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INTRODUCTORY SUMMARY

The major impetus for this thesis is the desire for
accurate vibrational Dbranching ratios in the photo-
ionisation of diatomic molecules. These are a sensitive
guide to the processes occurring in direct photoionisation
and autoionisation. We have the equipment capable of
giving low resolution integral photoelectron spectra in
the form of steps of wvarious heights. The relative
'heights' are the branching ratios but the shape of the
steps change with energy in a fashion peculiar to our own
instrumentation. Described within are the various changes
and improvements in design and, in one particular area,
the optimisation of techniques in the employment of this
system presented more fully in Lindemans' Ph.D thesis

(1981).

Considerable time was spent, in collaboration with
others, on the upgrading of a continuum VUV source. The
hoped-for increased intensity would be of great benefit
in, generally, low count rate experiments. Though the work

was not completed, recent results hold great promise.

With the assurance of increased flexibility and ease
of handling, we naturally opted for greater computer
control. Paralleling the development of the required inter-

facing hardware has been the growth of an extensive,

iv



though by no means complete, program library. The con-
sequent increased pliancy of the system, hinted at herein,
has yet to be fully realised in terms of experimental

results.

The bulk of this work falls directly under the given
title, the analysis being conducted on a spherical retar-
ding potential photoelectron analyser. This has properties
very dissimilar to deflective-type apparatus, most
notably, the former having an integral stepped response
with electron energy whilst the latter's is differential
or peaked. However, 1like the deflective, there 1is a
specific spectral profile for monoenergetic electrons. The
variation of this profile with electron energy has been
investigated with the aid of Inert gases and curve
fitting. This is shown to be of great benefit in decipher-
ing of partial <cross-sections in the more complex

molecular spectra, like that of oxygen.
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CHAPTER I



I. PHOTOIONISATION OF DIATOMIC MOLECULES
I.1 Aspects of Photoabsorption

Of the wide variety of possible interactions between
electromagnetic radiation and matter, the one of partic-
ular concern to us 1is photoabsorption by isolated atoms
(or, later, molecules); that is, atoms in a gaseous state.
In the wavelength range of interest, 60 to 100 nanometres
(nm), a part of the extreme ultraviolet, this is by far

the dominant interaction.

Electromagnetic radiation comprise photons
which can be viewed as packets of energy of a value

directly related to the frequency of the radiation, v.

= hv I.1

E
h = Planck's Constant

Upon photoabsorption of a photon, the atom must undergo an
equivalent jump in energy. Figure I.1 exemplifies the
simplest of absorption spectra as it varies with frequen-
cy. Most noteworthy is a set of discrete lines, at the
lower frequencies, which progressively converge on to a
threshold, . beyend  which there is a continuum. The
occurrence of discrete lines clearly suggests that only
certain energy jumps are allowed here. In the continuum
region it is actually possible to obtain a current from
the gas by simple application of a small voltage. This 1is

evidence of ion + electron formation, commonly termed
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Figure I.1l Schematic of hydrogen absorption spectrum.
The shaded section indicates lines too close to re-
solve. The threshold for ionisation is arrowed.



photoionisation, with the ejected electron becoming a
photoelectron. Indeed, upon  taking a photoelectron
spectrum at a fixed frequency in the continuum domain, a
single peak is obtained (again in the simplest case) at a
point corresponding to the kinetic energy of the emitted
electron. And this energy is very close to the energy
difference between photon and threshold, the slight
deficit being made up by the K.E. of the ion. Conservation
of momentum, before and after the photon-atom interaction,

ensures this is the case.

Much of the above is readily inferred from experim-
ent. But for a greater understanding, some theoretical

grounding in Quantum Mechanics is necessary.

I.1.1 Aspects of Quantum Mechanics

Before the turn of the century, electromagnetic
radiation was largely thought of in terms of waves, as
testified by the work of Maxwell. But the concept of a
photon developed by Planck and Einstein, suggests a partic-
ular nature 1is more representative at times (e.g., photo-
electric effect). Now just as radiation shows this dual

character, so it is with matter.
Electron diffraction experiments point to the follow-
ing wavelength relation:
= h 1.2
A /p
where p is the momentum. Clearly this wavelike character

will only be evident in the atomic realm, where the masses

are small enough.



Associated with the wave nature 1is the Uncertainty

Principle, which comes in several forms. For example,

AXx . AP 2 h I.3a
X
At . AE =2 h I.3b
where h = h/2m, and the A's refer to the uncertainties in

any measurement of canonically conjugate variables. What
it does 1is basically set a 1limit to the exactness with
which we can define our world. Figure I.2 presents the
wave picture, the uncertainty in x defined by the size of
an associated wavepacket, and that in p by the spread in

the packet's Fourier transform.

To fully describe any wave motion, you need a wave
equation. For particles, the appropriate form is found in

the Schroedinger Equation.

HY (r,t) = 1 h3 Vv (r,t) 1.4
ot

¥ , or more strictly I‘y*‘y| dV, provides a statistical
description of the likely whereabouts of the particle of
interest. H is the Hamiltonian operator. It's precise form
depends on the system being described, but for the
simplest case of a single electron moving around a

relatively fixed or massive nucleus (essentially the

Rutherford picture of the hydrogen atom),

H = V(r) - h? y? I.5
Zm

V : potential energy, a function of position (r)

L

r : distance of electron from nucleus. 1 = (x2+y2+2z2)?
where (x,y,z) are the co-ordinates of the electron
relative to the nucleus.
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Figure I.2 The more localised a particle, the smaller
the associated wavepacket. And the larger the spread
in wavelengths needed to define it. If Ax tends to

infinity, a pure sinusoidal wave would result with
only one associated wavelength: Ap=0.
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m : electron mass; strictly should use it's reduced mass
w.r. to the nucleus.

V2 : The Laplacian operator = 3 + 3" + 3

ax? 3y?2 3z?

This is basically the sum of potential and kinetic ener-
gies respectively. Some justification for this equivalence
is given in Schiff (p.20-), through treatment of a free
particle. It should be emphasized that there is no strict
proof of the S.E., but rather that it relies on it's

success in backing up and predicting experimental results.

For an isolated hydrogen atom in a stable state, the

S.E. must obey the conservation of energy.
HY = EVY I.6

" Here E, the total energy of the state, is a constant. As.

Equation I.4 must still hold, then

implying the separation of ¥ into independent space (r) and
time terms.

y (r,t) = v (x)exp (—iEt/h) 1.8
Equation I.6 can now be solved exactly for ¥ , noting that
V is in fact the simple centralised Coulomb potential,
independent of time. Appropriate boundary conditions
ensure the spatial wavefunction mimics real behaviour. For
bound states, ¥ - 0 faster than 1/r as r+>®, leading to an
integrated probability density,/fy* ¢ dxdydz, clearly local-
ised about the nucleus. For ionic states, W tends to a
plane wave at infinity, corresponding to the untethered

electron.



The result is a whole set of possible energy 'eigen-
values' each with their own matching wavefunctions. Below
a certain threshold the values are discrete for bound
states; above continuous for ionic states. This 1is as

expected from Figure I.1.

The bound wavefunctions, forming a complete
orthogonal1 set, can be well characterised by just three
quantum numbers, n, £ and mpy. The principn\ q.n. , n,
determines the energy, and runs through the Natural
numbers to infinity at threshold.£ has values of 0,1,2,

., n-1 for a given n and defines the allowed orbital
angular momenta, L -YZ(L+1). h. Finally my ranges from -yp,
—le-11], ..... , -1,0,1 , ..., £ and corresponds to the
component of L in a particular direction, for example, an
external magnetic field, giving L, = mph. Loosely the
wavefunctions can be thought of as localised to certain
orbitals or regions of increasing radii with n and decreas-
ing 'spherical symmetry' with L. On the face of it,2 for a
given n, the energy levels are equivalent or 'energy
degenerate, independent of £ and mpy. This degeneracy is
readily removed by the application of an external magnetic

field which interacts with the angular momentum components.

PS¥s(n, , Ly, mp,)¥(n,, £y, mp) dV = 0 if any of the 3
g.n.'s differ; i.e. for different states.

2 A closer look at the hydrogen spectrum reveals a fine
structure 1in the supposedly degenerate levels. The
explanation lies in a fourth q.n., mg=#% %, relating to
an electron spin that weakly interacts with the orbital
angular momentum - a spin-orbit effect. This becomes
more important for multielectron atoms.



Besides energy and angular momentum, ¥ contains all
the information you can possibly expect to extract without

disobeying the Uncertainty Principle. For instance,

r = [V¥Y* r vy dyv I.9

gives the average radius, readily comparable to the Bohr
radius for the lowest energy, or ground, state. Note that:
dV is a volume element best expressed in spherical polar
co-ordinates; r 1is the distance from the nucleus, the
origin of the co-ordinate system; and that the integration
must take place over all space. In fact the average or
expectation value of any real observable quantity is
easily found in a similar fashion, as long as the correct
operator 1is known. That for energy has been seen in the
Hamiltonian. The appropriate one for momentum can thus be

inferred, giving

p = JSy*x . —ih Vy dV 1.10
For multielectron atoms, H becomes

H = V(r) - h® g v? I.11
Zm ] 3

where the summation is for each electron. V is no longer
the simple centralised Coulomb potential as individual
electrons now provide a repulsive force. The resulting
S.E. has no analytic solution, in much the same way as the
classical three-body problem of astrophysics. The alter-
native is to start with a few approximations. Initially it
is assumed that each electron can be treated independent-
ly, moving in some avefage potential of the nucleus and

the other electrons. This allows the total spatial wave-



function to be separated into a product of individual

electron wavefunctions.
Y = U,0,0, ... Uy .12

It is further assumed that the potential 1is spherically
symmetric, strongest, naturally, mnear the nucleus but
falling off rapidly as you move out, due to the
'shielding' of the nuclear charge by the other repulsive
electrons. Eventually, at large r, the potential is
hydrogen-like, decreasing as 1/r. Also for multielectron
systems, a mnew postulate must be added to the S.E. if
results are going to be representative of real systems.
That postulate is the Pauli Exclusion Principle. It simply
says that no two electrons can be in the same state. This
stops all the electrons simply falling into the lowest

possible state.

The S.E. can now be solved for the individual
electron wavefunctions. From the ensuing probability
densities, the closely related charge densities can be
found. This provides a new potential picture, readily
compared with the original. If different, the new potential
replaces the old and the wavefunctions are recalculated.
The process is repeated again and again, until a consis-

tent potential is found.

The method described is basically that of Hartree
(1928). The picture that unfolds is of an infinite set of
bound wavefunctions similar to the hydrogen wavefunctions
(same n, £, mp ), with their corresponding suborbitals

progressively filled in order of energy by two electrons



of opposite spin. Importantly, electrons of the same n but
different £ no longer give rise to degenerate levels. The
greater core penetration* of the lower £ electrons binds
them more tightly. This relatively simple method provides
a good understanding of the Periodic Table with only the

outermost electrons significantly involved in bonding.

A refinement over the above treatment, by Fock
(1930), allows for the indistinguishability of any two
electrons. Thus 1labels on individual electron wave-
functions can be freely exchanged. The method makes use of
a stronger form of the Pauli Exclusion Principle, that the
total wavefunction must be antisymmetric. The energy eigen-
values so obtained provide a very good first approximation

to the true energy levels.

The treatment for continuum states is in two parts.
First the wavefunction for the isolated ion is found in
equivalent fashion to the above. Now the ejected electron
can be treated as being scattered by the average charge
distribution of the ion, with due allowance for exchange
(Manson, 1978). Clearly the asymptotic behaviour of the
unbound waveform is uniquely determined by the given total

energy and the ion's energy levels.

ot
EAY

If all the orbitals up to a certain n are filled, they
form a spherically symmetric cloud or core about the
nucleus, thus shielding the outer electrons from it's
strongly binding, positive charge. However, all 'outer'
electrons must spend some time near the nucleus within
this core.



Figure I.3 1is a schematic of the resulting complex
energy levels typical of multielectron atoms. Several
series are apparent, converging on differing ionisation
potentials. The higher I.P.'s are excited states of the
ion. They may be thought of as arising from the excitation
of an inner electron, with the reduced shielding of the
core leading to stronger binding and a higher I.P. An
accompanying photoelectron spectrum clearly maps out the

populations of the various ionic levels.

There are a number of important effects that the
above fails to account for, effects that show up in the
finer detail of spectra, Ffor example, electron correlat-

. Leb Uy say that . :
ions. tWwo electrons tend to keep on opposite sides of

A

an orbit. They obviously do not move in the average
potential of one another and strictly cannot be treated as
independent. And of particular importance, there are spin-
orbit effects. Rigorously speaking, individual orbital and
spin angular momenta are not quantised, only their
vectorial sum involving all the electrons. But even here
matters can be greatly simplified with only the outermost

electrons effectively taking part in the sum, the spheric-

ally symmetric core contributing 0 (Banwell, 1972).

Both the above effects can be accommodated into the
Hartree-Fock picture, and result in a small shift and
splitting of the energy -eigenvalues, nicely matching
experimental data. However, this does not guarantee that
the correct wavefunctions have been found. A case in point

is the spin-orbit effect apparent in Rare gas spectra
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Figure I.3 Atomic energy level diagram showing four
series of levels. Each converges to a different
continuum threshold. The adjacent photoelectron
spectrum shows how the energies of these levels can

be directly mapped.
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(Chapter 1IV). The expected splitting is easily accounted
for. But a better test for the correct wavefunction is the
branching ratio in the population of the two states. More
accurate estimates than the Hartree-Fock's are often
obtained through the use of semi-empirical parameters. (Lu
(1971) wusing quantum defect theory.) To understand the
importance of branching ratios (relative transition

rates), consider the following.

Absorption of radiation involves changes with time,
and as such must be treated by time dependent perturbation
theory using Equation I.4. For weak radiation the treat-
ment is semi-classical, with the polarising electric field
of the electromagnetic wave acting as a small perturbation
to H, leading to a mixing of states. It is a relatively
simple derivation, duplicated in many a quantum mechanical
text (Marr, p.40), to show that the transition rate
between two states is given by

2

P(E«i) = 27 o(v) | SfyFecr Py, dv I.13
3 h%e,
P(f i) : probability of transition from initial to
final state.
S : permittivity of free space.
p(v) : radiation density for given frequency.
er t electric dipole of active electron relative

to nucleus.

The frequency must correspond to the energy difference
between the two states (Equation I.1). Without going into
the details of the two states, symmetry requirements and

the conservation of angular momentum can often tell us a
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lot about the allowed transitions. The selection rules for

multi-electron atoms are indicative of this.

AsS = 0 I.14a

AL = =21 I.14b

AJ = 0,1 I.14c
S : spin angular momentum

L : orbital angular momentum

J ! total angular momentum

For branching ratios, when there are two possible
final states, Equation I.13 can be simplified consider-
ably. Generally there is mno need to know p(v), and thus no
difficult calibration of the experimental system. And if
the two final states are similar then relevant parts of Vg
may be separated out and ignored. This is a technique of

particular importance to molecular studies.
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I.2 Diatomic Molecules

Much of the previous sections is readily applicable
to diatomic molecules. However, the treatment is complic-
ated by the possibility of the relative motion of the two
nuclei involved. These are in the form of vibration and
rotation. Also upon excitation of the molecule, several
processes may compete in the absorption of the energy.
Besides transitions to some higher electronic state, for

photons of sufficient energy, dissociation can occur.

In spite of these complications or, in a sense,
because of them, molecular spectroscopy is in some ways
simpler than atomic. Quite simple measurements can supply
a lot of information about diatomic systems. This arises
in a large part from the viability of the Born-Oppenheimer
Approximation, which allows the separation of the molec-

ular wavefunction into electronic and nuclear components.
Vo= Ve Vg I.15

In physical terms, this separation exemplifies the marked
distinction in the natural frequencies of the two motions,
an electron completing about a hundred orbits in the time
it takes for a single vibration. It is a bit misleading to
speak of the separation of these wavefunctions. A little
thought must show that Ve is a function of the nuclear
spacing. But Born and Oppenheimer (1927) showed their
approximation holds true, as long as the variation in ¥,
with internuclear separation is slow enough, which is

generally the case. Thus the molecule's total energy is
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related by

E = E, + Eg I.16

The nuclear wavefunction itself. can be further
divided into vibrational and rotational components. Strict-
ly they are not independent, the proper treatment being
that of the vibrating rotator (Marr, p.119). But in any
event, the vibrational effect dominates. In fact the
rotational levels contribute no observable effects to our

spectra, and can be largely ignored.

Figure 1I.4 pictures some of the more important
allowed energy states of oxygen. The various electronic
states determine the total potential energy of the nuclei
for a given internuclear separation, leading to the curves
that dominate the diagram. For stable molecular configurat-
ions a curve must have a minimum. The shape of such curves
is generally quite well described by the Morse potential
(Morse, 1929). Stelle et al. (1962) compares his treatment
with a wvariety of more recent mathematical models. The
allowed vibrational wavefunctions can now be found by the
quantised treatment of a 1linear oscillator in a given
potential well (Figure I.5). Figure I.4 shows that bound

ionic states are also possible.

I.2.1 Franck-Condon Factors

At  room temperature the Boltzmann distribution
ensures that essentially all oxygen molecules are in the
ground state - in vibrational 1level v, . Thus in any

transition of interest, this will be the initial state.
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And the final states of particular interest are the

various vibrational levels for a given ionic state.

Equation I.13 1is easily extended to the molecular
case by noting there are now three charge centres involved
in the dipole formation (Herzberg, p.199). Considerations
of orthogonality and the independence of the nuclear

dipole from the electron's co-ordinates, quickly leads to
P(2«1) « | [y2%p2 e x vy, yy 4V |2 I.17

Now assuming that the electronic transition moment is

independent of the internuclear separation, this gives

P(2+1) « | J¥i* e xr W) dv, sU2 ¥y dry |? I.18

= | De SUZ W) dry |? I.18a

dV, : volume elements of the space for electronic co-
ordinates.

dry : vibrational wavefunctions depend only on inter-

nuclear distance.

This simply states that the relative intensities of tran-
sitions to wvarious vibrational levels, within the one
ionic state, depend solely on the respective vibrational

overlap integrals - on the Franck-Condon Factors.

A physical description is provided by the Sudden
Approximation. Electronic transitions can be said to take
place so fast that the nuclei do not move in the transit.
Thus the most populated vibrational level is that directly
'above' the ground state. Figure 1.6 describes the state

of affairs better than words.
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Figure I.6 Schematic of the Franck-Condon Principle.
For transitions from the ground state to the upper
excited state, the greatest overlap occurs for the
2nd vibrational level, as is indicated by the broken
vertical line. Reproduced from Herzberg P.199 (1950).
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What this means experimentally 1is that a set of
relative vibrational intensities can be used to describe
the ionic state they came from, as they provide infor-
mation on each of the ¥¢ . However, glancing back at
Equation I.18, it must be pointed out that it's form rests
éolely on the assumption of a constancy of D, with respect
to internuclear spacing. More realistically, it is a slow
function of this separation. Thus, given knowledge of the
ionic state being populated, relative intensity values at
variance with the Franck-Condon factors, act as a measure
of this variation in De . Please note that the above
applies strictly to direct photoionisation to the

continuum.
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I.3 Autoionisation

Glancing briefly back at Figure I.3 it should be
readily apparent that there are discrete bound states or
resonances, converging on to the higher ionisation poten-
tials, with energies equivalent to continuum states. These
levels can be excited after the mnormal fashion for
discrete levels. But instead of them radiatively decaying
back to the lower levels in the order of 10 %ec., the
possibility often exists for a radiationless jump over to
the continuum in the order of 10 "sec. This process, known
as autoionisation, provides an alternative and competing
pathway for photoionisation to the direct path described
previously. Experimental evidence for autoionisation 1is
found in the broad enhanced ionisation resonances seen in
many atomic and molecular spectra (Figure I.7). The width
of such resonances (if they are sufficiently isolated) can
be loosely related to the time taken for the radiationless

jump, by the Uncertainty Principle (Equation I.3b).

One of the earliest and simplest theoretical treat-
ments 1is that provided by Fano (1961). Of all the major
theories, his provides the best physical understanding of
what 1is going on. According to him, for a single line
interacting with a single continuum, the true state of a
system at energies nea£ the expected discrete 1line's
energy, 1s given by a mixture of the continuum and
discrete states. The simple though approximate Hartree-

Fock wavefunctions can be put to gocd use here in deriving
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Figure I.7 An infinite series of Beutler autdionising resonances converging
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the correct mixture* (Torop, 1975). Now when considering
transitions to this complex state, the variation in cross-
section with wavelength can be related to interference
effects between the continuum and discrete components. The
resulting characteristic broad asymmetric profile is named
in Fano's honour. It is well described by just two para-
meters. One from the width, relates to the strength of the
coupling between discrete state and continuum or, inverse-
ly, to the average period for transition. The other from
the intensity relates to the proportions of autoionisation

and direct photoionisation.

A single resonance and a single continuum is certain-

ly the exception rather than the rule in photoionisation

studies. For the general case of several overlapping
resonances and several continua, Mies (1968) must be
consulted. Extra parameters are mneeded to allow for

continua that do and do not interact with the resonances
and to allow for interference effects between neighbouring
resonances. Parameter fitting can become exceedingly

difficult if resonances are too crowded.

For the molecular case autoionising resonances
generally dominate the total photoionisation spectra. A
tell tale sign iIn photoelectron spectra s vibrational
branching ratios showing marked deviation from the

expected Franck-Condon Factors, mnotably in the higher

* Although H-F's are not the correct wavefunctions, they
do form a complete orthogonal set, and as such the true
states are given by linear combinations of these wave-
functions.
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vibrational levels (Figure I.8). However, these factors
can still be applied at the peak of an isolated resonance
by considering the intermediate transitions from ground to

discrete state and from there to continua (Smith, 1970).

I, = Fgf + Fga . Foe . q? Igls
Fgr F-C factor for transitions from ground to final
vib. level.
Foa F-C factor between ground and autoionising state.
Far F-C factor between autoionising state and final
vib. state.
q : Describes proportioning between autoionisation

and direct photoionisation and is independent of
the wvibrational 1level for a given electronic
state.

Through the correct use of this formula it is possible to
extract a lot of information about the autoionising state.
However, a closer 1look at the theory, as provided by
Lindemans Ch. VIII (1981), shows that much more infor-
mation is found in the variation of these branching ratios
with wavelength right across a resonance or series of
resonances. In such instances there can be marked contrast

between different vibrational levels.
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II. THE EXPERIMENTAL SYSTEM

A critical part of this work is the mastering of the
complex equipment needed to obtain experimental results.
In the form that I found it, the instrument had many
strong points and but a few limitations, in terms of
taking branching ratios in the region from 60 to 100

nanometres.

A brief overview is presented of the special features
that make the system so useful, with extra detailing of
those areas requiring improvement, and the measures that

have been taken.
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I1.1 Design of the Instrumentation

For the two major atmospheric gases, molecular oxygen
and nitrogen, the region from 100 to 60nm contains a
wealth of autoionising structure. Total absorption and
photoionisation cross-sections can now be taken to show
this (Dehmer and Chupka, 1975). But, as Section I.2.1
indicated, the bulk of the information is hidden away in
the continuum partial cross-sections, particularly those
pertaining to vibrational 1levels. These require energy
analysis of photoelectrons, which compare unfavourably in
count rate with the total cross-sections of ion yields
(above reference). Thus low count rates are involved,

which must be overcome.

Figure II.1 lays out the original basic instrumen-
tation, and should be referred to repeatedly throughout
this section. Beginning briefly with the UV lamp, a
condensed spark Helium discharge provides a continuum
source over the requisite range (actually defines the
range), but like any continuum source, low light levels
are the rule. Attempts to improve this situation are

presented in Section II1.2.2a.

Not shown in the diagram is the extensive differen-
tial pumping needed to maintain the enormous pressure
gradient between lamp and vacuum monochromator, as there

are no known windows in this wavelength region.

‘Dispersion of the light is provided by a McPherson

one-metre near normal incidence vacuum monochromator. With
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a 1200 lines/mm concave grating and a O.lmm entrance slit,
this gives a 0.83nm/mm first order dispersion at the exit.
This entire set up has the highly desirable property of
supplying a mnearly undeviating exit beam, the need for
which is not just practical (see below for angular distrib-

utions of photoelectrons).

Then there is the all important ionisation region, to
where the gas under examination is introduced. Front and
rear photomultipliers allow light levels to be accurately
monitored 1in the central interaction region (shaded),
provided absorption does not exceed 30%. Otherwise a non-
linear response occurs (Lindemans, 1981, p.141). In fact
four signals are generated from the two tubes, increasing

the system's flexibility.

The electron energy analyser has a wide acceptance
cone, allowing for the low count rates mentioned earlier.
An important property of photoelectrons is that they are
not produced isotropically. Indeed, under unpolarised
light, there is a continuous range of possible distrib-
utions. (Yang (1948) for plane polarised 1light; for
unpolarised light rotate distribution about direction of
beam.) This could easily 1lead to distorted branching
ratios, but for the presence of a 'magic angle' (Figure
II1.2), namely 54° 44', which yields reliable relative
intensities unaffected by the exact distributions of the
individual partial cross-sections, or how they vary with
wavelength. Thus the analyser is placed at.55° 50' to the

light beam in the horizontal plane, a slightly modified
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angle allowing for an extended, as opposed to point,
source and for the large acceptance cone of the analyser
(Lindemans, 1981, p.151). As the above applies to unpolar-
ised light, there 1is also the problem of our vertically
ruled grating giving rise to a partially polarised beam.
The degree of this polarisation varies with wavelength
(Samson, 1978), again playing havoc with electron distrib-
utions. This is guarded against by placing the analyser
45°  from the horizontal. Other properties of this
remarkable piece of apparatus shall be detailed in the

next chapter.

And, finally,weshall cliscoss data collection. There are
five signals available for counting, giving an impressive
array of possible experimental set-ups. Notably, measure-
ments like the yield, £, /fD , are 1important in the
calibration of the system (Lindemans, 1981, p.-160).
However, only two signals are available for processing at
any one instance, an unnecessary and time-consuming
limitation. There are two control lines allowing
wavelength and retarding potential (related to electron
energy - see Section III.1) to be advanced concurrently in
a linear fashion, as needed for continuous partial cross-
sections. Strictly, the retarding potential should follow

an inverse law in such instances.
E = he/Ax - I.P. (constant) I1I1.1

The answer to these problems is in Section II.3.
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II.2.1 UV Line Sources

These sources correspond to atomic transitions and
are characterised by their relative brightness and extreme
monochromacity. Théy are readily excited by a DC discharge
(Figure II.3a) through the appropriate atomic gas,
provided molecular impurity levels are low. An important
point to remember is that a negative voltage be used, to
avoid damage of the entrance slit by ion bombardment.
Other problems are pressure broadening and self-absorption
but these are easily overcome by reducing the pressure

until no change in line shape is evident.

All experiments presented in this book, with which I
have been directly involved, were performed with line
sources. In the past they have played a very important
part in partial photoionisation studies. Increasingly,
though, continuum sources are being deployed, for reasons
already mentioned (Section I.3). This leads naturally into

the next section.

IT.2.2 A Continuum Source

The Hopfield continuum of helium has a useful wave-
length range of 60 to 100nm. This ensures few problems in
the way of 2nd order effects unlike the extensive Syn-
chrotron sources (West et al., 1974). 1It's excitation
involves the formation and rapid decay of helium molec-
ules, via several stages of interaction (Tanaka, 1942).

High current densities are needed, making a pulsed

supply necessary.
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Figure II.3b lays out the original circuit. Initially
the underdamped LRC circuitry charges up the spark capac-
itance with a ringing frequency of about 2.5kHz. But as
soon as peak voltage is reached, the thyratron is 'fired',
by applying a positive pulse to it's grid, grounding one
side of Cs and quickly switching it's stored charge
through the lamp. Thus the pulsing frequency is 5kHz. Note
that during firing, L,acts as a very high impedance. Once
the capacitor is discharged, the thyratron should quickly

go open circuit.

II.2.2a A Brighter Continuum Source

There are four major options available to wus 1in
developing a brighter lamp. One 1is to increase the
capillary length, since there can be no self-absorption of
the radiation being produced (see reference above of the
complex excitation mechanism). A narrower capillary bore
is also of benefit with it's increased current density.
All this was, in fact, done by Martin (1981) with positive
results. Further modifications in this area, however,
could run into problems of construction and in initiation

of the discharge.

Another option is to increase the operating pressure
from 50T to some more appropriate higher wvalue dependent
on the electrode configuration (Huffman et al., 1965).
Closely related to this is the width of the entrance slit
used. The narrower the slit, the higher the pressures that

can be sustained; the wider the slit, the greater the

light flux for a given pressure. But for the current
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differential pumping system, the balance between slit

width and pressure would appear to be about optimal.

The other two methods involve changes in the electron-
ic circuitry powering the lamp. Either the pulsing

most be incrt ased
frequency or the voltage. The former results in a linear

imarease
increase whilst the latter gves a-~ arﬂggmuﬁb quadiratic ~' Thg
greater gain with voltage must be weighed against a

shortened thyratron life, an enhanced noise or ground

current, and, in the extreme, non-linear counting.

Any straightforward attempt to improve the original
circuit's (Figure II.3b) light output immediately encoun-
ters problems. Every thyratron has an associated anode
heating factor, the product of peak anode voltage, peak
instantaneous current, and the pulsing frequency. As this
is approacﬁed by, say,mcreasing the frequency, the resulting
raised temperatures lead to a vresistive loading and
increased recovery time (Thyratron Preamble, 1972).
Eventually a point is reached where the thyratron fails to

fire every cycle, dropping the light output.

Now it would seem but a simple matter to deploy a
thyratron with a greater anode heating factor. But wupon
doing this, with the CX1159, any chance of success 1is
fost . by the occurrence of 'latching'. When a tube
fires, the anode voltage drops rapidly to near =zero and
may even go negative. The internal plasma now has a chance
to decay, turning off the switch. However, if the rebuild
-up of voltage is too rapid, as would tend to happen in

any high frequency or voltage LRC circuitry, then the
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thyratron may stay-on, drawing a continuous current

limited only by the circuit resistance.

The solution, suggested by Dr McCoy, based on an idea
from Merchant et al. (1978), is to ensure that the dis-
charging thyratron is isolated from the power supply. This
might be done, in theory, by the presence of a floating
thyratron (Figure II.4) that is held open circuit as the
lamp is pulsed, and remains so to allow time for the
CX1159 to switch-off. Once this happens, the spark capac-
itor can be recharged via the 5C22. With the diode and
small thyratron in line, the anode voltage is clamped at
the peak in the LRC ringing, as little reversal of current
is possible. And, similarly, sufficient time must be

allowed for the 5C22 to switch off.

However, in spite of these safeguards, latching can
still occur. Two mechanisms have been put forward, both
resulting in the two thyratrons being closed concurrently.
The critical moment is the high current density discharge
through the CX1159. As the anode voltage rapidly drops, a
grid pulse may be generated at the 5C22, due to stray
capacitance. Alternatively, sufficient noise may be
produced to cause a pulse in the triggering circuit, again
firing the 5C22 out of sequence. The latter effect would
appear to be more severe, as evidenced by the marked
improvement in lamp stability, when the triggering supply
is placed outside the noisy environment (a doubly shielded

cage containing the main electronics).
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There is a touch of irony here in that the charging
circuit only works at high frequencies or, more specific-
ally, high LRC ringing levels, as these are necessary to
ensure the stable switch-on of the floating tube. If this
is not the case, the 5C22 appears to go into an oscillat-
ing on-off state, enhancing the chances of both tubes
being on simultaneously, For similar reasons, the pulsing
frequency must be 1initially held 1low, as the supply
voltage is first wound up. The small loop of LRC circuitry
about the 5C22 also appears to aid in stability by provid-
ing a starting plasma on firing. Note that there is no
longer any danger of the 5C22 overheating as peak instan-
taneous currents are great[j reduced. The CX1159's heating

factor now sets the voltage/frequency limit.

The best results to date are 17kHz at 5kV. That
should correspond to an increase in light flux by greater
than 3, but this is yet to be ascertained as noise levels
prohibit the computer collection of data. This disability
is independent of frequency, arising only £from noise
generated in each current pulse. Importantly, this is not
a matter of radiation, depending as it does on a physical
connection to the computer interface. Possible problems

are:

1) The peak voltage being discharged depends on the
damping of resistors. But the current circuit would

appear to be more greatly damped.
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3)
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The diode, as opposed to a resistive inductor, could
cause trouble with voltage overshoot, allowing high

current pulses to pass, at least in one direction.

A less inductive thyratron would lead to a shorter
intenser pulse. And thus, though brighter, a noisier

lamp.

More important than reasons are solutions. Besides

shielding in all the likely trouble spo+ts, ferrite rings

on the data lines have been suggested.
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IT.3 The Computer Interface

The idea of interfacing with a computer is to provide
greater flexibility, and ease of handling, by software as

opposed to 'hard-wired' control.

The computer interface is largely of a standard 37
pin design, allowing conneckion to a testing device in
times of trouble. It provides us with address space for
communication to and from the photoelectron system. The

computer is a Commodore 4016 with high resolution graphics.

Two D.I.L. boards have been incorporated into the

interface design. They are:
A) Retarding Voltage Board

Described more fully in Jones (1982), this involves a 16
bit D/A converter giving a controlled output current of
remarkable stability. After further suitable conversion,
an output voltage is produced, accurate to better than 1mV
over a 20V range. Significantly, this wvoltage can now
follow the inverse energy law with wavelength, once the

computer is fed with the appropriate information.
B) Data Board

A little more detailing is warranted here, as this has not
been described elsewhere. Figure II.5 presents a schematic

view.

Three data ports and an advance wavelength line
communicate with the outside world. The data lines can all

be sampled concurrently, thus doing away with the
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necessity of the electronically derived sum and difference
(see Figure II.1); with Dboth front and back photo-
multiplier signals always available, it is just simple

arithmetic. However, the old ways may still be convenient.

Two methods of timing are possible.

a) Sampling for a fixed time, as measured by counting

the buffered phase 2 clock from the CBM.

b) Sampling for a fixed number of data pulses, on the

port marked P/M/T.

Three rather sophisticated programmable chips are on
board. Firstly the SY6522. This acts as control head-
quarters, directing the mnecessary gating of data, and

signalling to the CBM when sampling has finished.

The other two chips are IN8253 programmable interval
timers. The 'one-shot mode' of timing is always wused.
There are two important features of these devices of
which the reader should be aware. Firstly, they only show
the correct count after they have received at least one
pulse. This could present difficulties in low count rate
experiments. Secondly, they tend to be rather sensitive to

noise.

Table II.1 provides all the required information for
any experimental set-up. To better understand this entire

section the relevant data sheets should be consulted.

There 1is one last significant wvariable not being

monitored by the computer. That 1is the pressure. This
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should at least be measured. Better still would be to have
it fixed at a constant level. To allow for the complex,
two-way device this would entail, a 77 pin rack has been

installed in the interface.



Table II.1

Rundown of the various addresses for the proper deployment of the
computer interface.

31536: Rem Chip select for SY6522 controller chip.
31520: Rem Chip select for timer chip.

I

31504: Rem Chip select for counter chip.

31488: Rem Chip select for monochromator wavelength advance.

H O Q m =
I

31744: Rem Chip select for retarding voltage supply.

Poke A+2,31: Rem Set direction of Port B's as outputs.

Poke A+0,8: Rem Switch set to timer mode-for P/M/T as timer (counter
mode) poke in 9, and add 1 to all other data addressed to A+O.

Poke A+12,0: Rem CBl set to be flagged on negative edge.

Poke C+7,48: Poke C+7,112: Poke C+7,176: Rem Mode O loaded to counters
0,1 & 2 respectively on the counter chip. The gate input inhibits
counting when low.

Poke C+4,0: Poke C+4,0: Poke C+5,0: Poke C+5,0: Poke C+0,0: Poke C+0,0:
Rem Counters 0,1 & 2 loaded with O - least significant byte first.
Now ready for counting.

Poke B+7,116: Poke B+7,178: Rem Mode 2 to counter 1 and Mode 1 to
counter 2 on timer chip. N.B. Mode 2 allows output to send one pulse
to counter 2 after a certain number has been received by counter 1. A
low gate inhibits counting. Mode 1 Output goes low on the count
following the rising edge of the gate input - initiating count. The
output goes high on the terminal count. When using P/M/T as timer
simply Poke C+7,50.

Poke B+5,232: Poke B+5,3: Rem Divider (counter 1) loaded with 1000 -
thus pulses counter 2 on timer chip every millisecond.

Poke B+6,100: Poke B+6,0: Rem Counter 2 on timer chip loaded with 100 -
sampling for 0.1 seconds.

Poke E+1,VU: Poke E+2,VL: Poke E+0,0: Rem Load most significant then
least significant byte into D/A converter. Then poke through to grid.
A small delay might be in order here to allow time for voltage to
settle.

Poke A+0,30: Rem Data collection begins. Strictly need only poke 19
with P/M/T as timer.

Wait A+13,16,0: Rem Detects end of count.

Poke D,0: T2=TI: Rem Advance monochromator at time T2.

Poke A+0,8: Rem Gates closed.

For P=0 to 2: F(P)=65536-Peek(C+P)-Peek(C+P): Next P: Rem Reading
counters on the counter chip. Note that they are down counters.

If TI-T2 < 1.8%IC Then Goto (start of line): Rem Delay for wavelength
advance. IC is the increment used.

Loop back for next channel.



CHAPTER III
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IITI. THE ELECTRON ANALYSER

Although no modifications were made to this part of
the equipment, nevertheless, as a key piece of apparatus
in photoelectron work, it's behaviour should be understood

in some detail.

To tﬂqgfoz;, a brief comparison 1is given of
retarding and differential analysers, including a qualitat-
ive discussion of the limits of analyser performance and

the reasons for choosing our particular model.

What follows is an annotated 1list of the wvarious
effects leading to the detailed integral spectral shape.
As far as possible, this traces the path of an electron
through the system from aperture to channeltron. Finally,
all the effects are pieced together, to see what insights
might be gained. Of particular concern is how the resolut-

ion and efficiency vary with energy.
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ITTI.1 Various Types Of Analyser

The particular analyser under study goes by the full
title of a Spherical Retarding Potential Photoelectron
Analyser. Figure III.1, reproduced here for your conven-
ience, provides the relevant structural information.
Throughout this chapter, and the next, the same nomen-
clature as Lindemans' 1is used. Most importantly the Earth
grid Dbecomes E, Retarding, R, Accelerating, A, and
Focussing, F. With a computer controlled negative voltage
applied to the R grid, the reason for the device name
should be evident. Furthermore, assuming A and F have no
other effect than to focus electrons on to the channeltron
detector, the recorded signal should be the sum of
electrons with energies greater than the retarding poten-
tial. Upon scanning of this potential, a typical integral
spectrum results (Figure III.2a), with steps occurring as
electrons arising from successive ionic levels are
removed. The height of each step gives it's intensity,
once allowance is made for detecting electrons of a given

energy, that is, for the efficiency.

Looking through the 1literature though, the most
common representation of photoelectron spectra 1is the
differential or peaked curve (Figure III.2c), where the
area under a peak relates the intensity, again allowing
for efficiency. These curves arise quite naturally for
deflector or dispersive type analysers (Gardner and
Samson, 1973), which only count electrons within a small

energy window. They are also possible, after a fashion,



/),

Pumping Port\

Channel Electron
Multiplier

Focussing Grid(F) : N
Accelerating Grid{A). 4 T )
Retarding Grid(RL___________l N s—
Earth Grid(E) - : ZFN
Gas Partition Flange e <
/ / % /
.L—'_'__._ r/
: . I P 7
Field Free Region— || .{M 55/ T777 /’}1
I ! 4 ' /]
Magnetic Shielding—] _’”,._;U l‘ /, )
L— 1 /)
Electron Boffle/: ; /
H 1 ' b
Interaction Chamber —— | .
| s
Electron & Light Trap - 7 ' '
s 55-8 :
-
~ '
7 ! I
I
Light .Beam 7N e
~ .

X ]
N\ Inhnnnmm

WL T LT T T T T

Figure III.l Scale drawing of the Electron Analyser.




Retarding Potential ———

Vg
'y !
- ."uc'c.'.'-_ ] VS+A ! 'VS-A
o- I [
v+ 11
N 4
v--.’}'v.l
(a) [
RS
I |
0 | [ A
o
n ——
- a
AN - . | :
. * ..'.- o-'-_.uo'. -"v..' '.. - 7 . - . =
OF - -+ T ST e e e e
- . . 8 I
I
n ——
A l
(c) .
N . o & .. @
O oo’ R O Tereene® L LSy .'0--"' I T < .‘--—"-'. "—-'-vcc
n ——>
Figure III.2 Integral and differential photoelectron
spectra. N and n represent the electron count and
channels numbers respectively. Graph (a) shows a step
spectrum from the retarding analyser, (b) the same
spectrum differentiated, and (c) an idealised diff-
erential spectrum from a focussing spectrometer of

the same

resolution.
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for retarding types (Figure 1III.2b), by introducing a
square wave, of positive then negative volts, atop the
scanning potential and counting up then down at each
point. I say ‘'after a fashion', as each point still
retains the integrated statistics or, more precisely, root

2 times them.

In the past, the large background associated with the
higher levels in integral spectra has been cited as a
reason for not wusing them. It is hoped that this thesis
will show this to be largely unwarranted. For one thing,
in the case of the lower vibrational levels of oxygen or
nitrogen ions, with their typical spacings of 200meV, the
easily attained resolution of 40meV ensures significantly
more data points are available for intensity analysis in
the 1integral as opposed to differential spectrum. This
comes about since points between steps are of major

importance in the height analysis.

There are several other differences between deflector
and retarding analysers that should be mentioned. Most
pertinent 1is that, for a given resolution, the retarding
models have a far greater acceptance cone. This is negated
only slightly by the reduced transmission due to grids.
The resulting high count rate is just what is needed in
relative intensity measurements. In fairness it must be
stated that deflective instruments are capable of far
superior resolution, making them ideal for energy level
analysis. Indeed, the energy levels of Samson and Gardner

(1977) are borrowed for our own data manipulations.
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On the pro side, once again, our instrument is less
sensitive to stray magnetic and electric fields. And
finally, with it's efficiency such a simple function (see
later in chapter), it requires less care in calibration

than a deflective apparatus.
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ITI.2 General Features of the Spectral Step

Any real spectrum can be roughly divided into 4
separate regions. Running from low to high retarding
levels they are the plateau, peaking, edge and background
(Fig. III.3). It is these regions that must be explained.
In particular, the step edge has an associated resolution
and shift, both dependent on electron energy. And how does
one determine the exact height of a step, when the plateau

is not strictly flat?

ITIT1.2.1a Grid Effects

Grids are not the ideal retarding system, just the
(for our basic da.Sn)

simplest and the best. Their problems arise largely
through finite transparency and imperfect potential
surfaces. When you realise that field lines must arrive at
right angles to the wire surfaces, it is easy to see that
complex fields occur. For low energy electrons this can
result in severe deflections as they approach a grid.
These might conveniently be termed 1lens effects, in
analogy to refraction in optical lenses. Furthermore, the
average potential in the 'plane' of the grid surface
differs from that applied. For want of a better name,
these may be simply termed shift effects. The significance
of both these effects is in direct proportion to the field

strengths involved, which are generally strongest along

the axis of the analyser (for R and A).
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Figure III.3 Ideal and experimental integral energy spectra.
The ideal curve (1) shows a sudden change in count at energy
E, the electron energy.

The experimental curve (2) can be roughly divided into 4
parts. : ;

(a) The plateau, well away from the step.

(b) The peaking region,exaggerated here, occurs near the

step and makes the step height estimate difficult.

(c) The step edge. This should strictly be divided into a

low and high energy tail as these arise from separate effects.
.(d) The background.

NB The "valley" between plateau and peaking, as arrowed, is
important for height estimation.

The step centre generally occurs at an energy other than
the true electron energy, -thus giving a shift=E-E'.

The step width, w, is measured with respect to the 20%
& 80% peak height points.
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ITI.2.1b Stray Magnetic and Electric Effects

In the presence of the Earth's magnetic field a
photoelectron follows a curved path, without any change in
it's speed. Thus as the electron enters the region between
the E and R grids, it becomes misaligned with the radial
electric field, causing an effective drop in the absolute
stopping potential. In fact, there is both a shift and
spread in this potential, as the magnetic field is highly
non-uniform with respect to the electron paths. It has
been shown in Lindemans App. I (1981) that this shift and
spread is independent of the initial electron energy. But
the result is still a severely degraded spectrum. Approp-
riate shielding fortunately reduces the field to a more

tolerable level, ensuring adequate resolution.

However, over a period of months, with the constant
vibration of the extensive pumping, the shielding
material, itself, becomes magnetised, leading to a
progressive worsening of results, and the eventual need

for degaussing (Lindemans, 1981, p.57).

The main concern with stray electric fields is the
variation in contact potential due to oil vapour deposited
on the grids (Parker and Warren, 1962), again degrading
the step response. With time this steadily becomes worse,
as the UV bombardment causes a breakdown of the silicone
based oils into worse by-products, which finally necessit-
ates a trichloro ethylene wvapour bath, starting the

process all over again (Lindemans, 1981, p.54). Note that
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the effect on resolution and shift would appear to be

linear with electron energy.

From the two above effects, it can be seen that the
analyser response is not a constant with time - that the
system 'ages'. Given this, it should be clear that finding
the step function is not a one-shot process, but must be
done repeatedly, making a simple technique all the more

desirable.

Table III.1 now summarises the various individual
effects. For a more thorough treatment Lindemans (1981)

Ch. III .should be consolHed,



TABLE IIT.1: VARIOUS EFFECTS LEADING TO STEP PROFILE

Grid Step

. . Comments Size of Effect
Region Region
E Plateau The largely elastic collisions lead to a linear 2.5% plateau at Vr:O atop step.
correlation with energy.
Between Edge Electron paths should be parallel with radial a) Width=1.6 mV/V plus similar shift.
E &R field. However, due to: b) W=2 mV/V plus similar shift.
a) Finite size of source and aperture, electrons c) Constant shift and width for any
enter region at a variety of angles - energy.
unavoidable.
b) Limitations to exact construction lead to
slightly non-radial fields.
c) Magnetic fields curve path of electron.
R Peaking a) Lens effects lead to electron paths avoiding a) Peaking linearly dependent on energy.
and Edge wires as V. approaches electron energy, e, thus Spread 2.5 mV/V
passing through and adding to count. But as V. b) Shift to higher energy 2.3 mV/V plus
more nearly approaches e, a stage is reached similar spread.
where deflections lead to failure to penetrate c) Shift and spread approximately
the retarding barrier. linearly related to e.
b) Shift effects give rise to a higher than
expected step centre energy. In fact, the
electron will experience a range of altered,
potentials depending on it's exact path through
the system.
c) 0il film alters the retarding potential seen by
the electron.
Peaking Lens effects lead to peaking. Acc. field is .1 V..
Plateau Imperfect focussing for electron arriving at R For Vgof 500 V, an electron with greater

Channeltron

with sufficient energy.

No efficiency effects as electron arrives with a
virtually constant 500eV of energy.

than 2eV energy at R is poorly focussed.

Applies for electron with less than 20eV
initial energy.
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ITI.2.2 The Sum of the Various Effects

The discussion below follows the four step elements,
from low to high retarding potentials. Repeated referral

to Table III.1 is recommended.
A) The Plateau (Figure III.4a)

The poor focussing by the F grid ruins the strictly
linear scaling of the plateau shape with electron energy,
from scattering off E. However, for any segment of plateau
within 2V of the step edge, linearity holds true. One
might be tempted to raise the F voltage to 1000V to rule
out defocussing (Lindemans, 1981, p.102), but this would

~ be at the expense of enhanced peaking.
B) The Peaking (Figure III.4b)

Combining effects from the R and A grids, this should
be largely linearly scaled with electron energy, but for
the step edge eating into this region. A little consider-

ation suggests an enhanced peaking at higher energies (see

C) The Edge).
C) The Edge (Figure III.4c)

Finding the resolution is mnot a simple matter of

adding Gaussian widths, like so

2 2
Wooest | W2 + W2+ ... I1I.1

even if the edge can be approximated to an integrated
Gaussian. This is SO because the various effects

(magnetic, geometric etc.) do not work independently, but



Figure III.4 Successive finer detailing of two

integral steps, one of high energy (.), one of low (-).
Effects that scale linearly with absolute step centre
potential (velectron energy) can be shown up by
normalising the step centre potential to -1l: i.e. steps
are over the same distance on the x-axis.
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(a) Plateau effects are strictly linear only within
2 eV of the step.
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(b) Higher energy means enhanced peaking?
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(c) Generally the width doesn't scale linearly with
energy.

NB The above voltage ranges aren't to be taken too

seriously. This page is only meant as a qualitative
guide.
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must be combined in a complicated integration to obtain

the summed result. No attempt will be made to do that here.

One point that should be clear: depending on how
dominant the constant magnetic effect is, the weaker the
variation of width with energy will be. All other effects
should tend toward a linear relation between energy and
width (or related inverse slope). Similar behaviour can be

expected from the step shift.
D) The Background

Though only seen as a high energy tail in Figure
IIT.3, it adds to the count at all potentials. It contains
wall photoelectrons, degraded gas photoelectrons (those
that have undergone collisions with the walls and lost
their original energy), detector noise and scattered
photons. The final two add a constant level, independent

of retarding voltage.

One last feature needs to be accounted for - the step
height. The region between plateau and peaking 1is a
shallow 'valley', the position of which is approximately
linearly scaled to step potential. As it is always within
2V of the step edge, at least for electron energies less
than 10eV, no defocussing effects are involved. Thus the
step height here simply corresponds to the transparency
level of the analyser. This remains true, but for low
energy electrons, for which the plateau and peaking
regions merge, adding to the detected count relative to

the transparency level. Finally, for the very lowest
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energies of the order of the width of the step edge, the
valley level will drop off dramatically. From this dis-
cussion an efficiency curve can be constructed for

detecting valley electrons (Figure III.5).



o HK

0 0.5
Electron Energy (eV)

Figure III.5 Probable efficiency function measured
with respect to the valley of an integral step. The
yield is a measure of the number of electrons detect-
ed per photon absorbed. Ideally the yield for an
Inert gas in the energy range of interest should be
constant.



CHAPTER IV
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IV. CURVE FITTING AND PHOTOELECTRON SPECTRA

Using Rare gases and two UV line sources, a small set
of single steps at wvarious energies 1is obtained. These
steps are shown to be well representative of the instrumen-
tal response of the analyser, nearly independent of the
particular gas used. Now the question is, can these few
curves be employed to find the step shape at an arbitrary
energy of interest? To this end, two distinct curve
fitting routines, functional and numerical, are developed

and their relative merits investigated.

Then there is a quantitative treatment of the effic-
iency function to allow correct determination of the step
height. This is of major concern for obtaining accurate

branching ratios in Chapter V.

All this work is backed up by the detailed under-

standing of the electron analyser gained in Chapter III.
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Iv.1 Experimental Procedure

The first step in any quantitative description of the
analyser response function is the collection of a represen-
tative set of monoenergetic curves. The Inert gas spectra,
notably krypton and xenon, with their widely separated
spin-orbit components and their exceptional cross-
sections, are the natural choice. Also argon, with it's
relatively close components, can be largely treated as a
single step, when looking for plateau effects. The only
non-instrumental contributions to the step spread are
those discussed by Turner (1968) for atomic gases. The
most significant of these at room temperature results from
the thermal wvelocity of the target atom; from V, =
(3kT/M)%, where M is the mass of thé atom. This introduces
a typical velocity error of 2va /Y2 on top of the electron
velocity, V¥, . (Consider the extreme case of two atoms
moving in opposite directions. The 1/ Y2 averages the
result.) To obtain the resultant electron energy spread,

you must differentiate the kinetic energy relation.

L
dE = m ZVedVe Iv.1

Two simple substitutions then lead to the desired equation.

1
AE=f12EkTm}2 IV.2
L M

For argon at 10eV, this rather awkward energy variation
amounts to a 6.5meV spread, compared with about 35meV for
instrumental effects. And the non-linear addition, as of
Equation III.1, further ensures the larger effect
dominates. Therefore, such effects will be ignored in our

considerations.
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The chosen UV sources are two of the brightest atomic
lines, mnamely HeI 58.4nm and Nel 73.6nm. This gives a
range of curves from about 0.9 to 9eV, more than adequate

for finding any energy variation.

The Inert gas spectra were all recorded under
controlled experimental conditions. The same applies to

all future efforts.

1) There must be at least 24 hours of continuous diffus-
ion pumping of both the monochromator and table
(contains analyser and ionisation region), before any
data 1s taken. This ensures the system reaches some
sort of equilibrium. Notably, molecules not outgassed
from the channeltron are readily ionised by it when

on, leading to erratic response.

In the early stages of pump down, both table pumps
may be employed but the differential pumgzj(across
face of analyser) is unnecessary during data collec-
tion. Liquid air is absolutely imperative, for both
pumps, in reducing water and oil vapour contamin-

ations. As mentioned earlier, the analyser is

particularly sensitive to oil.

2) The photomultipliers are switched on an hour (or two
after a long lay off) before the experiment. There is
a distinct tendency for the dark count to monotonic-
ally decrease, leading to a good deal of offsetting.
Only the back tube is warranted, when sitting at one
wavelength, giving an extra 20% of UV light, once the

beam splitter 1is swung out the way. It 1is worth
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sreristes
remembering that the count ,should be considerably

better than Poisson, with the tube in current mode.

For bright UV sources the tube gain is lowered by a
reduced power supply voltage. Optimum linearity 1is

guaranteed with a 120kHz signal or thereabouts.

The UV source may take a % hour to settle, particular-
ly if impurities have not been outgassed or flushed

out.

The D/A staircase voltage supply mneeds just 15

minutes 'oven' time.

When uging a 1line source, ensure no other Ilines
contribute significantly via a wavelength scan and
ad justment of the exit slit. (This is particularly
important for the Nel pair, 73.6 and 74.40m.)
Pressure broadening may also be tested by repeated
scanning and comparison of line profiles, as the lamp
pressure is altered. Both these effects can lead to a
highly non-monochromatic source giving a false

instrumental analyser response.

With the UV source blazing, the photomultiplier 1is
further offset to the scattered light background
(Lindemans, 1981, p.133). A 50nm wavelength setting
is typically used. Then rescan for the desired wave-

length.

The channeltron needs no warm-up. The only precaution
to be heeded is that it is not on with the pressure
in the 1ionisation fegion exceeding 1.5mT (Pirani

gauge), or voltage breakdown will surely follow.
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7) A background spectrum is first recorded ('mo' gas in
the ionisation region) over an equivalent voltage
range to the main scan,but with a submultiple of
channels (N.B. There is always a zero channel.) This
aids in future analysis. A detailed mapping of the
energy variation 1is not necessary with absence of an
inherent background structure. Any steps here are
probably indicative of a leak, but this should show

up on the ionisation gauge.

Now, once inlet lines have been flushed, in the case
of high pressure supplies, or pumped out for the
xenon and krypton one-litre flasks, the gas 1is
introduced at the desired pressure. This can take a
while to settle, and still tends to drift down during
an experiment. However, repeated cycling through the

voltage range counters this.

At this point the lamp intensity may have to be
reduced, to guard against pulse count saturation and
pulse coincidence effects, for DC and pulsed sources
respectively (Lindemans, 1981, p.117). In any event
step 5 must be repeated as the scattered light level

changes in the presence of gas.

An extra measure yet to be tested is the reversal of
staircase* scanning on alternate cycles, avoiding
anomalous  fluctuations in channeltron gain when
switching from small (tail) to large (plateau) count

rates in a single bound (Lindemans, 1981, p.117).

.
[53

Referring to the stepwise fashion of voltage increments
for each channel.
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Something else that has not been done this time round
is the recording of the photon background with and
without gas present. This is seen as a small but
constant count rate when the retarding voltage is set
to a level approaching the UV photon's energy.
Unfortunately, the required voltage cannot currently
be obtained without some offsetting or rescaling of
the staircase. The error introduced by it's neglect,

however, is minor.

The optimal 'cell' pressure is still a matter of some
controversy. If the atomic scattering cross-section
is large for electrons, particularly those of 1low
energy, there 1is a tendency to round off the step
(Lindemans, 1981, p.123). Thus the pressure must be
reduced until no change in step shape is discernable.
This can be done quantitatively by 1looking for a

value of about one in the following.

L (Y] - aY,;)? IV.3

(Yo; + & Y2;) N

i is the channel number: same channel, equivalent
voltage.

- superscript means background subtracted.

1 and 2 subscripts refer to two independent sets of
data, recorded at different pressures but over the
same voltage range.

N is the number of data points.
18 c,t,uwoxlv..ﬂk to
The part of the denominator in brackets A the

square of the average difference between correspon-
ding data points, provided the step shapes are
equivalent. Thus each element of the sum would have a

typical value of 1/N, leading to the hoped-for total
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of one. Of course the value of a, which scales the

two steps to the same height, must first be evaluated.
a = El Yii /. Y. O IV.4

To better understand the equations, consult the next

section.

Current pressures employed are slightly lower than
those of Lindemans' (see below). It should be
emphasized that these are not absolutes but dependent
on wavelength or, strictly speaking, the resultant

electron energy (Frost et al., 1964).

TABLE IV.1: COMPARISON OF PRESSURES USED FOR VARIOUS GASES

Lindemans (1981) Present Work
Xenon 0.2 mT 0.17 mT
Krypton 0.4 mT 0.35 mT
Argon 0.7 mT 0.45 mT

Oxygen 1 mT 1 mT
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Iv.2 Some General Points About Curve Fitting

Throughout this chapter and the next considerable use
is made of that powerful computing technique known as
curve fitting. Already with Equation IV.3 the method has

almost unwittingly been employed.

Take a typical photoelectron spectrum in Figure IV.1,
consisting of 250 channels. For every data point there 1is
a well defined retarding potential, x;, and a statistic-
ally fluctuating count , yi . Strictly speaking, these
fluctuations will follow a Poisson distribution. But for
counts of several hundreds or greater, a Gaussian approx-
imation is more than adequate. Thus the following applies.
From Chapter III and from the evident shape we can expect
the true count to follow some continuous smooth function

of x:

y(x) = f£(x , a) IV.5

where a represents a set of variable parameters, a for j

i
from o to n. To obtain the most likely final functional
form, we must minimise the following with respect to each

of the parameters.

x> = I |

1

(y; - f(x, a))?] IV.6
2

1.
%4,
where X*is a measure of the goodness of fit. This 1is the
Method of Weighted Least Squares. The only unknowns here
are the standard deviations of each data point, 0i. The

square roots of the data are the best available estimates

of these.
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Figure IV.l Raw data of the lower step for xenon, recorded using the 58.4 nm
helium line.
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Minimisation 1is achieved by setting the partial
derivatives of each parameter to 0, giving a set of n+1l

equations. If f has the form

f£(x) = ap X{x) + a; X(x) + a, X(x) + ... + a, X(x) Iv.7

a matrix equation can be formulated and it's solution
found - the most 1likely wvalues of each a;- by a single
matrix inversion. For the more general case of a non-
linear function, a single inversion does not suffice.
Rather, a complicated search routine is required, as 1is
well documented by Lindemans (1981, p.168). But in both

cases the inverted matrix contains all the error infor-

mation, that is, Aaj(Bevington, p.242).

Looking back at Equation IV.6, it should be apparent
that each element of the sum averages a value of about
one, if f follows a smooth curve 'through' the data. This

leads to the more appropriate reduced X%
red. x> = x*/(N -v) IV.8

N : number of independent data points

v : number of variable parameters = n+l
N-v equals the number of degrees of freedom. The chances
of exceeding various values of red. X for a given number of
degrees of freedom is also well documented (Bevington App.

C.4). For a red. X’ =1 , it is generally about 50%.

For a more complete coverage of this section, Beving-

ton (1969) is essential reading.



IV.2.1 A Functional Fit

This is the method originally put forward by
Lindemans. No attempt is made to derive the exact analyser
function. Section III.2.2 indicated this to be rather
difficult. And with the analyser's sensitivity to oil, the
detailed functional form could alter drastically from
month to month. Instead the known behaviour is mimicked by

a set of appropriately added Fermi-Dirac steps.
F(x) = 1/ (1 + exp (x) ) IV.9

Table IV.2 presents the four steps and the 16 parameters
involved. Together with Lindemans (1981) Fig V.10, this
should make it clear how they are applied. Note also that
due to the nature of the function, a complex non-linear

fit is involved.



TABLE IV.2: A FUNCTIONAL APPROACH TO FITTING INTEGRAL STEP SPECTRA
The Total Step
S(V):al(F(Xl)+a11F(X2))(F(X3)+a6F(Xk)) + ag, B(V) + photon background

where B(V) is the appropriate background curve.

The Step Elements

1) the step edge
X, =4*a *(D+a, D*+a_D?)

2) scattered electrons in plateau
X, =4%a,,%(D/E+a;4)

3) focussing correction in plateau
Xg=-4%a;,*(Dy +a;4D;°)

4) lens effect resulting in peaking
X, =4%*a; *D,”

where D=V-E+a,, D;=D+a;s, Dy=D+ag and E is the electron energy.

The Step Parameters

ai the step height
aj the step centre shift
as the reduced step centre slope

ay the asymmetry of step edge

as the linearity of the step edge

ag the height of the peaking
ay the width of the peaking
ag the position of the peaking

aq the asymmetry of the peaking - unassigned here
a;p, scales background

a,; the size of the scattered electron plateau
a;, the width of the scattered electron plateau

a5 the position of the scattered electron plateau

a;, the width of the defocussed region
a,, the position of the defocussed region
a,, the linearity of the defocussed region
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And the end result of all this is a rather poor fit.
Reduced x*’s of 1.9 down to 1.5, as you go from the high to
the low energy curves, where the peaking becomes more
evident. The chances of getting a worse fit with a
supposedly good function, are less than one in a thousand.
This suggests the need for more parameters, so the curve
can be followed more closely, thus adding to an already
exorbitant number. And I have yet to introduce extra
parameters to trace the energy variation; say aE+b for a,,

the step slope.

Of course this is mnot the only possible function.
Indeed a skewed gaussian replacing F(X., ), the peaking,
produces a far better fit. However, it does not overcome
the basically undesirable fact of a complex procedure that
will not bear repeating too often as the system ages
(Section III.2.1b). Something simpler is mneeded, which

provides the impetus for a numerical fit.

IV.2.2 A Numerical Fit

The following is a refinement of the method first
worked on by Hutton (1981). The reason why Lindemans chose
to avoid this type of fit was the difficulty in inter-
polating between curves of different energy (Lindemans,
1981, p.166), with the few curves we have available.
Laying two curves atop one another, with their step
centres and 'heights' matched, readily shows this by the
number of crossings. But these crossings can be largely
overcome by appropriate energy scaling and making use of

some of the theoretical ideas of Chapter III.
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Basically, a curve 1is divided into the same &

segments as in Section III.2
A) The Background

The background scan is first smoothed and interpolated to
match the number of main scan channels.* The often
repeated smoothing techniques are described more fully in
Appendix I, together with other mathematical procedures
used throughout this chapter. The corresponding constant
photon levels are now subtracted from both the background
and the step. At this stage the background may be scaled
to the relevant tail section of the step, by looking for a
reduced X* of about 1, and then subtracted. It is important
that sufficient background tail data points are included
in any gas run to obtain an accurate fit. The scaling
factor, a, is found by setting the partial derivative of X®

with respect to a to O.

x2 = L (S8;7 - a Bgi )? IV.10
i

Si

S : main scan data

superscript: photon background subtracted

n

subscript : smoothed data

e

subscript : channel number in tail region.

(Note that B,; does mnot contribute significantly to the

error as it has been smoothed: cf. Equation IV.3.) This
gives
- - -2
a = X S; B_: z
i 1 S1 i S1 IV,]_]_
Si Si

* Hence the desire for a submultiple of <channels in
Section IV.1.
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We are left with a raw step curve, S; - a Bgj for j
running through all recorded channels, whose shape depends
solely on photoelectrons from the gas under study. This is
essentially the monoenergetic step we wanted. Importantly

the statistics are still contained in the original data.

B) The Edge

The slopes and shifts at the step centres of each of the
'tailless' curves are measured by fitting a cubic and
adjusting the number of channels to obtain a red. X* of
about 1 (Appendix I). This is with a view to matching the
slopes by appropriate potential (x-axis) scaling. The step
centres and slopes of interest correspond to the points of
0 curvature 1in the cubics, provided the appropriate
channel ranges are chosen. The slopes must further be
normalised to the height at the peak turning point. Note
that this is not the same as the height used in branching

ratio calculations.

Figure IV.2 presents the slope measurements graphic-
ally. A weak function with step centre energy 1is
suggested. This is indicative of a predominant magnetic
effect, which will not always be the case under different
operating conditions; say greater use of the UV lamp,
over a period of months preceding measurement (Section
ITT.2.1b). Now taking two of the more widely separated
curves and matching the slopes, peak heights, and step
centres (Appendix I - interpolation), a remarkable like-
ness is found (Figure 1IV.3). This prompts the idea of a

mother curve that could generate a step at any energy by
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S: Slope.

HPOH®m

E: Absolute value of step centre energy.

(1/V)

Absolute Step Centre Potential (V)

Figure IV.2 Relating the normalised slope to the step
centre potential. Approximate error bars are from the
cubic fitting routine. Theory suggests a strictly
monotonic decrease in slope with increasing absolute
potential. The dotted curve provides a reasonable
straight line fit in accord with theory.
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Figure IV.3 Match-up of step edges after krypton has
been appropriately scaled to match step centre slope
and position and peak turning point height.
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the simple slope/energy relation of Figure 1IV.2. The
closely mapped xenon 58.4 step is chosen for the task,

after smoothing.

The other important parameter, the shift, shows an
even weaker energy variation (Figure IV.4), again demon-
strating the prevalence of magnetic effects. Table IV.3
provides the necessary information to make these measure-

ments.

TABLE 1IV.3

The electron energies for the various Rare gas steps. A comparison
with the step centre energies gives the shifts.

At 58.4 nm Gas eV
Xe 0.088
Kr 7.218
Ar 5-458 (P3)
5.281 (Py)
2
At 73.6 nm Xe 4.718
Kr 2.848
Ar 1.088
0.911

C) The Peaking

Section III.2.2 suggests a near linear scaling with energy
for this feature of the curve, with possible problems for
low energy electrons. Figure IV.5 presents the peaking
difference between two 'low energy' curves and the mother
curve, after appropriate scaling to the step centre poten-
tials and the matching of the maximum turning points.

Clearly the energy correlation is not perfect, else the
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Figure IV.5 Smoothed peaking difference between the
Xe mother curve and two lower energy curves after
appropriate scaling of both axes. A value of 0 is
forced at the peak turning point - strictly the
slope should also be 0. The maximum difference
scales quite well with the difference in absolute
step centre potential from the mother curve (Table
IV.3). The slight up-turn on the Xe curve is statis-
tically insignificant - just a minor idiosyncrasy
of the smoothing procedure.

NB. If the position of the maximum difference tends
to vary significantly with step centre potential,
on future plots, then the energy variation of the
individual cubic parameters will have to be taken
into account. Thus this part of the procedure would
tend to a functional rather than numerical repre-
sentation.
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difference would be zero, but taking the difference as an
error to be added, then a further linear energy relation
for this would appear to be just about right. With a
little care this technique could be extended to the lowest

energies.
D) The Plateau

Once again, 'linear energy scaling' is employed, but this
time curves are matched at zero potential, for position,
and the minimum in the valley, for height. A significant
error 1s expected, especially at low retarding potentials
where the higher energy electrons are not always correctly
focussed (Section III1.2.2). But, again, a linear error-

energy relation is adequate.

In the past, the two step argon plateau was thought
to be representative of this region. But this cannot be
true as the upper step is approached. Appendix III emphas-
ises this point. Scans of the more extensive plateau
regions between the xenon and krypton double steps provide

the necessary fill-in.

IV.2.2a Proof that the Numerical Fit Works

Up to this point, I have described the basic methods
of the numerical fit: dividing the step profile into four
segments, scaling the energy axis appropriately and adding
error curves where necessary. But this rather disjointed
approach has yet to provide evidence that it really works.

The following diagrams should supply the final verdict.
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Figure IV.6 fits xenon 58.4 with it's smoothed back-
ground and unmodified mother curve. The excellent reduced X*
is not surprising. For any other curve, care must be taken
to fit the right slope and shift (Figure 1IV.7). These
cannot be found exactly enough from the two earlier graphs
(Figures IV.2 & 4). Now the resultant red. X would appear
to be rather poor. But the fit is still visually - fine
In any event, we must not lose sight of our objectives, to
fit multiple step data. There the individual steps are not
nearly so well defined - about one-tenth the size at most
and far less density of data points. So the fitting
technique does not have to be nearly as accurate as a good
fit of Figure IV.7 would have it. And besides, it is the
simplicity of the method that really wins out, especially
compared with the functional fit. The following two pages

summarize the numerical fitting procedure.
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SUMMARY OF NUMERICAL FIT PROCEDURE

Fitting a hypothetical single step with a true electron
energy of 4eV (as found from differential photoelectron

data). Scanned over 120 channels from -3.6 to -4.2V.

Provided with a smoothed mother curve of 250 channels
from -8.7 to -9.2V. Peak turning point: 125.17
(-8.9503V). Step centre: 160.22 (-9.02044V). Also have
a peaking error curve to be added to the first 126

channels of the mother curve.

Provided with a smoothed plateau curve of 51 channels
from 0 to -5.1V, and an effective step centre (Appendix

ITIT) of -5.2149V. Plus an associated error curve.

Find the expected step centre from the shift function
(Figure IV.4). Shift: 0.0653V gives a step centre of
-3.9347V.

Error curves can be directly added to the unmodified
mother and plateau; e.g., from Figure IV.5, A P=0.815%
AP(Kr).

Find relative slope compared with mother curve using
slope function (Figure 1IV.2). Ratio: 15.653/14.041

gives expected T.P. at -3.8718V.

The modified peaking region range of the mother curve
becomes -3.8718+(-3.9347)%(8.9503-8.7)/-9.02044 to
-3.8718.i.e., -3.6815 to -3.8718V.

The modified plateau region range becomes 0 to
-3.9347%-5.1/-5.2149. i.e., 0 to -3.8480. Importantly

this overlaps with the peaking region.
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6) The height of the plateau is rescaled to give a value

of one in the valley minimum.

7) The height of the mother curve is rescaled to ensure a
continuous curve at the initial point of overlap

between plateau and peaking.

We are now ready to evaluate the expected normalised step
shape beginning at a retarding potential of -3.6V, with

K=0.

8) Test if peaking voltage range has been entered. If so
then go to 9). Otherwise convert potential (V) to
effective plateau channel number (N): N=V*51/-3.8480.
**Now wuse interpolation to give relative height at
this point. Store in S(K). V is now decremented by

0.02V and K incremented by 1. ** Repeat step 8).

9) Test if step edge region has been entered. If so then
go to to 10). Otherwise convert potential to effective
peaking channel: N=125.17*(V+3.6815)/(-3.8718+3.6815).

**REPEATED** Repeat step 9).

10) Test if -4.2V has been reached. If so then go to 11).
Otherwise convert potential to effective edge channel
number: N=125.17+(V+3.8718)*(160.22-125.17)/(-3.9347
+3.8718). If N is greater than 250 then go to 11).

**REPEATED** Repeat step 10).

11) The array elements S(K) for K from O to 120 now
contain the expected step shape. Once the smoothed
background has been subtracted from the data of
interest (Section IV.2.2a), the same procedure can be
used to scale S(K). The resultant scaling factor gives
the height of the step. Reduced X° is a measure of the

success of the entire effort.
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IV.3 Step Height and the Efficiency Function

In Lindemans (1981, p.160), a quantitative measure of
the analyser efficiency was made, using a continuum
source. The method concentrated particularly on threshold
electrons, using the lower step of the Inert gases. The
calibration was arbitrarily made with respect to the point
100meV from the step centre. The efficiency was quoted as
unchanging, from 300meV to 10eV, within '"the uncertainty

of the light monitors."

However, the results of this chapter, notably Section
IV.2.2 on peaking, would appear to disprove constancy at
the 100meV peaking point, though the error introduced is
no doubt minor. Section III.2.2 suggests a point that
moves with energy for calibration. As a continuum source
is currently not available, no attempt has been made to
prove this theory. But as no threshold electrons are
looked at in this thesis, it seems safe to assume a
constant efficiency and measure the height of any step at

valley minimum.



CHAPTER V
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V. EXPERIMENTAL RESULTS

We now have an easy technique for describing the
analyser profile at any energy in the range from 1 to 9eV.
It can be shown to be but a simple procedure to extend
this to multiple steps, to accommodate the complex molec-
ular spectra. There are complicating factors, however,
through the appearance of rotational spreading and
electronic spin-orbit splitting (in the case of oxygen),
decidedly non-instrumental factors that must be allowed

for. So how can these be overcome?

Given that they can, how do my results, in terms of
branching ratios, compare with those in the literature?
2

This is the true test of my procedure, not the reduced X

values I might obtain.
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V.I Fitting Multiple Step Data

Let us begin with a typical four-step oxygen spectrum
(Figure V.1) recorded at 73.6nm, in equivalent fashion to
the Inert gases previously. Now we have a way of portray-
ing the single atomic step at any energy in the required
range (3.9 to 5.0eV). In particular, the appropriate
slopes and shifts can be adequately calculated from
Figures IV.2 and IV.4, provided the true energy levels are
known. Thus we should be able to obtain a set of four
normalised curves and a smoothed background, which can be
added together to mimic the analyser's multi-step response

minus the constant photon background.
F(E{) =a, B (Ej) + a, S;(Ei) + a, S,(E{) + a; S,(E;) + a,S,(Ei) V.1

Bs : smoothed background with photon level subtracted.

S; ¢+ step shape with heights scaled to 1 in wvalley
(Section IV.3).

aj : height of step j - to be found.

Ei : energy of each channel from i=0 to 44.

If B ;) is ‘'replaced' by S (Ej ), the above becomes

highly suggestive of Equation IV.7, ensuring a solution by
curve fitting as a very simple matter. The correspondingx’
is

X2 =1 (Y - jgg aj Sji )?* /Yj V.2

1

Y; : original data

where (E.) has been replaced by the i subscript. Partial
differentiation w.r. to each of the aj 's leads to 5

homogeneous equations of the general form

k : runs from 0 to 5.

T /Y; = 0 V.3
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Figure V.1l Four lowest steps in oxygen at 73.6 nm.
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These can be arranged more conveniently as

EYiS../Y. = I a zs..sk

ji i K k 7 ji /Y, V.4

which immediately suggests the elements in a matrix

multiplication
with
By = I Y S;i/Y; V.6
1
aj = I Sji Ski /Y4 V.7
1
This can be solved for the only unknowns - the

various step heights by the single matrix inversion

mentioned in Section IV.2.
a e B Q,_l V-8

Noting that the error in any parameter can be found from
the sum of the error contributions from each independent
data point (Bevington, p.154), it can be shown that the

inverted matrix contains the required error information.

o*(ay) = oj} V.9

More importantly, the wuncertainties in the branching
ratios must make allowance for the fact that the wvarious
heights are not found independently for integral data
(Lindemans, 1981, p.305). Thus

_ [1}2 wl o+ {_al]z ol 42 [1] {—al »: V.10
2
a a22 a a

2 2

2

0" la,

a
2

gives the uncertainty in the ratio al/az.

Of course, this entire section is perfectly applic-

able to spectra with other than four steps.
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V.1.1 Problems with Molecular Spectra

The Inert gas spectra of the previous chapter were
specifically chosen because they could best define the
analyser response, nearly free of spreads relating to the
type of gas used. This is no longer so for molecular
spectra. Firstly, there is rotational spreading of the
order of 5meV at room temperature. And, more critical in
the case of oxygen, an electronic splitting of the ground
state ion adds a further 23meV. The high resolution
spectra of Samson and Gardner (1975) (Figure V.2a,b)

clearly show both these effects.

Strictly the solution is a convolution of our
standard atomic curves with the dual rotational envelopes.
However, a simple approximation would appear to suffice.
Firstly, Table V.1 provides all the relevant ionisation

potential data.

TABLE V.1: THE FACTS FOR FITTING OXYGEN SPECTRA - THE GROUND STATE ION

Ionisation Potential 12.071 ZHl
2
for v, 12.094 ZHE
Peak in Rotational band 2 meV higher
Height Ratio ?1 /%I, 0.93
3 3

2
To obtain the ionising peak for the higher vibrational levels apply
the following formula:
Peak (v, )=12.073+x%0.236-0.004%*x%*(x+1)/2

This is accurate to at least level 15.

Now modelling each of the vibrational levels as two atomic
levels, of slightly different height, placed the requisite

23meV apart, a remarkable fit is obtained (Figure V.3).
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Figure V.2a Differential photoelectron spectrum of
oxygen at 73.6 nm. The resolution 9 meV. Spin-orbit
splitting is clearly evident. The xenon is used to
calibrate the energy scale.
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Figure V.2b Detailed photoelectron spectrum of the
ground state of the oxygen ion (v=0). The solid
curve is the calculated band shape taking into
account the rotational structure. The resolution
is 7 meV as indicated (w).
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Table V.2a further analyses the viability of using two
atomic levels by varying the splitting of the two. The
best fit being at slightly less than 23meV is, no doubt, a
statistical effect. Most importantly, the minor variation
in the branching ratios with splitting, suggests there is

little to be gained by the full convolution treatment.

No attempt has been made to exactly pin—pépt the
correct energy shift, for each of the vibrational levels,
as this would involve a complex non-linear fit. Table V.2b
tests my simple approach by holding the splitting constant
and 'manually' varying the shift. Little effect is evident
over a 4meV range. A visual check should ensure you are
using a shift within this range. Note also that the shift
is a function of energy (Figure IV.4). But as such a weak

function, any effects will be less than the above.



TABLE V.2a: THE EFFECTS OF SPLITTING ON PROFILE FITTING

Split 100%(h, /h,) 100%A(h, /h, ) 100%(h, /h, ) 10044 (h, /h ) Reduced X’
meV
0 52.98 1.41 67.81 2.58 1.016
10 53.03 1.41 67.82 2.59 0.986
20 53.03 1.42 67.93 2.60 0.932
23 53.02 1.42 67.99 2.60 0.934
30 52.98 1.43 68.16 2.62 1.031
40 52.89 1.45 68.46 2.65 1.527

TABLE V.2b: THE EFFECTS OF SHIFT ON PROFILE FIT

Shift 100%("1/h, ) 10044 (P1/n ) 100%+(Md/h,)  100%A(h4/h ) Reduced X°
meV

63.5 52.64 1.42 68.72 2.59 1.444
64.5 52.64 1.42 68.47 2.60 1.024
65.5 52.83 1.42 68.23 2.60 0.954
67.5 53.20 1.42 67.76 2.61 0.967
68.5 53.38 1.43 67.53 2.61 1.052
69.5 53.57 1.43 67.31 2.62 1.188

N.B. hi is the height of step i.
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V.2 Comparison with Literature

Figure V.5 graphically presents a comparison of the
more reliable literature values with my own, of the branch-
ing ratios for the first 6 vibrational levels of oxygen at
58.4nm (Figure V.4). A few points should be taken into

consideration here.

A) 'Reliable' wusually means those that have allowed for
the 'magic angle' (Section II.1) in collecting photo-
electrons, something that many of the earlier experimen-
talists mneglected. Problems may also arise through poor

calibration.

B) Differential spectra dominate the literature, even for

instruments which give integral statistics (Edqvist), 1970.

C) The possibility of pressure broadening of atomic line
sources could lead to non-monochromacity, giving anomalous
results in regions of significant partial cross-sectional
variation due to autoionisation. The 58.4 line is safe in

this respect, when using oxygen.

D) There is a disturbing, though understandable reticence
in quoting branching ratio errors throughout the liter-
ature. Instead comparison 1is generally made with some
earlier effort. Gardner and Samson (1974) is the one
exception presented here, though it is not quite clear how

their errors are derived.

E) For my own part, the beauty of the curve fitting

technique is that it provides the values and the statis-
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Figure V.5 Branching ratios for the first six levels
in oxygen at 58.4 nm (as a % of v=1). Values from
left to right for each level were obtained from -

Codling et al (1981) Average of 58.3—58.5.nm con-
tinuum scanning. (0.08 nm resolution) Hemispherical

analyser.

Edgvist et al (1970) Spherical retarding in differ-
ential mode.

Kinéinger and Taylor (1973) Parallel plate spectro-
meter,

Gardner and Samson (1974) Cylindrical mirror analyser.
Present work.
Krupenie (1972) Franck-Condon factors.
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tical errors all in one package. But, of course, these
errors ignore any systematic blunders I may have made.
Following Section IV.1 carefully should have guarded
against most of these. But something that section does not
cover is the efficiency variation of the system. This is
where a comparison with other experimentalists becomes

most useful.

So what can be said of Figure V.57 My approach
appears to be well justified, certainly within the range

of my statistical errors.

There is a side issue here that could be of some
interest. Again returning to Figure V.5 it should be
apparent that the Franck-Condon factors (Section I.2.1)
are at clear variance with the experimental values. This
has been taken as evidence of slight autoionisation at
58 .4nm. Continuum wavelength scans of the total absorption
cross—-section, show a shallow trough, supporting this view

(Lee et al., 1973).



CHAPTER VI
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VI. FUTURE PROSPECTS

Chapter V demonstrated a successful fit of oxygen at
the 58.4nm atomic 1line. But the interest nowadays is in
the whole range of wavelengths from 58.4 right up to
100nm, as found in the Hopfield helium continuum. This
introduces the problem of non-monochromacity for contin-
uum, as opposed to line, sources. The following relates
the energy of a photon, in electron volts, to it's wave-

length in nanometres.
E = h.c. / e. Ay . 107 VI.1

¢ : velocity of light. (ms™)
charge on electron. (<)

An : wavelength in nm.

Thus for a given monochromator resolution, A Ap, the re-

sulting energy spread is determined by

AE = Mg A /A% VI.2

A 1239.852 ( Ain nm, BE in V)

With the monochromator exit and entrance slits set at
O.1lmm, a resolution of 0.lnm has generally been used for
continuum studies. This yields energy spreads of 34, 19
and 12meV for 60, 80 and 100nm, respectively. Now it would
make sense to 'decrease' the resolution in the latter
case, so that it approaches more mnearly the typical
electron analyser energy spread of 35meV. The intention

would be to optimise the UV intensity, still a problem
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with continua, whilst ensuring the underlying instrumental
response 1is not totally disrupted. Opening up the exit

slit would achieve the desired result.

The same atomic response curves would still form the
basis of continuum studies. And there seems no reason why
the simple technique deployed for overcoming the 23meV
splitting of oxygen, should not work equally well for
continuum spreads. As for the proper interpretation of
results, particular care must be taken in autoionising
regions. This is a point well made by Gardner and Samson
(1978), in comparing atomic and continuum branching ratio
values. For such regions, continuous partial cross-

sections are the order of the day (Lindemans, 1981, p.242).
In closing, three minor points should be made.

1) Hindsight would suggest that the fitting of a
cubic to find the step edge's slope (Section IV.2.2b) as
too exacting, especially when the edge can be seen as a
not too critical part of the multi-step fitting routine.
Much simpler, and far less time-consuming, is a width
estimate with the step height found 'visually' (Figure

I11.3).

2) The simultaneous fit of several steps is not the
only way to find branching ratios. Each step can be fitted
quite well individually, the assumption being made that
only the step under examination contributes significantly
to the count variation in the 'neighbourhood' of the step.

Thus the function to be fitted 1is
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f(E;) = a + a,. Si VI.3

This is nigh on the simplest possible form for Equation
V.1, allowing the unknowns, a, and a , to be found by the
method of determinants (Bevington, p.106). A matrix

inversion is unnecessary.

ag = 1 £s} (1) - IS, I sil VI.4a
A Yi Yi )
a, = 1 r1 I S; - S (1)) VI.4b
A Yi Y i J
L S [z S; ]2 VI.4c
Yi Yl Yl

where the summations are over i, the relevant data points.

The errors are given by

I
=
™
wn
-
[ (%]

o (ag)? VI.5a

> |
=<
'—l

o (a;) = 1 3§ 1
A Y
This approach could be particularly useful for higher

vibrational 1levels. In such a case, it would be unnec-

essary and wasteful to record all the levels.

3) An important extension of my work will be in
looking at threshold electrons. The slope and shift
functions of Figures IV.2 and 4. will no longer apply at
the lowest energies, and the variation in efficiency

(Figure III.5) can no longer be ignored.
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APPENDIX T MATHEMATICAL TECHNIQUES

There are a couple of mathematical techniques that find repeated

use in the integral step analysis.
A) Smoothing

A cubic polynomial is curve fitted to a small segment of a data
block - from channel I to channel K (a range of 10 to 100 channels).

The polynomial form ensures a simple linear fit (Section IV.2).

2 3
F(xj) = a, + a;xi + a, X + aXj AI.1

where X, now becomes xP. i ranges through the integers from I to K. The

value of x; is unrelated to channel energy.
x, = (i -1)/ (XK - 1) AT.2

Clearly this ranges from 0 to 1, as you run through the points to be
fitted. The reason for this is two-fold. The particular range tends to
reduce computer round-off errors. And a starting value of 0O allows

simple assignment of initial conditions.

F(0) ao AI.3a

F'(0) AT.3b

1]
©

Upon fitting the cubic over a given range of channels, a corres-
ponding reducedx2 is obtained. If this is much larger than 1 then the
range generally must be reduced. The opposite applies for red. x* less

than one.

Once a satisfactory fit is obtained, the range is moved to an
overlapping set of channels - J to L with J < K. Now to ensure a
continuous fit, a, is simply set to F(xy) found from the previous range

fit.
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B) Interpolation

To find the most likely value at an energy between two channels,
i and i+1, a cubic is directly fitted to the 4 channels from i to i+3.
Note that the coefficients of the cubic are uniquely determined by the
data values, Y(i) to Y(i+3), at these four channels. Care must be taken
as the end of a data block is approached. The following bit of 'Basic
programming' should make the above clear. Lower case characters are

used for clarity.

10 REM Estimating the most likely data value at channel i+x

where 0 <= x <1 . 50 channels maximum.
15 i = INT (i+x) : IF i+x = 50 THEN 45
20 IF i+x > = 49 THEN 40

25 TIF i+x > = 48 THEN 35

30 I(3) = Y(i+3) - 3 * Y(i+2) + 3 % ¥Y(i+1) - Y(i) : I(3) = I(3)/6
35 I(2) = Y(i+2) - 2 % Y(i+1) + Y(i) - 6 * I(3) : I(2) = 1(2)/2
40 I(1) = Y(i+1) - Y(1) - 1I(2) - 1I(3)

45 x = (i+x) - i : 1(0) = Y(i)

50 IX = 1(0) + T(1)*x + T(2)#xt2 + 1(3)%*xt3

The interpolation works best on data that has already been

smoothed.
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The following provides a
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CBM PROGRAM GUIDE

short description of each of the

programs involved in the integral step analysis, in approximate order

of their use.

PHOTOELECTRONS

PHOTON LEVEL

PHOTO FINISH

COMPARISON

CURFIT

SMOOTH BACK

SUBTRACT BACK

FIND SLOPE
SLOPE FUNCTION

MOTHER CURVE

SELF DRAWN
INTERPOLATION

MINUS PLOT

PEAK CURVE

SINGLE STEP

Collects photoelectron data and stores individual

cycles (Section IV.1).

Similar to the above but specifically designed to find
the constant photon background level.

Adds stored photoelectron cycles together. Individual

cycles may be passed over if found wanting.
For comparing curves at different pressures.

Non-linear curve fitting routine wusing Fermi-Dirac

functions (Section IV.2.1).

Smooths and interpolates background data to match the

number of main scan channels (Section IV.2.2).

Subtracts smoothed background from main scan by approp-

riate scaling to tail section.
Measures slope and height of single Inert gas steps.

Computes probable slope-energy relation (Figure IV.2).

Smooths single high resolution steps by curve fitting
overlapping cubic segments. For mother curve or
plateau.

Smooths curves by visual fit of cubic.
Rescales energy (channel) axis.

Finds difference between two curves - used in peaking

analysis (Section IV.2.2).
Smooths peaking difference between two curves.

Fits high resolution single steps by piecing together
the four step segments, and thus testing the overall

numerical fit routine (Section IV.2.2.a).
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Xm 02+ Finds the oxygem ground state ion's electron energy

levels’for a given wavelength.

BRANCHING RATIO Fits multi-step data as of Chapter V.

The following provide a more general aid throughout analysis.

KYWD High resolution graphics made easy.

DISPLAY Visual display of 'any number' of data sets atop one
another.

PRINTER Hard copy printout of the above.

REFILE Alows data sets to be modified to more convenient
forms.

POISSEL Tests statistics of channeltron.
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APPENDIX ITII THE PLATEAU

The plateau for a single step ranges from O retarding potential
to the valley minimum (Figure III.3). To obtain a representative curve
in this region the plateau atop the two steps of argon has been used in
the past. The appropriate step centre must arise from a weighted
average of the two step centres involved (Figure AIII.la). Ideally the
plateau should be representative of that arising from a single step at
the weighted step centre. This is effectively true for the lower
retarding potentials but as the upper step is approached it must
dominate the response. A better description of the plateau region near
a step is provided by the space between the well separated spin-orbit
components of krypton (0.666eV split) and xenon (1.300) (Figure
ATIT.1b). For high energy steps (step centres " QeV) argon with the He

30.4nm line may be needed to define the plateau.
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Figure AIII.la The appropriate step centre for the
Plateau in argon at 58.4 nm is given by-

S.C. = 5.281*h; + 5.458*h, eV
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ndZcon
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Figure AIII.lb Exaggeration of the valley regions
after the two curves have been energy normalised

and matched for valley height. Note that in the
fitting routine there is no sharp distinction
between plateau and peaking - the two regions

simply merge together. The difference in the two
curves results in an error curve. For the lower
retarding potentials the argon plateau is used after

eénergy normalisation and valley height match-up
to the above curves.
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