

T.E.M. STEREOLOGY OF MICROVASCULAR AND NEURAL RECONSTITUTION IN MARMOSET INCISOR PERIODONTAL LIGAMENT FOLLOWING INCISOR DECORONATION, ENDODONTIC THERAPY, ORTHODONTIC EXTRUSION, AND LONG TERM RETENTION

A research report submitted in partial fulfilment of the requirements for the degree of Master of Dental Surgery

by

Suthichai Chintavalakorn D.D.S.

Department of Dentistry Faculty of Dentistry The University of Adelaide South Australia

1994

Awarded 1994

		Page	
LIST OF FI	GURES	vi	
LIST OF TABLES		vii	
SUMMARY	·	viii	
CHAPTER	1 AIMS OF THE INVESTIGATION	1	
CHAPTER	2 LITERATURE REVIEW		
2.1	FRACTURE OF ANTERIOR TEETH	3	
2.2	THE EFFECT OF ENDODONTIC THERAPY ON THE PDL	4	
2.3	3THE EFFECT OF EXTRUSION ON THE5HISTOLOGY AND ULTRASTRUCTURE OFTHE PDL		
2.4	THE USE OF MAGNETS IN ORTHODONTICS 8		
2.5	RETENTION 11		
2.6	THE MARMOSET AS AN EXPERIMENTAL ANIMAL	13	
2.7	THE MICROSCOPIC ANATOMY OF THE PDL	14	
	2.7.1 CELLS OF THE PDL	15	
	a. Fibroblasts	15	
	b. Osteoblasts	19	
	c. Cementoblasts	19	
	d. Osteoclasts	20	
	e. Progenitor Cells	20	
	f. Epithelial Cells	20	
	g. Vascular and Perivascular Cells		
	i. Endothelial Cells	21	

TABLE OF CONTENTS

.

	ii. Pericytes	22
	iii. Pathways Across the Blood Vessel Wall	23
	h. Neural and Perineural cells, and Nerve Endings	26
	2.7.2 PDL VASCULATURE	
	a. Anatomy and Distribution	29
	b. Classification	31
	c. Quantification	35
	d. Function	38
	2.7.3 LYMPHATICS	39
	2.7.4 PDL NEURAL SUPPLY	
	a. Anatomy and Distribution	40
	b. Quantification	42
2.8	SUMMARY	44
CHAPTER	3 MATERIAL AND METHODS	
3.1	REVIEW OF WEIR'S EXPERIMENTAL PROCEDURES	46
3.2	TRIMMING	49
3.3	TISSUE PROCESSING SEQUENCE	49
3.4	EMBEDDING	50
3.5	SAMPLE SELECTION	51
3.6	SECTIONING	52
3.7	END LEVEL	53
3.8	GRID STAINING	53
3.9	TRANSMISSION ELECTRON MICROSCOPY	54
3.10	MICROGRAPHY	54
3.11	DEVELOPING AND PRINTING	55
3.12	POINT COUNTING PROCEDURES	55

iii

3.13	MORPHOMETRIC CRITERIA USED IN TEM INVESTIGATION		
	a. Blood Vessel Identification		
	b. Nerve Identification		56
3.14	STATI	STICAL ANALYSIS	57
CHAPTER	4 FIN	DINGS	
4.1 MORPHOLOGICAL FINDINGS			
	4.1.1	BLOOD VESSEL TYPES AND MORPHOLOGY	61
	4.1.2	NERVE TYPES AND MORPHOLOGY	62
4.2	BLOO	D VESSEL QUANTIFICATION	
	4.2.1	VASCULAR VOLUME	69
	4.2.2	BLOOD VESSEL DIAMETER	75
	4.2.3	BLOOD VESSEL WALL THICKNESS	76
	4.2.4	SURFACE DENSITY	77
	4.2.5	LENGTH DENSITY	78
	4.2.6	MEAN NUMBER	78
5.3	NERV	E QUANTIFICATION	79
CHAPTER	5 DIS	SCUSSION	
5.1	THE	MARMOSET AS AN EXPERIMENTAL	80

	ANIMAL	
5.2	EFFECTS OF EXPERIMENTAL PROCEDURES	80
5.3	ORAL HYGIENE	81
5.4	ENDODONTIC THERAPY	81
5.5	EXTRUSION DEVICES AND THEIR RETENTION	81
5.6	FIXATION PROCEDURES FOR THE T.E.M.	82
5.7	PERFUSION FIXATION	84

	5.8	DIMENSIONAL CHANGES DURING PROCESSING	85
	5.9	GRID SELECTION AND TISSUE STAINING	87
	5.10	T.E.M. MORPHOMETRIC AND STEREOLOGIC TECHNIQUES	87
	5.11	BLOOD VESSELS	90
	5.12	NERVES	93
СНАР	TER	6 CONCLUSIONS	94
СНАР	TER '	7 APPENDICES	
	7.1	DECALCIFYING SOLUTION	96
	7.2	CACODYLATE BUFFER	96
	7.3	4% OSMIUM TETROXIDE (OsO4) SOLUTION	96
	7.4	BLOCK STAIN	97
	7.5	LIGHT MICROSCOPE STAINS	
		a) 0.05% Toluidine Blue	97
		b) 1% Borax	97
	7.6	GRID STAINS	
		a) Uranyl Acetate	98
		b) Reynolds' Lead	98
	7.7	AGAR EMBEDDING MEDIUM	
		a) Embedding Resin	99
		b) Infiltration Resin	99
	7.8	RADIOGRAPHIC EQUIPMENT	100
	7.9	TRANSMISSION ELECTRON MICROSCOPE	100
	7.10	STEREOLOGICAL EQUATIONS	100
	7.11	RECORDING SHEET	102

CHAPTER 8 BIBLIOGRAPHY

103

v

LIST OF FIGURES

Figure	Subject	Page
2.1	The physiognomy of the marmoset (Crowe, 1989)	14
2.2	Capillary transport pathways (Renkin, 1977)	
2.3	Proposed neural differentiation in the PDL (Byers, 1985)	
3.1	Occlusal view of extrusion device "in situ" (Weir, 1990)	48
3.2	Resin retaining device (Weir, 1990)	48
3.3	Sectioning and TEM orientation	58
3.4	Orientation micrograph across the width of the PDL.	59
3.5	140 point square lattice grid superimposed on a micrograph	60
3.6	The convention of forbidden lines	60
4.1	A pericytic venous capillary with a single endothelial layer	63
4.2	A pericytic postcapillary-sized venule and a pericytic venous	64
	capillary	
4.3	A collecting venule with a single endothelial layer	65
4.4	An arterial capillary with lobulated endothelial nuclei	66
4.5	A terminal arteriole with triple layer of smooth muscle cells	67
4.6	A bundle of myelinated and unmyelinated nerves	68
4.7	Mean total luminal and abluminal volumes in the control 70	
	and experimental PDL	
4.8	Mean luminal volume of each blood vessel type	71
4.9	Mean luminal volume in different regions of the PDL	73
4.10	Mean luminal volume of postcapillary-sized venules	74
4.11	Mean luminal diameter of different blood vessel types	76
4.12	Mean wall thickness of different vlood vessel types	77
4.13	Nerve volume (within 1.0 μ m of blood vessel) as	79
	a percentage of total PDL volume	

LIST OF TABLES

Table	Subject	Page
2.1	Ultrastructural features of blood vessels (Rhodin, 1967, 1968)	33
2.2	Vessel types found in the PDL of mouse mandibular first molar	35
	(Freezer, 1984)	
2.3	Summary of studies on the vascular proportion of the PDL	37
3.1	Birth date of the final experimental animals and their age	46
	and weight at 21/04/89	
4.1	Total luminal and abluminal volumes	69
4.2	Luminal volume of different blood vessel types	70
4.3	Abluminal volume of different blood vessel types	71
4.4	Luminal volume in different regions of the PDL	72
4.5	Abluminal volume in different regions of the PDL	72
4.6	Luminal volume of venous capillaries in different regions	73
	of the PDL	
4.7	Luminal volume of collecting venules in different regions	74
4.8	Luminal volume of postcapillary-sized venules in different	74
	regions of the PDL	
4.9	Luminal diameter of different blood vessel types	75
4.10	Abluminal diameter of different blood vessel types	75
4.11	Wall thickness of different blood vessel types	76
4.12	Luminal surface density (S_V) of different blood vessel types	77
4.13	Length density (L_v) of different blood vessel types	78
4.14	Mean number (N _A) of blood vessel types/560 μ m ² of	78
	PDL tissues	

SUMMARY

Maxillary incisor fracture is a common dental injury. It is frequently treated by endodontic therapy, orthodontic extrusion, and a retention period. The principal aim of the present study was to mimic this regime and test the hypothesis that vascular and neural reconstitution of the periodontal ligament (PDL) was complete after a long term non-human primate retention of 30 weeks in the marmoset, which approximates 3 years in human terms.

This investigation was based on material prepared by Weir (1990), but not utilized in his study which was limited to the apical region. Weir used 7 male and 3 female marmosets (*Callithrix jacchus*) as the model to simulate this treatment regime. However, he finally selected 4 male marmosets to be a study group. His experimental procedure involved the upper left central incisor crown removal, root canal therapy, followed by magnetic extrusion of 1.2 mm. The fractured incisor was retained in the extruded position for 30 weeks. The upper right central incisors acted as the control.

Each animal was then perfusion fixed with 5.6% glutaraldehyde and 0.9% osmium tetroxide mixture. The experimental and control central incisor segments were isolated for TEM processing.

The remaining non-apical segments of the blocks were sectioned at 150 micron levels. Twelve slotted grids were taken at each level and prepared for TEM examination. The zero level was taken as a "streaming" effect of the PDL e.g. orientation of the collagen fibres and cells perpendicular to the tooth surface. The most mesial PDL regions of the control and experimental central incisors were examined. At each level three micrographs were taken across the PDL width, at the bone, middle, and tooth circumferential thirds.

The micrographs were printed for morphometric and stereological analyses. Blood vessels were stereologically quantified, while nerves were

ix

morphometrically quantified due to the limited sample of nerves. The effects of orthodontic extrusion on vascular and neural components of the PDL were assessed to determine if any changes occurred in the experimental PDL.

No significant differences were found in (1) total luminal and abluminal volume, (2) luminal and abluminal volume of each blood vessel type, (3) distribution of blood vessels across the PDL, (4) luminal diameter of each blood vessel type, and (5) nerve volume. These findings indicated that reconstitution of the PDL blood vessels and nerves was essentially complete after extrusion and a long term non-human primate retention period of 30 weeks. However, a significant reduction of the wall thickness of postcapillary-sized venules was present. This outcome suggested that while physiological re-establishment of the vascular system had occurred, the morphological reconstitution of postcapillary-sized venules was incomplete or they had undergone a longer term or permanent change.

The present study revealed that simulated incisor fracture followed by endodontic therapy, orthodontic extrusion, and a long term animal retention period resulted in repair of the PDL microvasculature and neural system. Therefore, it would seem that this procedure is a justifiable clinical treatment rationale.

The results from this study have clinical implications in that determination of the timing of the retention period is orthodontically important. As far as complete reconstitution of the PDL blood vessels and nerves is concerned, on the basis of this animal model, a retention period of between 1 and 3 years in human terms is suggested in order to maximise reconstitution of both systems.

SIGNED STATEMENT

This research report contains no material which has been accepted for the award of any other degree or diploma in any university, and to the best of my knowledge and belief, the report contains no material previously published or written by another person, except where due reference is made in text of the report.

Suthichai Chintavalakorn

D.D.S.

NAME: DR.S.CHINTAVALAKORN

COURSE: MDS. (OR'

MDS.(ORTHODONTICS)

I give consent to this copy of my thesis, when deposited in the University Library, being available for photocopying and loan.

SIGNATURE:

DATE: 28/03/95

ACKNOWLEDGEMENTS

I express sincere appreciation to Dr. M.R. Sims, former Reader in Orthodontics, and Dr. W.J. Sampson, Senior Lecturer in Orthodontics at the University of Adelaide, for their supervision and invaluable advice.

My grateful appreciation is provided to Vicky Hargreaves, Margaret Leppard, of Department of Dentistry, for their technical assistance, advice, and support.

Mr. Ken Crocker offered valuable assistance with the JEOL 100 electron microscope, and Ms. Sandra Pattison helpfully conducted the statistical analyses of this study.

I wish to thank Department of Anatomy, Faculty of Medicine for kindly allowing me the use of their ultramicrotome.

Special thanks are extended to my parents for their continual support and encouragement.

ADDENDUM

p8	last para	add 'were used' after 'technique'
p8	2.4	magnetic force systems
p43	para 3	change 'incident to' to 'consequent upon'
p47	para 4	1st sentence, 'was' to 'is'
p60	Fig 3.6	2nd last line corner
p89	para 1	change 'replicating graticule' to 'grating replica'
p91	para 3, 1st line	'vessel' missing after 'blood'