ANALYSIS OF COMPLEX INTEGRAL PHOTOELECTRON SPECTRA

by

M. P. Panizza B.Sc. (Hons.)
Department of Physics

A thesis submitted for the degree of Master of Science at the University of Adelaide

March 1985

Sewanded 17-5-85

TABLE OF CONTENTS

Chapter		Page
	INTRODUCTORY SUMMARY	iv
	STATEMENT	vi
	ACKNOWLEDGEMENTS	vii
I	PHOTOIONISATION OF DIATOMIC MOLECULES	1
	I.1 Aspects of Photoabsorption	1
	I.1.1 Aspects of Quantum Mechanics	2
	I.2 Diatomic Molecules	12
	I.2.1 Franck-Condon Factors	13
	I.3 Autoionisation	16
II	THE EXPERIMENTAL SYSTEM	19
	II.1 Design of the Instrumentation	20
	II.2.1 UV Line Sources	23
	II.2.2 A Continuum Source	23
	II.2.2a A Brighter Continuum Source	24
	II.3 The Computer Interface	29
III	THE ELECTRON ANALYSER	32
	III.1 Various Types of Analyser	33
	III.2 General Features of the Spectral Step	36
	III.2.1a Grid Effects	36
	III.2.1b Stray Magnetic and Electric Effects	37
	III.2.2 The Sum of the Various	39

TABLE OF CONTENTS (continued)

Chapter			Page
IV	CURVE	FITTING AND PHOTOELECTRON SPECTRA	42
	IV.1	Experimental Procedure	43
	IV.2	Some General Points about Curve Fitting	49
		IV.2.1 A Functional Fit	51
		IV.2.2 A Numerical Fit	52
		IV.2.2a Proof that the Numerical Fit Works	56
	IV.3	Step Height and the Efficiency Function	60
V	EXPEF	RIMENTAL RESULTS	61
	V.1	Fitting Multiple Step Data	62
		V.1.1 Problems with Molecular Spectra	64
	V.2	Comparison with Literature	66
VI	FUTUF	RE PROSPECTS	68
	APPEN	NDICES	71
	I	Mathematical Techniques	71
	II	CBM Program Guide	73
	III	The Plateau	75
	REFE	RENCES	76

iii

INTRODUCTORY SUMMARY

The major impetus for this thesis is the desire for accurate vibrational branching ratios in the photoionisation of diatomic molecules. These are a sensitive guide to the processes occurring in direct photoionisation and autoionisation. We have the equipment capable of giving low resolution integral photoelectron spectra in steps of various heights. The relative the form of 'heights' are the branching ratios but the shape of the steps change with energy in a fashion peculiar to our own instrumentation. Described within are the various changes and improvements in design and, in one particular area, the optimisation of techniques in the employment of this system presented more fully in Lindemans' Ph.D thesis (1981).

Considerable time was spent, in collaboration with others, on the upgrading of a continuum VUV source. The hoped-for increased intensity would be of great benefit in, generally, low count rate experiments. Though the work was not completed, recent results hold great promise.

With the assurance of increased flexibility and ease of handling, we naturally opted for greater computer control. Paralleling the development of the required interfacing hardware has been the growth of an extensive,

iv

though by no means complete, program library. The consequent increased pliancy of the system, hinted at herein, has yet to be fully realised in terms of experimental results.

The bulk of this work falls directly under the given title, the analysis being conducted on a spherical retarding potential photoelectron analyser. This has properties deflective-type apparatus, very dissimilar to most notably, the former having an integral stepped response with electron energy whilst the latter's is differential or peaked. However, like the deflective, there is a specific spectral profile for monoenergetic electrons. The variation of this profile with electron energy has been investigated with the aid of Inert gases and curve fitting. This is shown to be of great benefit in decipherof partial cross-sections in the more complex ing molecular spectra, like that of oxygen.

V

STATEMENT

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of the author's knowledge and belief, it contains no material previously published or written by any other person, except where due reference is made in the text.

> M. P. Panizza March, 1985.

ACKNOWLEDGEMENTS

My first handling of the system was done under the anxious eye of Dr W. Lindemans. For his help and the many invaluable discussions on photoionisation, I must express my sincere thanks.

To my supervisors, Dr A.J. Blake and Dr L.W. Torop, I wish to express my gratitude. But for their expert advice and unending patience, this thesis would not be.

As regards the design and construction of the lamp supply, Dr D.G. McCoy and Mr A.L. Jones were always ready and willing to lend an able hand. Messrs B. Fuller and M. Shorthose more than helped in the development of the computer interface. Further unerring technical support was provided by Messrs J. Wright and R. Hurn and many of the workshop and electronic services staff. The fine typing was furnished by Mercia Fuss. To all these people and the many I have forgotten, I am greatly indebted.