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Summqrz

The experimental work to be described was part of a general investigation
on resonances excited in the plasma of a discharge column. It was concerned
with some of the problems of launching, maintaining and detecting surface waves
on plasma columns and in particular the effects on propagation of varying axial
and radial electron densities,

It is known that there exist for space-charge waves in plasmas which
partially fill waveguides, both symmetric and dipole surface modes and the
theoretical dispersion curves for these modes have been verified experimentally.
The methods used in this work were an attempt to determine the conditions for
launching these waves and their subsequent history over a large range of
frequencies and plasma densities.

The method used the afterglow of a pulsed plasma or a current
modulated plasma column as a vehicle for the wave, together with a bridge
detection of probe response and photographic recording of successive
oscilloscope traces. The photographs were either measured for point by point
readings fo determine wavelength and attenuation, or alternatively interpreted
three dimensionally so as to give an overall picture of the various waves
propagating along the plasma column, The number density regions for which
propagation is difficult are very evident and an application of these waves to
diagnostics of the modulated positive column is described. The alternative
method also reveals some of the warm plasma waves which perturb the surface
modes and enables the approximate dispersion curves for these modes to be
calculated.

The use of a reflection external probe for the presentation of Tonks=Dattner
resonances is also described and the geometrical precision and rapidity of this
methad is of value in following number density changes along a plasma column.

Chapter | is a review of plasma definitions and properties together with

a discussion of the Langmuir-Tonks oscillations and the dielectric properties of



a plasma. The Tonks-Dattner resonances, which are closely allied to, and
have influenced much of, the work on plasma-microwave interaction, are also
introduced.

In the second Chapter the dispersion relations for waves in an unbounded
plasma are derived and the idea of Landau damping introduced.

The third Chapter discusses resonances and waves in finite structures and
summarises the fairly complete treatment of resonances developed by recent
workers. An analysis of space charge waves on a plasma column in a coaxial
waveguide follows, and a survey of the relations between these waves for both
magnetised and unmagnetised plasma by geometrical methods similar to those of
the Clemmow=-Mullaly-Allis diagram is given.

Chapter V is concerned with a brief survey of those properties of the low
pressure arc column which are apposite to the experiments,

The final Chapter gives a detailed account of the experimental work to
which reference has been made and discussed the interpretation of the results
and the implications they have for maintaining waves on fluctuating plasmas.
The work ends with some suggestions for further experimental work and

applications of the methods to other areas.
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Although the term plasma is now often loosely applied to any collection
of charged and neutral particles such as electron beams, ionised liquids and
crystals, it was first used by Langmuir in 1929 as a description of the conditions
in the positive column of a gas discharge. A plasma in this sense is
characterised by overall charge neutrality in both space and time, together
with the concept of a shielding distance called the Debye length which arises
from the overall neutrality.

If N; and Ng are the ion and electron number densities, we may suppose

that N equals Ng overall, but that locally N, is not equal to Ny inside a

small region of radius To . From Poisson's equation for the potential
TV = - £(N;-Ne) 0L TV
= 0 T2% 1.1

we obtain 3 p = (Nj-Ne)&

= ptef3c. 12 rar
ond f Vo as T—> *
: v =pte(1="4rr)  0dr<h
1.3

= pTofiet t37,
For gas discharge the tube plasmas typical of experiments in the work to be
discussed Ne ~ lon'(:,m-3 and for Vo = lo-tm, the resulting space~-
charge field E( o) will be |(,')8 V.m~! giving a potential difference
between the centre and the outside of such a region of about 100 volts. It
follows that a characteristic electron temperature of ~ 3ev gives rise to a

variation from neutrality of less than 3% over a region of 10~8 3
When, for any reason, charge concentrations are introduced into the

plasma by such processes as ionisation sources, electrodes or antenna fields,



the space charge field which develops will tend to screen the plasma from the
effect of the disturbing charges. Suppose a disturbance is equivalent to a
positive point charge 9 introduced into the plasma. The average interparticle
distance is approximately Nys where N is the density of ions and el.ec'rrons
and the potential energy of a charge -& at this distance from the charge q is
4—-1_?6&‘,-;1"3 Joule. If this potential energy is much less than the thermal energy
kT, the plasma particles approaching q do not show energy chonges
comparable with their thermal energies. Assuming that the plasma is

sufficiently near equilibrium to allow Boltzmann statistics to apply the

potential V may be determined from Poisson's equation
2., _ Voo -;_y_} 3
VR Y AL
For a spherical region, if ev << KT
L2 (y22¥Y=n(EY + &¥ )&
1“{)1(Y ﬁX—N(’ﬁa ¥ .<1-°.)E..

()

where N is the density of ions and electrons and T§ and Te are the

temperatures of the ions and electrons. The solution is

&, (%

3 - (Ko (&)

and the result shows the exponential reduction of the Coulomb potential in

\Y

where

the vicinity of W , due to rearrangement of plasma charges. In the discharge
plasmas where the ion temperature is much less than the electron temperature,
the ifon motions are small compared to the electron motion and d defines the

)
Debye length LD = (Kfo Te/Nez)é' The role of Ln in the definition of

(2)



a plasma can be seen if the extreme situation in which all the electrons in the
plasma are removed from a sphere of radius Lp is considered. The potential
at the centre of such a region is given by PL:/Z.GO where P is the
unbalanced charge density. For a plasma in which the electrons are the
mobile species we may write pP: Ne€ |_z KN‘;I and the potential

at the centre is JIKTQ/& This is comporable to the thermal energy of the
electron in the plasma and indicates that the Debye length defines the distance
over which variations from neutrality due to thermal motion can be expected.
If the Debye length is of the same order as the dimensions of the apparatus the
medium cannot be considered as a plasma.

In the experimental work to be described |c‘rer, the mercury discharge
column had a diameter of 1 cm, a density of 10°~10"em %nd an electron
temperature of 3 eV. In this case Ly ~ 10 -3 10 %em which is much less than
the diameter of the plasma. Hence the positive column used was essentially

a plasma.

1.1 Oscillations of a perturbed plasma

Langmuir and Tonks derived an expression for the oscillation of an
infinite plasma in which thermal motions were neglected and obtained the well
known expression for the plasma angular frequency wWp given by
Upl = %f‘:» from which 'rhe plasma frequency {} equals qOoo,.m sec”’
(M.K.S.). They considered a perturbation caused by the displacement of
electrons from a plasma region and the subsequent oscillations of the electrons
about the neutral position. The electron oscillation frequency was high and
the accompanying motion of the heavier ion masses was neglected. Their
result may be obtained by applying the fundamental electromagnetic equations

to an ionised gas.



cewrl E = —B 1.1.1
el B = pa(T+2) 1.1.2
divE = Pk 1.1.3
div B = o ' 1.1.4

together with

Jw - [c].E@ 1.1.5

where [G'-] is the conductivity tensor in a radio-frequency dependent Ohm's
Law. This conductivity tensor [d'] may be related to an equivalent
dielectric tensor [8] = 1] + 7ot [_0']

The interaction of an eledron gas with an electromagnetic wave gives
iise to the motion of electrons in the total field made up of the external field
due to external sources and the internal field dependent on the space charge.
From the macroscopic point of view since the electron motions in the plasma
can be thought of as giving rise to either polarisation or conduction currents,
we may give the plasma the character of either a lossy dielectric or a
conductor with a complex conductivity having resistive and reactive

components.

1.2 The plasma as a conductor

The plasma model to be considered here is a Lorentz gas in which the
electron-ion and electron-electron interactions are ignored and the electron
motion is modified by collision with neutral particles. The relation
'ﬂ\l‘\" = (C-t '2%@) gives the collisionless equation of motion for a single
elec'rron If the electron collides with a neutral particle of effectively
infinite mass, the mean change of momentum per collision for hard spheres can
be shown from standard collision theory fo be mqy. Fora collision frequency

Yy , the average rate of change of momentum due to collisions is my ¥V

(4)



and with this assumption we may modify the above relation to give

WM+ anyV = qv(g"'l-”-'?—) 1.2.1
This is the Langevin equation for such a gas which is useful, with limited
validity, when considering dilute plasmas. If there is no static electric or
magnetic field acting and if a Lorentz plasma interacts with an electro-
magnetic wave where E and B are the fields due to the wave, the
forces on the electrons are given by e E  and —earB  Since
the ratio of magnetic force to electric force on an electron is Yz . and for
velocities small compared to the velocity of light the effect of the changing
magnetic field may be neglected. This quasi-static condition gives the

Langevin equation the form
wmt + myy = -eE 1.2.2

B

and leads to the relation

~lwy ¢ Vv = -2 E 1.2.3

for waves where time variations are of the form étwt Hence
] i

v o= -2 ( .V_iw)g 1.2.4

which can be interpreted to give an electron mobility /L—L defined by
/1 = V/g , Hence

K = = i |

M < ( ) 1.2.5

Y-iw

Since the conductivity of the plasma o=~ Neﬁ it follows that

- Ne* (B
O—-N"%(_V_-TE) 1.2.6

which may be written

T =Ew X ¢ 18,Wp e 1.2,7

(5)



1.3 The plasma as a dielectric

The dielectric properties of an isotropic plasma can be related to the
polarisation caused by the charge distribution brought about by the movement
of the electrons in the electromagnetic field. The displacement ¥ of an
electron can be considered as equivalent to an electron at rest and a dipole
moment =€Y . The motion of the electron gives rise to a polarisation vector

P which expresses the dipole moment per unit volume
‘E = - NeI = EOO( E ] . 3. ]

where o< is the electric susceptibility of the plasma. The solution of the

Langevin equation in this case for sinusoidal time variation gives

T = & -iv) 1.3.2
and
ot = NE& o= omwn i Gl 1.3.3
Tnego-) = s, TR
The dielectric constant €4 =1 4ot leads to
2(y)
N , wp(Z)
€y "Er\_)" + vV 1.3.4
For low collision frequencies &4 = l-'-e_-’_g_' Evidently from 1.2.7,
w
Ey= I+ _i'- Y=
v (»E‘O— -fo‘\‘ (o]

In deriving this expression we have made the assﬁmption that the effective

field Ecﬁ is equal to the applied field E , so that the application of

the general Lorentz polarisation correction in which Eiff :E +aP implies
a=0 . The lengthy detailed demonstration of the correctness of this

value of @, for a low pressure plasma has been carried out by Darwin (1943)

and experimentally demonstrated by Brown and Buchsbaum (1961).  Heald and

Wharton (1965) discuss some of the difficulties involved in defining the

(6)



dielectric constant of a plasma for increasing particle densities and transient
conditions,
The presence of a magnetic field introduces anisotropy into the plasma

and the scalar dielectric constant Cf(w,w];,y) is replaced by a

dielectric tensor [€] containing terms in B . If the cyclotron frequency
B%hn = '
(€] =&l -6 o
£ € o©
where ° ° %
& = | = Wi (1- VW l-i’.l:'

(- =T T wRe

€, = (V) (), @
(- 274 ha @eiu)* F"Ll“%
Es = = %)‘- —> | _&m

-1 w

1.4 Dispersion relation

The dispersion relation for the electromagnetic fields within the plasma
may be obtained without analysing the physical processes involved by using

the Fourier transforms

had -iwt *
Ew) = [ EDEe at o €)= [ B G 1.4.1
-0

~cd

in Maxwell's equations, giving the usual wage relation for the field
wl
VYL xE) = We]E =o 1.4.2

Since the radiation field is given locally by the superposition of plane waves

e$]> 1 (wt'QE.I) in which k is the set of local propagation vectors then
(1.4.2) becomes

kxk x E) 4 Y [E]l.E =0 1.4.3



The solution of this set of equations is non-trivial if the determinant is zero
and the condition Det (w)k,’:):o is the dispersion relation which
specifies the modes of propagation.

When no external magnetic field is acting and we consider a plasma
in which the particles have negligible thermal motion the scalar dielectric
constant €4 equals | - “%z. and either ki = w'€r, kR.E =0
When k.LE for the electromagnetic wave, or, R:0 ) k)‘g =0 when }s
is parallel to E for the space charge wave, the latter giving the Langmuir-
Tonks type oscillation for an unbounded plasma. The group velocities of
these two types of waves are %c" & and O respectively, and the Langmuir-
Tonks oscillations have no tendency to propagate through the plasma. In such
a medium the phase of the oscillations throughout the medium may be adjusted
to give the impression of a moving wave without energy transfer. The natural
resonant plasma frequency Wp s related to the time the plasma takes to
shield itself against external fields since LJPLp ~ (’%‘—’ )Vz' which is of the

order of the thermal velocity 'U'u‘ and hence J_P € .{I';-D defines a

w
shielding time. "

Although the Langmuir-Tonks oscillations have no tendency to
propagate in an infinite cold homogeneous plasma, in warm finite plasmas
these oscillations give rise to space charge waves at frequencies near to the
plasma frequency, and the electron motion consists of longitudinal
oscillations along the direction of propagation. The extent of such a wave
will depend on the carrying along of the local disturbance in the plasma by
some mechanism. The obvious ones are thermal motion, magnetic fields and
gross transport of plasma by beams, but if the plasma is finite the unsymmetrical
nature of the oscillations introduced by the boundaries will produce electric

fields which fall off quite slowly with distance. This disturbance will tend to

propagate through the plasma because of these long-range forces.



1.5 High frequency resonance in a plasma

The high frequency behaviour of a finite plasma was investigated in
a fundamental paper by Tonks (1930). The positive column of a hot cathode
arc placed between two parallel plates formed a composite capacitor which,
with the Lecher line constituted a simple oscillating system which is shown in
Fig. 1.1, page 10. This system was driven by a split anode magnetron. The
response of the driven system was medsured by a bridging thermocouple on the
Lecher wire system and showed a principal resonance close to the theoretical
value of w]»/ﬁ , the numerical factor being a consequence of the
cylindrical geometry. In addition to the main resonance, Tonks found
anomalous resonances, which he suggested were due to non-uniformities in
electron density and the effects of plasma temperature.  Since the work of
Tonks this principal transverse resonance of a cylindrical plasma has been
important in investigations of scattering and reflection from meteor trails
(Lovell, Herlofsen 1948).

A derivation of the principal resonance follows the method of
Herlofsen given in a paper by Dattner (1957). In this paper the resonance
behaviour of the ionised gas column is accounted for by a uniform polarisation
of a dielectric cylinder whose surface charge distribution gives rise to a dipole
field outside the cylinder. Fig. 1.2, page 10. Suppose the electron density
inside the cylinder is N and a displacement X of the electrons is caused by
an alternating field E , Standard electromagnetic theory for a dielectric

column gives a uniform field E; inside the plasma column related to Vi

. = - Ex
V.‘ _;—I-l"f., 1.5.1
and from this it follows that
. 2.
E;," = 25/1,- s> 1.5.2
Since E; is driven by E  resonance occurs when E; >0 and the

resonant frequency is given by w= “p/5"

(9)
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The role of the parallel plate capacitor in the Tonks experiment is to
establish a uniform field in which the cylindrical plasma oscillates with the

characteristic frequency of we/f3 -

1.6 Resonances in the scattering of microwaves from columns

Romell in 1951 used a freely supported plasma column illuminated with
radio frequency energy from a transmitter to check the scattering theory, and
found a sharp reflection resonance at @ = LLYAE accompanied by a series
of reproducible peaks at lower electron densities which were not predicted by
the theory for the homogeneous column but were reminiscent of the additional
resonances commented upon by Tonks and ascribed by him to inhomogeneities
in the plasma temperature and density. The nature of these subsidiary peaks
was investigated by Boley (1958) who showed experimentally that the first two
subsidiary resonances gave rise to dipole fields. In 1957 Datiner carried out a
series of experiments on a plasma resonator consisting of a plasma column
inserted across the long dimension of a wage guide as in Fig. 1.4, page 12.
This method ensured a constant direction of the exciting field and avoided
difficulties which arise from scattering and echoes from extraneous objects.
Changing the discharge current permitted a convenient display on a C.R. O.
of the power transmitted past the plasma tube as a function of the electron
density, see Fig. 1.5, page 12. The display showed a main resonance and a
series of subsidiary peaks on the low current (high frequency side) of resonance
together with some sfructure on the high current (low frequency) side. Lacking
a theory for the secondary peaks he found it difficult to draw any conclusions
about them.

These well controlled experiments stimulated much practical and
theoretical work on the Tonks-Dattner resonances and this method, or ones
closely allied to it, has contributed greatly to the understanding of the

conditions in a discharge and in microwave-plasma interaction.  Over the

(1)
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thirty years spanned by these developments of Tonks early work there was
continual progress in other associated areas which in the last few years have
converged into the general problems of mi crowave-plasma wave interaction in
bounded plasmas. A review of these developments, in particular plasma waves
and the properties of the discharge column, form the subject matter of the next

chapters.

(13)



CHAPTER I

WAVES IN AN UNBOUNDED PLASMA

2.1 Use of the fransport equations

Any wave in a plasma may be characterised by its dispersion equation
;(W,k)= 0 which relates the phase velocity to the constants of the plasma.
The use of geometric methods such as those due to Clemmow, Mullaly and Allis
(Stix 1964, Allis et al 1963) has done much to classify the dispersion relations
for the various modes and the transitions between them, but this will be the
concern of a later chapter.

For the simplest wave in a isotropic, temperate plasma, different
dispersion relations have been derived whose correct form was, for some time,
in dispute. The situation was reviewed in 1957 by N. G. Van Kampen in
papers which did much to resolve the physical differences and mathematical
difficulties associated with the derivation of each dispersion relation. Since
1959, K.M. Case and others have further strengthened and refined the
mathematical analysis.

Early work on waves in unlimited plasmas by J.J. and G.P. Thomson
(1933) used a model based on the hydrodynamical properties of the plasma in
which electron motion only was involved and summarised the properties in terms
of the macroscopic parameters-density, mass motion and temperafure. The
space-time dependence of the state parameters was determined by applying the
fundamental conservation laws as is commonly done in fluid dynamics. The
equations were simplified by assuming a scalar pressure and linearised by
considering small perturbations from the equilibrium value of each variable.
Thus for a plasma characterised by a density N, a particle velocity Uz

field E; and pressure tensor [P‘:j] , (where the cartesian notation for

(14)



vectors is being used), we may write for the momentum equation

Wi 4u: W) =-NeE — 2R 2.1.1
Nrm (3% +3 a‘ij‘) R
for i = 1,2,3. This may be linearised and modified by putting
/
N * N, + N
®1: PL%]

= a
ox; Ik T ma“zxc
if a’ #{%5_’ , where the quantities with zero subscript are steady state

values and dashed quantities are variations from these values. Since all

values are mean values V;,=0 and hence

'
2% . N - ~2 E - a2 2.1.2
St F o T T T
The confinuity equation
2 + 2 /) =
2 m(“”‘) o 2.1.3

gives, on linearising,

! !
W L Ng¥% -
at T %% T ° 2.1.4

Equations (2.1.4) and (2.1.2) together with Maxwell's equation - or
Poisson's equation in the quasi-static approximation - lead to dispersion

relations of the form

wzzw?’;+a*k‘ 2.1.5
The value of a* Jﬁ';"%'sl is then the determining factor in the dispersion

relation, If %E,-: o the non-propagating Langmuir-Tonks oscillations
remain. Up to this point the derivation has not depended on an explicit

statement of the energy conservation relation but has assumed no temperature

(15)



changes. If we write
PenNKT -(N°+N')KT‘ 2.1.6

it follows that

[ 4 —3 e—

z_ 1 2P _ kT
amelm

and ¢, is of the order of the mean thermal velocity. The dispersion relation

then has the form
2= a T L
w w], + E—k 2.1.7

and the group velocity of these waves is of the order of the thermal velocity.
On the other hand, if the local compressions are considered to be

adiabatic, a*= Yy 5-4{ where T is the equilibrium temperature and x= 2é+1—"

if e is the number of degrees of freedom of the system, |f we assume the

electron density varies in a preferred direction and ignore the energy condifion,

the mathematical description is effectively that of a one dimensional gas and

we may put €=I . Hence
W= u':'+ 3_:;1: kl 2.1.8

This relation is similar to that found by Bohm and Gross (1949) but, as Van
Kampen points out, the physical conditions in the two plasmas are quite
different - in one the collisions are frequent enough to ensure local
equilibrium and hydrodynamic behaviour, while in the Bohm and Gross
derivation the collision frequency is low enough to be neglected.

The gas must be considered as three dimensional and the mathemati cal
treatment takes account of this by adding the energy condition in which cross
terms in the V% arise on linearisation. Van Kampen used the Maxwell transfer
relations for any quantity @ which is a function of the particle velocity only
and choosing @ as kinetic energy he obtained the linearised form of this

equation and showed that the law for adiabatic compression of an ideal gas

(14)



still holds in the presence of electrostatic interactions. For the adiabatic
relation and three degrees of freedom = 43 and the dispersion relation due

to Gross 1951 is obtained:
whs wp t 54T B 2.1.9

The application of fluid dynamical theory in this way depends upon the
establishment of a local Maxwellian velocity distribution within the gas. Such
a distribution implies a collision frequency which is high enough to smooth out
the particle properties of the fluid. |f a dispersion relation for a wave is being
sought in such a medium, the mean free path of the particles must be very much
less than the wavelength A for the dispersion relation to have any validity.
The mean free path L in a collection of charged particles will be not less than
the Debye length and our condition will require Ay> Lp

Furthermore, in the hydrodynamical theory the Maxwell transfer
equcmons are truncated at powers of V" greater than two for we consider only
continuity, momentum and energy. For these physical quantities the collision

moments defined by

)
T - [aw(E)  dn
vanish, where (af/n_) " is the time rate of change of the distribution
el

function due to collisions. Hence the transfer equations give

2 . D E.-N2Q = ' 2.1.10
n(NmQ) +7% a)q(N'mQ) reg N2 =0
which appéars to be related to the collisionless form of the Boltsmann equation

2 Ly 4 g X ,@_E)cou 2.1.11

at 2% ™ %
when ()—%) 0. ® o . However, the quantities @ are nof distribution
functions and ( Wl +0  everywhere. For powers of Y- greater than
two, J(®) does not vanish and the above dynamical equations are thus not

applicable to cases where the magnetic field cannot be neglected since forces

(17)



due to B are velocity dependent and the dispersion relation will not hold for

plasma waves in other than the quasi-~static approximation,

2.2 Use of the Boltzmann collision equation

The Boltzmann equation

o+ v % L %?ﬁi& - (gf;)mu‘ 2.2.1

where f is the distribution function f( A t} can be used directly to
describe wave phenomena in plasmas for conditions in which the hydrodynemical
methods are not applicable. Here, the concern is with the microscopic detail
and interest centres on interactions between charged particles at distances much
greater than the Debye length, so that the collective behaviour is due to the
macroscopic space charge field, Each electron interacts with the field rather
than with definite particles and hence the term (b%t) . on the right hand
side of the equation may be considered small enough to be effectively zero,

The combination of

2 ) g2 .
2+ stii + %E»;"_: = O 2.2.2

and Poisson's equation
div E; = e(Ng’Ni)
-]

gives, on linearisation with f=f°+1f' , @ pair of equations:

of & 1;.3 _}, 2.2.3
o TS TRE
and
2E; _ _ l 43..
S = %f{ d*x; 2.2.4

The simultaneous solution of these gives the self-consistent solution linking

Ei and JC



This collisionless form of the Boltzmann equation, often referred to
as the Boltzmann-Vlasov equation, has been derived in many ways, all of
which have been subject to criticism, but, whatever the method of dérivcﬁon
the final equations obtained are essentially those above.

In Vlasov's original treatment he assumed harmonic wave solutions of
the form er}i(kxc —wt)  for E, and £ . These give a steady state

solution with a dispersion relation

Eﬂf*'f()%v” _ 2.2.5

9" <( V"w/ﬁ) >3c

for ¥ =1,2,3 where < >{_° denotes an average calculated using ;F .
Vlasov, recognising the infinity at W= k’l)’,;, took, without justification,
the Cauchy principal value of the integral, and, since that time, the relation
has been treated in a variety of ways seeking to overcome the difficulties
associated with the infinities under the integral. Landau (1946) used a
combination of Laplace and Fourier transforms with a modified integration
contour to solve the initial value problem while Van Kampen (1955) used
normal modes in an eigen value operator method.

The question of the uniqueness of the solution was open until as late
as 1959 when S. Jordansski (1959) gave proof of the existence of a unique
solution and more recent work by K. M. Case (1959) and others has shown the
identity of the Van Kampen and Landau solutions in the sense that the Laplace
Transform met-hod gives a generating function for the eigen functions of Van
Kampen.

The Landau solution revealed the existence of a collisionless

damping, - now called Landau damping. The solution has the form

UJL-.-. P+3.K1k1+_____ _‘Jﬂ'sw} -Vd

(19)



where the last term is the Landau damping term. This term measures the loss in
electric field energy due to the interaction of the electrons with the changing
electron field of the wave. Electrons in the field suffer forces governed by

¥, = -5 € s (kx-wt)
Any electron will either give energy to or take energy from the wave according
to its initial position and velocity with respect to the wave, but for electrons
at a given position the slower electrons near the wave velocity will interact
with the wave for a longer time and subtract more energy from the wave than
faster electrons give to the wave, In one sense the energy transfer is analogous
to the transfer of momentum in gases giving rise to viscous drag between layers
moving rélative to each other. For an initial Maxwellian distribution the
average kinetic energy increase of the electrons, which is measured by the
increase in electron temperature, balances the loss in electric field energy of
the waves. The expression for the Landau damping factor shows that this
damping is more important for lower phase velocities. In the propagation of
waves in a magnetised plasma, low phase velocity waves are rather easily
established, and the relative effects of Landau damping and collision damping
must be considered.

The first two terms of the expansion give the Bohm and Gross dispersion
relation and this will be the limiting form of a dispersion relation in
unmagnetised plasmas which are large compared to' the wavelength of the

propagating wave,

2.3 Anistropic plasma

In Chapter | the isotropic nature of the plasma permitted the dispersion

equation to be factorised into a fransverse mode

K = wie, k. =0

2 ~. o~

(20)



and a longitudinal mode

e-r= 0

>

o

kxE

If a magnetic field B is present no such simple factorisation is possible since

2 .
the scalar dielectric coefficient &4 = |- wb/wa. is replaced by the dielectric

tensor [E] for the resulting anisotropic plasma.

By choosing the Z axis .

along the B, direction, [€] takes the simple form

(€] » & [ wirii
0 (1-12)

e

(- g5

O

-
We = By,
If we write Y =0

] -

where

Eor"""

wr-wt

From Maxwell's equations

Y-E = f/e
YrE=-8
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and ¥ is the collision frequency.

the following relation follows:

o gy 3= 7
-1 & w',é!)
w _w°3- O
lof—fu"—-wo" 0
WA
w‘.‘- Wy~
9] = kL
wl—
|
Y.8=o0
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and for changing fields cx]: t(wt - BI) it follows that
R-Deggp = o
k. 8
kxE = wp
krB =MDy
where Do s defined by the relation Doy = [EIE+T
ie. Dg = [IE+ L

The vectors b, E, 2({} are orthogonal but E and T are not necessarily

o

parallel to D,

The relation
w* =
kx(kxg) + £ EIE o

leads to three homogeneous linear equations from which the dispersion relation
is obtained when the determinant is equated to zero. We may use the vector

relations

Lr@xE) = g(vE) - viE

~s

to write (B, E)B . k‘g - %:[EJE

The wave is principally transverse if R.Ex 0 for which k2 C-:’C)" |£,
while it is principally longitudinal if E. E 70 for which k‘»(%!)"]f_l
This latter result is valid if < C and hence a plasma wave which is
essentially longitudinal can propagate if the phase velocity is small compared
to the velocity of light. In addition the simple relations b.gzo and

13 x E;x O are good disfinéuishing conditions for transverse and longitudinal

waves in a magnetised plasma. These relations are fully explored in the books

by Allis, Buchsbaum and Bers (1963) and Stix (1962).
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When the plasma is warm there is both spatial and temporal dispersion
since [g] becomes a function of & and ® . This is because the conduction
current I at a point depends on the value of E throughout the plasma. In
the case of no magnetic field and for longitudinal waves the relation of Bohm
and Gross = w+ 3KT k* may be written in the form

%= idd | 8
ot wF(H' %h\) if %B((l and this changes the form of the
scalar dielectric constant &, from |- Np/w‘- =3

' = - Wt kT k>
Eimg = VTR (T ES L)
This is a valid relation if the phase velocity is much greater than the mean

thermal velocity. The dispersion relation e"‘ﬂ e 0 resultsin a finite

phase velocity “’/ﬁ, for Wy®hr and TrO

(23)



CHAPTER 11l

3.1 Resonances and waves

The scattering and absorption of electromagnetic radiation by a plasma
column has been shown to give a principal resonance at “’P/,J’i . The
accompanying subsidiary resonances on the high frequency side of the principal
resonance which lacked a theory up to the time of Datitner's work in 1957 have
found an explanation in the combined effects of plasma waves, finite plasma
temperature and the electron density profile across the plasma column. The
cal culations of the positions of the resonances have now been refined to the
stage where they can be reversed and used for the calculation of the density
profile and electron temperature. In addition, the scattering by the main
resonance can be used to determine collision cross sections and ionisation
rates,

The experimental method of displaying the various resonances either
follow the transmission method which used waveguides due to Datmer (1957),
Hershberger (1961), Bryant and Franklin (1963) and others or the uses of a
stripline as in the method of Crawford and others (1963) and later by Parker,
Nickel and Could (1964). Fig. 3.1, page 25. In each case reflection rather
than transmission methods may be used. The resonances are conveniently
displayed by altering the plasma number density or by sweeping the frequency
through a chosen range. The first method is effected by modulating the current
‘fhr'ough the plasma or by studying the decay of a repetitively pulsed plasma” -
the afterglow method. Results for a resonance spectrum are illustrated in

Fig 3.2, page 26.

3.2 The theory of the resonances

The most complete theoretical treatment and discussion of the physical

mechanism of the resonances is given in the paper by Parker et al (1964).

(24)
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Fig. 3.2 Dipole resonance
spectrum for T, = 0-3 cm.
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The experimental results of earlier workers are inconsistent with the simple
dielectric model for the plasma which neglects the thermal motion of the
electrons. This neglect is not justified because the thermal motion of the
electrons gives, at the working temperature of a discharge tube, a mean free
path which is much greater than the motfion due to the alternating effects of
the field on the same electron, It is the coherent effect characteristic of
waves that is of importance.  As we have seen in the last chapter, the
introduction of variations in the thermal motion overcomes the singularity at
the local plasma frequency and gives rise to waves in a uniform plasma whose
dispersion equation in the non-magnetic case is given by the Bohm and Gross

relation
w"aw.;‘ + B%Tk" 3.2.1

In the case of the non-uniform unbounded plasma we may consider the local
propagation constant h(‘;) to be given by

Ko = %{w‘-a{u)} 3.2.2
and waves will propagate for regions where w\)(,‘f) is such that R(1)y0
For the plasma in a discharge tube the number density is a function of both
radial position and temperature and experiments show the number density to
be o maximum af the centre and a minimum af the walls (ignoring the sheath).
If we assume that the Bohm and Gross relation holds in the bounded plasma of
a discharge tube or in a plasma slab we can imagine that resonance conditions
may arise from the circumstance that longitudinal plasma waves created by
outside fields only partially penetrate the plasma and give rise to standing
waves between the point of reflection and the glass wall. Fig. 3.3, page 26.

The conditions for resonance is given approximately by the phase

integral condition

‘I’c .
[ Rt 2 553
R

(27)



where e is the initial reflecting radius which gives rise to separated resonances.
This phase integral approach may be cr';ticised on two grounds.  The dispersion
relation was derived for unbounded plasma and it is not clear that it can be
transferred unchanged to the new situation. It holds with more certainty for the
small values of wavelength A << R where R is the radius of the discharge
tube. These small values of A which correspond to larger k occur for
frequencies away from the plasma frequency, so that theoretically derived
resonances near to the main resonance will be very approximate.

Furthermore the wave is not only reflected at a critical plasma density
but is also attenuated, since evanescent propagation continues in the denser
region. Any solution will have to consider the matching of oscillating and
evanescent solutions at the critical radius. The method is shown in a diagram
due to Hohe, Fig. 3.4, page 29, which is reminiscent of the trapped particle
wave in a type of potential well,

If this latter modified method is carried out for a cylindrical plasma it

can be shown fhat'f )5.
j;{kz'(%r)z} or = (m+3)™ 3.2.4

o % =2,4,6..... and M =0,1,2..... where a' is a parameter defining

included in the set m=0,1,2.....

In order to overcome some of these criticisms Parker et al (1964) used
the collisionless Boltzmann relations and perturbation methods to derive a fourth
_order differential equation for the potential perturbation (#l , from which the
electric field perturbations [, = -V¢| were determined. This equation has
become a common tool for the discussion of warm inhomogeneous plasmas.  The
behaviour of the electrons in the column is described by the following equations

~ which are the first two moments of the Boltzmann equation supplemented by

(28)
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Poisson's equation and the Boltzmann distribution

v(Ng) + = o 3.2.5
ot

Nmi =-Neg ~Vb 3.2.6

Y- E 5‘% 3.2.7

Ny = NO) exp (cht,) = NOFm,  3.2.8

where F(T) is the spatial number density distribution, i.e. the density
profile function, N(©) is the number density on the axis and C,),,(‘f) is the
potential within the plasma. Quantities with subscripts o, | are steady
state values and high frequency perturbation values respectively. Neglecting
drift and assuming the high frequency variations have a time dependence

ewut' 5 puHihg b= U‘kTa and linearising, these equations give

—jwN, = C.(Nw) 3.2.9

W Nem ¥ = No@Ei +N eE, —YKT VN, 3.2.10
v = —-E, = KTe No

¢o ° Eﬁ 3.2.11

From these it follows

{ v.(v.8)- ‘Z?_(Yf (w’-F_L;:_} 3.2.12

where
2
Wy = N e*
meEo
and 2 '
, L) = KTeéo K'r
o = T8 =
are values defined for T =0, i.e. along the axis of symmetry. If we assume

(30)



E = -V ¢| for quasistatic conditions we obtain the fourth order equation

dealt with by Parker et al.

T - E Al DRI a2

=0.

3.3 Solution for the homogeneous plasma

For a homogeneous plasma, F =1,VF =0 and ¥ =3 so that

(v*+ k) 9 =o 3.2.14
where
k{; = 91;:21 since here w;(O) = w}’,‘
¥ /m
Because Vz‘#’l = N'é% where N = h/b'KT .

C{D, may be written as the sum of two potential perfurbations

$ = derdp 3.2.15

where (1)(,_ is the electromagnetic wave potential perturbation and 4)'9 is
the perturbation due to mass motion of the particles. Since the electro-

magnetic wave is independent of charge accumulation

V’?fPe =0 and V‘C‘?P = _e__bl_

JoxT

The two uncoupled solutions

V*¢e=0 = and (V&3 ) dp=0  3.2.16

have as solutions
(Pe _ A‘}(:&L)ﬂ, 6-1,4'9
$ =G J1(kr)ei1°‘ ' 3.2.17

for radial modes of order q, .

and

@31



A glass envelope and the surrounding medium may be replaced by an

effective dielectric Eogp and the external field is described by a potential

-4, ,-148
47&(%' = T7e
We may use the two conditions for continuity of the potential and current at

Tu Rw where R, is the radius of the plasma, to write

Py + - Gy T (R R) = R7Y 3.2.18
eq 48 veyq (‘k‘ a’“= 0 3.2.19

together with the condition that the radial velocity perturbation at =Ry,

shall be zero, viz, :-

e ad% + &g =o 3.2.20

These equations can be used to eliminate Aq and Ca, and give a resonance

condition

(quq- a) é-'}-{ (k}&) ((1;:;3 3.2.2]

For a cold plasma k],-a»ao and

/

‘”AJ-P i ( | + &%{fj-é'
which gives the Tonks-Dattner principal resonance wmz for Eeg = &
when the plasma column is situated in free space. Fejer (1964) showed that
further resonances appear for values of k-P Rw & q'I{+ T2 +mT  which
are closely spaced and not far above the principal resonance. This result
shows that the introduction of the warm plasma approximation is not of itself
sufficient to predict the spacing of the Tonks- Dattner resonances although it
does suggest their occurrence. The model column used is particularly rigid
and artificial. Parker considered more realistic electron profiles F(® calculated
from the "free fall" methods of Langmuir and Tonks. A set of curves for the
mercury plasma was calculated by Parker (1964) and are shown in Fig, 3.5,

page 29, and computations for these profiles lead to the curves in Fig. 3.2,
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page 26 taken from the same paper. The theoretical calculation for the
dipole resonance spectrum using these profiles and an appropriate choice of
electron temperature give results which are a good fit to the experimental
curves,

Although these Tonks-Dattner resonances have now received an
explanation the questions of damping of these waves and their longitudinal

propagation characteristics are not yet resolved in detail.

3.4 The damping of the resonances

The theory of the last chapter for waves in an infinite cold plasma
predicted the occurrence of Landau damping. In a warm plasma both collision
damping and Landau damping will occur and in a finite non-uniform plasma
these two types of damping will supplement each other. Measurements show
that damping for the first resonance is principally due to collisions but the
fact that damping increases with the order of the resonance suggests that
Landau damping becomes of increasing importance in regions where the spatial
density gradient is smaller. In such a region the wave characteristics are more
uniform spatially and the long range interaction between electrons and wave is
consequently more effective,  Near the wall of a discharge tube the large
change of number density with distance leads to rapid modification of the wave
profile and a consequent reduced Landau interaction between the electrons -
and waves.

A large amount of experimental work uses a technique in which the
number densify changes, either by allowing recombinations or by modulation
of the discharge current. In these cases the electron profile continuously
changes and in mercury will pass through the conditions given by the curves
from Parker. Parker's parameter for his curve is the Debye length <L;@>
defined by I%F, 45 . If we assume that the electron temperature across

the tube is constant the local Debye length changes and in regions where the

(33)



wavelength of the propagating wave approaches the Debye length, fairly

heavy Landau damping can be expected.

3.5 Tonks~Dattner resonances considered as cut off frequencies of longi tudinal

waves,

The standing waves of the perturbed electron density in the radial
direction which give rise to the Tonks-Dattner resonances may be regarded as
special cases of propagation (Crawford 1963).

A wave resonance propagation vector not parallel to the radius has a
radial and an axial component.  That is | 'k_:'_+ ]RTI where %_L and k"
are the radial and axial components of b, . The set of values {hl} which
correspond to the Tonks-Dattner resonances will also give rise to a set {k“}
which will correspond to longitudinal modes of propagation down the column
in @ manner reminiscent of waveguide propagation.

These questions concerning longitudinal waves on a plasma column and
the modes to be expected have been the subject of a great deal of theoretical
and experimental work over the latter years and are the subject of the next

chapter.
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CHAPTER 1V

4.1 Space Charge Waves in finite structures

Investigations on the propagation of space charge waves along columns
of charged particles have been pursued from three principal directions namely:-
the work of Hahn and Ramo in 1939 on the theory of velocity modulated tubes,
the concern of many workers in the early 1950's with the propagation of waves
in waveguides containing plasma and anisotropic materials such as ferrites -
exemplified by Suhl and Walker (1954) and the work on plasma electron-beam
interaction tubes seeking new oscillators and amplifiers = Newton (1958),
Smullin and Chorney (1958). This interest led, in 1959, to the important
paper of Trivelpiece and Gould (1959) concerning "Space Charge Waves on
Cylindrical Plasma Columns".

These two authors concerned themselves with the question of axial
space-charge waves on a cylindrical neutral plasma column placed coaxially
inside a cylindrical wave-guide and subject to a uniform magnetic field
parallel to the axis of the plasma column in @ manner shown in Fig. 4.1,
page 36. They limited their initial discussion to a cold, collisionless,

uniform plasma in which the dielectric tensor [g] is defined by

™ IR ] B
EO l . "ﬁz‘ _1' wt w@é ) o - ED £| E‘ o
[/ -—Mc w"-..,w"& E) El o)
(13 o o &
L E w‘/w Jus w; 0 ’
wt- w wh-w
x
0 0 I-2p
L = 4.1.1

where We* By s the cyclotron frequency. Small sinusoidal variations

from the steady state values were assumed for the field E and charge
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densityp
iwh
E@D = B +E@e

PEY = p@ +A® et

The further assumption, compatible with experiment, was made that the electric
fields were quasi-static and this permitted the calculation of the electric fields
from a scalar potential, i.e. E, e~ 9V . Since g, [JE/ = o for the

given cylindrical co-ordinate system it follows that

V\ *
E‘[#}.-r(_'r) ;V‘].*Esa'\l =0 4.1.2
with the solution valid inside the plasma
V= A J, (") e OOk L e 4.1.3

where

- L2E _12 (wr-w ") (w‘-gé_)]

e kg .- T o)
Outside the plasma T,& T < T2 the solution ¥, which vanishes at t=+,
is

-i(ne+kz)

V, = B[I, k1K, (k1) - I (k1) K, (et)] € 41.4
where I,, and K, are modified Bessel Functions (Ramo and Whinnery 1965).
To satisfy the continuity conditions for D, and & at =7,

T T (TH) o &, € kr | LnG)Koler) ~ T, (k) i, ().
o T (T1) *rafa s T[ﬂkf)&t(kf,) -I,. Get,) ke &)

4,1.5

in which Eop s the dielectric constant of the region outside the plasma.
Equation (4.1.5) is the dispersion relation for the waves, If the plasma fills

the conducting cylinder, T,=T, and the propagation constant R for the
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various modes can be obtained explicitly as

b = th [ esA ] 1.6

where P“"" is the Vm zero of the 'Yl-% order Bessel function. The
condition R real,defines propagation bands of the fype indicated in Fig. 4.2,
page 36, The upper band shows a backward wave, i.e. the phase velocity and
group velocity are opposite in sign. As the magnetic field tends to zero the
lower band disappears and there is @ non-propagating wave at  w=W},
correspbnding to the Langmuir-Tonks oscillation. If the plasma does not fill
the conducting cylinder an analytic solution is not obtainable.

The set of solutions under the quasi-static assumption can be related to
a monotone set of values T% for ¥ =1,2..... associated with each value
of v, For v =0, =1 and w¢_<wP the resonance frequency defined

by koo _is given by Gdyes where

Wys = “"]5/( HE:&X?),/&

but for Y =2,3,... etc. the resonance is given by Gyes = we as for the
plasma filled guide. See Fig. 4.3, page 39. If there is no applied magnetic
field B, , We = 0, and there is left one circularly symmetric mode

corresponding to v = 0, ¥ =1,

4,2 Surface modes

For the case we = 0 the potentials inside and outside the column are

and \/y,’. defined by

Va

T, Vyo= Iﬁ%%) 4.2.1

T Yy = LR Kn(k1) — T, (k) Kn(ht)
3 IOkt K (k%) = Ly (k1)K (k)

4,2.2
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Calculations of these potential variations for # = 0 and v =1 for an
experimental tube are shown in Fig. 4.4a, page 39, The potential distribution
clearly indicates the peaking of the electric field at the plasma-dielectric
interface and hence the waves are called surface waves,  Electrons are
displaced by the field and the energy stored by the field is interchanged with
the mass motion of the particles. The electric field lines terminate on the
displaced charge with little penetration outside the ‘plasma and the charge
distributions for the W =0 and ™ =1 modes are given in Fig. 4.,4b, page 39.
The dispersion relation for the surface waves in the quasi-static case for no
magnetic field is given by

|- Wh /o™, 1_.%_:.) _ L) Kn(kt) - L, (k%) Ko (ler) 4.2.3

Eext Y Tk rMCkw,) = L, (kn) K (kW)

For w =0and » =1 some dispersion curves are given in Fig. 4.5, page 41,

These indicate for W = 0 the slight dependence of the curves on the ratio '/TL ,
the more marked dependence on the dielectric constant of the external dielectric
and the zero cut-off frequency. For ™ = 1 the phase characteristics show a
much more marked dependence.on the geometry and a non-zero cut off frequency.
The effect of the external dielectric will depend upon the geometri cal
structure. In practice the plasma column is enclosed in a glass tube so that the
effective Egxt. is due to a composite structure. When the wavelength is
small and comparable to the thickness of the glass the field energy is
concentrated in the glass and the dispersion curve is effectively that calculated
for an all glass dielectric.  On the other hand for wavelengths large compared
to the diameter of the glass the external electric field is largely in the air and
the dispersion curve approaches that associated wi th the air dielectric. The
transition from one to the other gives a dispersion curve like that of the dotted
curves in Fig. 4.5, page 41 and shows a backward wave nature over some range
of wand R . The relation of these to the wave guide modes is shown in

Fig. 4.6, page 41, taken from Clarricoats et al, 1966. Tlrivelpiece derived
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for the system plasma-glass-vacuum-metal the following dispersion relation

5k - & Lok, (k)1 ki lin)] @ [Eu(Re)k, )=, vy K, (k4Y)
{l 'f‘z’f)} LI_:E:] 7 E,{n.ﬂuoxiw-lrf&omf.ﬂa— Q {L..Ckn)zm(m S () Ko (k1]

4,2.5

where

Q = blkwka (ks = L, (v ) Ko (kv)
I (Gekaulhn) = Io AH

and G’ is the relative permeability of glass. The curves in Fig. 4.7, page 43
have been calculated for the tube used in the experimental work given later in
this work. They are the lowest bands for the circular symmetric mode 4 =0
and the dipole mode W =1 of the surface waves.

It is natural to question the range of applicability of the quasi-static
approximation to experimental work and to consider the changes that may become
evident when the more exact analysis is undertaken and when in addition the
plasma is considered to be warm and non-uniform, According to Bers in Allis
et al (1963) the quasi-static assumption is valid if for the velocity of light €,

%k is much greater than “¥e which is equivalent to a phase velocity much less
than the velocity of light, and this is certainly true near resonance. A second
condition requires that ¥ = o%'r, is large and hence, for large phase velocities,
the column diameter must be small compared with the wavelength. Consideration
of the relation of the dispersion curves to the light-line corresponding to velocity
& shows that for the forward symmetric mode the phase velocity is much less
than the velocity of light over a large range. For the dipole modes in the
region of intersection of the light line and the dispersion curves the quasi-static

approximation is unlikely to be valid.
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4.3 The exact solution

In the case of a cold plasma column of radius % in free space, the
rigorous solution for space charge waves for Maxwell's equation and a tensor’
permittivity is a complex relation. It was shown by Suhl and Walker (1954) to

have the form
-1 (o +kz)
£, = [RT, (W) + sT.a¥)]e 4,3.1

—i(w-rlz)

Ty = [rg, L(7%)+ 53, L(u%)] e 4.3.2

where
T":z = (l-,~7’-) [‘z(""e'—P") HIP;J -2at (. _d;) ‘td‘F‘ET"");* 4 7,('_*‘)‘3,}}3.

and

301 = i[es (y*-5) +& Tn,i/g’-]/'r)ﬁz

Here 7) -;‘% is the refractive index and 70-/%:3 is impedance of free
-]

space; (o, B, y ) are defined by’ %, @ -‘%’-ﬁ

In free space the

axial field components decay like

K,m(%l -r) ' where avz/.r.l = kL(%)z
The requirement that the tangential components of & and B are continuous
across the boundary gives the characteristic equation ~ see Akhiezer et al
(1958) - which is much too complex for an analytic solution,

In order to give'an overall idea of the domains of the various solutions
Schlesinger and Granatstein (1965) introduced a three dimensional parameter
space mapping (oc,,B,‘) of the various modes. This was suggested by the
C.M.A. diagrams of Clemmow-Mullaly-Allis, which have done so much to

simplify the classification and behaviour of waves in infinite plasmas - see

Allis et al (1963), Stix (1962).
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The quasi-static case is regained by assuming ¥° 7 -5——700 and
the mapping may be considered in the & ,@ plane only. Insuch a space the
distance along the P axis is proportional to the field B, , the ot coordinate
is proportional to Wy which is the square root of the electron density and the
distance from the origin is inversely proportional to the angular frequency « .
Resonances are defined by ko0 which implies o+ or f»1 for
finite T+ . Cut off is defined by 'k =0 and for Tt not equal to zero this
condition gives ol +F —» | which defines a cut off frequency m
The result of such a mapping is shown in Fig. 4.8, page 46, Propagation
occurs in the regions for which T >0 which are shown hatched, the region
nearer to the origin corresponding to the upper propagation band.

If the C.M.A. diagram for waves in an unbounded plasma is considered
(Allis 1963), slow waves in the direction of the field propagate for g>1
which contains the region I(b) forbidden to waves in a column in the quasi-
static case. The infinite plasma corresponds to a large column radius and we
can conclude that the propagation regions in the exact analysis are dependent
upon the column radius.  The resonance and cut off surfaces in 3-space
(e, B, ¥ ) indicate the changes as §— o . Fig. 4.9, page 46 adapted from
Granatstein and Schlesinger's paper shows this for increasing column radius for
the dipole mode. The volume bounded by the cut off and resonance surfaces
is the domain of band corresponding to v =1, ¥ =1. The strong
dependence of cut off on radius is evident for the upper band (dynamic modes)
but the lower band (static modes) is virtually independent of the radius so that
quasi-static analysis; suffices for investigation of these modes. The quasi-
static solution will also be reasonably correct for the upper pass band if Y22 ,
which for normal experimental tubes whose diameters are of the order of 1 cm,

implies the use of frequencies below 3 GHz,
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4.4 Surface modes for anisotropic plasma columns - quasi-static analysis

Equation (4.1.5) for *; » 00 and by transformation of the Bessel
functions and their derivatives may be written
e Tr T ¢ in) = o _k g (k) 4.4.1
+ ,
J—W (T'T,) ".ID Ko (k)

for  qwaXn|
If w],>w >we  and the radial eigen values T+ for the quasi-static analysis
tend to infinity in such a way that T<o , then &2+ p% 2 as k— o and

these are surface modes, with a res;nqnce frequency
) 2 a\’%&
The cut off for these waves is defined by k+o0 and T> o from which it

follows

B=2(1-4) or o “1<"%:)

= =
The solution of 4.4.1 for each value of W leads to a set of surface waves

having cut off frequencies

Wy = [w’% + “c%_])éi' A

The relation between the resonances and cut off for these waves in the quasi-
static case is given in Fig. 4,10, page 48. If the steady magnetic field

tends fo zero the resonance for each value of w is at ‘Ur/ﬁ, and the
predicted cut off frequency for 1 $0 isalso “p/fz . The more complete
solution for the case B, =0 however shows the cut off to be at zero frequency
approached along the light line, and in this case where the wavelength is very
long, the wave is only loosely bound to the column., Experimentally we may
consider a virtual cut off where the dispersion curve breaks away from the light
line. Dispersion curves for the more complete theory have been given by
Granatstein, Schlesinger and Vigants (1963) and the variations in behaviour

according to mode, plasma density and transverse column dimensionsare shown
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in Fig. 4.11, page 48 taken from their results. The difficulties involved in

launching a specific mode into a plasma column and detecting it are evident.

" 4,5 Warm plasmas

The parameter space approach using the exact solution for the cold plasma,
which is of great assistance in grouping the waves into classes, has neglected
the effects of the glass containing the column, the spatial variations of electron
density and electron temperature effect. Recent work has sought to overcome
these restrictions but the extension is not simple.  The analysis due to
Diament et al (1966) treated an unmagnetised infinitely long warm plasma
column of radius @ embedded in a medium of relative permittivity &y .
The electrons are the only mobile species.

As in Chapter II1 the derivation-begins with linearisation about the

equilibrium state which leads to (if N,B, terms are neglected)
No,z“.‘.{' = -‘iw N| 3.2.9

wNoma, = NeE + yKT, VN, 3.2.10

The introduction of new parameters is convenient, viz,
Re% , ky< e, 2=, 0=7 A

E, = ({85, E =(Bg)7™

The' latter two parameters are electric field equivalents of the velocity and

and

density gradient fields in the linearised expressions. Using these parameters

and taking the grudi.ent of (3.2.9) to obtain

YY.Ey ¢ kz_E,s = 0

together with «E«'lr < E +60 E_—:g and putting these into Maxwell's
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equations the following wave equations are obtained

xIxE =k"§. - k':év inside the plasma.... 4.5.1

Ixg x Ez skz&r Ex outside the plasma... 4.5.2

where €y is the dielectric constant of the region outside the plasma. This

set of equations together with the boundary conditions give the characteristics
of the various modes. To uncouple the set of equations Diament et al separate
the varying component of the field into an irrotational acoustic part Ea and

a solenoidal electromagnetic part E, so that 5 =B+ Eo from which

it follows that

N T~ e ~ov
Eg . -g'é." Eo
Three uncoupled equations result:
, Gt
V"Ek + ‘k?,( N ) Eov0 longitudinal space charge wave
4,5.3
P8
Z"!’.‘,.e_‘* k}’ C‘Q-')Ee =0 4.5.4
transverse electromagnetic modes
Vx7xE, = kl:.rz & E, | 4.5.5
and these are equivalent fo
2 2 -1
(v *kp L]E. =0 4.5.30,
&
[v+ kr@n]E -0 4.5.4b
1 2
[V ¥ kpe'rn]ga."o 4,5,5¢c.

The solutions can be found from superposition of axial and transverse modes
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and related to the set of scalar solutions

2 2
(V4 &y (6-X)]V = o
where G and X; are the normalised axial and radial propagation constants

kz‘/k; and k%; and
V, (hE) =ViWexh i(na + ¢ kyz-2%wyt)

where %(T’) is a Bessel function determined by the boundary conditions

V(1) = I,,.,(Xi‘ k,.’f’) 5> %=1, ()(éi kp"’) ) \/‘tcw*)=|(..y6di kp’f)

The solutions are compatible if

G-Xo =()fp = 0:1466-6X, 4.5.6
G-Xe =(Q-1) — Na1+G-X 4,57
G-Xz = &S2 — ﬂ=%—-é§ 4.5.8

These relations give the dispersion curve for the spacecharge modes when X o
has been determined as a function of G .  This dispersion relation is complex
and a derivation is given in the Diament paper. The equations (4.5.6)
(4.5.7) give skeletal Brillouin diagrams which indicate the relations between
the various modes, This method is shown in Fig, 4,12, page 52 which has
been taken from the paper by Diament et al. The skeletal diagram is divided

info propagation mode regions by the following lines:
1=y the plasma frequency
126G propagation at the speed of light
= 0'/5,,. propagation at the speed of light in the outer dielectric
af) =9/C‘ propagation at the thermal velocity

G = -é For G? 'é- the Débye length L.‘D is of the order of the

wavelength and Landau damping can be expected
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: |
ﬂ = T:E-r the resonance line for the symmetric and dipole modes.

Below the line .Q . %, X, is real and positive and we have slow modes
bound to the column, The speed is less than the velocity of light in the
outer medium. Above this dielectric light line the waves break away from
the plasma-dielectric interface and there is both radial and axial propagation.
For the bound wave region the locus X, =0 which in the limit is the
pair of lines 1 =1 and {1 =6G , separates the bound waves into two series.
Below this locus the field is due to two surface wave modes and above it the
field is due to the combination of standing spacecharge waves together with
a growing electromagnetic mode.  Furthermore, as Xa=» O and for a large
column the limiting dispersion relation becomes {l1=1+8G which has the
form wie WF +3 %—hz due to Bohm and Gross. The radial eigen
value X, is femperafure. dependent and has an infinite set of negative values.
These correspond to the Dattner modes, whose virtual cut off values are the
Tonks-Dattner resonances treated in Chapter 1ll.  The introduction of a
finite temperature shows that the dispersion curves for these waves approach
the thermal line and have no resonance. The single positive eigen value of
X&« corresponds to the surface wave in the dipole mode. Another diagram
(Fig. 4.13, page 52) from the same paper shows the influence of column size
and temperature upon the existence and shape of the various modes and gives
some idea of the region for which the quasi-static solution is valid.  The
column size is expressed in terms of a parameter S= k;/a?« and the
temperature in terms of 8 so that the ratio S/e = -%:( A ) characterises
the working plasma column of radius @ and Debye length Ly .. This
parameter a'z/,_; will not give a universal curve for the exact solution,
_although it is a satisfactory scaling parameter for the quasi-static case and
was so used by Nickel, Parker and Gould and in more recent papers by
~ O'Brien et al (1965) and O'Brien (1967).  For the more exact analysis, in

contrast to the quasi-static treatment, the curves change shape with
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dimension (Fig. 4.12 and 4.13, page 52) and calculations for the behaviour
near the light line for finite structures enclosed in a waveguide have been
carried out by many workers, and presented as theoretical dispersion curves -
see Clarricoats (1966) or Le Prince (1966=-67). At higher plasma densities
there is considerable coupling between the waveguide modes and the dipolar
mode and because of this coupling, the higher dipolar mades are difficult to
find,

Crawford and Tataronis (1965) have also discussed wave propagation
along @ warm non-uniform plasma column and restricted their consideration to
a strip line in order to avoid the computational difficulties that cylindrical
geometry imposes, An electron density profile F(x) = 5)4) _ng; was assumed
and calculations were varried out for symmetric and asymmetric potentials.
The results are summarised in Fig. 4,14, page 55. They show the existence
of "Tonks-Datiner" type resonances at cut-off for both modes, the backward
nature of the lowest asymmetric mode and the insensitivity of the higher
asymmetric mode (higher dipole mode in cylindrical symmetry) to changes in

the external dielectric.
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CHAPTER V

This chapter is a summary of those parts of the data and theory of the
low pressure arc which are relevant to the experimental work to be discussed

in the final chapter.

5.1 Some characteristics of the plasma column

The plasma column used in the experimental work is the positive column
of the low pressure arc. Characteristics of the low pressure mercury arc, taken
from some work by. Langmuir and Mott-Smith (1924) Table 5.1 and Killian (1930)
Table 5,2, show some features which are of importance in experimental

applications.

Table 5.1

Cold Hg. Temp. Drift current A T;°K J; mAem? Ne)do.mcm'l3
15.5°C 0.5 30,100 121 2.8
15.5°C 1.0 32,900 171 3.8
15.50C 2.0 26,200 367 9.1
30°C 0.2 19,100 14.5 0.4
30°C 0.5 24,800 50 1.3
30°C 1.0 19,000 175 5.2
60°C 0.2 10,600 96 3.8
60°C 0.5 9,240 260 11.1
60°C 1.0 14,200 480 16.3

Table 5,2

Cold Hg. Temp.°C 18.6 38.6

longitudinal field 47 em™ 0.196 0.31

Drift current amps, 5 5

Te °K 27,500 19,900

electron m.f.p. cm, 7.1 9.5

eleciron density em™® 22x 10" 46 x 10"

The physical features of the plasma are the electron density profile both
radial and axial, the current density, the axial field, the electron temperature

and the gas density, At the pressures and temperatures used in the experiments
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of this paper the mean free path for the vapour is larger than the tube radius and
the wall temperature is approximately equal to the gas temperature. In the
plasma the ion motion is principally radial and the motion of the electrons is
chiefly a longitudinal drift. The ions move radially to the walls without

collision (the free fall case) under the influence of a radial potential distribution.

5.2 The analysis of Tonks and Langmuir

In a fundamental paper Tonks and Langmuir (1929) undertook an analysis
to relate the five dependent quantities viz, :- the axial field E, , the steady
state electron profile N, F(+) where N, is the density on the axis, the
electron temperature T, the ion generation rate  S(1') at T=7' and the
ion current density at the wall J-], . The independent variables for the discharge
are the arc current 1, , the tube radius T, the gas density Ng and the
column temperature Te . The high speed electrons have a component which
carries them to the wall at a speed which the ions cannct follow and this creates
the field which controls the radial flow of the ions. in Fig. 5.1 page 55 the
jons are generated at =¥/  with negligible initial velocity at a rate S(t')
and as they fall freely to the wall without additional ionisation, the ion density

at T is N;(t) where
T !
N () = jo S¢) % 2 dr' =

and V() is the radial velocity of the ion at ¥ . For the case of free fall the

velocity is obtained from the energy relation

Fmvim = ef{g,0) - 40} 5.2.2

where ¢°CI‘) is the static electric potential.

If we assume the electron gas is maxwellian the electron density profile

ed,
Ne® = N, e°f A 5.2.3



ond  @,(+) is determined by Poisson's equation

Vi = -& (v () = Ne () 5.2.4

These last four equations may be combined to give the integro-differential

equation

T - ENF + & [Tl
which is the complete plasma sheath equation.

If we suppose the ionisation rate is proportional to the local electron
density, i.e. 5(‘1")0( N¢<T') , this equation depends on a single parameter
which is basically -rwl/l"l.)o where Ty, is the radius of the tube and Lp,
is the Debye length at the axis.

It was from this equation that Parker calculated the electron density
profiles for the mercury plasma given in Fig. 3.5 page 29.

The electron drift current i, in the arc for a voltage gradient E is

given by
. B — &
fype = SNeY e ETHY
where {N¢) is the mean number density in the column and M the maobility.

From Langmuir ,«.:‘3 % # where Lg is the mean free path for

momentum transfer for elecfrons and

‘"’u.. BT

is the thermal velocity.
It follows that by o Ne
N
The mean electron density <Ne> is dependent upon the profile and the arc
current,  For low currents the density profile is fairly uniform because of rapid
diffusion of ions and electrons to the walls but as the energy input to the tube

increases the gas temperature at the axis becomes greater than the wall
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temperature and there is more effective jonisation at the axis because of the
increased electron mean free path associated with the reduced local gas
density.

The longitudinal field E in the plasma has a low value (1 volt/cm.)
for mercury and is constant over a large range of pressures see Fig. 5.2 page
60 - taken from data given by Von Engel and Steenbeck (1933). The
electron temperature Tg decreases as the arc current increases and Klarfeld
gives a curve which shows that the voriaﬁén in electron temperature is only
a modest function of current = less than 10% variation for a hundred-fold
increase in current, There is also some dependence on the natural gas

density. See Fig. 5.3 page 60 taken from the paper by O'Brien (1966).
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CHAPTER VI

6.1 The general experimental area.

There has been a great deal of experimental work on resonances and
waves on plasma columns both with and without magnetic fields but there is
still a need for experimental methods of testing launching efficiency and
conditions, for producing uniform conditions within the plasma and for
analysing the various attenuation processes. Theoretical work in this field,
as in many other branches of plasma studies, has far outstripped experiment.

The practical work to be described is part of a larger programme of
studies of resonances and waves in which an attempt is being made to survey
the history of a particular mode along the column.  Previous work has
concenirated on showing the existence of the waves and the various modes
and in testing the validity of the theoretical approaches. Diagnostic uses
of the resonances and symmeirical surface wave are common.

Although the Tonks-Dattner resonances have been studied using the
afterglow of a pulsed plasma there seem to be no reports of probe studies in
which the surface waves have been watched during the decay. Measurements
of characteristics during decay have been made but these have been basically
resonance methods and not measurements on the travelling waves. Experiments
of this type are described in the sequel. A common and convenient method
of studying the spectrum of plasma waves is to vary the plasma density by
modulation of the arc current and there has been little study of the effect of
slow modulation on the electron density distribution particularly where the
current variation is large. In this work the symmetric surface mode is used
to obtain some idea of the effect of such modulation and to study the

variations of plasma properties along the column during slow modulation.
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6.2 Experimental methods

The experiments were all carried out with the plasma column and
coaxial tube carrying the travelling probe, illustrated in Fig. 6.1 page 63.
The discharge tube was a modified version of the pattern used by Dattner and
many workers since his 1957 paper. A sub-arc between the mercury pools
provided a local plasma which acted as a thermionic cathode for the long
positive column. The disiributed capacitance of the transformer in the
original sub~arc supply gave rise to some trouble with ringing during pulsed
operation and to minimise this the arc was eventually run from an isolated
battery supply at 32 volts and 4 amperes.

The first experiments were pulse experiments in which the production
of resonances and waves in the afterglow was studied.

In the initial experiments the travelling probe designed to sample the
potential variations along the célumn was used as a dipole launcher to excite
the principal transverse resonance and the neighbouring Dattner resonances.
The small area of the probe permitted more precise sampling of the column
density than is possible with the stripline or resonant cavity.

The general circuit arrangement for a decaying plasma is indicated in
Fig. 6.2 page 63. The plasma column was formed by pulses from a large
capacitor using an 813 tube as a switch. The grid of the 813 tube was driven
by a Marconi pulse generator (PG2) through two 807 tubes in series. The
first of these was a pulse inverter and the second was used as a cathode
follower. The initial negative going pulses from PG2 could be varied from
0 to 200 volts and had a provision for variable pulse length. A large positive
pulse on the grid of the 813 caused it to conduct and it was normally held in
the non-conducting condition by a high negative grid potential of 50 volts.

A second pulse generator PG1 simultaneously triggered the PG2 and the CRO -
a Tektronix 547, By using the variable delay incorporated in the Marconi

generator it was possible to display a chosen section of the pulse current and
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the decay current in the afterglow.

The 16 /ILF capacitor was charged to 2.5 Kv and during the discharge
ot a low repetitive frequency the voltage of the capacitor was allowed to run
down to 1.5 Kv. No variation in the CRO display could be detected during
this run down but below 1.5 Kv there was some uncertainty in firing. About
three hundred 10-20 w3 pulses were available during the run down of the
capacitor. The general arrangement is shown in Fig. 6.1 page 63. The
discharge column was supported coaxially in the slotted circular guide by
Teflon rings, and a graphife termination to minimise surface wave reflections
was painted on the end remote from the anode. The travelling probe was
supported on an accurately made nylon slide which moved on milled parallel
faces. Earlier probes which did not have this fairly precise mechanical
motion were not successful. The coaxial probe itself was terminated in a
flat 1 mm. disc.

For the display of the Tonks-Dattner type resonances during the decay
of the plasma density the probe was excited by the method illustrated in
Fig. 6.3 page 65. The exciting frequency ) from the Narda microwave
generator was applied to the probe through @ variable attenuator (HP model
394A) used as a directional coupler. Power reflected from the plasma was
separated from the incident power and after rectification it was displayed as
a voltage on the Tektronix 547. The sweep was provided by the time base.
The sweep resistor was used to display the current pulse on the second CRO
trace. The reflected power depends on the relation between W and W
and the display of the reflected signal is shown in Fig. 6.4 page 65, traced

from a photograph of the various resonances in a single decay process.

6.3 Number density variation with time in a decaying plasma

The photograph shown is one of a set taken after applying a series of

frequencies to the external probe and displaying them together with the
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trailing edge of the pulse. The pulse length was 10 ws and the successive
resonances were taken at 1690, 1600, 1500, 1400, 1300, 1200, 1100, 1000,
900 MHz. Time measurements were made by diagonal scale from the beginning
of the pulse run down. The photographs and measurements were highly
reproducible and the points on the graph in Fig. 6.5 page 67 are the average
of many photographs.

The results were treated by the method used in the Dattner 1957 paper.
A plot of the (frequency)z versus the time in the afterglow on semi-
logarithmic paper, Fig. 6.5 page 67, gives a fair approximation to a straight
line out to 7 microseconds in the afterglow, suggesting that the deionisation
process on the average has the form N =N G:d' . Here N is the electron
density and is proportional to }2' . Ng is the number density at the
beginning of decay and correspOnds to a resonant frequency J(o at ¥ =0.
Thuswe may write (f/f) t From the graph this gives a deionisation
rate &K =0,19 x 10% sec. The gas density Ng in the discharge may be
calculated from the relation N%GK T where T'b is the bulb temperature,
T is the plasma column temperature and the mercury vapour pressure
determined at the coldest part of the tube. In this experimens'r 'Ii’ = 40°C
and the discharge tube was at 25°C for which ]D =1.8 x 10—mm. Hg. It
follows that the Ng 0.43 x 'lOl4 -3. These results checked with
those obtained by other workers.  The discharge current during the pulse was
1 ampere and from data obtained with cavity methods summarised by Trivelpiece
and Gould, this corresponds to an initial plasma frequency of 4.1x10 sec.”!
and an initial plasma density of 2.2 x 1011 cm. 3. Extrapolation of the

decay curve to t=o0 gives an initial resonant frequency

2
3(0 =3 x 10'8 sec.=2. The main resonance for the dipole mode is given by

Fres = I+E
for the pyrex tube used cmd hence {‘P = 17 4x10'8 ot F =0. This leads
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Comparison of external probe with results of various workers,



-1

to an initial plasma frequency of 4.1 x 107 sec.™! which agrees with the

Trivelpiece and Gould values.

In spite of this agreement, the values NS =0.43 x 1014 cm.'3,
Nog =2.2x 1011 cm.=3 and ot = 0,19 x 10° sec.”! are in conflict with
Dattner's results for the pulsed column. However, we may equate the
deionisation rate & to the mean ionisation rate ¥; for a d.c. column and

compare the values of 0&190 , 69, with the published results as in Bryant (1966),

(Fig. 6.6, page 67). Here v is the column radius and Po = % is
AT

the pressure reduced to 0°C. Hence }Do =1.5x 103 mm. Hg. - The
point is marked P;. A second result at a higher temperature is the point Po.
The experimental points are consonant with the results of the other workers.
Bryant (1966) has suggested that the low value obtained from the
waveguide method may be caused by excessive negative charge on the wall
following the initial rapid removal of electrons from the column. It is
likely that the external probe is not sensitive to such a charge accumulation
because the rapid alternations and non-uniformity of the field due to the
probe near the glass wall do not favour charge accumulation at the wall.
The results were reproducible for variations of pulse length and temperature
and this together with the small probe size makes the method a convenient
one for determining any variation of average electron density along a plasma

column,

6.4 Variations of density along a plasma column

In considering the propagation of waves along plasma columns it is
clear that variation of electron density along the column will influence
propagation and if the propagation band is narrow, too great a variation will
produce conditions at certain places for which propagation of a particular

mode is not possible.



Axial variation of electron density in a steady discharge had been
measured many times using probes, waveguides, stripline and cavities. All
show a characteristic increase in electron density towards the anode associated
with the increased gas density in this region caused by momentum transfer from
electrons in the electric field. The external probe was used to compare the
variation for the experimental column under decay and steady state conditions.

Fig. 6.7, page 70 shows representative Polaroid photographs of the
successive resonances at distances 2, 3, 4, etc. cm. from the anode for a
probe frequency of 1050 MHz and pulse lengths of 4 and 10 &35 . The
resonances show the constancy of the number density along a plasma in decay
if the pulse is not too long. (< 503 ). As the pulse length is increased
the line of resonances becomes curved near the anode showing the longitudinal
adjustment of number densities. At distances greater than 20 cm. from the
anode the resonances are disturbed by the graphite termination and the double
sheath which exists at the entrance to the narrow tube. It can be seen that
if waves are launched in the afterglow following fairly short pulses they will
be propagated along a column of uniform axial density and damping due to
variations of this nature will be minimal. Hence any failure of the wave
propagation under these conditions can be assigned to processes independent
of axial variation such as the inefficiency of the launching method and the

intervention of other damping processes.

6.5 Number density along a d.c. column at fixed current

The external resonance probe was also used to determine the number
density variation for a steady discharge at various currents. The 16 /IVF
high voltage capacitor was replaced by a smoothed 1.5 Kv power supply and
the resonance was displayed by modulating the grid of the 813 at line frequency
by the use of a transformer as shown in Fig. 6.8, page 70. The horizontal

sweep was derived from the sweep resistor. The displayed resonance was fixed
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on the centre line of the CRO graticule for the mean current and as the probe
was shifted along the column into regions of different number density the
applied frequency was changed so as to maintain the principal resonance in
the central position. A summary of the results if contained in Fig. 6.9,
page 72. At high currents it was difficult to place the resonance exactly
and the point to point stability of the discharge was questionable.  The use
of a cavity or stripline tends to ignore these local variations but a pair of
small extemal probes could be used to determine the coherence or otherwise
of the distribution of these local variations along the column. They possibly
arise from standing surface waves which may be excited by the double sheath
at the beginning of the narrow part of the discharge tube.

The number density calculations were made using the relation

fres = fl’/,JTTe'a
with 81 = 4.8 as before, The tube diameter and tube temperature correspond
approximately with the third figure in the letter by Agdur et al (1963) and the
cal culated densities agree with their results, It can be seen from the graphs
that there is a region of uniform electron density along the column at
distances greater than 7 cm, from the anode. In such a uniform region

conditions for wave propagation should be favourable.

6.6 Surface waves on decaying plasma columns

The experimental work in this section was designed to study the
launching and attenuation of the surface waves along a plasma column during
decay. With the launcher, the range of frequencies and the apparatus
dimensions used these aims were not completely realised.

The method chosen for the decaying column depended upon the
following consideration (Fig. 6.10, page 72). If the plasma decays

following a short pulse the plasma frequency decays and for a wave of angular
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frequency @ launched on the column, the favoured mode will depend upon
the relation between w and Wypg = w%'._"é; . Forafixed oI (not
too high) as the plasma decays, & is at first less than and later is greater
than W yesomamce. For we Wyes We can expect the symmetric . W =0
made to be favoured and for (YW the dipole W =1 mode should be
propagated.

In order to launch the two modes with the same coupler the double
ring coupler of Carlile (1964) was chosen. Not much was known about the
efficiency of this coupler particularly for the M =1 mode and the failure
to record any significant features of this mode may have been due to a low
efficiency. In the work of Akao and Ida (1964) where the launching of both
modes is used with a slotted wave guide the amplitude for dipole excitation
is substantially less than that for the symmetric mode.

The launcher itself is il lustrated in Fig. 6.11, page 74. To a first
approximation its overall field is that of a double ring plus the small probe
at right angles,  Some lack of poWer in the higher mode may be due to the
smallness of the probe since the dimensions of the probe are very small
compared to the free space wave length at the frequencies used in the

photographic method to be described.

6.7 Test of the launcher - Carlile method

The launcher was tested by carrying out an experiment similar fo
that of Carlile for a d.c. column. The current was 580 ma, bulb temperature
38°C and column temperature 50°C. Detection of the symmetric mode using
the phase sensitive bridge of Fig. 6.13, page 75, was comparatively easy
but the detection of the dipole mode was difficult because of noise and high
attenuation.

The Brillouin diagram for these waves is given in Fig. 6.12, page 74
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and the backward nature of the W = 1 mode is evident. The propagation
band width for this mode is quite narrow and the measurements near resonance
and cut off were difficult to make with any precision. Some of this difficulty
was thought to be due to axial variation and it was hoped that the launcher
would produce both modes on the decaying plasma with its greater axial
uniformity. This overlooked a difficulty that will be commented upon later.

The method used for launching and displaying the spectrum of detected
waves during decay is summarised in Fig. 6,13, page 75. The tube was
flashed with a pulse of variable length and the presence of the waves in the
afterglow was detected by the movable probe using a bridge circuit.  The
output of the bridge was displayed on the CRO together with the current pulse.
The frequency applied to the double ring launcher was varied from 850 MHz to
2000 MHz and tuning stubs were provided to enable the bridge response to be
sharpened.

A set of Polaroid photographs was taken at 1 cm or 0.5 cm intervals
along the column using the single shot facility on the Tektronix 547 and
shifting the plate between exposures. On each set of photographs a Tonks-
Dattner type resonance was also displayed using the probe in the manner
described earlier.  For this display the launcher was disconnected and the
variable attenuator set at maximum attenuation. During the display of the
probe response to the propagating waves the attenuation was set at a value
(16-22 db) which reduced the amplitude of the direct signal in the other arm
of the bridge. This was not always possible but the method of measurement
removed any residual interference. A tracing from a photograph of a
typical display is shown in Fig. 6.14, page 77.

The amplitudes of the waves at various times in the afterglow were
determined by the following method. The right hand side of the photograph
which is far into the afterglow gives the zero probe voltage for the display,

so that a line tangential to the display at this point gives the zero for all times
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in the afterglow. For any chosen time in the afterglow the distance from

this zero line to the display was measured using a diagonal scale and although
simple and somewhat time consuming, this proved to be a reproducible method.
Typical sets of graphs illustrating the result of plotting probe response against
distance along the column are shown in Figs. 6.15-6.16, pages 79-80 and

the small attenuation along the column is evident. This is because of the
uniform number density along the column,

Results from a large number of these graphs are summarised in Table I,
page 81 and the dispersion curves of Figs. 6.17-6.18, page 82. The w =0
mode is quite prominent and cuts off at the main peak of the resonance display
and it is evident that this mode can be readily established on a decaying

plasma column if the frequency is not too close to resonance.

6.8 Problems associated with these measurements

The W =1 mode is in general not evident but there is some sign of it
at frequencies such that the resonance occurs only a short time after decay
begins, i.e. 1-2 m$ . For the experimental conditions used these are
frequencies in excess of 1.5 GHz and for such frequencies the perturbed
modes of the waveguide predominate and the dipolar mode couples to these.
The problem of coupling has been dealt with by Leprince (1967). These
modes are evident in the graphs and the coupling between modes can be seen.,
However, for times in excess of 5 u8 , exciting frequencies in excess of
1 GHz should have produced some sign of the dipole mode since the guide
interference is not in evidence, but there is little sign of the waves. For a
resonant frequency of about 1 GHz corresponding to a plasma density of

-3

2.4 GHz the electron density is of the order of 1011 cm™° and the dipole

field of the coupler is probably not efficient in this low density plasma.
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TABLE | Summary of frequency-mean wavelength results for decaying plasma.

frequency mean wavelength cm,

GHz t=0 t=1 t=2 t=3
0.9 7.0 6.0 5.0 4.3
0.95 6.8 5.6 5.6 4.2
0.995 6.7 5.7 4.6 4.0
1.04 6.4 6.4 5.5 4.7
1.06 5.7 4.9 4.2 4.0
1.1 5.5 4.7 3.9 3.3
1.15 5.4 5.0 3.8 3.0
1.17 5.0 4.4 3.7 3.0
1.20 4.9 4.2 3.3 2.5
1.225 4.2 3.7 3.0
1.25 4.3 3.2 2.7
1.275 4.3 3.7 2.6
1.30 4.2 3.6 2.4 2.0
1.325 3.9 3.0 2.2
1.350 3.7 2.7
1.375 3.8 3.1
1.40 3.7 2.7
1.425 3.6 2.9
1.475 3.0 2.4 1.5
1.50 1.0
1.65 2.0
1.675 2,2
ﬁ’ 3.6 3.3 3.0 2.7
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The detection method may not be sensitive enough. In four papers -
Wong and Clarricoats (1965), Granatstein and Schlesinger (1965), Akao and
Ida (1964), Le prince and Pommier (1966) - the detection method depends on
resondnce methods with standing waves which is more sensitive than the
transmission method used here.  On the other hand, although measurements
of wavelength are easier with resonance methods they do not give a clear
picture of propagation down the column,

A major problem with this method of detection of the waves is the
supposition that the decay time of the plasma is long compared to the travel
time of the wave, so that the wave experiences a relatively uniform set of
conditions along the column. The dimensions of the apparatus used gave a
narrow pass band for the dipole mode, and the flat dispersion curves for the
# =1 mode and the the v = 0 mode near to resonance give low group
velocities and consequently the travel time from launcher to probe, supposing
that the wave is effectively launched, is long enough for the decay process
at the probe to be almost comp‘le're‘ before the wave arrives, Under these
conditions the probe response will be effectively zero, independently of
any damping processes.  The rapid variation of plasma density will mitigate
against the propagation of the waves for frequencies in the neighbourhood of
the resonant frequency. It must be remembered too, that at such frequencies
Landau damping will be more and more effective. Some support is given to
the above suggestion by the two points corresponding to the dipole mode in
Fig. 6.18, page 82. The measured points are for frequencies which give the
2 =1 mode at the beginning or just after the commencement of the afterglow.
The applied frequency is higher than the resonant frequency corresponding fo
the maximum current in the pulse. This means that tJ is not close in value to

Wys and the wave velocities are sufficiently high to have some chance of
being detected along the column,

The velocities of these waves are, of course, very dependent on the

(83)



ratio of the plasma radius to that of the enclosing waveguide.  For the open
columns the dispersion curve is steeper and the waves will be more easily

detected over a fairly limited range of frequencies and wavelengths.

O'Brien (1967).

6.9 The slowly modulated discharge column

A somewhat similar technique was used with a slowly modulated D. C.
column. The experimental arrangement has much in common with the
previous experiments and is illustrated in Fig. 6.8, page 70. The initial
modulation was done using a transformer and the line frequency and the
detection was by means of the bridge circuit in Fig. 6.14, page 79. The
Carlile launcher was excited as before and the probe response displayed on
the CRO using a sweep derived from the current through the plasma. The
effect of the sinusoidal line modulation can be seen in Fig. 6.19 (a), page 85,
for a series of photographs of the display at half cm intervals down the
discharge column. The exciting Ffequency here was 1500 MHz and the
horizontal calibration 200 ma/cm with zero current on the right hand side.
The hysteresis of the number density for this low frequency modulation makes
measurement difficult (especially near resonance) for the v =0 waves.
Nevertheless the composite picture gives a summary of the phase fronts, the
effects of number density on propagation and the wavelength change with
number density variation. There is some evidence of structure in the W =1
wave region.

In order to avoid the difficulties of hysteresis due to sinusoidal
current variation, the current was modulated in a saw tooth manner using the
813 as the modulator with a low frequency saw tooth voltage derived from the
time base of a CRO and applied to the grid of the valve through an 807 used

as a cathode follower. By monitoring the current sweep on a separate CRO
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it was possible to adjust for a linear sweep in spite of the changing properties
of the plasma, provided the total range for the sweep was not too large
( < 350 ma).

Portion of a typical composite photograph is displayed in Fig. 6.19(b),
page 85. This example is for 1300 MHz at bulb temperature of 25°C and a
column temperature of 50°C.  The current sweeps are linear and the vertical

sensitivity is 0.01 v.em L.

Accompanying each trace is an undisturbed zero
line obtained from the other beam of the CRO and measurements of probe
response were made from this line by means of a diagonal scale.

In these examples the launcher was near the anode in the region of
fairly marked axial inhomogeneity for the steady d.c. column. Variations
of plasma density are evident and the effect of bulb temperature on the
resonant frequency could be measured. As the probe was moved along the
column at a rate which was fast compared to the sweep, the wave variations
in keeping with the particular plasma density could be seen and the
demonstration was most effective.

From a series of photographs from 1000 MHz to 2500 MHz and
currents varying from 50 ma to 600 ma it was hoped to survey the W =0
and " =1 waves for the launcher close to, and away from, the anode.
However, waveguide mode interference and the flat dispersion characteristic
for the dipolar mode made this very difficult.  The dipole mode, if launched,
was masked by waveguide modes which were practically unaffected by the
plasma until the plasma density was sufficient for the symmetric mode to
exist at the particular excifing frequency. Figs. 6.20, pages 87-90 show
a typical set of graphs.  From graphs such as these the propagation
characteristics, Fig. 6.21, page 91, for the v =0 mode were determined
in the slowly changing plasma column,  There was no real evidence of the
M =1 mode for the particular frequency range and current densities chosen.

It seemed that the low frequency sawtooth modulation introduced new
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inhomogeneities into the column and an alternative method of looking at the

photographs confirmed this.

6.10 Alternative treatment of data

A second set of experiments were carried out with the plasma current
varying from 100 ma to 400 ma and with the launcher well away from the
anode. It was hoped that some sign of the W =1 mode would be seen.

The method of reading the photographs with a diagonal scale for such
a current range over many hundreds of traces proved to be too time consuming
in terms of useful results and has the additional defect that smaller amplitude
waves which may occur at the same time as a large amplitude wave are not
easily found from any point by point measurements. It is as if one were
trying to detect ripples on a large water wave from depth observations at a
few isolated points, The rather effective composite pictures taken with a
sinusoidal modulation (Fig. 6.19, page 85) were reminiscent of sea waves
moving along a sloping beach and this picture of crests and troughs suggested
a similar interpretation of the sefs of curves taken with sawtooth modulation,
and in one sense the waves can be made to draw their own dispersion curves in
a changing plasma,

The total display may be thought of three dimensionally (the use of
half closed eyes and tilting the photographs helps) and in this way the
prominent waves together with quite small ripples can be seen. In Fig. 6.22,
page 93 the direction of wave propagation along the tube may be taken as
the z axis, the x axis of the coordinate system scales for the current or
plasma frequency and the y axis measures the probe response which is the
wave amplitude.

All waves start from the launcher with their own velocity when the

plasma density favours propagation. Provided the amplitudes are not too
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large, the loci of the wave crests for successive plasma frequencies determine

the velocities of the waves and permit the calculation of @1 - & curves

for any fixed frequency. Some distortion occurs if there is too greaf a |
variation in amplitude. If backward and forward modes are both in evidence

the crest lines will slope in opposite senses and if other modes are present as
perturbations they will be seen as ripples crossing the other waves provided 4
that the trace separation and sensitivity is suitably chosen.

A set of such photographs of the waves propagating along a plasma
column for frequencies between 1,2 GHz and 1.85 GHz, current variation
from 100 to 400 milliamperes and probe intervals of 0.5 cm was used for
interpretation in this way. The launcher was about 8 cm from the anode in
a region of uniform electron density for steady state discharges over the
chosen current range. The "crests" of the wave which swept up the changing
electron density beach were traced by eye and corrected for spacing errors.
The resulting curves, of which Fig. 6.23, page 95 is a typical example, give

an overall picture of the various'modes.

6.11 The Brillouin diagrams for the symmeiric mode

The forward symmetric " =0 surface mode is prominent. If these
waves are measured from crest to crest for a fixed value of the current the
wavelength for various regions may be rapidly determined. In Fig. 6.24,
page 96 the f-X\ curves for this mode at various discharge currents are
shown. This particular set is the mean wavelength for waves within 10 cm.
of the launcher. Using these curves and the general curve from Fig. 4.7
page 43 obtained for the same fube it is possible to estimate the plasma
frequency within this region for the various discharge currents during the slow
saw tooth modulation. The plasma frequency-current curves for this region
differ markedly from the results for a steady discharge summarised by

Trivelpiece and Gould.  Furthermore the waves show an obvious change in
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wavelength down the column not associated with heavy damping but rather
reflecting the changing electron density. Since these measurements are made
in a region which is of uniform electron density for the steady state d.c.
discharge we ' can assume the slow modulation has introduced the additional
inhomogeneity and this accounts for the difficulties in detecting the dipolar
modes over a large current range.

If the resonance loci for these waves at various frequencies are all
drawn on the same current. =~  position plane as in Fig. 6.25, page 98,
the variations of resonant frequency along the column are easily determined
and a plot of fw::s agoinst position for various currents as in Fig, 6.25,
page 98 results in the set of straight lines shown. These are of interest in
that they suggest that the number density is proportional to the current at any
particular position but the constant of proportionality changes with position

and increases towards the anode.

6.12 The causes of the inhomogeneity

For a steady state d. c. discharge, as earlier results show, there is an
increase in number density near the anode and for this region the change in
number density is not proportional to the current change producing it.  This
marked increase in number density arises because the transfer of momentum to
neutral gas molecules in elastic collisions exceeds the gain of momentum of
ions towards the cathode from the field and pressure differences arise in the
column which give greater number densities near the anode - see Klarfeld
(1938).  Away from this region the number density in a steady d. c. discharge
at constant temperature is proportional to the discharge current over a wide
range of currents.  The column temperature T, is generally greater than the

cooled bulb temperature Tb . This latter temperature controls the neutral
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gas density Fﬁ and because

%=ﬁ-‘:

the neutral gas density over a large part of the tube is constant.

These fairly simple considerations do not necessarily hold when the
column current is modulated, since current changes will be accompanied by
temperature fluctuations due to thermal modulation.  As the current changes
the gas density within the column changes and for this to occur the mercury
vapouf must move in and out of the column.  This has been discussed by Riley
and Hall (1966). The exact effect of this is difficult to predict. Af
reasonable modulation frequencies (100 Hz) the change in number density can
follow the current change but as the frequency increases a fixed ionisation rate
limits the electron population and the current change is accounted for by an
increased velocity of the electrons,  This effect manifests itself in the phase
lag between current and number density in Tonks-Datter displays with high
frequency sweeps discussed by Bryant and Irish (1965) and seems to become
evident in normal experimental tubes at frequencies 3> 100 Hz, Gas flow
problems are unlikely to give much trouble at these frequencies.

At much lower modulation frequencies it has been commonly assumed
that number density and current are in step but this ignores the mass motion of
the mercury vapour. This mass motion for increasing current is opposed by
momentum transfer from electrons to neutral and excited particles, which leads
to increased ionisation and reduced mobility. The variations of the different
processes — current rise, temperature increase, gas flow, momentum transfer
and ijonisation = will not be in step and their total effect is to produce the
observed variations of electron number density along the column. The graphs
of Fig. 6.26, page 100 can be used together with the Tonks-Langmuir analysis
of the low pressure arc to obtain some idea of the density variations along the

column and the accompanying hysteresis between number density and current.
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and curves given previously (Fig. 5.3, page 60) show that Ng and T are

approximately constant over the current range used. [t follows that
1(&1., o |_e
{Ne7

The mean free path for electrons Le is proportional to the mean free path of
the gas atoms.  If we suppose the modulation to be sufficiently slow for the
transverse temperature to be constant at any particular point of the column,

the mean free path is inversely proportional fo the density and since the current
along the column is constant it follows that <Ne>/,09a,s is approximately
constant along the column. The experimental results Fig. 6.2 , page

indicate that <{Ne» is a linear function of the pasition along the column and

hence the gas density follows a similar law. As the current rises the ratio

<E%>e—;z—°o-°:z decreases and hence the corresponding gas density ratio PzO/‘Po

tends to have @ minimum value when the current is @ maximum. This explains
to some extent the marked hysteresis between current and number density. The
argument is suggestive only for it ignores all effects dependent on the motion

of the gases but the calculation is a guide fo further experiment and analysis.

6.13 The v =1 mode

If the current is not large the total variation along the column is much
reduced and for such a column the dipolar mode has a chance of propagating.
This probably accounts for the presence of the wave on the low current side
(125 ma) but measurements of this wave from crest to crest measurements or
by additional interpolation are not particularly precise. Nevertheless, some
points of the characteristics can be plotted and they fit the theoretical curves

for this wave in the region near the light line. Fig. 6.28, page 104,
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In order to maintain this particular mode the number density should be constant
over a large region of the column and the transverse dimensions of the tube and
column should be chosen to give a dispersion curve with a marked slope so tl;af
minor vqr.ioﬁovns of number density do not move outside the propagation region
for a given frequency. Success is most likely to be obtained with open columns
and small currents and with improved launching devices as used by O'Brien

(1967).

6.14 Perturbing plasma modes

On the high current side of the modulated display the eye can trace
some additional modes which sometimes disappear into noise. They appear as
perturbations of the principal symmetric mode and are more prominent for lower
values of

The approximate characteristics of these waves may be derived by the
methods already used and these are shown in Fig. 6.27, page 103. Some
normalised characteristics for these modes are presented in Fig. 6.28, page
104 so that their relation to the W =0 surface mode can be seen. The f},
values for these curves were taken from Fig. 6.26, page 100.

An interpretation of the nature of these waves is somewhat tentative.
The characteristics at 375 mA and 300 mA seem to have a backward and forward
wave region and can be interpreted as the dispersion curve of a fairly heavily
damped wave near resonance and this would be characteristic of a warm lossy
plasma. The resonance frequency is given by %b ~ 0.3. As the current
decreqses%b increases and approaches the value 0.4 where the surface wave
resonances are dominant. Furthermore at low currents the temperature of the
plasma is considerably reduced and it seems as if these propagating perturbing
modes are only present to a marked extent in warmer plasmas at higher electron
densities. This would account for their being seen strongly in the upper right

hand corner of the photographs.  They also damp rather rapidly as they
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propagate down the column away from the launcher.

The possibility of the perturbations being caused by electromagnetic
waves in @ non-isotropic lossy plasma was considered. There are curves in
Allis et al (1963) for such waves in a one dimensional isotropic plasma with
collisions which have a damped resonance hump but the step from this one-
dimensional isotropic plasma to the much more complex inhomogeneous
experimental situation has not been undertaken by the theorists.  Field
patterns will be functions of the frequency and there have been few explicit
solutions of problems of this kind.

It seems more likely that these waves are propagating Langmuir=Tonks
type oscillations. For a cold collisionless plasma the only propagating modes
are the surface modes but as the theory in earlier chapters has shown, where
a magnetic field acts along the axis dn additional body wave can propagate.
For @ warm plasma a similar wave can be expected since the thermal motions
of the electrons will provide the kinetic forces for wave propagation away
from the exciting source. The additional axial inhomogeneity that the slow
modulation introduced will also provide a number density gradient that

favours wage propagation of this kind.

6.15 General discussion of results

The experimental work and results show that methods using a phase
sensitive bridge with photographic recording of probe response on a CRO can
give a wealth of information conceming conditions in and wave propagation
along a varying plasma column. The variation may be due to decay or to
current variations. The record provides a picture of wave behaviour along
the column which has a precision and descriptive value lacking in resonance
and standing wave methods. The measurements made from the records fit the

results of other workers and the approximate theory.
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The composite photographs give a survey of the various competing
modes and afford a rapid method of acquiring data over a large range of plasma
density and exciting frequencies so that it is of value in determining regions
of propagation for a specifilc wave and the effects of damping. If comparisons
between different conditions (density, temperature launcher, etc.) are being
made the method does away with tedious measurement and analysis.

The use of surface waves for diagnostics is often a time consuming
process and the integral method opens the way- for more general application
of these waves to the analysis of the positive column. It is particularly
helpful when applied to changing conditions, since the dispersion characteristics
reflect the properties at each region of the plasma. The application of the
method to the modulated low pressure arc reveals processes that require further

experiment and analysis.

6.16 Extension of the present method

As an alternative method of presentation a storage CRO can be used to
build up the composite wave picture, the consecutive traces being displaced
by voltages proportional to the probe displacement. These voltages can be
derived from a linear potentiometer attached to the movable probe.

The method can also be extended to the survey of waves in a plasma
situated in an applied axial magnetic field and the visual display should make
it possible to adjust conditions so that the backward mode has every chance of
propagating.  This wave has proved to be difficult to launch and maintain.
This may be due to the use of swept current methods which introduce their own
inhomogeneities. These inhomogeneities may be avoided by using a constant
current and a slow frequency sweep over the range of interest. The horizontal
sweep in the CRO display could be provided by a voltage proportional to the
frequency and the composite pictures will be built up from a series of fixed

currents,
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The coupler used in the present set of experiments does not seem
particularly efficient for launching the dipole mode and there is need for
further work in this important area. The use of couplers such as those
introduced by O' Brien (1967) or the flared coaxial line couplers developed
by Singh and Gupta (1966) may help overcome the limitations imposed by the
small amount of energy in the higher modes.  Provided sufficient power can
be put into the higher modes, the integral photographic method should prove
an ideal way of studying them and the coupling between them,

The role of the plasma modes is interesting and must have implications
for probe measurements of temperature and number density. The use of a
variable magnetic field with the accompanying changes in discharge diameter
and pressure would shed a great deal of light on the production and interaction

of these waves in closed structures.
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