WATER STRESS AND GROWTH AND DEVELOPMENT IN RADISH

by

Daryl C. Joyce B.App.Sc.(Hort.Tech.)Hons.

Department of Plant Physiology Waite Agricultural Research Institute University of Adelaide

South Australia

Thesis submitted for the Degree of Master of Agricultural Science.

October, 1980.

TABLE OF CONTENTS

				Page
SUMMARY				i
ACKNOWL	EDGEMEN	TS		iv
LIST OF	FIGURE	S		v
LIST OF	TABLES			x
CHAPTER	1. IN	TRODUCTIO	Ν	
1.1	Plant	water str	ess response	
	1.1.1	Tissue w	ater relations	1
	1.1.2	Growth e	ffects of water stress	3
	1.1.3	Physiolo	gy of plants during water stress	7
		1.1.3.1	Stomatal behaviour in response to stress	9
		1.1.3.2	Osmotic adjustment during water stress	9
		1.1.3.3	The role of growth regulators during	
			water stress	10
·		1.1.3.4	Carbon distribution and metabolism during	
			water stress	12
		1.1.3.5	Effects of stress on nitrogen metabolism	
			and nitrogen containing compounds	13
	1.1.4	The effe	ct of water stress on cell growth and	
		morpholo	gical development	15
	1.1.5	The effe	ct of water stress of cell wall metabolism	1
		and on t	he structure and function of cells and	
		their or	ganelles	19
1.2	The Ra	dish plan	t	
	1.2.1	General	introduction and discussion	21
	1.2.2	The Radi	sh fleshy axis	21
	1.2.3	Growth o	f the Radish plant and its reponse to	8
		environm	ental variables	22

CHAPTER 2. MATERIALS AND METHODS

2.1	Plant 1	material	26
2.2	Growth	environments	26
2.3	Growth	systems	27
2.4	Imposi	tion of stress	29
2.5	Measur	ement of plant water status	30
	2.5.1	Relative water content	30
	2.5.2	Water potential	30
	2.5.3	Osmotic potential	31
2.6	Macros	copic growth parameters	31
	2.6.1	Fresh weight	32
	2.6.2	Dry weight	32
	2.6.3	Leaf and cotyledon area	32
	2.6.4	Leaf and cotyledon number	33
8	2.6.5	Maximum fleshy axis diameter	33
	2.6.6	Fleshy axis length	33
	2.6.7	Fleshy axis volume	33
	2.6.8	Continuous monitoring of fleshy axis diameter	33
2.7	Micros	copic growth observations	34
	2.7.1	Shoot tissue	34
	2.7.2	Fleshy axis tissue	34
2.8	Chemic	al procedures	37
	2.8.1	¹⁴ CO ₂ treatment	37
×	2.8.2	Counts in alcohol soluble and alcohol insoluble	
		extracts	37
	2.8.3	Total sugars	38
	2.8.4	Separation of sucrose, glucose and fructose	38
	2.8.5	Concentrations of sucrose, glucose and fructose	39
	286	Specific activity of sucrose, glucose and fructose	39

		2.8.7	Scintillation counting	39
		2.8.8	Proline determination	40
	CHAPTER	3. RE	SULTS	×
	3.1	Imposi	tion of episodes of water stress during growth	
		3.1.1	Introduction	41
		3.1.2	Methods	41
		3.1.3	Results	42
		3.1.4	Discussion	44
	3.2	The ef	fect of water, salt and cold stress on Radish growth	
		3.2.1	Introduction	45
		3.2.2	Methods	45
		3.2.3	Results	46
		3.2.4	Discussion	49
	3.3	Contin	uous monitoring of Radish fleshy axis diameter during	5
		episod	es of water stress	
		3.3.1	Introduction	53
		3.3.2	Methods	53
		3.3.3	Results	54
		3.3.4	Discussion	56
	3.4	Soil w	ater deficit induced stress effects on the pattern	
		of fle	shy axis development	
		3.4.1	Introduction	58
	'n	3.4.2	Methods	58
*		3.4.3	Results	60
		3.4.4	Discussion	63
	3.5	The ef	fect of severe soil water deficit, and its alleviation	on,
		on the	development of the fleshy axis	
		3.5.1	Introduction	66
		3.5.2	Methods	66
		3.5.3	Results	68
		3.5.4	Discussion	71

	3.6	Distribution of assimilated 14 C and the sugar content								
		of stre	essed and ur	stressed R	adish	plants				
		3.6.1	Introductio	n					75	
		3.6.2	Methods				ē.		75	
		3.6.3	Results						77	
		3.6.4	Discussion			, e.,			80	
	3.7	Compari	ison of the	effects of	soil	water d	eficit	and PE	G	
		induce	d water stre	SS						
		3.7.1	Introductic	n					82	
		3.7.2	Methods	x					82	
		3.7.3	Results						83	
		3.7.4	Discussion						86	
CHI	APTER	4. GE1	NERAL DISCUS	SION					89	
BII	BIBLIOGRAPHY 94									
API	APPENDIX 110									

SUMMARY

The effect of water deficit on the growth and yield of biennial 'root' crops has been studied in some detail. However, little attention has been paid to explaining the underlying mechanisms of observed yield reductions in such crops. With this in mind, Radish was chosen as an example of this group of plants and its response to a range of types, intensities and durations of water stress investigated. The development of the fleshy axis was studied in detail.

Water stress induced with polyethylene-glycol solutions (-5, -10 and -15 bars) resulted in considerable disruption to plant growth. These effects however, were largely of a transient nature. As intensity, and to a lesser extent duration (24, 48 and 72 hr), of stress were increased the reduction of plant growth was increasingly marked until eventually shoot and also fleshy axis death occurred. Tissue death around leaf margins, apparently as a consequence of steep water potential gradients, was a feature of PEG-induced stress. Monitoring of fleshy axis diameter changes throughout stress episodes revealed that water loss was continuous, probably as a consequence of poor stomatal regulation. Repeated episodes of PEG-induced water stress caused highly significant yield reductions.

Water stress imposed through soil water depletion (i.e. water regimes) caused more persistent reductions in Radish plant yield. Again these effects were more marked as stress intensity was increased, and the yield reduction was proportionally greater in fleshy axis than shoot tissue. Both cell division and cell expansion were significantly reduced by stress in both the shoot (reduced leaf area) and the fleshy axis (reduced volume). Although cell division was less obviously decreased by stress than was cell expansion, its reduced rate during stress appeared

i.,

to be the primary limitation to plant recovery following stress relief. Cell expansion was more markedly responsive to both imposition and alleviation of stress. The general pattern of fleshy axis cellular differentiation and development was not disrupted even by severe stress, however.

In older plants, the rate of leaf senescence was accelerated by stress, whilst in younger plants only the rate of leaf appearance was reduced. In plants of both ages individual leaf area was decreased. It was determined that older leaves had less ability, possibly because of larger cell sizes and a poorer ability to osmoregulate, than younger leaves to maintain a favourable water balance.

Rapid reduction in leaf water status (PEG treatment) initiated massive proline accumulation. Young, slowly-droughted Radish plants did not display the same considerable reduction in plant water status as did PEG-treated plants and, with time, were able to recommence very slow growth under such conditions. Soluble sugar concentrations in the leaves, cotyledons, hypocotyls and roots of these plants rose, and cell wall thickening in the hypocotyl (through lignin deposition) was observed.

It was concluded that Radish can accomodate single short, episodes of water stress, but that repeated episodes or very severe stress results in a significant yield reduction. The Radish does not have any stage of growth during fleshy axis development which is particularly sensitive to water stress. Long-term depletion of substrate moisture results in reduced plant yield through reduced rates of cell division and inhibited cell expansion. Restoration of a favourable water supply results in a persistent stress effect due to the reduction in cell numbers. When stressed early, before the plant has commenced substantial cell expansion, the Radish can adapt to survive in severely water limited environments.

ii.

STATEMENT

I hereby declare that the thesis here presented is my own work, that it contains no material previously published, except where due reference is made in the text, and that no part of it has been submitted for any other degree.

(Daryl C. Joyce)

I wish to express my most sincere thanks to Dr. D. Aspinall for his patient advice and guidance during the course of this program, and in the preparation of this thesis. I am grateful.

I am also thankful for the advice and criticism of Dr. G.R. Edwards who acted as my second supervisor.

Thanks are also due to Dr. J.A. Considine, Dr. A.R. Dexter, Dr. C.F. Jenner, and Dr. P.B. Nicholls for advice on techniques, and, to all of the present postgraduate students and technical staff of the Department of Plant Physiology for their companionship and comment. Special thanks go to Miss P. Aiyar, Mrs. J. Creasy, Mr. S. Brown, and, Mrs. R. Lloyd for that extra help when it was needed.

I would also like to acknowledge the specialist contribution of others in the preparation of this thesis: Mr. B. Palk (Photography section), Mr. T. Hancock (Biometry section), Mrs. J. Howe (Typist) and Mrs. B. Steedman (Photocopy room).

Financial support was provided by the University of Adelaide Research Grant which is gratefully acknowledged.

Figure	Number		Page
1.1		Diagrammatic generalization of the relative sensitivity of some plant processes to water stress	7a
1.2		Diagrammatic representation of the progressive development of the Radish fleshy axis	21a
2.1.1		Parent seed size effect on maximum fleshy axis diameter growth of Radish	26b
2.3.1		Natural variation in Radish shoot and fleshy axis organs between 15 plants cultured as three replications	27a
2.6.1		Relative fresh weight development of Radish shoot and fleshy axis organs	32b
2.6.2		Coupling system between the Radish fleshy axis and the rotary displacement transducer used for the continuous monitoring of axis diameter	33a
2.7.1	*	Diagrammatic representation of tissue classification and data collection transects used on the Radish fleshy axis	36a
3.1.1		Development of fleshy axis diameter in plants stressed for 48 hr at -10 bars (PEG) during early, middle and late stages of growth	43c
3.2.1		The effect of three durations (24, 48 and 72 hr) of salt- and cold- or three levels of water-stress on Radish leaf area recorded 9 days after stress commencement	47b
3.2.2		The effect of three durations (24, 48 and 72 hr) of salt- and cold- or three levels of water-stress on Radish shoot fresh weight recorded 9 days after stress commencement	47c
3.2.3		The effect of three durations (24, 48 and 72 hr) of salt- and cold- or three levels of water-stress on Radish fleshy axis fresh weight recorded 9 days after stress commencement	47d
3.2.4		The effect of three durations (24, 48 and 72 hr) of salt- and cold- or three levels of water-stress on the combined shoot and fleshy axis fresh weights recorded 9 days after stress commencement	48a
3.2.5		The effect of 24, 48 and 72 hours of -10 bar NaCl induced salt stress on Radish fleshy axis	48b

The effect of 24, 48 and 72 hours of -5 bar PEG induced water stress on Radish fleshy axis 3.2.6 diameter growth

diameter growth

v.

48c

Page

3.2.7		The effect of 24, 48 and 72 hours of -10 bar PEG induced water stress on Radish fleshy axis diameter growth.	48d
3.2.8		The effect of 24, 48 and 72 hours of -15 bar PEG induced water stress on Radish fleshy axis diameter growth.	48e
3.2.9		Fleshy axis diameter growth of Radish control treatments grown to accompany water, cold and salt stress treatments.	49a
3.2.10		The effect of 24, 48 and 72 hours of cold stress (5°C) on Radish fleshy axis diameter growth.	49b
3.2.11		The water potential of the first leaf of Radish cv. White Icicle, subjected to different environmental stresses.	51a
3.3.1	8.	Comparison of control and plants water stressed for 48 hours with -5 bar PEG (centre) and -10 bar PEG (RHS).	54a
3.3.2		The effect of 48 hour episodes of -5 and -10 bar PEG-induced water stress on Radish fleshy axis diameter growth.	54b
3.3.3		The effect of 48 hour episodes of -5 and -10 bar PEG-induced water stress, and subsequent alleviation, on Radish fleshy axis diameter.	55a
3.3.4		Cumulative change in Radish fleshy axis diameter monitored continuously during, and immediately after, 48 hour episodes of PEG-induced water stress.	55b
3.3.5		Rate of change in diameter of Radish fleshy axes during 48 hour episodes of -5 and -10 bar PEG- induced water stress and subsequent alleviation	55c
3.3.6		Change in diffusive resistance of Radish plants stressed with -5 bar PEG for 24 hours.	56a
3.4.1		Water use pattern, monitored by the gravimetric method, for pots of Radish (10 plants) cycled between 100 and 35% of field capacity.	58a
3.4.2		Water use pattern, monitored by the gravimetric method, for pots of Radish (10 plants) cycled between 35 and 15% of field capacity.	58b
3.4.3		Soil-water retention curve for 50% coarse river sand: 50% black clay loam rooting medium used for water regime experiments.	59c
3.4.4		The effect of different water regimes (4), offering decreasing water availability, on the diameter growth of the Badish fleshy axis.	61a

Page

3.4.5	The effect of decreased water availability on the relationship between Radish fleshy axis diameter and the number of ray parenchyma cells per unit area (cell size index).	62b
3.4.6	The effect of decreased water availability on the relationship between Radish fleshy axis diameter and average ray parenchyma cell area.	62c
3.4.7	The effect of decreased water availability on the relationship between fleshy axis diameter and average pericycle cell size.	62d
3.4.8	The relationship between pericycle width and average cell area in Radish fleshy axes subjected to a range of soil moisture regimes.	62e
3.4.9	The relationship between pericycle width and the number of cells across the pericycle of Radish fleshy axes subjected to a range of soil moisture regimes.	62f
3.5.1	The effect of severe water stress and its alleviation on the development of Radish leaf area.	68b
3.5.2	The effect of severe water stress and its alleviation on Radish plant leaf number.	69a
3.5.3	The effect of severe water stress and its alleviation on the number of cells in excised 1.1 cm leaf discs.	69b
3.5.4	The effect of severe water stress and its alleviation on the fresh and dry weights of Radish shoot tissue.	69c
3.5.5	The effect of severe water stress and its alleviation on the fresh and dry weights of the Radish fleshy axis organ.	69d
3.5.6	The effect of severe water stress and its alleviation on the diameter of the developing fleshy axis.	70a
3.5.7	A comparison of transverse sections (x 85) through the fleshy axes of a Radish severely droughted over 20 days and an unstressed control.	70c
3.5.8	The effect of severe water stress and its alleviation on Radish fleshy axis average pericycle cell width (anticlinal plane) and the number of cells across the pericycle.	70d

3.5.9 The effect of severe water stress and its alleviation on Radish fleshy axis pericycle width. 71a

The effect of severe water stress and its 3.5.10 alleviation on the number of pericycle cells per unit area and the average pericycle cell area in the pericycle of the Radish fleshy axis. 71b A comparison of transverse sections (x 85) through 3.5.11 the fleshy axes of a Radish severely droughted 71c over 25 days and an unstressed control. The effect of severe water stress and its 3.5.12 alleviation on the distance, the cell number, and the average cell width along a transect from the centre of the Radish fleshy axis to its 'endodermis'. 71d A comparison of transverse sections (x 85) through 3.5.13 the fleshy axes of a Radish alleviated for 4 days after 36 days of drought, and an unstressed control. 71e A comparison of ray parenchyma tissues (x 85) 3.5.14 from the fleshy axes of a Radish alleviated for 9 days after 36 days of drought, and an unstressed 71f control. The effect of severe water stress and its 3.5.15 alleviation on the number of ray parenchyma cells per unit area and the average parenchyma cell area in ray tissue of the Radish fleshy axis. 71g Comparison of Radish plants grown under control 3.6.1 conditions (LHS) with plants having experienced a 20 day 'soil'-water depletion cycle (RHS). 77a Comparison of transverse sections (x 85) through 3.6.2 Radish fleshy axes, of similar diameters, from a control and a plant having experienced a 20 day 78b 'soil'-water depletion cycle. Treatments imposed to compare PEG and soil water 3.7.1 deficit techniques as methods of inducing plant 83a water stress. A comparison of the effect of -10 bar PEG stress, 3.7.2 a well watered control (RHS), and, Radish plants previously subjected to repeated soil water 83b deficits (LHS). The effect of sequential PEG and soil water 3.7.3 deficit water stress treatments on Radish shoot 85a fresh and dry weight. The effect of sequential PEG and soil water deficit 3.7.4 water stress treatments on Radish fleshy axis fresh 85b and dry weights. The effect of sequential PEG and soil water deficit 3.7.5 induced water stress treatments on Radish leaf 85c area.

Page

3.7.6	The relationship between water potential and relative water content measured on Radish leaves taken from control, PEG stress, and soil water deficit stress conditions.	85d
3.7.7	The relationship between relative water content and water potential in Radish leaves from old plants (50 days) compared with the relationship for young plants (20-30 days).	86a
1	The increase in Radish fleshy axis diameter over time.	110a
2	Diagrammatic representation of the transverse section through a 10 day old Radish fleshy axis.	110b
3	Diagrammatic representation of the transverse section through a 24 day old Radish fleshy axis.	110c
4	Diagrammatic representation of the transverse ` section through a 37 day old Radish fleshy axis.	110d
5	Diagrammatic representation of the transverse section through a 48 day old Radish fleshy axis.	110e

ix.

Page

	Table Number	Ī	Page
	2.1.1	The effect of parent seed size on growth parameters of Radishes harvested 50 days after sowing.	26a
	2.3.1	Coefficients of variation for a range of growth parameters collected from 15 plants constituting three replications.	27b
	2.3.2	Correlations between various growth parameters based on data from 15 individual Radish plants.	27c
	2.6.1	Changes in fresh and dry weights, and moisture content, of the shoot and fleshy axis of developing Radish plants.	32a
	3.1.1	Final yield data (day 57) for Radish plants subjected to a single episode of water stress at one of 10 stages during growth.	42a
	3.1.2	Water potentials and relative water contents of leaves of Radish plants measured just prior to and at the 48th hour of an episode of stress imposed at 10 timed stages during growth.	43a
	3.1.3	Maximum fleshy axis diameters for Radish plants subjected to an episode of water stress at one of 10 timed stages of growth.	43b
:	3.2.1	Leaf water potential of plants subjected to stress induced by PEG or NaCl.	46a
	3.2.2	Classification of stress treatments as to their severity based on fleshy axis diameters recorded at 2 day intervals after the stress episode and on final harvest growth parameters.	47a
	3.3.1	Final harvest growth data collected after the imposition of two levels of PEG-induced water stress.	55d
	3.4.1	Details of water regimes imposed for four treatment levels of water availability.	59a
	3.4.2	Soil water content with depth in pots (20 cm top diameter) containing 50:50 sand/soil rooting medium.	59Ъ
	3.4.3	Characteristics of the 50:50 sand/soil rooting medium used in water regime experiments.	59d
	3.4.4	Harvest yield data from 4 water regime treatments offering decreasing levels of water availability.	60a
	3.4.5	The effect of different regimes (4), offering decreasing water availability, on Radish fleshy axis anatomy at harvest.	62a

х.

Table	Number		Page
3.4.6		Water used and number of rewaterings for individual	
		experiment offering increasing levels of water stress.	63a
3.4.7		Correlation between cell size and 'root' development of Beet grown under dry and humid conditions respectively.	65a
3.5.1		Harvest yields and water relations for stressed, stress alleviated (day 36), and well watered Radishes harvested at 4 times during the growth period.	68a
3.5.2		Fleshy axis anatomical data at harvest of stressed, stress alleviated (day 36) and unstressed Radishes sampled at 4 times during the growth period.	70Ъ
3.6.1		The effect of a 20 day 'soil'-water depletion cycle on the growth and water relations of Radish.	77b
3.6.2		The effect of a 20 day 'soil'-water depletion cycle on Radish hypocotyl (fleshy axis) anatomy.	77c
3.6.3		Ray parenchyma cell wall thickness in the hypocotyl (fleshy axis) of control and water stressed Radish.	78a
3.6.4	×	Dry weight yield, and ¹⁴ C counts in the alcohol soluble and insoluble fractions, of the various organs of ¹⁴ CO ₂ treated control and stressed Radish plants.	79a
3.6.5		Percentage distribution of $^{14}\mathrm{C}$ counts amongst organs of $^{14}\mathrm{CO}_2$ treated control and stressed Radish plants.	79b
3.6.6		¹⁴ C counts and sugar concentrations (on a mg dry weight basis) in organs of control and water stressed Radish plants.	79c
3.6.7		Concentrations of sucrose, glucose, and fructose, and their specific activities, in the various organs of ¹⁴ CO ₂ treated control and stressed Radish plants. ²	80a
3.6.8		A comparison between proline accumulated in Radish subjected to slow substrate moisture depletion stress and the potential proline accumulation caused by PEG-induced water stress.	80b
3.7.1		Growth and water relations data for comparison of PEG and water deficit induced stress with a well watered control over a series of 4 harvests.	84a
3.7.2		Water status of first formed leaves of individual plants growing under no stress, -10 bar PEG stress (24 hr), and, soil water deficit regime stress, and harvested at 10 day intervals.	84b

ABBREVIATIONS AND SYMBOLS USED IN THIS THESIS

ABA	abscisic-acid
AgNO3	silver nitrate
BA	benzyl adenine
¹⁴ C	radioactive carbon
°c	degrees centigrade
cm -	centimetre(s)
cm ²	square centimetre(s)
^{C0} 2	carbon dioxide
cpm	counts per minute
dpm	disintergrations per minute
DNA	deoxyribonucleic acid
FAA –	formalin-aceto-alcohol
g	gram(s)
GA3	gibberellic acid
hr(s)	hour(s)
kg	kilogram
KOH	potassium hydroxide
1	litre
μ	micron(s)
μсі	microcurie(s)
µein	microeinstein(s)
μg	microgram
μl	microlitre(s)
MCW	methanol : chloroform : water
mg	milligram(s)
min	minute(s)
MW	molecular weight
MP	melting point
ml	millilitre(s)

xii.

mm	millimetre(s)
N	normal
NaCl	sodium chloride
Na2 ^{CO} 3	sodium carbonate
NaHCO3	sodium bicarbonate
NaOH	sodium hydroxide
nm	nanometre(s)
PEG	polyethylene glycol
RNA	ribonucleic acid
RWC	relative water content
sec	second(s)
W	watt(s)
w/v	weight/volume (concentration)
Ψ	water potential
Ψ _m	matric potential
Ψp	turgor potential
Ψπ	osmotic (solute) potential
×	statistically significant at 95% probability level
%	percent