VPGN * 1;

end;
e rrd Crea t e -s hared -t able;

Figure El.9. Procedure Create-shared_table.
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P roced ur e C reate -shared -entry (var P T2 -entry, bit-plane ) : boolean;
var global-pointer: pointer to global-entry;
begin

if PT2-entry is not already shared then
set shared freld of the entry to tnte;
seú same-group fr,eld of the entry to tnte;
(* Create a global entry. *)
new (g1oba1-pointer);
copy contenús of úåis PT2-entry to the global entry;
set global entry's sha^red-count to zero;
if úåe class fre[d of the PT2-entry is not "out" then

fr,nd the corcesponding P.t.N database entry;
store the global entry pointer into the PTE2_adr freld
of the PFN database entry;
if cJass of the PT2-entry is "valid" then

increment the ref-count freld of the PFN database entry;
end;

end;
if cJass of the PT2-entry ¡ls noú "valid" then

set thd class freld to "out,,;
put global pointer into the backing_block frejd
of the PT2-entry;

end;
elsif úåe samegÍoup freld of the PT2_entry ß false then

(* The sharer is trying to share such an address area, where the
ownet itself shares from other pÍocess, in a bit-pLane group
different lrom its private bit-plane group. *)
report an ercor;
return false;

else (* This page is already sJrared and within the owners bit-plane
group so, nothing extra need to be done. *)

end;
return úrue;

end Create -shated -entry ;

Figure 8.10. Proced.ure Create-shared.-entry.
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P rocedur e Map -to global (ownerst art, sharer-st art, length) : b o olean;
var iVPGN, ú-VPGN, i: integer;

error boolean;
begin

f -yP G Ni -- ow ner -s t art ; t -V P GN: : sJrare r -s t ar t ;
for i:: I to Iengtå do

D erive -share -ent ry (f -VP GN, ¿ -VP GN, erÍoÍ, copy -share d -ent ry ) ;
if error has been detected then

return false
end;
increment f-VPGN and í-WGN ;

end;
return úrue,'

end Map-to4,1oba1;

Figure B.11. Procedure Map-to-global.

P ro c e d ur e D erive -shared -ent ry (f -VP GN, ú -VP GN, mo de, op erat ion) ;
begin

from I-VPGN and ú-VPGN, derive all the relevant owner's and sharer's
PT2 entry pairs in pixeJ mode;
apply "operation" to these PT2 entry paírs;
from I-VPGN and ¿-VPGN, derive all the reievant owner's and sharer's
PT2 entry pairs in RasterOp mode;
apply "operation" to these PT2 entry pairs;
for biú-plane:: TOPC to (TOPC +SPANC) do

from I-VPGN and ú-VPGN derive all the relevant owner's and
s,harer's PT2 entry pairs in bít-plane mode ;
apply "operation" to these PT2 entry pairs;

end;
if tåe same€roupÅag is false then

(* That means the sha¡er's private bit-plane group is
different from the owner's. *)

seú tåe sharer's rcIevant bit-plane mode enúries in
its private bit-plane group to "no access";

end;
e nd Deriv e-shared -e nt ry ;

Figure 8.L2. Procedure Derive-shared-entry.
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P rocedur e Delete-oldtegion (start, length) ;
(* Delete the previous definiúion of the specifr.ed address space. *)
(* This procedure only applíes to an address space

in the process' private bit-plane group. *)
var VPGN: integer;
begin

adjust the current bit-plane group indicator (TOPC, SPANC) to the
value of the private bit-plane goup;
for VPGN:: súarú to (start * length) do

Derive (VP GN, dummy, delete-entry);
end;

end DeJeú e -old -region;

Figure 8.13. Procedure Delete-old_region.
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Procedure Delete-entry (PT2 entry, index, mode,
var dummy, var dummy);

(* Discad the virtual page corresponding to this entry and
initialize the entry. *)

begin
if úåe mode is noú bit-plane mode then

set the access freld of the PT2 entry to "write/read";
set the class fr,eld of the PT2 entry to "out";
set the shared freld of the PT2 entry to false;

else (* For a bit-plane mode entry. *)
if i¿ ls not shared then
(* Delete this virtual page and

release the relevant storage and entry. x)
if connected with a backing store block then

release the backing store block;
end;
if connected with a page frame then

release the page frame;
end;
if iú rs in a workinq seú then

delete the corcesponding working set entry;
end;

else (x Check the global entry. *)
decrement the shared-count of the global entry;
if úåe shared-count of the global entry is zero
then (* No process is using this global page. *)

(* delete this virtual page as described above. *)
íf connected with backing súore then

release backing storc;
end.

if iú rs in a working set then
delete the corresponding working set entry;

end;
delete tlus global entry;

end;
seú úhe access freld of the PT2 entry to "read/write";
set úåe class freld of the PT2 entry to "out";
set the backing-block freid of the PT2 entry to nil;

end;
end;(,r if not bit-plane mode. ,*)

end DeIeúe-entry;

Figure 8.14. Procedure Delete-entry.
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P roc edur e D elete -different -group (pro cess header p ointer) ;
var VPGN, start, length: integer;
begin

get the start and length of the different shared bit-plane gtoup
frorn the process header;
adjust the cunent bit-plane group indicator (TOPC, SPANC)
to the value of the deleted bit-plane group;
for VPGN:: start to (staú * length) do

D erive (VPGN, dummy, delete-entry) ;
unblock the private bit-plane group denoted by VPGN;

end;
errd DeJet e -different grcup;

Figure 8.15. Procedure Delete-different-group.
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