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Abstract

By utilizing the Newman-Penrose tetrad formal"ism, we deduce the exact

set of non-Iinear partial differential equations which describe the

collision of gravitational and electromagneÈic waves. Unfortunately,

this set of equaÈions is too difficulÈ to solve using todayr s

techniques and therefore several simplifications are adopted.

The first simplification treats the electromagnetic field as a test

field and hence ignores its stress-energy. Both the exact and weak

gravitational metric are used. In both cases, we deduce explicit

expressions describing the effect of the gravitational wave on the

electromagnetic field. Later, the validity of these expressions is

d,iscussed.

The second simplification uses a po\^¡er-series approach which, although

it does not give an extensive solution to the exact problem, does give

several properties of the exact solution in the vicinity of the

ini¿ial interaction. In particular, the applicability of the Lichnerowicz

conditions is discussed.

Íle find that the gravitational wave changes the Petrov tlpe of the

electromagnetic field and can even reverse its direction of propagation.

Also, observers may experience focusing of, and,/or energy transfer to

the electromagnetic fielcl.

Finally, although the effects d.escribed above are explicit, we find

that they are too small for experimental application to the deÈector of

gravitational waves.
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Notation and Conventions

The metric tensor is denoted n'u. fts signature is

+ - - -. Tensor indicies ÞrVrp range and sum over

OtJ-r2r3. Spinor indicies ArBr... range and sum over

Or1. Ílhere small roman letters appear their sum

always ranges over the values 2r3. Synunetrization

is denoted by round brackets.

o(u"u) =t(AuBv+AuBu)

Antisynunetrization is denoted by square brackets

otu"ul = t(AuBv - AvBu)

Partial derivatives are denoted by

A OrA
'üU

Covariant derivatives are denoted by

A
; l-t



Introduction

Although the set of equations required to describe the collision of two

electromagnetic fields in General Relativity have been deduced and shown

to be well posed (8), present day techniques are too prjmitive to solve

the system.

In the work below, r^/e der-ive this set in Section 3 and then proceed to

sinplify them in order to derive a solution. The sirnplification adopted

is to treat the electromagnetic fíeld as a test field and hence ignore

its stress energy. Although this appears to be a rather drastic move,

it does provide explicit expressions for the effect of a gravitational

r¡tave on an electromagnetÍ-c f ield.

üle find in Section 4 that the Petrov type of the electromagnetic field

changes and, for a given observer, the effects have a reasonably direct

physical consequence. This observer detects changes in the eLectro-

magnetic Poynting Vector even to the exterit of reversing its direction.

Thus, t.he electromagnetic field energy is apparently redistributed

and/or supplemented by the gravj-tational field.

This behaviour woul-d indicate the possibility of'using an elect-romagnetic

fietd to detect gravitational radiaÈion by observing the changes in the

field. However, even \nrith the stronger electromagnetic coupling, we

show in Section 6 that this approach is of little use.

In Section 6 we also discuss the validity of .ignoring the electromagnetic

fiel-d energy-stress and fin<1, for a given observer, that there is a

reasonabÌe range of validity. Hovrever, this task is complicated by the

anbiguity in defining the energy density of a gravitational vrave.

Another approach the systems of equat-ions wtrich are difficult to solve

explicitly is to use a power series and study the properties of the

soLution near the initiat interaction (tZ¡ . !'le adopt this approach in

particuJ-ar to study the effects on the continuil--y conditions of the

metric along the shock fronts of the two waves. lrte see in Section 5

that the Li-chnerowicz conclitions are suitable for all such interactions

(1)



except vrhen tr^ro shock erectromagnetic hraves colride. we also find

that the previous simplification can apparently be refined by solving

Maxwell-'s equations in the cotli.ding gravitat-ional wave metric. Since

the problem r{e are to consider is, in effect, the classical equivalent

of a graviton-photon interactj-on, and further, since ignoring the

energy-stress of the electromagnetic field is in line with the approach

often adopted when studying quantum fields in curved space time, the

resulÈs deduced could be of use in considering the quantized prob]_em.

To do this, we woulcl require Èo quantize the electromagnetic and (weak)

gravitational fields in the Newman-Penrose null tetrad. This apparently

has not yet been done. rt may well be a usefur next step after this

thesis.

I r'',/



The Newman-Penrose I'ormalism

'I'hroughout this thesís, the Newnan-Penrose Spin Co-efficient forrnalism(l)

will be extensively used..

Since this formalism is relatively well known, only a statement of the

definitions and relevant results will be made here. (a full listJ.ng of

the resulting equations is contained in appendix 1).

!,leinÈroducethetetradof nuIl vectors 1, h, m, n wherel andn
U' U' U' U U U

are real and m compJ.ex.'ltreir orthogoraliÈy properties are
u

u u=oI m =nm
u

-m
u
ñu=t

u

1n[=

1.1)

I.2a)

1.2b)

t.3)

u

l=(lrnrrrrmuuuu ln = Ir 2, 3, 4ñu'

The tetrad inclicies arîe raised and lowered by flat-space metric

n =rlmn
mn

and we also have

0
I
0
0

100
000
o 0-l
0-1 0

nrn
9uu v

z
nmu

L

z

n -l n +n I -uvuv m m -m muvuv

fl =Zmn mu
uvs

The complex Ricci rotation coefficients are defined by

Y
np

zmutvm

nv

and byl.I)have the symmetry

Y =-Y'mnp 'nmp

The tetrad components of a tensor Tuv...p

T = f zl zv.--z!mn...p l.lv...p m n p

Intrinsic dervative with respect Ec a tetrad vector is defined by

(t{. s. T
mn. ..p

znl zPv

TZnn.. .p;VTmn" 'P'q
v
q

ís a scala:r quality)

(3)

r.4)



Newrnan and Penrose intrc¡duce intoJ-4) the notation

a? ,4

I.sb)

I.5c)

r.5d)

I .8a)

DT
mn. ..p T =T lvmn...pt1 nn...p;y

VATnn...p T =fmn...p;2 nn.. .ptv n

V
6Tr* p Tnìn'..Pr 3

=T mnn" 'P;v

introduce spinors o
A

and r
A

which satisfy

B ¡t _T A
A

o 1 -o 1.6)
A

and

AB

t:7)

a.

where i e-- istheLeviCivitasymbolwithE =e =eol =eol=l' AB ol or

; the dotted index differentiates between indicies of conjugated

spinors and unconjugated spinors.

uqO'-uv

ou
AÈ 

ir a hermitian quantity satisfying

. o . - E e..AB CD AC BD

which sets up a correspondence between spinors and tensors, e.g., the

spinor equivalent to the tensor t'u...p i"

T . = T, oU ov ...oP-AB CD. ..EF ^uv. . .p - AB " cb 
---- 

EÞ

Cr =T =f ;v¡nn. . .p mn. . .pt h mn. . .ptv "

Utilizing the relationship between tensors and spinors, and. in

particular between nuII vectors and spinors, Ne\^rman and penrose

o ocI
ABA

11 o=-l
AAA

A

-BtA

o

-B
o

A

u

orf = ou ,t! = oÞ

-B
1

A
ou

AB
d

AB
t

m=

and inversely

T =1, AB cD EF
uv.. .p AÈcD. ..nÈou o- ' "t r '8b)

; Summation of spinor indicies, both dotted and undotted, is

over values I and 2.

B.i

(4)



Vrle also have for the raising and lowering of spinor indicies

A AB A -A AB_ _À
T"=e*TB TU=T-eoo T--=e tÈ *"=t tÂÈ

Further, frorn1.6) we have

o
B AB

(l'or an extensive introduction to spinors in General Relativity, see

(2)L1.9) is in fact a completeness relation and hence we can take

A - A J ,LJ- --r -r--^'o and I as a basis for the spinor space. Doing this and adopting

the notation

1. e)

1.10)

1.12)

-è = O= EAB;V = 0
AB; v AB; Vwhere

BI is fixed by the reguirement that o!
AU

Using I.12) on the dyad. components Çae (= 6
A

-10
ABA -L

-A
=O

A
4o

-A
1ô

= oo (=oå) 1
A
ì

Å
I

A (=ôl)

(=ô+)(=ôä)

1

-Ari

the dyad components of a spinor, given by

r.11)

are identical to the spinor components.

It should be noted that although the lower case indicies behave in the

same algebraic r¡/ay as the upper case indicies, there are not involved

in covariant differentiation.

Using I 9) and 1 J-O) we see that

A B-CrF:rFfff'abò 'iqBc 'a 'b -ö

1I-o .o ZP = oil.'o -o oo

-u
m' o^r = ct!.or

uun'=o'

u
AB

T of a spinor To

u
lr IO

To represent covariant derivitives of spinors in this dyad we need to

introduce the spinor affine connection fB via the covaxiant derivative
Au

Arp

T =f -TA;U A;U B
-Btou

e -È,AB

cAu-E trf r f
aA; u aB, }l ac

c
Ap a

(5)

a

aAu

AB
) we have



Hence

and

=o

Tì-rrA
t,-LLabcd -aArU 'b cå

op

A B
)

c
a ,b

A
1 a

iv CD C

r B
bfe

1.13)

-FÇ¡

I.T5)

a : â..) r r.16)cd aþ

â .)Ì r
CS

f qdfe

1.r7)

Also, to be consistent with 15), we can write

b
cd

a
cd

T b..
a. ..

uoT
a

where the intrinsic derivatives become

oo 10
r.r4)

or

v'¡ith the above theory and notaÈion, we can write out explicit dyad

component expressions for the complex Riccl rotation coefficients and

various other relationships which involve them a¡rd their background

(curved) Riemanian manifold. !{e have the fo}lowing relationships

v êt
'mpn - abcd

This is seen by the following

Ympn -¿J mutv zv zv
n

+(o
¡rAB

ellI)

u

ô=aô=âA=A IID=a

A
Ç a

oB

p
u c-ö v E-F

úoôö a. 4ti onr' 4" 1r.

(6 A
a iv

-BY-b +Ç eÇ
-D
6å

V
o

E

eYAB
I

EF

A -Be.. +
r)

c-óe e.-ccl-e e-. (f
BD

-f

efAC

nI¿

a

+ eacef bd ac

¡1"-T -I
(Y Yimi n ; nim m.0n n.[m

Y Y t

{rpq (rp..å äq¡ - fp."É âqå) * ,t" (ïi.¡å" ã.å r

bdfe

Similarly

T ) + {a a
ab cd

rdba

ymnpi,q _ yIûIqrP = "rg*n Y[tP * Y*l (Y¿qP - ,onn)
.Cnq mq

+ RmnPQ * Ð

ff- apfe
f f ---.Ì * ,t=
acpe qtdb {rqcdb

e.t)

fe f
acclb

ãaÉ r".tå - 'PQ {trnuÉ fq.rå * f."pË

f f ];üãr f acfi dèÉd

(e

acdi

)+0+ vacdf e
ED cd af cf -"Éå tr¿Ê +e e

ad

where V
¡\BCD 

corresponds to the !Vey1 tensor, 0a¡ôå corresponds to the

trace free part of the Ricci tensor and Â corresponds to the Ricci

scal-ar. (6)



corresponding ecluations can also be written out for the Bianchi

identities but they will not be reproduced here. (see (1) or (2) ) .

Newman and Penrose ad.opted the following notation for the spin

coefficieta" f.¡"å

T

YT1l

uÊool

À$pIO

1TEt(oo

tl
ol
or
IO

oo
ab

cd

r. 18)
abcd

Using L 14) and 1.18) , we can re-wïite 1.15) ' 1' 16) and 1' 17) ' The

resulting equations are quite long and are therefore re-produced in

Appendix l.

Maxwell's Equations i n the Nelvman Penrose Formalism

Maxwell's field equations for the antisymmetric electromagnetic field

tensor F written as tensor equations take the form
uv

FUv = e 1.I9a)
iV

F =Q r.reb)
Ipv; Q l

Any anÈisyrmnetric rank two tensor F

takes on the appearance (2)

uv when written in sPinor form

tuu * toucó = oAc tió + osô to" r .20a)

where, using FUu = -t'r,

{* = -t uoô". - -* ouö

is a symmetric two-sPinor.

Taking the dual of t'u

op
F

AC o"o

UV ÕP
*F

uv
=\e

(7)



its spinor equivalent is

*uuu * i(oË¡ tAc - oo" t"o)

Thus, defining the antisynunetric Èensor

F =\
uv

(r+
Uv

i*F r.21)

I .20b)

r.221

1.23)

uv

we have spinor equivalent

F + f, Ê..UV 'AC BD

Furthermore, both1.19a) andl.I9b) are incorporated in the field

equation for F
uv

Êuu = e
tV

which has spinor equivalent

ad¿ =e'AC

Adopting spinors oA .rd 
'.4

re-write 1.22)

equation is

â rË 0o"

as a basis in spínor space enables us to

in the Newman-Penrose formalism. Ttre resulting

aoti 0r" = 0o. (forrË - f rroË) * tr" (rrooÉ - foorti)

+dr I'oo -arrb ol ar ob ao rË 1I aooË0 (r +I ) +û f

which in turn gives

P0r O0o (r-2ø.) 0o+2p4, róz a)

DO O$r - -À00+2tt 0r + þ - 2e)þz b)

where

6Sr - Aôo (U - 2y) Qo + 21 0r- o0z c)

ô02 - Â0r = -uoo + 2U $r + (r - 2Ð þz

uv
rlmv = ô'oo

d)

{o

{r

F

\ ( ru ,,v * ñ! *u) 0F
u

F
u

v

v
u nm20

v = 0rr

ol

(B)

r.24)



Noting that from L 2l)

AB
o

BF

CD
F

uv oo" uÉo

the above gives

ac ef bd=e e

uv

= ó e'-'AC lrt)
.AE

E Õ.
EFU GHv

o

eee

u v

DHCG
o

usingI.g andl.tO) 
"u 

h.r. eAC
A Ca which when substituted into

* Ô, t [1, 
*v])

ÇIa

E o4) o
ae ch,U fdv

-- 2(þ ñ tu tul* ol (t ,u lvl + m mo u v 1.2s)

I.27',)

The field invariants of the erectromagnetic fierd tensor F will be
uv

of interest to us. These invariants are

a)

r.26'
uvbr *F

where E and B are the electric and magnetic field vectors respectively.

rn terms of iUv, the invariants are given by

T,LFuv Fuv = 82

b)E
uv

a)

B

Lr

Lr

uv

Uv

uv

{r

F = Re{F

*Frv = Lr*

iuuÌ=Re{2ooþr-aþ1}

u, iuu) = rm {oo þ, - 2þ
2

] b)

From I 2l) , the el-ectromagnetic fierd tensor can be represented by a

sytrunetric two spinor úr*. Let TÀ b" an arbitary one spinor; we can

form the polynonial in TI and T2 given by

P (lT) = {* TA tB

which may be factorized

rA) (ß" rB¡(cr
A

Since TA is arbitary and (l* sYmmetric we therefore have

oAB = o (oß") l-.28)

The spinors sA and B" are callecl principar spinors a¡d are unique up

to complex scal_ar factor.

real- vector via the ouoñ,

Each spinor uniquely corresponds to a null

i.e., there exists real nul-l vectors.

(a't



kÞ = oU A(r A
ßou-B

e¡ Ju = =SþAB AB

Hence decomposition I28) allows classification of electromagnetic

fields corresponding to the number of unique real null vectoïs of

the fielrt. These null vectors are referred to as null directions

of the fiel-d and the classification is called the petrov Classification

of the field.

For a symmetric n-spinor there are at most n unique null directions,

thus, fromr.28), there are at most two unique null directions for the

electromagnetic field.

Hence the Petrov Classifications for the el-ectromagnetic field are

*""'åT;:::1":: """ "'":;'fî:ï;'"" Form of 0*

t 1l General ó = cr ß'AB (A' B)

Ízl NuIt 0AB=o(oou)

It can be seen that for a null electromagnetic field there exists a

real null vector kU such that

ku; =Q
uv

Thus, byL25) for any nurl electromagnetic field,there exists a nurl

tetrad in which F has the form
uv

F m2ö
ouv

or L.29)

where the principar nurr direcÈion is ,rv and rv respectivety. For a

generar electromagnetic fietd we must have at least either {¡ and 0z

ron-zero on Q, ron-zero. By choosing a particul_ar tnsis, r/\E may eliminate 0, frorn

the expression for a general electromagnetic fierd. usíng r7), t20a)

and the slmnetry and antisymmetry of $OU and eo, respectively, S¡ in

L;24) can be expressed as

or = +ec (oA ,c * ,o oc¡ = ooc oo r"

The only other condition oA and rc must satisfy for the above

is the eguivalent of L6) i.e

p
n

vl F = 2þ^ I muv ' [u v]

decomposition of F
Uv

(10)



À R BA ABO1 I eo

Thus, if we use the equation

0
AC =0

AC

to specì-fy our basis, rather than LtO) , tire S, term in L23) and1.24)

will disappear.

o1

(11)



t-.hus either v - o, .i.e. no cliscontinuity, or the surface s is null.
uv

It can be shown that such a null. surface is a characteristic surface (21.

Using the fact that Yrv is an antisYmmetric four-dimensional- matrix

which must have even rank (this can be shown by direct cafculaÈion of

fhe dete::mjrnental ra¡rk for the various cases) and also by 2 2) the rank

cannot be four, (assuming F is discontinuous), úuu can be written as
uv

rl --k !.
uv Itr

where k and .Q,uv

vl

are linearly independent defined (but not uniquely)

u
u

=o=tl

on S. From 2.2a) k .Q, and uuu are linearJ-y dependent and \^re can set
u

L úuU. Since uU is null2.2b) shows that kU s spacelike, Thus we

have

Y =Yh uuv [u v]
2.3)

u

u kuu
u

We can i.nunediately see from2.3) that if we set f = o in 2.I), then
uv

F is nu1l in terms of the Petrov classification and further has the
uv

simple decomposition I.29) in terms of the null tetrad introduced

above.

Discontinuous or Shock cravitationat Radiation Fields

Just as the solution F.. to Maxwell's equatior¡ has characteristics,
uv

the solutions to Einsteinrs equations may have characteristics.

Einsteinrs equations are second order hyperbolic non-linear partial

differential eJuations inttre components of ttnmetric and hence possess dnrecterist

surfaces which may be interpreted as wave fronts across which the

metric and its derivatives are discontinuous (4).

The problems of physically int-erpreting these apparently "radiative"

properties of gravitational fields has been discussed in other

works (2), (5), (6). Briefly, the problems stem from the fact that,

unlike l4axwell's equations, Einstein's equations are non-linear and

Iocal.ly a gravitational field can be transformed away. Thus, we

caû¡ot ascribe an "energy content" to a gravitational wave.



Discontinuolrs or "Shock" Electromagnetic Fields

I'{axwellrs equations are first order partial differential equations Ín

the antisYmmetric tensor FUy. The solutions to such equations admit

"characLeristic surfaces" (3), (4) . These surfaces have physical

significance as wave fronts across which solutions can have

discontinuities (4). Thus electromagnetic fields can exhibit a

discontinuous behaviour across such characteristic surfaces. Holñrevert

we shall see that such surfaces have particular properties.

lrle adopt the approach used in (2) . Let the surface S: u (xo) be a

hypersurface in flat space time. Let F have the disconÈinuous form
Uu

F f +Y 0 (u) 2.Ll
uv uv uv

where f and Y are C and piecewise CI and 0(u) is the usual unit
uv

step function.

Inserting 2.1)

F lv = f
uv

into MaxweII's equations gives

o

uv

uv
,-v

uv

0(u) + V u
luv r pl

f
tu vr pl Iuv; p]

v
U=O

uv

Y u =o
tuv pl

+ v ;v
uv

+v

0(u) + Y 6 (u) ,ru

ô (u)F

v

Iuv p]

where tu = t,ui uv = ,rugvu and ô (u) is the Dirac delta distribution.

Maxwell's equations must hold on and near S, hence the following

results

for u + o f ;v = O and f. - 0
Uv tUv; P J

foru*o* Y iv=oandY- - =opv [pv; AJ

and hence on S we must have

arrd

a)

Contracting the second of these with u0 gives

p

p
uv

UV
=ou

(1f¿)

b)

2.2)



'Io deduce some mathematical results on the likely properties of

gravitat.ional radiation, we cannot always use electromagnetic

radiation as an analogy. Ilowever, h¡e can begin in a similar way when

considering gravitational radiation wave-fronts. l'or heuristic

reasons, the type of discontinuity of the metric allowed in General

Relativity is restricted to shock discontinuities in the second

derivative of the metric. l,tathematically this is represent.¿ by 9pv

and q beinq continuous whereas q mav be discontinuous across-pvr e uv;40

some hypersurface S: u(xu) = o.

Physically, this restriction corresponds to allowing nothing more

than shock disconti¡ruities in the curvative tensor Ruv4o. Allowing

discontinuities tr n'u ^rd n'u r, would entail delta discontinuities

in R - which would be difficult to interpret physically.
uv co

This restriction on the type of allowable discontinuity is called

the Lichnerowicz condition (7). To study the inplications of the

Lichnerowicz condition we use the method adopted by Pirani (2).

Let A denote the discontinuity across hypersurface S.

Thus we can write

À (gpy 
rqo) = Xuu4o = Xuuo6 2.4')

and we have assumed that

a(sur) - ¡(9¡rv,6 = o

Considering neighbouring points xf and xÞ + dxil on S and the values

ofg either side of S we have
þvr E

Õ9ru,6 (x + dx)
IvrEs

thus for the discontinuities

A(s 1*+dx)):A(s!v, E

(x)+s

]lv, E

x=o

(x) dx
Uv, 6o

(r)) + n 1s
o

By the Lichnerowicz conditions

U
) = Xuua(s

Uv, Ço
dx

r,o
d

(14)

Iv, 60
(x) ) qr



o ofor all d¡< Iying in hyperstrrface S. For such dx we have

vudx,v =o

thus we must have

Xuu6o = X

for some Xuu 
4o "

R =2ðUvEo I o

therefore

^R 
= 2 u-Uv4o lú

u
uvÇ o

By symmetry of 2.4) we have

Xuv 4o

FurLhermore, using the Ricci identity

Xpe u4 to 2.s',)

2.6

2.7)

2.8)

g.l turvl 
'f terms continuous across S

xe r [u uv]

Since R = o in a vacuum an<1 hence AR = o we have
uv uv

vo v v
2g u 

¡6 xcì [u 
uv] - t(xru u

v
-Ytll¡"vU c

Y uu"qv u

* xuu ttrou) =o

Multiplying this by uouk and antisymmetrizing on I yo] and I K(]

qives

'û.XEl h.,tol .,uu =o

Comparing this with 2.6) shows that if *Uueo is discontinuous across

hlpersurface S then S is null.

So, if g'ur.o suffers a discontinuity across surface S then \¡ì¡e can

write for S, ,r(*x) = o

o
s +
ltv, ÇO

=g
Uv, 40

Y,.u u u 0(u)v 60

owhere g and y are continuous.!vI 4o "uv

Atthough the Lichnerowicz cond.itions are widely accepted as the

continuity conditions to be imposed on the metric when considering a

Cauchy problem, P. BeIl and P. Saekeres have shown (8) that there are

circumstances where they must be relaxed.

I
I

(15)



Their approach was to apply the Lj-chnerowicz conditions to an

el-ectromagnetic field with two colliding shock fronts. One may

expect the most general form for such a field to be

Fuu = tu, * v1.,p 0(t¡ + 0u, 0(v) * nuu 0 (u) 0(v) 2'9)

However substituting th-is form into Maxwellrs equations gives at:

úuu o (v) = ü uluou 
l

u=o

v=o

u0= -e'v
,- -.uvuv

v

ìJv

can set k
u

such a field AR
uv

0.,.,u kuuo(u)=0f

+k pv

rþ -t .u * onÞ and fu+ fx * ß.rl

orr!=aar!=fvF=fuu=o
uu

+ v
[t.r v ]

where e and f
u u

are spacelike vectors orthogonal ao rU *U rU

respectively. By using the transformation

where

and ß
-u=-.|"ll

-_livuv
U

we get

u u

This transformation is well- rfefined since u
"u + 9, the reason for

u

this beinn that u,.,

assumption.

The continuity of rJ.,

and vU are not proportional to each other by

uv' uv

k = o and hence doesn't contribute to the shock front. Thus, we

Before applying the Lichnerowicz conditions to the electromagnetic

field, we must note that the hypersurface S at which the shock

discontinuity occurs for such a field is nuII by way of the arguments

in the previous section rather than those of this section since for

ouu' þ, $ and k inplythatatu=v=o,

v = o throughout the region u>o, v>o.

{". However, the decomposition 2.9) (or 2.5)) is

still valid since we did not assum O*Uu = o for thaÈ equation.

(16)



=o
Hence, for a shock electrornagnetic field AR ,{L but since u

uv u
is still

2. ro)

nuLl- we can wriÈe in place of 2.7)

v
AR

u4

uv

= -t(, Xu)v t + lx

(q Xu)v t

uuvEo

Just as the k 0(u) 0 (v) term in 2.9) f,as k = o -i.t follows
uv uv

analogously thaÈ for a double shock fronted electromagnetic field, the

Ricci tensor can only have the form

R
u6 ur

v
R + [-u u,uo I 0 (u)

lo(v) 2.LL)

wL¡ere Ro
uv' Xuu and 3 are all continuous (i.e. there are no terms

uv

of the form k- 0(rr) 0(v) ) . Ilohrever, Einstein's field equations for
ìrv Ço

such an electromagnetíc field are

o

_ v ._v+ [-v(( =u)u t * to , t6tu

Løuu ro, roE)

* Lxvv
o

R= ¡cT = -K (r¡ F
uv uov4t

which, upon the use of 2.9) (with I< = o) , w-ill give
uv

R
o

=Quv uv
* 

# 
*(ro(u(uu) u

Õ

+Ls o6) 0(u) + K O(ff e
o

u e ) +LVuuuvv)

(e vo(u v) v)

o

(i o)
V e +tÕ v vuv oe 4r

+\s f fo .r'4) o (v) + r ov (e fuv 04 (u v)

uv
oLt v + u. vo (u

e afv)o
BT

-ls fo 0(u) 0(v) 2.L2)
uv

Comparing 2.1Ð and 2.I2) we see that for colliding el-ectromagnetic

fields, the coefficient of the 0(u) 0(u) term must be zero to satisfy

the Licturerowicz conditions. Holvever, that coefficient in no way need

be zero in general. This is seen by contracting it with e! givinq

coefficient

-LÕY u vo fov

which is zero only if either or both of the shock fronts vanishes.

e ,r, .*r1)
o

(17)



Thus, BelI and Szekeres

conditions to allow 9U lre

hypersurface S, r(J') = o i.e.

o

(8) suqgestecl a relaxation of the Lichnerowicz

to have shock disconti¡ruities across a

g =gfvr6 x',u, o (u)+ 2.13)

2.r4)

þVr Ç

o

!vrL Þvr
are continuous. Using an approach similar towhere g and X

that which gave 2.5) yields

Xuue = xu,

The second derivatives of the metric will therefore be

Iq =q- +x u-u ô(u)-Uvr 6o - Uvr 6o "Uv - 4 --()

where gr is piecewise continuous. This gives the Riemann tensor
UvrËo

the form

ut

Ruvço = fturro * 
",u'uì [4uo] ô (tt)

where R
uvço

is piecewise continuous.

As we saw above, R
uv

can have no \ârorse than a shock discontinuity for

colliding electromagnetic shock !ìraves since T has only such
Uv

discontinuities. l'herefore, we require that the delta discontinuity

term in 2.L4) must disappear upon contraction over v and o. This gives

oot Xo (6tu ) = tX ot4tu 2'L5l

This equality is satisfied by enforcing the OrBrien-Synge conditions

on the metric (9). These conditions may be written in the form

ol
s (as ii,o

rl
I (as al ro

where OnUu, represents the discontinuity across the null hypersurface

whose equation is xo = constant. using 2.I3) above and the resulting

form for x - h¡e find the O'Brien-Synge conditions for the fietd under
"uv 4

consideration are

) =o

)=o

(18)



vxuut =
v

Lxv u
u

which is seen to satisfy 2.15). Therefore, although for colliding

plane gravitational waves tlre Lichnerowicz conditions are suitable (12)

for colliding plane electromagnetic waves, we must adopt the weaker

OrBrien-Synge conditions.

Furthermorê, vùe see from 2.7.4\ that the coltision of two electro-

magnetic shock waves will give rise to Èwo impulse !ûaves propagating

along shock fronts u = constant and v = constant.

From the analysis above, we also see that tfrese impulse vraves cannoÈ

be transformed away.

(1e)



The Exact Gravitational l¡lave l'{etric

Due to the non-l-inearity and non-tensorial nature of Einstein's field
equations, there is no simpre method of constructing gravitational wave

solutions (2). General- gravitational wave solutions cannot be generated

by superposition as with electromagnetic waves. As stated above,

however, analogy with elecÈromaqnetic waves can be utilized to some

extent.

The concept of "electromagnetic radiation" entails a transfer of energy,

by the field, at the velocity of J-ight. An example of ,,erectromagnetic

radiation" is gíven by the plane electromagnetic wave which is described

by an electromagnetic tensor of the form

F
u

where T

explixo ko)v -l
Uv

and k
uv u 

are independent of the co-ordinates. From Maxwerlrs

equations we irnrnediately have

F... kv = O F k = euv - [uv -o]

and from these we have

k kF=O
u

Thus the prane electromagnetic fietcl is a nurr fie]d by the

classification intro<luced above.

In a vacuum, the hleyl tensor satisfies the Bianchi identities wtrich

rnay be written as

C - io=O fl =OUvço Uv [ 6o; l]

which are sim.ilar to Maxwel-lrs equal-ions. This suggests that plane

htave gravitationar radiat-ion shou]d correspond to the weyr tensor

satisfying equations of the form

o

uv ço
k =o c k =Qpv [[o Àl

for some nul-l vector k .
u

These equations correspond to gravitational field which is nullr or.

Petrov type N, (2), (5), which mathematically means that the lJeyl spinor

c



Y
ABCI)

introduced above can be writ-ten in the form

Yo"co 0,cD)
(c.f. The decomposition of the electromagneticwhere k! = o

p

AB

fietd spinor 0* on page l0).
null

Exact sol-utions of this nature which adm-it at least oner.Killing

vector are called p]-ane-fronted gravitationar waves (2) (5) (r0). rn

(ro) it is shown that the metric for such an exact so]ution can be

mapped into the form

ds2 = 2dudr - U(u,y2,y3)du2 - (ayz¡z - (ay3¡z 3.f)

A special case of this rnetric is the plane-wave which has five Killing

vectors. For such a gravitational wave the function U(u,y2ry3) has

the form (10)

u = f (u) ((y2)2 - (yt)2 ) + 2h(u) y2y3 3.2)

where f(u) and h(u) are arbitary functions.

rf h(u) = 0, the plane wave is said to have constant

polarization.

The plane wave metric 3.1) and 3.2) can l¡e transformed into the more

convenient Rosen form (11)

ds2 = zãM arrav - 9 clx
j

3.3)ij dx (ír) = 2r3')

where M(u) *d 9ij(n) are arbitary functions.

For the case h(u) = 0 this transformation is obtained by setting (12¡

r = v +\(y2)z u'n Ë + Ì(y3)2 u'Q

*' = y'un *t = y'aQ

where P = P(u), Q = 9(u), ' 
= cì_ and P and Q satisfy

du

-(ïj+Ë2) = tö*ô') =f(u)

The metric 3.1) then takes the form

ds2 = dudv - ("2P (a*2)2 * 
"'Q 1ax3)2 ) 3.4)

In this case gij is diagonal ; in fact gij ". always be diagonalized

= vo (oo 
"o

A-Bc[cl

l-

a

(21)



if the wave has constant polarization. There are several properties

of the Rosen form 3.3) worth discussing. Firstly, the synunetries

exhibitecl by the pl-ane \ñ/ave are more obvious with the metric in this

form. There are five Killing vectors for the metric a.4). By

definition a Killing vector

't"=Q- (u; v)

which can be written as

TÞ sa'b,isfies the equation

s -0
,v uo

u

s
Õ

T
o+T s +

o
T

With the metric gUv given by 3.4), we get the foltowing partial
ìlVro rË OV

differential equations for T

Tl -o ; To =o

r0

=Q

a)

b)

c)

e)

f)

3. s)

r0

r0

r1

To +Tt =Q
rl

,2PT^ -e
¡2

TO
t2

iro+t2

=0

"2Pr' =Q

T2
r0

Tl _.2Qrr =e

TO

r3

r3

þto+13

"2Qrt -o d)
rlrl

¡2 = O

TT _ O

r3

T3 u2Q**, e2P=o
tZ t 3

From 3.5a) and b) we have

TO
r00 rll

Thus

for some f (xry) and d(x,y)

From 3.5c) and a) and

tD(e-^.I.)=0=(e
r0 r0

giving

I -'.oT2 = h(v,x,y) ( l" '^
J

To = uf (xry) T1 = vd(xry)

zQ.f 
)

r0 r0

du t g(vrxry))

(22)



and similarly

T3 = j(vrxry) (
"-2Q ¿o + r(v,x,y) )

Now using 3.5d) we find

2P -2Puðf=e
â"

âh
â"

e du+g)+hAS l
äv

v

2Q

however, in this equation, Èhe right hand side is a function of v

whereas the left hand side is not. The only way to satisfy this is

to set:

f(x,y)=O t g =g(x,V) , h=h(x,Y)

Thus, T0 = 0, which immediately requires, by 3.5e)

fr=h(y) t g =S(y) and j= j(x) , k=k(x)

which in turn, using 3.5f), requires that h, 9, j and k are arbitary

constants. Hence hre can write

To=O

^ ( 
-'>oTz = h'1" -' du + g'

)

t^
T3 = i' l"-zQ du * k'")

since T0 = 0, Tl= d(xry) and using 3.5c) again, {ùe find

Tl = h'x + j'y + I'

where I' is a constant

This gives the following five Killing vectors for the plane

gravitational wave

TTÞ=
I

o
u0-Þ_a-

2

J.-J.-

3
0

I

0

x

2Pdu du

000

TU
5

u
r-

4
0

0

I

0

0

0

0

1

(23)
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Of this set of Kilting vectors, we will be mostly interested in the

last two. The transformations corresponding to these vectors are

2P du x=xt -2P du
(

+ oJe

. uf"

t_
J.

t-
J"

T

Tu;v=v'*uxr+\u2'

u;v=v'+ßy'+\ß2

Tu;v=vt+y

Tu;x=xr+6

u.T';y=Y'+e

du y=y -2e au2Q

2

3

tt

5

where 0, Ê, y, ô, c are Parameters.

Another advantage of the Rosen form is that it allows discontinuities

in ttre curvative tensor while still sabisfying the Lichnerowicz

conditions stated. above. The metric given in 3.I) and 3.2), however,

cannot accomplish this.

!ùe can see the reason for its failure to satisfy the LicÌ¡¡rerowicz

conditions with discontinuous curvature is due to the presence of the

product terms (y')2, (y3)2 and (y') (y3). These terms result in f(u)

and h(u) appearing in the Riemann tensor (i.e. iÎ n'uro. terms) and

hence for this quantity to be discontinuous, so must f(u) and h(u)'

However, this cuts directly across the Lichnerowicz condiÈions'

No\¡/, if we use the Rosen form 3.3) for the metric, this problem

doesn,t arise. This advantage of the Roserl form is of particular

merit when we deal with sandwich gravitational waves below.

A third advantage of the Rosen form is that both u anâ v are null

co-ordinates thus in the collision problems (represented by Figure 1)

considered below both waves can be represented in t'he same co-ordinate

patch (6), (fZ¡.

A disadvantaqe of the Rosen form, when compared to the form 3.1) is

that 3.1) can completely cover the space time manifol-d (i.e. is

geodesically complete) (10) whereas there is a siÈuation in which the

Rosen form suffers a co-ordinate singularity, as we shatl see for the

sandwich gravitational wave (l 4) consi'dered below'

(24)



The Co-ordinate Systern and Fielcl Equations for Gravitational Pl.ane
!ùaves

The properties and results deduced in this sectíon, concerning the

co-ordinate system are effectively those given in (12) which ar:e

produced in more detail in (6).

The metric 3.3) is particularly suitable to be represented by the use

of a double-null co-ordinate system. In this system we consider two

families of distinct null hypersurfaces given by

u = u(x'F) = ct v = v(*¡!) = c2 (C1 and C2 constants)

which int-ersect in spacelike two-surfaces. Vìle may choose one of these

spacelike two surfaces (say u = v = 0) and co-ordinatize it by

choosing suitable co-ordinates x2- and x3. These co-ordinates can be

extended to the whole manifold by appropriate transportation.

Fina1ty, ü/e can adopt the co-ordinate *0 fot the family

u(x'r) = c, and *l for the family v{x'u) = c2. since the two famiries

of nuII hypersurfaces are distinct we can define a pair of null vectors

I andnuu by

úr u

requiring

t

u rLl r!
ón'u =v 3.7)

3,8)

nl=l i.e. 0ü=gÞut

(V-lror0ro)

V
rU

(0,0 l,o,o)

u ,v

Using the co-ordinates adopted ak¡ove we have

t n=
uu

To utilize the Ne!ùman-Penrose formafism' we reçluire a null tetrad

I , tr, m, ñ which satisfies the relationships 1.f). lt followsuuuu
that we require

1Þ = (¡rQry2ry3¡ .u = (û,0rx2,x3) *l = (gr0, E2 rE3) 3.9)

where Q, V, Y and xi are real valued functions and 6i are complex-I

valued functions of the co-ordinates. We also require *! to satisfy

*u ñ - -1, rwllp-,O coocl ^tøPnr-o
u,,

(25)



since r{e are dealing with the prane wave interaction depicted in

Figure 1, in whích the metric, in the various reg-ions of the figure,

is either a function of u or v or both u and v, but never x2 and./or

*3 (L2) !ùe see that all the functions in 3.9) are, at most, functions

of u and v. Thus, we shall adopt tlre approach of (LZ¡ rather than

that of (6).

I¡ùith this specialization the tetrad has the fotlowing five co-ordinate

freedoms

(i) Scale transformation

f'! = Alil nru = A-In! A = A(urv) 3.10)

under this transformation, scale functions rf and $ t.ransform as:

ú' = A-1rl O' = AO 3.1-I)

(ii) Spatiat rotations

c = c (urv) 3.12)r't,! = "it *t'

rhe {r transform as

E,) = "it 6j

(iii) Relabelling of null hypersurfaces

u' = f (u) .rr = g(v)

This induces on rf an<l Q the transformations

,r' = {,dq O, = Ogg
du dv

(iv) Spatial co-ordinate transformations

ut=uvt*,i=*i+fi(rarrr)

These induce transformations

3.r3)

3.14)

I
iiY + Sâf-

äv

(v) Li.near co-ordinate

l-

X'i=xi+,¡aril_

Xax

àu

transformations

I ) l_
a = constants

vùe can now introduce the Ne\4rman-penrose formarism and equations

referred to in chapter r and presented in extensio in Appendix r.

l)

/.)r: I

3.rs)



Since the rnetric and hence the nuII tetrad invol-ve components which

are functions of only u and v, the spin co-efficients will be li-kewise.

Further, the intrinsic derivatives D, A, ô and 6 simplify to, using

3. e)

D=tu ä

^urrX

=0 a

äv
A â.rÈ *u â =0=rþ¿ 6

âv âxu^udx

Using this in the commutation relations Af.2) gives;

fromA.t.2d) U=p p=; ":g

A'1.2c ) v=0 't = 29,

At " 2b) T='lT K=0

a1.2a) Dü = -(e + e)ú 3.16)

aô = tv + ilo ¡.rz)

By considering the commutation relations componentwise Al.2) gives

frorn 41.2a) ,\y-i Dxi = (y + ï)vi + (e + ã)xi - ¿õ Et - no E' 3.rB)

Ar.2b) DEi = oEi * (p * , - õ) Ei 3.1e)

el.2c) I
3.20)

Following (L2) 
' I^¡e can cleduce a set of scale inváriant spin co-efficients

(i.e. spin co-efficients which are invariant under a scale transformation

given by 3.I0) above.

From 41.1) vre see that und.er such a scale transformation the spin

co-efficients transform as follows

^lr, - AÞ O¡ = AO Ut = A-rU

Àt = A-lÀ Tr = îI Tr = T

E ¡ = AÊ + tDA from which we see that

(e -e)'= A(e - ãl

Y' = A-1T - ÌAA-l which similarty implies

ty-il' = A-rtv - 1l

ct'= cl ß, = ß

-t-(u + Y - y)E
a

=_À5



The dyad components of the trleyl , Ricci and, Iv1axwell spinors transform

as

Vå=e'Yo Vi=AV, V; v2

v = ¡-1rY

0å,

V v

2tþ

0

= AQot 0 =011

vi = a-' Va 4

A'oo 
o

ô!='00 0 OI t1

00, 0 t2 = a-tÕ;, 0 22

0å = aOo 0

_ o-r-Q''_

= 0r tÞ = A-to,

Finally the intrinsic differential operaÈors transform as

D' = AD A'=A-rA
From 3.11)

follows:

we can define a set of scale invariant quantities as

p0 o -l

Eo = i{e - ê)q-r Go = ity - il,l,-t

uoQ 00I
uvp0

Ào = Àü-l

oo 
o 0-'d)o ='00

0Õo=-12

ry
0

0

\y o-2

0

0
0

Y,ú-'

þ rrþ

= 000 t Ol = 0zú-I

Il

v

V

0 0
0

oo ,0- 
t

V

3 3

0

\

ìo 0 2

0

0
D 0-tD = Âo = rl-lAò

ã;
ö

¡tt

ltle can no\i¡ proceed t-o write the commutation relations and field

equations in a scale invariant form.

Since 3.16) and 3.17) can be writhen in the form

e + õ = _O(trrf),.,,

y+1= r¡1tnQ),.,

rr/e see that the real parts of e and y cajìnot be written in a scale

invariant form.

3.21)

/ool



However, these quantities do not appear explicitly in any of the

other fierd equations. vüe can regard these equations as expressing

s + ; and y + .¡ in terms of rþ and rjr.

To write 3.18) in a scare invariant form, we firstry note that the

i
t are automatically scale invariant. Thus usinq 3.2L) we find

0l -M-x = -4e ü 3.22),u

where yoi = 0-i yi xoi = ,þ-t xi and

¡l = tn (0ú) 3.23)

ar:e all scale invariant.

From 3.22) and the co-ordinate freedom encapsurated in 3.J-4), we see

that o = 0 is a necessary and sufficient condition for there to exist

a spatial co-ordinate transformation 3.14) which makes xi and yi

simultaneously zero.

The remaining 3.19) and 3.20) become

-i'g'' = ooEr + (po + iEo)6r 3.24)- tY

(uu 3.25)

The field equations presented in AI.3a)-r) reduce to

Et * oqt)Y0i
,u

-i :oq =-^
¡tl

;i
Ç - ico)Ëi

0opoM
,v

p0
,v

a) (reduces to) (po )2 + o

¡11

= Pouo +

0 = -(uo)t -uot ,u - Àof o -, þ1,
,u

0

0 * o3o a)

p

u

q)

h)

n)

b)

p)

0 = -(uopo + oo).0) - 4e -M-+{cl0-e Y2 b)

-M-M a0+eooÀo 4e
0p

- uo)oo - l-opo -4e-M;2 3.26)

o = oo (2po - I,t ,, + 2iE) * v3
,v

o 0 (2ico

Y2 c)

d)

e)

f)

,v

-M

u

-e Õ- 02

.0 Ào (po - 2itro ) + -0ou

(9Ol

cll

+e -M
Õzo

o + 4e{ a2-

s)



j) Àor, = -lo (zpo + Mru + 2ico)

d) = q(3po - ino¡ + ãoõ * 03,

0

0 ,v

0, = _o (uo
,u

+ä¡l
UV

0

I

e

1.23)

h)

i)

j)
3.26)

k)

1)

n)

a)

b) 3.27)

-V
4

r)

f)

k)

r)

m)

I"laxwelL r s equations

a) (reduce to)

c)

v - ooÏ = 2Þocr- - oocr)

+ ico)-¡lod - vo

-M. "(Yz * 0rr) -Eo ),v ,u

-M Yr- - ArJ = l-topo - Ào

orl = z(Poo - roo)

a) to d) recluce to

= 2po ó
I

-zuo o

0o m)

0

3
Y

d)

0

0

I rV

I ,ll I

001,. = -(u0 - ic')O0o - 4.-M t Or*oo0ro c)

0 = -Àool + ae-Mo4t * (po : ir:o) 0ro d)b) 0

2rY

Fron the definition c¡f Èhe scale invariant components of the tticci

spinor and Maxwell spinor and using (1)

Q.b = O0. õO (k a constant)

for the el-ectromagnetic field, rnre see that the scale invariant Ricci

components for the electromagnetic field are

oo3 = k03 OB o3r = kO| O, .-M eo2 = r03 õro

Qrr=kOrõr 01r=tOr03 or3=kþzo-þr0 3.2a)

wherek: c - K

B cq 64tr

To proceed from 3.25) ' 3.261 a¡rd 3.27) to a meaningfuÌ set of field

equations r wê can avoirl an unnecessary complication by usinq several

feat.ures of the system r^¡e are studying.



V'Ie will be concernerl with the interaction between particular types

of gravitational and electromagnetic waves, and hence we may exploit

the various properties of ÈL¡ese \^/aves to simplify the tasks at hand. The

first simplification arises from the fact that for a purely

gravitational wave the Ricci tensor vanishes (nru = O). Hence in the

equations above, aII the corresponding Ricci Spinor terms vanish

(i.e. all the O0's are zero) for such a wave.

Secondly, for the electromagnetic wave, we have the Ricci spinor

components given by 3.28); where the 40's are the electromagnetic field

spinor components. Thus, if we can set up the j-nteraction such that

oreof the 00's vanish throughout the space-time, a further

simplification will arise.

In fact, by choosing the el-ectromagnetic h/aves to be initially null in

the sense of the classification on page IO we can set, in

particular, 0, to zero. ff this is done, we see from 3.27 a') and b)

and the uniqueness of solutions of partiaÌ differential equations

that (l, wíIl vanish throughout the whofe space-Lime.

Thus from 3.28) 03r = 0rr = Õ12 = O throughout the whole

space-time.

lr]ith these results, vte see that in both cases, (i.e. gravitational and

initially null electromagnetic wave interactions), the partial

differential equations 3.26 l) and j) for o become, using 3.26n)

0 = o(300 - inO) + o0 d,v

-0(3uo +-ico) - 2Ào;
,u

For the collision probJ-ems we shal-l be studying, (see Figure 1) o, is

is initiaLly zero (i.e" Region I in t¡igure I is flat space) hence using

the above tvro equations to evaluate cr throughout the space-time, with

initial condition q = 0, Ì¡re see that o is zero everywhere.

( 31)



Flowever it was noted above that if o vanishes then there exists a

l- I
xtransformation 3.14)such that the components Y ancl (t = 2,3) of null

u uvectors I and n respectively in 3.9) can be set t-o zero. Hence

these components can be set to zero throughout the space-time.

llith these simplifications, many of the equations in 3.26) simplify

somewhat.

Using 3.26) n) with 0rl = 0 on 3.26) lr) and c), wj-th ü = O, gives

-2uo p o a)

3.2e)

po =
tlL

uo = 2.vo po
¡V

Conbining 3.26) k) and rn)

uopo - Àooo = Li (co 
,, - Eo 

rr) 
* L tr.,

Finally, we have for the Ilrleyl spinor components

vl =o

Yl =o

b)

c)

l,roceeding toward a more meaningful set of field equations we see that

since lU, rl', m!, ana ñU form a null tetrad (satisfying 1.L)) we can

use 1.2), 3.8) r 3.9) and 3.23) to write

o -M cludv + q. ¿*i d*jds'=2e- _Il

where j-rj = 2, 3 and.

sij = -tEiçj *

V,lritinq g-. dxr dxl" -L)

-UV-e (e CoshW

Err.tl

where

U = -ln(det O.r¡

From 3.29) we have

^ L / rr-rr\
Et = I gtt" ut

6

63 = , 
"L(u+tl)È-v¿

in the fonn (fZ¡

(a*2)2- * 
"-Y cosht,ù (ax3)2 - 2sinh!,t dx2dx3)

(Coshhul + iSinhLvü) a)

(SinhSI^l + icoshtW)

/"rl

b)

3. 30)



Substitut,ing these into 3.24) and 3.25) gives

lro = tU Ua = -Luvu
Eo = -Lv Sinhw co = -Lv Si-nht¡1vlt

o0 = Li!ù - 'zv CoshW ¡o = 1i!,j + åV coshhfvvuu
where subscripts u and. v represent part-ial differentiation taken with

respect to that variable. These values may nohr be substituted into

3.26) and 3.29) to give

3.26 c) ,b) (gives) Urr'

a) 2U

d)

e)

v(uv V

U

f),S) 2Wuv

f),9)

+ 40oo

2îJ tJ2 +2u I,l
u u

=w2-v2coshzwuu

¡J2+2u M =w2+v2cosh2wv v v

VV VV

- ¡,1 ) Cosh!{) +!i (Ilt - vüvvvv

M ) - V2 Coshv'¡ Sinh!ìt)vv

-U Vù -U W =2V V Cosh!{uvvuuv

sinhlrl - 4"-M rm { 0or}

2,v

=[J Uuv a)

b)

c)

d)

w VV

uuu

0+4022

v0 : -! (V CoshW + 2V V'¡ Sinlrt¡J
0

v

e) 3.31)

VU U V =-2(Y V'fvuUV vu vu

+v I/ù ) tanhVl + 4e -t*u {Õro} f)

h)

k)

m)

v0 = -L(v Cosh!{ - 2V Vl Sinhvi
uu uu

- v (u - M ) Coshlrt) -hi(v'¡ V,J

u uu

4

uv

uu u

U M) -V2coshtùSinhür) s)u

à¡l -åi (v vt V w )o:shv{h)uv VU

+ àv V cosh2ú{

u

-M
e v

u

2 uv

_M
e v2 _\

+%w Vù -r¿(w

v

üJV i)

U U
uv

V

u

UV v u uv

Similarly , f.or Maxwell's equations 3.27 we get

3.27) a),b) (qives) 0, = 0

( 33)
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c) 03,,, = L(ur, - ivrrsinhvü)S! - à(vrrcoshw

- iw )ö! b)
v2

d) ôl ,.,, = -L (v,rcoshw + i!,I,r) 0! + à ttr*, 3.32)

+ iv__sinhw) Q! c)
v

To describe the interact-ion depicted in Figure I we must solve the

above set of equations. This task is somewhat sirnplified if we

re-arrange several of the equations realizing that some equations are

integrabílity conditions.

Upon re-arrangement and. using 3.28) where necessary we get the

following system of equations

3.3r)a) u = -ln(f (u) + s(v)) a)

=w2 +v2coshtrt'+¿r0o õo b)vv00b) 2îJ -u2'+2¡J Mvvv

c) 2u -v 2+2t: 
M = w 2 + v--2cosh2tl+ 4kO3 +! c)uuuu

-U Íû -l,V [J =uvuv

uuu

uv
2V V CoshblSinh!ù 3.33)e) 2w

f) 2v

uu

03)
TO- Qz

î0
9s- 2rkØ02 d)

e)

f)

-U V -V U

*ol
+U U -V'] Vt =$uvuvuv

u V
= -2(v hI + hIvuvu V ) tanhVl

uuv

+ zr({! î0qo

u

0
0

0

i),h) 2M V Coshû']uv

These equations along with 3.32) form the set of equations to be

solved. In this set, we can see that 3.32) and 3.33) d) and e) are

integrability conditions for 3.33) b) c) and f). Hence' we may attempt

to solve 3.32) and 3.33) d) and e) for V, w, 03 and {! itt tne

interaction region (Region rV in Fig.l) with the initial data properly

set. Then M can be found from 3.33) f) by integration and using its

initial values on u = 0 and v = 0.

As stated in (8) 3.321 and 3.33)d) and e) are a quasilinear hyperbolic

system of equations (see (4) for the definition of such a system) in

the two independent variables u and v. Junction conditions reguire

U, V, lrl and 1"1 to be continuous everlnøhere, 0l t" be continuous across

to continuous across u = O.v=0 . ,0ano 90

(34)



Therefore if we know the forms of U, v, [v, M, 0l ""a 0! fto* initial

(non-interacting) plane waves in Regions fI and fII v.te can deduce

U(urv) throughout Region fV from 3.33)a) and we will know the values

of the other fr¡nctions on tlìe appropriate bounclaries. This is all the

characteristic initial value data needed to cletermine V, w' M, 0:

ana Q! un-iquely in Region IV(6) . Al-though this (characteristíc) initial

value problem can be set, and fur:ther some of the properties of the

general solution studied (6), the syst-em is too complicated to solve

for the general case, with present day partial differential equation

theory.

Therefore, the approach tc¡ be taken here vrill be to sirnplify this system

in the following var-ious h¡aYS.

f) Make the electromagnetic field a "test field" in that we

ignore its gravì.tational field

2\ Since almosl- all of the experimentat tests involving

General Relativity utilize the weak field approximation,

113¡, (23) we could adapt 1) immediately above to a weak

field approximation. fn the usual weak f,ield approach

the gravitational field is linearized which results in

mere superposition of waves, we shall slight'ly modify

the weak fietd assumpt-ions to gi.ve a non-trivial interaction.

3) AJ-though the system akpve cannot be solved exactly \^Ie can

fj_nd an approximate solution for values of u ancl v small

and positive by using a power series expansion (12) ' This

will give us some general properties of the solution in

that region.

The Weak Gravitational ülave Metric

An extensive survey of the properties of weak or linearized

gravit-ational- f i.etd and, in particular, gravi-tational plane waves

is contained in (13) . Tn that reference, the gauge freecfom properties

( 35)





As stated above, fot weak fielcl theory, the metric is assumed to have

the form

9uv=n +h 3.34)'uvpv

$rhere n is the flat space met-ric and h.. represents a small''Uv -- ' Uv -

perturbation from the flat metric. The conditions placed upon the

h are usuallv
uv

lrr l"t 3'35)'uv¡
lir I li¡ 1.. ln I ,. tu)
'--UVrE 

r r--OlrY I UVrEY'

!ùe shall adopt both these cond,itions and also we shall adopt a kind

of generalization of 3.36)which we shal-l find useful. Mathematically

this condition has the form

In,ur.._pnlln,ur...v*1.'ltr ,ct...r*nl 3'37)

where h represents any of the n'u.tU 3-3?) is assumed to hofd for

atl p., Vir 4o and all m, n, including the case lftllt',ul<'lit,ul'

!,fith these conventions, I¡re may re-formulate the metric and field

equaÈions above for the weak fielcl. The metric,noral takes the form

ds2 = 2(t.-M)dudv - t(I-u+v) (c1x2)2 + (l-u-v) (¿x3)2

- 2l^¡c1x2dx 3 I 3. 38)

where the moduli of M, U, V and W are all much smalfer than unity.

Vúe have used

and neglected all but terms of lowest order. Since the metric 3.38)

is of the same form as the exact metric, all of Einstein's field

equations apply as before, with the result that hle can proceed to

deduce the scale invariant Nehman-Penrose spin co-efficients and

equations.

Using a sinilar approach, v¡e see from 3.38) and 3.29) \^te can write

E2=I(I+l(U-v) +iv¡)
2v2

(37)

0

@

Fe =¿
¡1=

nl_F
"!



F3 _1 (i(1 + L(u+v))
ry¿

Substituting these into 3.24) and 3.25) gives

+ vr)

2

p0 =LUv -\vu

E Go=O

oo=LiW -\v ¡o=|iw +tv
V V u

0
u

0

u

Furthermore, 3.26) becomes

u:f(u) +g(v)

u-. = 2koÎ 600vv 'u

u,r,.t = 2kþi þi

a)

w = -ik(oroõ3 .Þ, oo3 
I

b)

c)

d)

e)

f)

3.3 9)

UV

= k(ol -03 -0+ 0 0v 0 0uv

M =Quv

wherek= G = K

8Fffi
AIso, MaxweIIts equations

0r=o 03,n=o O

3.32) will give

0
2rY =o

These equations indicate that the two waves pass through each other

without interaction; i.e. superposition. However, this occurs because

we have neglected all but the lowest order terms. hle can "induce" an

interaction by adopting 3.37) on Maxwellts equations and ignoring all

but the lowest two orders in h. In doing this, r¡Ie must split Maxwell's

equations away frorn the systern 3.39) since Èhey are now quite different

in their meaning.

Using this approach gives Maxwellrs equations as

Ql=O a)

Oo =!u 0 - t(v W b) 3.40)I
o rü u u

0 +itr])

0

2

0

óo+u'o vu

4,

oo
2

0
2. tY

= -t(Vu

u

(sB)

c)



[,Ie again Lreat the e].ectromagnetic field as a test- field and consider

3.39) merely as a set of equations describing a weak gravitational v¡ave'

(Obviously since the electromagneti.c field is a test field, the 03

and Q! terms are set tc¡ zero in 3.39) ).

If we had attempted to apPty this "second order" approximation to the

full system, we would have resulted with a set of equations jusÈ as

intractable as the full theory ecluations.

Before proceeding any fur:ther, we shoulct reiognize a ¡nssible

disadvantage of usi[g weak field theory. This criticism of weak field

theory was developed by Synge (14). Essentially Syngers argument

states that Einsteinrs field equations can be re¿rcl from lefÈ to right

or vice versa. Therefore, \¡te may ascribe an energy momentum

distribution (t',r, the energy momentum tensor) and fincl the

corresponding space-time metric, or vte may start with the metric and

cleduce the corresponding energy momenttun tensor. Therefore what may be

anapproximatemetricforonegivensourceisrinfact'attexact

solution for that source clescribed by direct cafculation of the energy

momentum tensor.

Although we are dealing withsource{ree fields, the essentials of

synge,s argumerit can still be applied. The weak field metric we have

utilized above may, in fact, represent an exact solution of a different

case of gravitational radiation. The form of the weak field wave

certainly satisfies the required conditions for it to represent

gr:avitational radiation (5), (6), (11) r however, it does not share

the same propert.ies as the exact gravitational wave mebric'

The best exampJ-e of this is related to the non-perioclicity of exact

pure gravitational plane waves deduced by synge (14). This property

is easily seen from 3.33)b) or c) . ['or a non-interacting J:lane \¡tave'

the metric is a function of only one variable; u say' Therefore' of

the e,quations in 3.33) onl-y c) will survive'

/zol



For a non-interacting $rave, M = M(u) and therefore using the co-ordinate

transform

e -2M(u) du

in Èhe Rosen metric A2J) we can eliminate the M terms from the field
u

equations. This leaves 3.33)c) as

u =ïJ2 +I,ù2+v2 cosh2!.Iuuuuu

and therefore U carxrot be periodic since U >0. .Also, the only component
uu

of the V,Ieyl spinor which is non-zero is Yuo which, from ¡.31)g), is

Yl =-t (vorrCoshVü * 2urrt' Sinhlrl - V.rUrrCoshw)

- V 2coshv,f Sinhvl)
u

u

-!i (w
uu u u

From these two equations we see that for a gravitational wave which is

not Èrivial (i.e. tríviat being U - V = tJ = constant) r^te have

u + o 3.41)
uul

We can see that the significanÈ aspect of these equations is that U,

V and [rI are coupled by 3.33)c) in such a way that the condition 3.41)

is forced upon us for any such non-triviat gravitational wave.

However, in the case of the weak pure gravitational htave, Èhe weak

field equations give no coupling between U, V and W; we Ìtave from 3"39)c)

u =0uu

in contrast to 3.4I).

The Sandwich !'Iave

The sandwich wave is a particularly interesting plane v¡ave. It is, in

effect, a finitely thick layer of non-zero curvature Propagating through

space-time bounded on both sides by null hyperplanes in flat space-time.

The gravitational sandwich \¡rave vras introcluced by Bondi, Pirani and Sachs

(18) and its properties were further ciiscussed by Synge (f+¡ . I¡i l¡oth

these articles, reference \¡ras made to the co-ordinate singularities

which occur. This aspect of these l^¡aves was later shown by Penrose (17)

to be relaÈed to the focusing propert-y of such \^raves'

-I^1V



V'Ie shall consider this property with respect to the collision

interactions r,r¡e are studying. To clo bhis, it is useful to briefly

review the properties of the plane sandwich wave usi.ng the Rosen form

for the metric. The appropriate equations for this task are' for the

pure gravitational field, with M set to zeroi

zlJ :v2 +!,¡2+vz cosh2w a)uuuuu

Yl = -! (v coshv\r + 2v vù sinhv,I - v u cosh!ù)+uuuttuu 3.42)

+iãi (f\f - !r] U - V2 coshVt S.inhVü) b)uuuull

These equations 3.42) must be satisfied throughout the space-time

manifold or, at least, throughout the co-ordinate patch for which they

are written.

In the init-ial flat Region I (Figure 2) we can set U, V and !v to zero,

thus trivially satisfying 3.a2). In the non-flat Region II, r¡re see

from 3.42) that U(u) increases hence U(u)> 0 within this region.

obviously we also have Vf { o

Moving into the second flat Region III we must now have Vl = O. This

gives rise to the equati,ons

V CoshV'I + 2V Vù SinhW - V U Coshlrl = Ouuuuuu

!{ -bl U -V2Cosht¡ISinhlv=Ouuuuu

From 3.43)a) we have

a)

b)

3.43 )

3.44)

V Cev sech2vt
u

where C = constant. PJ-acing this into 3.42)al and using

2u -u2=-4(e-11/2, ou/,uuuuu

gr-ves

<0

Since U j-s continuous throughout the co-ordinate patch, t"-Ï) is

also continuous. Further, its initial- value, i.e. in Region I, is

rc-Yt äe
-U. c cU-Ë(",rt + ut' sech2w)uu

unity ano 1e-u/r¡ is initiaLly zero.



Adopting the Lichnerowicz conditions, vìte see from 3.42)a) an.a ur-,,,

is continuous and hence tJ diverges if and only if U does. Nowuuu

V andWuu uu
carì, at most, have finite step discontinuities, therefore

\^re can see by inspecting 3.42) that if Vl* diverges, so must Uuu.

Furthermore, 3.43) becomes meaningless since they contain divergenÈ

quantities name.ly U,r. Referring back Èo 3.42) we then see that U
u

diverges before the second flat region, there can be no such region

since Yf cannot converge back to a finite value. necause Yf

diverqes, the singularity so produced is a real singularity and

covers the rest of the manifold after its initial divergence.

From this, r^/e see that, using the Lichnerowicz eonditions, \^Ie cannot

have a sandwich wave which contains a real singularity. The plane

wave must extend to infinity.

However, if we adopt the orBrien-Synge conditions then althouglt U
uu

can, at most, have finite step discontinuitiesr V __ and t¡I - can haveuu uu

delta discontinuities. Therefore, hte can have real (delta)

singularities occurring in a sandwich wave.

We can apply a similar argument as above to the behaviour of U and
uu

U to the OrBrien-Synge conditions. From this we see that only
u

"de1ta singularities" can occur in a sandwich wave under the OtBrien-

Synge conditions.

With these considerations, we can assume that for a sand.wich wave, U is

finite at u : ut, the "far-end" of the wave. Therefore, (u-U'") is

finite (and. Iess than unity by 3.42)). From 3.441 , "-V' 
must go to

zero in Region III and hence U must diverge in that region. So, again,

rretnve asingularity however, this is a co-ordj-nate singnrì-arity since

Vi is zero in Region IIr.

(42)



This is the singnrlarity referred to by Penrose (Ì7) and corresponds

to the focusing properties of such plane gravitational waves. The

properties of t-hese co-ordinate singularities are found by solving

3.43)a) and 3.42). In doing so, we simplify this task by assuming the

waves are linearly polarized (i.e. set t'l : 0)'

2u -g2 -v2=ouuuu
a)

3.4s)

V v U =Q b)
u

As found in (r8), there are several possible solutions. The first is

trivial, i'e. U = constant, V = constant, and since we are in

Region ïII we have, from above' U + O.

secondlyrsettingvu=constantgivesrusingu=-2lnYin3'45)a);

u(u) =-Zl.n(åu+b)

Applying the l,iclxrerowicz conditions (both these and the O'Brien Synge

conditions are equivalent in this case) we find

uuu

- -u(u')a = -L e-";* 'uu(u') -gi-"')
2 1t + Lu,,(u') ut)b- e

Since U > O and U = O at u = Or U > O for u > 0. Therefore, a and
uu LI u

hence the resultant'metricb will have opposite signs'

ds2 = du clv - (au + b)2 ((ax2)2 + (ax3)2)

is singular.

Alternatively, we can combine 3.45) a) and b) and set (U + V) = 0

giving

=Q

This is done in Appenclix II and, the existence of unavoidable co-ordinate

singularities is shou¡n.

(ó ) 
2

'uuu
2þ

(43)



The Electromagnetic Test Field Case with Exact Wave Metric

The set of equations for this case is given in 3'32) anci is reprodr-rce<l

here with the appropriate changes

óo = L(u - iV SinhW)ô a)'0rlf u u 'o

0

2tv0 = -L(V Coshür + iWrr) 0o b) 4.1)

c)

4.2)

u

2U -ÍJ2 =ùrT2 +v2 cosh2vl
uu u u u

where the iniÈial condit.ions are

03 =Olt"l at u=o 0ro=o atu=o

U=V=ltl=M=0 atU=0

and U, V, W are all functions of u only. Since the gravitational field

of the electromagnetic shockwave is neglected (since it is a test field),

there are no $ terms in the gravitational wave field equaÈion. AIso, as

far as the gravitational wave is concerned, it is propagating through flat

space and hence there are no v dependent terms in 4.1)c). For the same

reason, the terms in 4.1)a) and b) there are no terms involving the

derivatives of U, V or W with respect to v and M = O. The characteristic

initiat value problem depicted by 4.1) is easily solved tor $! and Q!

in the interaction region. From 4.I)a)

(rngl),, = à(ur, - iV., sinhvt)

therefore

03 = A(v)e t (u - i/J vu, sinhvüdu')

From the initial conditions we have

V rSinhW dur)
u

Placing this into 4.1)b), with the initial conditions, gives

Q!(u,v) = 03 t.rll,r=o .L(u-i4'

0l tu,v) = -lr (vucoshw +iw,r) eL 
(u-iJ; v 'sinhwdur)

f"
Jo

0f t"'r I
X

u=O
dvt

(44)

u

a

4.3)



Therefore, in Region IV (the interaction region) we have, from I.25)

ttu*url-t (v,,coshw + iwu) fi ,l (v, ) 1,,_oov, 4.4)

(Since M = 0, we have I =uU ,U
and n =VU 'U

From inspecting 4.4), ra¡e see that the resulting electromagnetic field

is nol- null (and therefore not a plane wave). hle can see that there has

been a fundamental change in the field. This fact is reflected by the

change in the field invariants F
uv

where E = (sl e2 n3) and B = (sl e2 s3) are the components of the electric

and magnetic fields, respectively, in an orthonormal tetrad for an

observer with a timelike tangent vector.

Given F we have
uv

Ê - ;uu = 2(F . r'ilv + ir *¡'uv) 4.5)uv uv uv

Since \^/e can set the inj-tial value "f 03t"1 to be real , h/e can calculate

these invariants for the interacting electromagnetic fielcl directly

fro¡n 4.4) .

For the initial electromagnetic field (Region II), from 1.25) with only

0l not zero, we see that both the invariants are j-nitially zero.

Hor^rever, in Region IV, substituting 4.4) into 4.5), we find

ruu(=z(n2 - n2)) .ru uuu *¡uv1=4 r.1)

F ruv + i¡' *Fuv
UV UV

= -2e(u-i/l vorsinh!{dt') (u,,"o=hr^r + ivru) 0l rrrl 
"=o f"r| 

aut ,r=odr,

îUv = 2(s
uv

/,1 \)



!'lhich, in turn, gives

X

U=-e 2U u

X (03 t"l

and similarly

F uv U*F =-e
uv

^L lu
')'sin,Jo ur,sinhlrldur + tan I (vucoshv,t))

W
u

V I SinhWdur )u

4.6)

- V Sin(
u

!{
u

4.7)

for a non-trivial electromagnetic

- U 2) to vanish or the two Sine terms
u

Fuv Fuv = -"u(vrrcos,/i 
"o 

sinhwdu'|) coshvü * "osi'tJ*

t0! tvr 
f , 

-: (v) av,)

uuu

fl *l (v' ) dv' )

(!{.rcos ,|i", sinhwdu ' ) fit", 
Sinh!,tdu' ) Coshtü)

X {0! t"l 0 þr) dvr)l,"
Jo

0

0

U u ')\ si.,t i" u sinhr,ùdu,u Jo ur - tan I lvrrcoshw) )=-e

X

(zv
uu

t0! tvr Il*: ,"') dv')

where we have used a trigonometric identity and 4.1)c). Since 03t"1

is a function of v only the " | =0" is understood. Frorn 4.6) and 4.7)
u

r¡/e can show that the electromagnetic field must become non-null. For the

fietd to stay null we would require both 4.6) and 4.7) to be zero.

However we shall show that this can only happen if the gravitational wave

vanishes.

For both 4.6) and 4.7) to be zero,

field, r^,e can require either (2U
uu

to vanish.

T.f 2rJ 2U 0 from 4.1) c) , the gravitational r,¡ave disappears. If
uu u

the Sine terms are zero throughout the interaction region then we require

(46)



j,,

l."IV
lo

,r, 
sinhwdur + tan I (vocoshw) 2rn

u
vil

vü

- Sinht¡ildur - tan I (v coshw)ur'u = 2'[ttt

where n and m are integers. From these equations we have

u

f"uj0 Ul
Sinh[fdu' = (n + n) n

giving V - O (hence V = constant) or V'I = 0
u

Also,

V Cosh!{ = tan (n - m) 1I = 0
u

t/'tu

givingV = constant. In this case, from 4.1)c) we get for the field

equation of the gravitational- wave

A) -U2=Ouuu

which has a solution of the forrn U = In(au+b) which, in turn, gives a

flat-space metric (i.e. R = 0). Therefore aEain the gravitational
uv6Õ

wave disappears since Yf = O. From this, r¡re see that if the gravitational

wave is non-trivial, then the resultant electromagnetic field in

Region IV must be non-nulL for all observers.

A quantity of significant importance in experimental physics and

microwave engineering is the Poynting Vector (19) defined by

4. B)

Although the Poynting Vector is not an invariant, for a given observer

it represents Èhe energy flow per unit area of electromagnetic field

wave front, and is an experimental-ly measureable quantity.

Consider a geodesic observer in the plane gravitational wave space-time

given above.

P=1EXB
¡1-^^

4',n
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If the moti.on is restricted to the ptare*2:.on"tantr *3 = "o.stant,
since the only non-zero Christoffel SymboJ-s are l)2¡ får, får, t'ro, l7r,

f3o, fåg, we see that the path of the observer is given by

u:As+u v=Rs*v 2AB=1oo

By using a co-orr:linate transformation u'= ku, vt = k-lv (k a constant)

, 1,
r^re can make A = B = /¡t. Therefore, rde lose no generality by considering

observers hthose worldline has the unit tangent vector.

lrle can construct the orthonormal tetrad field

(,rþ - .rU)

uu (o) = dxÞ
ds ,F

yt¿

.u(r) =!
,r'

l_

/-

u

F=à 0 0

t (uU * ',rþ) a) 4.9)

b)

4.e)

c)
"u(z)

(^u + ñþ)

(3) I t*lj - tlu) de
.t^

with respect to which \^re can calculate the electric and magneti-c field

strengths.

Usilg this tetrad and 4.4) \Àrith 03 (v) set to be real initially, we see

that for Region fI we have

0!t'r
-0! t"r

0

0

0

o

00

-0 (v)0

0 0! t"r 0

0o 0

that is s, = -Q$ (r') s, = -S$ 1v)

Frorn this, the Poynting Vector is

0l r"l2 e(1)p= I
ffi

where e(1) represents the space part of e

space.

(48)

Þ(t) as a vector in three-

4. r0)



For the electromagnetic field in the interactíng Region IV we use the

same procedure, however since the calculations are much more involved

we shall include several steps. Further, it will be convenient to

simplify the notation in the following way: let

a(u) V 'SinhV'tdu'u

B(u) = V CoshlV
u

úùith these, we have from 4.4 and, 4.9)

F + i*F =e
U.
/z (Cosa(u) - iSinA(u) t ô3 t"l (e (2) - ie (3))

uv

r
Jo

4.11)

uv

(eu, (2) +ie (3) ) lV]

tu tu

(eu, (o) - eu, (1)) - L(B(u) + i!{,r) 0! {tt') a*" (e (0) +e (1)
tu tu

Since all the functions in this expression are real, Èo get F' we only
uv

need separate out that part of the expression with no "i" term involved.

Considering the first term on the right hand side, we have

U-

" 
/' qf,fø (cosA(u) - isine(u) ) t e,, (2) (e,,,,,(o) - er, (l)

- ie,U(3) (eu, (0) - eu, (1) I

The real part of thís is

U.

./'03 (,r) lcosA(u) .tu(z) (eu,(o) - eu,(1)) - sinA(u) "tu(.)

(eu, (O) - eu, (l) ì 4.l-2)

Considering the second term on the right hand side

U- rv
-\"h (cosA(u) - isinA(u) ) (B(u) + ivt,r) I Ol (v')dv'

J0

t (e,r(0) * *[u(l)) e

which gives

-\uu/' (B(u) cc¡sA(u)

vl (2',t + i (e (0) * .IU(])) er, (3)J
tu

+ w SinA(u) + i(I,ù CosA(u) - B(u)sinA(u) ) )...uu

this part of the expression can be written as



(a (u)2 + w
u ')\ (sin(A(u) + tan t a(rr)) + isin(A(u)

t{

- ran t "!:tl))...v'r
u

vüith this and using 4.fI) and 4.1) we get for the real part of this

term

?,-Le

u

Y, u"\
u f" o3 (v') dv' t sin(A(u) + tan-r

Jo
-le (2rJ sLg.) )

!{u

(e,U(o) + erU(r)) eur(2) - sin(A(u) - tan I s(u))

uu

t Q! tvl Cose(u) + L

vù

rv
I Q3 trr' ) a.r' (2u
JU uu

lll

(2u U
uu u

u

.tU(O) + etu(t)) eu,(3)1

Combining 4.I2) and 4.13) and taking the components in the given

observers tetrad 4"9\, we get

0 0 -F.2 -83

0 0 83 -Bz

E2 -83 O 0

E3 Bz 0 O

P=

u

2 t

4.13)

4.L4)

where

Y, 2 \Ez=-e
4

Sin(A(u) + ta¡ì t s(n) ) l
vü

U

u

rol r.,l sinA(u) . rfloS(v,)dv,

sin(A(u)-tanrs(u))l

U

E, = "/24

U

B, = "/'
4

u

U-

82 = e/2-
4

sin(A(u)-tantllgllt
wu

t-03 tvl sina(u) + \ 0l {.")a.t' (ru,r'f"
Jo

2 t
U

t-QB t*rl cosA(u) . *f; 0
0 0

u

u
\

U

sin(A(u) + ran-t glg) ) l
Wu

(50)

(v')dv' (2tJ
uu
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From this and 4.8), the Poynting Vector is seen to be

I (Ez B: - Bz E¡) e(l)p=
64Tr

U
U ') (si.r'(n(tr) + tan I s(u) )c

64r u
vtu

+ sin2(A(u) - tan I s(u))) 4.r5)

\
where A(u) and B(u) are given by  .fl).

In considering the physical implications of 4.6), 4.7) and 4.15) we must

always be aware of the simplification adopted in deducing these equations.

lrle have effectively introduced a distinction between "rlectromagnetic

field" energy and "gravitational- field" energy. In reality this is

completely artificial. However, for the present we shall persist with

this discrimination and consider the results which folfow.

From 4.6) and 4.7) we have for all observers

lv
öf t"l ' - \,.Jrt;(v')d')2 (r,r,r,,

lv
j, t3 (v') dv'

il lilcoso = -L"u {2u,r,,

2.

fil'-:'= -teU 2u
uu

v Sin sinhürdu' + tan I (v coshw) )u

u

\
uu

w

X o3 t"l 4.16)

4.r7)

uErB =

w

-ru
u 'ltsir, ( Iu J0

V r Sinhvüdu, - tan- I

(vucoshvr)) x Ôltrl il *l (v' ) dv')

u

where 0 is the observed. angle between E and B. For a non-trivial

gravitational wave, we can see that there must be some modulation of the

elecl-romagnetic field quantities. Further, since the quantities above are

invariants, all observers will detect this modulation.

Turning to the Poynting Vector, for the observer introduced above, we

have 4.15). From this, assuminS 0f{.tl is a simple sinusoid,we can see

that the magnitude of the Poynting Vector almost inevitably eventually

increases.
(51 I



IJThis is primarily due to the e term since U >0 by 4.I)c). As a
uu

result of this, there will be detected, by our observer, an ultimately

increasing energy flow in the electromagnetic field. This rnay be the

result of either or both of two lnssible rnechanisms. Either the

gravitational field is supplying energy in some way to the electromagnetic

field or the gravitational field is focusíng the electromagnetic field.

The former has been the subject to some studies along the view of

graviton-photon conversion (2O1, QL) , (22) . The latter is effectívely

the phenomenon discussed by Penrose in (17). We shall see an example of

this below.

We may also consider the direction of propagation of the average

Poynting Vector as this i.ndicabes the direction of el-ectromagnetic energy

f-low. tsefore the interaction, this Vector, for a simple sinusoid such

AS

03 t"l = Qsínv

has the form

F
^ave

I
ffi17

ô2 e (r) 4. 18)

ancl \^/e can see t-he energy in the electromagnetic field propagates in the

same direction as the field.

However, in Region IV, from 4.15)

p = uu ,¡'Ir-ä (2u -u')\ (sj¡2(e(u) +ran le(u))+sin2(e(u)-tarls(u) )]e(r)
/45/e ïãã'1T 

' uu u jil- ^uu
The magnitude of Frrr" will behave similarly to the magniturle of the

poyntinq Vector. Ho\^¡ever, the direct-ion of Pr.,r. can change, depending

upon the gravitational fíeld quant-ities.

Since it is %ve which is experímentally measured, we can d.etermine from

4.I9) what our observer may expelience as they progress up their world-

line through the interaction Regicn IV.

4
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The average Poynting Vector may change directien several times, alternatinq
between that of Ehe el-ectromagnetic fierd and gravitationa] fi_e1d.

An example of what such an observer may detect is given in Figure 3.

Physically, the observer w.ill experience changes in the average intensity

of the electromagnet-ic field. At points such as A on their worldline,

there will be a maximum in the electr:omagnetic field strength. At poillts

such as B, there wil] be a minimum. This bype of behaviour of the

interacting field wourd point more t-oward the gravitational field.

redistributing the energy of the el-ectronagnetic fíetd bo give maxima

and minima.

However, we can see from 4.19) the possibility of there being a pe:rsistent

increase in the el-ectromagnetic field strength. By argnrments of energy

conservation alone, tire observer wou.ld have to conclude that- there is

some external source which is providing the extra energy. The only source

available is the gravitational wave, hence there is the possi.bility of an

enerçJy transfer betr¡/een the fields.

Unfortunately, due to the difficuÌty and arnbiguity of defining grav.itational

field eneLgy, one cannot make precise cluantit-ative statements about this

apparent phenomenon. A further result of the interaction under

consideration j-s the apparent "clragqing" oL' the electromaqnetic fiefd in

the direction of propagation of the gravitational v¡ave. This is revealed

by the possible change in clirect-ion of t.he average poynting Vector. Since

this vector j-nclicatersthe direction of propagation of energy of the

electromagnetic field, its change in direction due to the grav-itational

field quantities indicates the electromagnetic field has reversed its

direction of propagation to correspond with tl-rat of the gravitational

f ie].d.

ble coulcl use for the electromagrietic fielcl a sanclwich fieLd such that

a0Yo (v) = U tor v>v l-¡ut
ivn^
./, Qð t"l ov { o where -7, = y)o corresponds

to the "far edge" of the fierd. rn this case, f-rom 4.4) we have forv>O



F =-e -à (u-
uv

AJ-though the initial electromagnetic field 0f t.rl = 0 for v>v there is

still some kind of "echo field" present which is propagating in the

direction of the gravitational wave. Further, since the v dependent

term in 4.2O) is constant for v>î, any variation of this field is due

to the gravitational wave only.

From 4.6) and 4.7) we see that this "echo field" is nuIl. !ùe can

easily decluce the fielcl components, for our observer, from 4.2O) as

we did previously. Further, the average Poynting Vector for a

sinusoidal 03 t"l is

f*u sinhwdu' ) l'
Jo"r,rr!¡¡¡¡vtuu '{v,rcoshw + itürr) 

flO: ,",)dv,r[u*u]

P ave -e o'( (Si¡r2 (A(u) + tan I e(u))U 2

4.20)

4.2r)

4.22)

2rJ

5L2'r u
W

u

+ sin2 (A(u) - tan ' n(rr)) e(I)
u

üle can see that P.'" cannot change direction.

The Sandwich f'Iave Colliding with the Test Field

The equations describing this interaction are a particular case of

4.1) above, in which we have set lrt = 0 throughout the space-time and,

although U a:rd V must obey only 4,f)c) in the non-flat region, when

we consider the second flat region (u)u' in Figure 2), U and V have

the explicit forms listed in Appendix If.

Wit-h Vù = O 4.4) becomes

U
uu

!{

F =2e
u/, 

r ,¡; r,,l Jl o3 ,"',ñt 
utul -Lv dv' t[u*u]l

uv u

From the list of explicit forms for U and V given in Appendix II, we

can immediately see that there is the possibility thaÈ the electro-

rnagnetic wave will beccme nul-l again after +-he interacticn with the

sandwich h¡ave. This is the case V = constant for u)u'. I{owever, for

the other cases, the wave will- become non-null.

(s4)



For convenience, we shall consider the case when

U(u) = -ln(au+b) V(u) = ln(au+l¡) for u)ur

where " + O and b { o ritft a<O and b>0.

Using 4.22) with these gives

t 0f tvl lr=o ñtlrvvl #Jl'8 '"'' r 
lU*u )14.231

F -2 -\ dvtuv

The focusing effect of the sandwich gravitational wave discussed above

is inmediately apparent, through the presence of the (au+b)-t tur*=.

Turning to the invariants, from 4.16)

t' E2=tF Fuu
^UV o! t.,,r l"=, flol(-,') 1,,=o d''-\¡ a

(au+k¡)

anci 4. 17)

0 u)ErB= l¿P *FUV \aGffi Jlo; ,"') 1,,-o av 'uv
0
0 u=O

From these equations, we see that although the region on the far side

of the gravitational wave is flat, the electromagnetic wave remains

non-null (i.e. non-plane) .

From 4.1-1) and 4.15) hre see that the Poynting Vector, in the flat

region u)ut, becomes,

P= I I 011'.'l -\ u' (

lv

JooS 
,'') dv'¡2¡e1r)

64IT (au+b)
(au+b¡ 2'

Therefore, again setting 0! t.rl : QSinvr we get

T)

iave = I O'tr -\ a2 I e(r)
t28n(au+b) 

tau+b) 2

We can now evaluate what our observer sees. Since (au+b) goes to zero

for some value of u)u!, al-though the average Poynting Vector may

initially have a direction corresponding to the direction of the el-ectro-

magnetic fie1d, as the observer moves up their worldline they wilt see

the average Poynting Vector change clirection so that it woufd ultimately

point in the observed direction of propagation of the graviÈational

\^¡ave.
(5s)



Further. the magnitude of the average poynting vector would diverge

at u such that au*b = 0. At the varue of u for which prrr" is zero,

the observer woul-d see a local inflexion in the energy of the electro-

maqnetic fiel-d. Then, u" l-.r. diverges, the observer would experience

the focusing of the el-ectromagnetic field referred to above. Notice

that an effect of the interaction is to reverse the observed direction

of propagation of elecÈromagnetic field.

If we had used a sanclwich el-ectromagnetic field as well, we would have,

fron 4.2I)

-I
256n' (au+b) 3

Although lave obviously diverges for these cases, there is littte doubt

that it is due to the focusing effect of the sandwich gravitational

wave and not due to any form of energy transfer between t-he two r¡¡aves.

Since sandwich plane v/aves have infinite total energy content, these

divergences in l.rr. off.r no probl-em in interpreting their physical

meaning.

The Electromagnetic Test Field Case with Í,leak !úave Metric

In experi.mental physics, the we¿rk fi.eld limit of General Relativity is

usually used to predict results of experiments and tests of the Theory.

sirnirarly, t}re weak gravitational wave fierd is commonly used when

discussing gravitational wave detectors. Exampres of this are (13),

(2O) , (2r) , (23) .

The above resul.ts are easi.ly adopted to the weak wave metric. This

being so, below we effectively quote the results and give a briefanalysis.

The 4>propriate equationsare, from 3.39) and 3.40) using a test fi-eld,

P
VEa þ' a2 e (I)

0
0 =\u

u0 rll

0

2tV0 = -t(v + ilü )

a)0
0

0
b) 4.24)

u -0
uu

u u 0

Ii¡b)

c)



V and !{ can be arbitary but rnust satisfy the l-imits on their magnitude

given by 3.35) and 3.36). Since the solution for U is of the form

au+b, which wilr uttimately fair to satisfy 3.35) we shal-l set a = 0

and l¡1..t.
Then this set of equations gives

= 2(03 (v) ñ,Urr, -'¡(vu + ilr,r) fi *l (vr) dv' 'r u^ur)
F

uv

which in turn gives

uv
F FUv : 2(82 -

^"')
= -o! r,,t 

f,ol ,",)dv, V
u

4.25)

4.26)

4.27',)

4.28)

4.29)

uv
ú,1

u

Since, for the weak field, vre can write

vl = -btv + ibt )auuuu

$Ie see that the electromagnetic field must become non-null.

Adopting the sarne observer as before to calcuLate an observed poynting

Vector, we get

4 (E.B)
uv

F *F = -03 t'.rl
Jl*; ''' ' 

u"'

= -à03t.,.rl Usv 0! {.r') olr'2
E

E

b

u 0

Ls vù

Jlol ,"') crv'

Iir: ,"' ) dv'

u

,4
v¡

2

P
^ave

u

1

n, = -tQ! (v) + ,s ,Þ! {rr, ) arr'V
u /;

From this

T

641t

and for a sinusoiaaf Qf 1v¡

P t03 rr,) ' - \{v,r'+ w,r') ,Jþl (v')dv')2r e(r)

þ'tl -à(urrt*w,r')l
I28T

(s7)

e (1) 4.30)



From these results we see the phenomena occurring for the weak

gravitational wave metric are very similar to those occurring with the

exact metric. Ho\^rever there are several differences, the most

obvious being that the fíeld quantities and invariants cannot diverge.

ûthere as before the gravita'tional field quantities occurred in rather

complicat-ed functions, in the weak field case their appearance is

somewhat simple and direct.

Furtherr due to the conditions on the magnitudes of the gravitational

field quantities, in several cases their effect would be difficult to

measure. For example ín 4.30), theà(v2+w2)uu term \^/ould most likety

be so much smaller than unity as to be negligible.

Despite this, we can see that the phenomena of "dragging" the electro-

magnetic field in the direction of the gravitaÈiona1 field and the echo

field for a sandwich electromagnetic field are still present although

Èheir effects may be small.

FinaIIy, we can see from 4.26), 4.2'7, ancl 4.28) that al-though the

Poynting Vector may not be discernably affected by, the interaction, the

fiel-d components and invariants most likely are detectably affected.

These results could possibly imply experimental techniques t-o detect

and analyse gravitational r¡raves. lrle shall discuss this below.

(58)



Approxinate Solution for the Exact Bquations

The set of equations 3.32), 3.33) although well-posed are not exactly

solvable by modern techniques. However h/e can extract some information

about the solution of the system by adopting a power series approach

which will give approximate solutions in the regions around u = 0 and

v=0.

This technique was used by Szekeres, (tZ) (24), to deduce some properties

of the sj-milar collision of plane gravitational waves.

In using this method, we must remain aware of the continuity conditions

\^/e are imposing on the rnetric. As shown in a previous section, the

Lichnerowicz conditions are too strong for the interaction we are

considering and hence we must adopt the O'Brien-Synge conditions.

Although this is so for the interacting hraves, it is not necessary for

the non-interacting Regions fI and III. In these regions we can, and

shall, adopt the Lichnerowicz conditions. Even so doing, we find the

O¡Brien-Synge conditions forced upon us in the interaction Reg.ion IV.

lrle shall follow the method adopted in (fZ) and further since the

interaction we are primarily interested in (which'has Q, (u) - O

in Region II) is just the general interaction with a particular initial

condition, we shall consider the general case.

From 3.33)a)

u = -In(f (u) + S(v) )

whj-ch will give U(urv) thr:oughout the space-time. Further U,V'1,{'M,00

and Q, must satisfy the system 3.33) throughout the space-time. htith

the metric given by 42.1), we can write the following forms for the

various functions in the various Regions.

Reg.ion I (Minkovski space-time)

f(u) = g(v) = \ M = V = v'I - 0¡¡ = 0, = o



Region fI (the u-wave)

g=\ f =f(u) lvt=M(u) V=V(u) lrt=W(u)

0o= o 02= 0, (u)

vf= Yftul all other vo's zero

Reqion III (the v-wave)

9=g(v) f =\ ¡4=M(v) v=v(v) vrr:w(v)

0o= 0o (v) 0r= o

v!= vltvl arL other Yo's zero

For the non-interacting ü¡aves we adopt the Lichnerowicz conditions.

Hence the metric and its first derivatives are continuous across the

boundaries between Regions f and II and Regions f and III. Consider

the I-II boundary (u = 0 v<0). !{e have

f =L M=V=W=f Mu =! =[r/ =00:ou u u

0, (u) = 02 (o)

Note that 0, (u) has a step d-iscontinuity across this boundary.

From 3"33)c) we have on the boundary

I
Tr

2 = 2kþzþzI
ff f

But with the boundary values of f and f,., we geÈ

fr.,., = - k0rõ,

Differentiatinr; 3.33)c) gives

f 
..r'.ro = -L (Qrõr ) .,

and again gives

2

u uu

which in turn gives

5.r)

5.2',)

urr.ror' - u uu + 21t4,uu {wjr, + v.r2,r) + 2k(02õ2 LuU uu

+ 2ki'r,.,. ö16r+ ¿x2 (þ16zl2 + t*(0202),,,, luu--uu
2. 2

)

(An't

f uuuu = -[L(vuu
+vù

uu
5.3 )



hle see from 5.t) to 5.3) that the Lichnerowicz conditions are satisfied

and provide expressions relating the various derivatives. Note that

Vf may have a discontinuity on this boundary.

Assuming a power series at u = o (as in (12) ) we find that for u>o

0z = .o + alu + aru2 + ... a)

= bru2 + b)

$l = cru2 + c) s.4)

= dru2 +

v

M

f =\+eru2+ " ro'

-k aoao
2

er=-k(aoãr*.rão)
6

+

d)

e)

5. s)

a)

b)

c) s.6)

d)

e)

e+ u +
3

where

e I

3
e - 1 tbrt * "r' * 2k daoão+ zt<2 {aoão) 2

t2

+ k(ara, + a2ao + arao) I

and

vl=-¡r-icr+

Similarly, for the I'III bound.ary v = 0 u<0 we have

20o=ho+hrv+hrv

V

= 1,v2 +

= IIllv2 +

= L + nrrr2 + arrar3 + nrv4 +

vü

M

s
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where

n, = -khoño

+ hrho

and

VB = -j, + irr +...

To now study the forms of the functions in the interaction Reg,ion IV,

+ h,ho )h

n =-l lir2+ lrt*2kn,hoño +2k2(h0ñ0)2

hk
6

A2=

h+ñ

0

2

h

I2

k+ ht I

5.7)

\./e must relax the continuity cond.itions to the O'Brien-Synge conditions

(i.e. the metric is continuous but its first derivatives can have step

discontinuities). Therefore, h¡e have the fotlowing conditions. U, V,

M and W are continuous everywhere. F\¡rther, since vtre are disallowing

shock waves of the form 2.91 , þz is continuous across v = 0 and Qo

across u = 0. Therefore given these functions in Reg-ions II and III,

by the continuity of U, f(u) and g(v) will have the same form in

Region IV as they have in Regions II and III respectively. hle know

V, Vrl and M along u = O and v = O as well as Q2(u) along v = 0 and Qo(v)

along u = 0.

V,tith these conditions, we can use 3.33) to deduce the leading terms of

these functions within a small region close to the origin with u>0

and v>0. In deducing these terms, we must be rnindful of the fact that

since the functions U, V, W etcetera appear in several equations the

higher power terms in the power series will begin to "feed back".

That is, the expression forr sâyr V will depend on terms in the

expression for 0¡, however terms 1n 0o will also depend on terms in v.

This "feed back" occurs only for terms with powers of v and u above a

certain value. Although, theoreticalì-y, one coufd deduce the full

power series expansion, for convenience \^re shall not go above Èhe

"non-feed back" limit.
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Reviewing the systen 3.32), .33) we reca-ll that we may attempt to

solve 3.32') and 3.33)d) and e) for V, !rI, 03, 0! ""a then find M

from 3.33)f). u will be given directly by 3.33)a).

!.le shall deduce the power series expansion for W(urv) in some detaif

and since the expansions for the other functions are founcì similarly

we shall quote those resulÈs.

Since the expansions are made near u = v = O, we can utilize the

Taylor expansions for the logarithmic and hyperbolic functions-

These give

u --f.
Llu

Cosh!,¡ a I + w2 Sinhg,r = !ìI + I^13

T3:
tanh!ù = !ù - w3

3

Viewing 3.33)d) we see, using the expansions above, Èhat the lowest

order terms are of order two, for U,, I^t and Uo, W.r, order four for

2V. v-- CoshV,l SinhV,t and zero for 2ik(4)rõo- 0r0o). Therefore the lowestuv

order in V.I will be two and when inserted back into 3.33)d) will

contribute an order of one. The only contribution of this type vrilt

be from the 2ik(O2Oo term. Therefore, we can take Èhe series

for V,I to the fourth order provided we make allowance for this "feed

backtt.

We can do this by writing

vù*r= 21rv * 3rrv2 + -2lk(.0fi0 - ãotto)u + "'

w-- = 2c,u + 3cru2 + -2ik (aoño - ãorto ) tt +
\I

lrle should write similar eguations for vr. and V' to be inserted in

3.33)d), however, the term involving these quantities only contributes

to lrl above order six, and therefore will not enter our calculations.

U -cIv

- 02()o)
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Inserting the appropriate power series to 3.33)d) gives the leading

terms for f'I in Region IV.

!l1 = clu2 + ... + Irv2 + ... -it<{ {aoño - ãono)rrv

ão ,.t 
3r, + - ãoho ) n, ¡uv3 Ì

s.8)

Repeating the same procedure for V gives, in Region IV,

y = Ìqu2 + ... + i¡vz +

!(aoñ, + ãorr¡)uv2 + 14î(a2to

* Lr [ (aoñ, + ãonr) - 2(aoho + ãotro)nrl lrv3 + ]

-ä(brnr + j rer - Lk(arñ, * ãrhr) ) u2 u2 + ... 5.9)

Turning now to 0! uta Q! r" see by arguments sjmilar to the above that

there is no "feeding back'r for powers of two or less in the expansions

for these quantities. Using 5.8) and 5.9) with 5.6) and 5.4) in 3.32)b)

we result with the following tor Ql in Region IV.

03 = ho + hrv + hrv2 + - ho(kaoãu + ter)u2

- ao(j, - ilr)uv + ... 5.I0)

and for Q!

03 =.0 + aru + ^ru'+... -ao(khoño + tnr)v2

- ho(bl + icr)uv + ... 5.II)

+t(arño - ãrho)u2v + t(aoñr - ãohr)uv2 + ht{arño trho )

+ k{(.'Îio + ãor,o)uv +,t(arñ0 + ãrho)..2lt

2 (aofro + ãono ) e, J u3varh,, )

hðo) )rttuofi, - ãonr)

-à(1,e, * .rtl + ik (arñ, - ãrftr) ) ,r'.r'+ ...

a2ho).erJ
00 h

0

2

+

I'inally, from 3.33)f)

M=dru2+(dr+ - icrAo¡))u3rBoo

+ \(crlr * brjl - elnr * lrclao2o - A0'z0))u2v2

I
5

k (b

+ mtv (m2 + I k(jrBoo - ilrAoe))v3+ +
3

(64)
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where 400 = .oño - ãono and Boo 
"oño 

+ ãono

Before calcuLating the V'leyl spinor components, we shatl consider the

continuity properties of the meÈric and its derivatives. In doing this

we must be aware of the shock nature of the electromagnetic ldaves.

Rigourously speaking, in the expansions for 0! "ta 0! "" 
should have

in place of each h., h.0(v) ancl in place of each ar, a.0(u) respectively.

To evaluate the derivatives of the metric, !ùe must make these insertions

and calculate the derivaties accordingly. Therefore, from 5.8) vle can

write

t{.- = 2cru r ... - ikO(u) 0(v) Goño - ãono)., + (alño - ãrf,o)n.t
u

+ l(aoñ, - ãoh1)v2+... Ì+...

w = 2:-,v + ... - ik0(u)0(v) {(aoño - ãoho)u + L(alfio - ã,ho)u2
vl

+ (aoñl - ãohr)uv + ...] + ...

and similarly for V,, and V.r,. In deducing these derivatives we have

used

ô(x)x = o

From these expressions, Ì¡ve see that both ü1.,, and V' have step discontinuities

at u = O similar1Y Wv and V' have step discontinuities at v = 0. l'le

have

w.1... = o

w.rlt = o

V

V
V

(aoño - ãohoik

0u=O

k(aoho + aoho

= -ik(a h'00

k ( aoho

-a

+ã
0

0

h

h

0

0 (u)

0(v)

0(u)

0 (v)

0(v)v

0(u)u

0(v)v

0(u)u

u

v:o

¿ o 
'r 

c'lit ioos

As a result of these equations, the LichnerowLcz¡are inappticable Èo this

interaction, however the O'Brien-Synge conditions stitl apply-

We should also inctude 0(u) and 0(v) in the pou¡er series for V, Vrl , U and

M, However , for these quantities, the first derivatives always give rise

Èo terms of the form ô(*)xt and 0(x)*n, n)-1.

(6s)



Therefore step discontinuities appear only on the second derivative and

delta dj.scontinuities never appear in the curvature qua¡rtities- This is

why the Lichnerowicz conditions are suitable for the collision of two

plane pure gravitational vùaves (fZ¡. On the other hand for the inter-

action hre are considering, r^/e can see that step discontinuities in the

firsl- derivative are unavoidable if ao and ho are non-zero.

Calculating the leading terms of the !,leyl spinor gives

V$ = -j, + - tk{ Boo 0(u) ô(v)u +.t Bro 0(u) ô(v)u2

* Bor u + ... \ - z),tn, + mr)v2 + ...

-2k ãoho(nr + mr)uv + ...

+ il, + ... + Lk{ Aoo 0(u) ô(v)u.' LAro 0(u) ô(n),.2

+ Àol u + ) + 2if r(r, * mr)vz + 5.13)

vl = -¡, -bkiBoo 0(.r) ô(u)v + LBor 0(v) ô(u)vz + Blov + )

- 2br(er + dr)u2

- 2kaoño (.r + dr)uv +

- irr -àk{Aoo 0(v) ô(u)v + Laq, 0(v) ô(u)v2 + Arov + .-.}

+ 2ic, (", * dr) u2 + 5-14)

Yl = {.rlr + brjt - ejnr + àfclao2o - Af') + 21-(jrcr - brlr)} uv

- k(blA0o - i.rBoo)u2 + k(jrA00 - itrB0e)v2 + .-- 5-r5)

where Ao, = aoñ, aohr

Bo, = aoh, Brn

and the rurit st.ep and delta functions appear explicitly only to indicate

delta discontinuities in the quantities.

a+ ãoh,

Ato = arho - -tho

+ ã,ho
0I h
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For all the other terms, the appropriate step functions are understood.

ninaIly,

Vo=Vo=Ol3

To consider the initial effects of the interaction, $¡e consider the

equations 5.8) through 5.15). These confirm that the OrBrien-Synge

conditions are the appropriate continuity conditions for the metric.

Further, we can see that the electromagnetic fields are the reason for

the Lichnerowicz conditions failing. This is in line with the

considerations above regarding shock fields and continuity conditions-

It is interesting to note that although the Lichnerol^ticz conditions

fail- when two electromagnetic shock waves coltide, they do not fail

for an electromagnetic shock-gravitational wave collision. !{e see

from 5.13) and 5.14) Èhat the co-efficients of the defta terms depend

on both 0oo ."a 0! U"itg initially zero.

Fro¡n 5.10) and 5.1f), the two electromagnetic component", o3 and Q!,

will inevitabty arise even if one is inítially zero. However, if one

is initiaLLy zero, the conseguential effect on the ot-her quantities

(U, V etc.) is somewhat less than if they were both initiatly non-zero.

This would imply that another suitable approximation to our initial

problem of a gravitational-electromagnetic wave collision would be

to solve MaxweIIrs equations in the solution metric of the collision

of two pure gravitational v¡aves.

The two pure gravitational wave collision for Ii.near polarization

(!{ = O) has been solve<] by Szekeres (I2) and slightly generalized to

two plane waves of matched polarization by Panov (16). Thus, we only

need insert the resulting forms for V, U etcetera into 4.I) and follow

t-he analysis through as done above. unfortunately, the explicit

sol.ution for V is not easily integrated to give a form which can be

easily manipulated.
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Finarly, 5-ro) and 5.rr-) do not give rise to any terms of the form

k¡-ru 0{'.¡ 0(v) hence our exclusion of such terms can be consicrered

justified since it is consistent with our results.
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Conclusi-ons

Although we have been able to give explicit expressions for the effect

of a pure gravitational wave when it cotliiles with an electromagnetic

field, we have ha<l to make some apparently drastic sirnpJifications.

That is, by treating the electromagnetic fiel-d as a test field, we ltave

entirely ígnored íts possible contribution to the space-time curvature.

Regarding the power series approach, although it does provide us with

one useful result (see below), it certainly'does not. give an extensive

solution throughout the interaction region.

Therefore, we must now consicler whel-her the results deduced are valid

and, if so, what restrictions exist on their applicability-

VJe coulcl adopt the viewpoint that since we have eff-ectively neglected

the energy-stress of the electromagnetic field, the results we have

deduce<1 would be approximately correct for an interaction in which the

energy density of the electromagnetic fietd is in some Ì^¡ay negligible

compared to thaÈ of the gravitational field.

Unfortunat-ely, the definition of energy-density of a gravitational

field is, in the least, somewhat .*figrrorrl . This matter was discussed

above.

Ho\^rever, for our purposes, there is a reasonable definitionof energy

density which \^/e can adopt for the case at hand. The energy-momentum

pseudo-ter,"or tUV introducecl by Landau and Lifshitz (25) is directly

anologuous to the energy-momentrxr tensor of the electromagnetic field (26).

Unfortunately, the energy-momentum pseudo-tensor can be transformed

away since it depends on Christoffel Symbol quantities and not their

derivatives. llo\.Iever, again referrirrg to the observer introduced

above, we can make meaninqful comparisons between the el-ectromagnetic

stess-tensor and the gr:avitational stress pseu<lo-tensor-

Therefore, we may write, as the conclition which determrnes the "domain

of validity" of the results a.bove, the inequality
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uv
T"o,l <<t

16IIG

uv
GI¡¡

6. 1)

6.2)

_uvwhere Trfi are the components of the energy-momentum stress-tensor of

the electromagnetic field ana t"$v the energy momentum stresa pseudo-

tensor of the gravitational field a¡rd both are evaluated in the given

observerrs frame. Si.nce t"$v c.r be explícitly deduced for a weak

gravitational wave (25) and also si¡tce, from 4.I4) where the exact

metric i-s used, there is the'possibility of t"|v not satisfyinq 6.I)

throughout the interaction region, we shall restrict our considerations

to the weak field case.

From (25) and using 3.38), since the gravitational \dave depends on u

only, we have

01 _
GVf

t "2 (h' + t(il + ii )z)

=c u (w'*v')

23

o(h2 ) >> T
,u

22 33

EM ïI

uuI6TG

To get an understanding of the orders of magnituäe we are dealing with,

v/e can proceed as follows. By 6.I) we require

t* = c\
161Tc

r I o(F2)
4

where F represents the field componenEs of the electromagnetic field

and O(A) indicates "the order of 4". Therefore

4G\

or, using c.g.s.

,u

units

. 
o(r) << io24 o(h,u) 6.3)

We shall set the flux of the gravitational \¡¡ave to be of the order of

10i0 ergs/cnz/sec, which roughly corresponds to flux, experienced at

the Earth, of a gravitational wave generaÈed by the conversion of about
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IO-aM" to gravitational radíation in 10-s seconds at the centre of the

From (25) this flux is given lV ct}}. Therefore, fromgalaxY (8).

6.2)

l-olo =

which gives,

(w2+v2)uu_9-
161TG

assuming 0(Wu) = O(V,r)

o(vù ) È Io 23 cm-l O(V) =LO-23"*-tll
6.4)

u

Thus, from 6.3) we require

o(F) << ro t n^\ "*-t "o"-t 
6-5)

This corresponds to an electromaqnetic 1llux, given by Èhe Polmting

Vector, of

O(P) = g O(F2) << IOB ergs/cm2¡sec 6.6)
4'n

This is quite a reasonabl.e flux for an electromagnetic field, and

certainly well above that used in experintental physics. Therefore, the

above analysis will be quite reasonable for experimental purposes.

Having deduced a "domain of valiclity" which is easily satisfied, \¡te Inay

now consider whether the results given ín 4'28) -'30) can be used to

d.etect and./or analyse gravitational racliation.

placilg 6.4) into 4.30) inrnediately shows the average Polmting Vector

is of little use for such a use. However, it is not immediately clear

whether or not v¡e can use 4.28) in some way.

Before considering this question i,n detail, it should be noted that

since we have shown that no curvature impulses occur in the collision of

pu:re gravitationat and on elect-romagneÈic waves, IÁ/e are effectively

forced to l-ook towarcl 4.2t) to provicleamechanism to detect gravitational

r-.r." by this means. Further, although it has been shown that two

electromagnetic waves in collision give rise to curvature impulses, in

general we woul-d expect the gravitational waves impinging upon the Solar

System to be pure.
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This is þecause the processes whictr produce the fluxes usecl above

require massive objects to participate in the catastr:ophe (e-9.

qraviÈationalcapture) and one woulcl expect such objects to be almost

electrically ne¡tral. Even if the objects involved were sufficient-ly

charged, the stronger interaction of the resulting electromagnetic

fielcl with charqe clistributions would probably cause it to split off

from the gravitational wave. so, Iooking to 4.28), we need a method

by which v¡e can measure the various components of the electrolnagnetic

fieltl" This is providecl by ,(13) on page 72. In brj-ef , sirtce magnetic

field,s only act upon charges with a non-zero non-parallel velocity, by

appropriate choice of a charged particle's velocity h¡e can rneasure the

varj-ous conponerìts crf the field.

Although in (l-3), all the componenEs of the field are measured, \¡te

shall consider measuring !ì, in 4.28) only. This will be sufficient t-o

indicate whether or not we can use 4.28) to detect gravitat'ionaI waves

since t-o use t-he mag¡etic field, we would reqrrire the velocity of the

charged particle tc.¡ be close to that of ligl-rt. Therefore, if we

cannot detect the effect of the gravitational. wave on 83, we wi-ll be

even less a.ble to do so using the magnet-ic fiel-d.

l¡rom 6.6) \¡Ie can assume

c o(Oo?) = ro6 ergs/cmz-,/see
qro

that ir¡

o(ôo) = lo 2 n*L .*-L "e.-t 
6.7\

''0'

Now that we have some grasp of the ord.ers of magniturfe which hre are

dealing v/ith, we must consider the behaviour of the c¡rant-i.ties" Since

0! t"l is something we can dictate by the experimental set up, I¡re can

leave consideration of this quantity until last ancl exploi-t it to

maxinúze the sensitivit-y of cletector"

.Ihe quantities Wo ancl V.r, however, are dic'tated by the physical event
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which g-ives rise to the gravitational radiation. Above, we adopted a

radiation flux which corresponded to a conversion of maÈter to

gravitat-ional radiation at the centre of the galaxy. lthis flux, if

it occurs, would correspond to the capt-ure of a small star by a black

hole since only such a catastrophe would give rise to such fluxes.

Such a process takes Èhe order of 10 5 seconcls to occur during which

there is a significant gravitati.onal radiation burst.

The profile of the curvature tensor componentsduringthlstrrrstis, strangely

enouc¡h, fairly restr:ictecl . irn'(Zl), it is shown that the components of, the cunrature

tensor must change sign so that the gravitational wave burstonlyhas finite energy,

Therefore, the behaviour of Vl' and V.rmust be oscillatory in some way. From (2'7) ,

we can expect the Fourier Transfortn frequency components of the

curvature tensor to have a maximum at a frequency of the order

(¡ = 2n 't I where r is the duration of the gravitational radiation
l

burst. The bandwidth would be of the order of t\ also. To cletect the

E, field,, let us use a small charged particle on a spring which can be

set into vibratory motion by the E, field only. , Althouqh the particle,

once moving, is acted upon by the magnetic field, if its velocity is

small, these magnetic field effects will- be rregligible. Thus, the

ecluation of motion will- be

-2dz
.1F

+ e& Ê3 + ,¡o2z = lEz
Adtm

6. B)

where Eo is given by

E, = - h ^t drf, 0i rtr 6. e)

since we are using the observer previously adopted and hence there is

no spatial change in their position.
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For simplicity and since Ìtre are prina,rily interested

magnitude, let us assurre t.hat at the observer V0 is

wtt = A si.n trtrt uaa = A sin (t'rlrt + ct')

Further, we shall set 0f ttl to be a sinusoid,

i.e.

0; (t) = B sin (trlrt + ß¡

Therefore 6.8) can be written as

in orders of

such that

\^¡e Can

AB fcos{(o1+ rrt2) t + ß)

+ Cos( (0r- û)
2

.-ßÙ

Setting trt2 << trt, and tuning the system such that tdo = ol ,

write

d2 z 1' trts d,z

-2d.z
.1Ëz

æ

-ûJo dz +w?z - -q
adt ' 16M üiûJ

2

rvhere C(t¡r) = -L_
BÌ4fd 1tD 2

+ tJoz, = -q Aq Costrtlt
BM ûJ rtrz

-qABQ Cos (r¡rt - lL)B*ro T

Adt

This system will give the response (28)

z(t) = C((l)r) Cos ((¡rt - n)

AB

((rrr2 - urll2 + rrrfurfrl t

v
tan¡= 0J I tiO

aõ; -lF
If we assume the detector is tuned close to tÙ1, vte get

z (tl

For the duration of the pulse, the energy absorbed by the elect-ro-

magnetic field detector will be
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E"A. r
r

g, Es

oM
(dz) clt = Ta q' A' B' e
dt l.28(2r) r* ,r,

6.10)

If we nov, repeat this experiment, however hre use an u¡rcharged mass on a

spring directed along the x2 o. *3 ax-is, and rely solely on the

gravitational fields coupling, we have from the equat-ion of geotlisic

deviation

É * ao clz * 0o'z = ' "'l- 
Roro,

dt2 a dt

= -Ll A Sin tttlt

where I is the length of tþe spring.

Repeat.ing the same analysis for this system gives the energy absorbed

kry the gravitational wave d.etector during the pulse is of the orcler

E.A.z = tl2A2Q'r2 6'1f)
16î

I/ùe can now compare 8.4.1 and E.A.z to see if the electromagnetic field

detector is any better.

We can see that for long bursts, the electromagnetic detector will be

iar more sensitive, however the most energetic giavitational wave pulses

will most likety be the short bursts corresponding to gravitational

catastrophes such as collapse into a black hole. Next, the ratio q2rlm

will favour highly charged small parti.cles such as electrons. There

may be the possibility of Looking for a change in atomic electron

energy levels or the like to detect gravitational waves. 1'his ratio

does g:ive the e.lectromagnet-ic cletector an advantage in that a large

massive detector is not r:equired"

Irinally, there is the presence of the electromaqentic field frequency

,(t¡z) and amplitude(B) in 6.10). Vle could, within f-imits, attempt to

manipulate these to improve the detectors sensitivity.
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üle can see that a stronger fiel,J of low frequency is desirable, however

the field strength must satisfy the limits deduced above for it.

With the elecbromagnetic detector, there are several quantities which

can be mani.pulate<l to irnprove i'ts sensj-Eivity, where as with the direct

gravitationa.L wave detector, there are relatively few.

To compare the sensitivities of the two detectors, let us assume that

both have the same mass, 1O6gms, are l-O2cm lonq. This wiII give

E.A. r_

E./\.2
T' g'B'- o+trf vP 12 612

cr3B2 lo- I 8

@2'

Assuming B saL.isfies the limitation given above and rrlz = 1O3II4 we get

B_.4.! - 02 10-38
Fl .A.z

Therefore, to make the electromagneti,c gravitational wave detector as

sensi,tive aS a "lrleber type" d.etector, we would require it to carry a

charge in the order of loe Coulombs which is rather large for such an

apparatus. Vle could go to the other extreme and consider the use of an

electron as the charged particle, as r¡tas suggested above. In this

case, the energy absorbed would be

E.A' I = 10-6tetgs

this is way too small to be measureable (e.g. the cosmic background

radiation ¡;hotons have energies of the order 10-rG ergs) '

Thus, hre can see that although the analysis utilized al¡ove has some

validity, it does noÈ Ìrelp solve the teclurical problems involved in

detecting gravitational radiation. In fact, the numbers deduced above

would indicate very little promise for such detectors even in the

future.



APPENDTX 1

Using tbe Nelvman-Penrose fornalism 1.14) has the form

V uu 1

),,, = -yz++ = -n¡l ,V ñU ñuP = Yls4 = [¡r;v *! ñv

I-ip + (r - u- - ß)A + ¡. O- + (u - y + y¡ôt r

t (u-u)D + tã - p)^-(t - ß)ô - (g-o)ôJ r d)

pp - õr = 1p2 + oõ¡ + (e + ê)p - [r - K(3q + E - nl

D'r - Ar = (t + n)p + (i + rr)o + (e - õ)r + (:y + y)r<

Da - de = (p+ã - 2e)c + ßd - Ê; - r<tr - Êy + (e + P)n+Qro d)

mTt : -yz\t = -n

m m

m
Utv

= t(Yt2-r - Y34l) = \(L u V
9"n

urv

a = L(yrzt, - ys,+,*) = L(f, nu

urv

tk = yl3l = f

e

o = YI3s = I

Utv

rv)p

U;V

-u -v.m'm)
U;V

IN -m

m
Utv

m
U;v

-um'

m
utv

-u
m

1T

(p+E

v

e)ô I r

el. t)

a.)

b)
Al. 2)

c)

u
mmu | ='\2rr3 = -Dm

urv

ß=!(Yrzs-Ysqs) =\(L n m
urv

v

vu

v

m

uÞ

n

nn T=Y122=9-U=-Yr42=-n m
ìltv

f.f5) has the form

(AD-DA)r=[(y+y) ID+(e+e)A-(r+

(i +'n)ôLr

(ôD - Dô)t = t(ã + g - ñlo + rA - od

(ôA - Àô)r =

(66

1,tr6) has the form

Do-ô¡4= (p+p)o+ (¡e E ú

+ lU. ¡ .ñ.. -¡ ¡ I I ru I

õolr

-(t-ñ+s+3ß)rr-Yo b)

+ 0oo a)

nì
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DÊ 6e=(o+n)o+(p e)Ê (u + y)r îT) e+ Vr(0 e)
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k)

1)

n)

n)

o)

p)

A1.3)

Dy-Ae=

+ T1I - VK

(r+r)0+(t+r)Ê+(e+e¡y

+ Vz - i\ + 0r1

(pÀ + õu ) +n2+ (o - E)r -

(y + v)e

DÀ - 6r = VK (3e - e)À

* Qzo s)

Dy ôiT (OU + oI¡ * Irn a (e + e)U - T(cr - ß) - vK

+v2+24

t)tr + (y ir 1T (3e + e)v

+ Vs + Oer i)

^I-õ'v=-(u+ulr
(3y - llr + (3cr + F +n - i)v Yr¡ i)

h)

(n+Dv-An = (n + T)u +

o(3cl+(;ôp - ôo = p ß) B)+(p - o)r + (u u) t<

V¡ + 06¡

ôa - ð'ß = (up _ Ào) + ücr +ßß 20ß + y(p p)

+ e(u u) V2 + /\ + 0rr

ôÀ ôu=(p-p)v+(u u)fr + u(0 + ß) + À(o - 3ß)

V: * 0zr

6u-Ap (u' + li') + ty + ilu vr* (t-38-c)v

+ Qzz

ôy Aß OV CV ß(y-y-u)

+ cl, + Q12

ôt-Ao (¡1o 't' Àp) + (t + ß a) T (3y-T)o-Kv

('r-a-B)y+Ur

+ Õoz

õ. cl-'r)r + (y + V)p +vt(

q)

I

1

l

Ap

y2 - 2L

-1p¡ + oÀ) + (ß
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Ac - ôT= (p + e)v - (r+8)À + ti - u¡cr + (B - î)y - vs r)

where

v = - Çt313 = ro o,Ê tY .6 = Voooo

lo rrß rY *6 = yooor

o

Yl=-CrZrg=-Ç

"aßyô

aByô

Yz = -L(Crzrz - cres+) = -t c (1o ,rÊ tY ,rôqßYô

cl = Vootl-I

Vs = Cl 224 = caßyô

Y+ = -Cz¡+ 24 = -C a -ß;aßyô n m

Ooo=-tRrr=Qooö6=õoo

0lr = -t(Rrz + Rs+) = ÕorEl

0or =,-bR1u = oooôî = õlò

012 = -àRzs = oorii

Õto = -LRr,* = 0olöô = õol

ozl=-tRz+=orlõÍ

ooz=-àR¡s=oooii=õzo

þ22=-!Rzz=ôrrîï

020 = -tR,,+ = ÕrrðE

It = R/zt,

,,ß .Y ñ6) A1.4)

lo ,rß nY ñô = vorrr

,rY ñô = vlrrl

(7e)



APPENDIX II

TI-¡e Sandwich Plane Gravitat-.ional l¡lave

Us.ing the Rosen form for the metric of a plane gravitationaÌ wave:

-2 ^-M -U V -\/ds- = le dudv - e-"leucoshtrl (ax2) 2 + e-ucoshw (ax3) 2

2sinhw dx2 clx3) A2.l)

I¡lhere M, V, U and hl are al.f functions of u only and satisfy the fielcl

equation, when written in the Newman-Penrose fonnalism.

2lJ -Í1 2 +2MV -t'J2+v2cosh2w A2.21uu u uu u u

The only non-zero component of the lrleyl tensor is given by

V0 = -L [V Coshùl {- 2V tìl SinhW - V (U - M ) CoshW ]k uu uu u u u

+\it!'l -1,ü(u -M)-v2coshv,tsinhvùl 42.3)uuuuuu
Lf the wave propagates ur¡disturl¡ed through flat spacetime, we can set

M(u) = O without loss of generality.

To describe the sanclwich wave in FJ.gure 2, we require that 42.2) be

satisfied throughout the whole space-time patch an<l that V0 be non-zero
\

in the non-flat region O<u(u' ancl be identically,zero elsewhere. This

gives the following set o:f equations for the flat regions:

2u -u2-vü2 +v2- cosl¡2!ùuuuuu
V CoshW + 2V v{ Sinhlrl - V U CoshlV - 0

tr UU
2coshw Sinh!ù - O

uu

!ù
uLl

u

!{u -vuu u

a)

b) A2.4)

c)

I'or the region u(Or we have the trivial solution U = V = V'l = 0. For

the region u)u', A2.4') is a characteristic initial value problem where

the initial <1ata are provided by the junction conditions at u = u'

i.e. U, V and [,] are cont-inuous. The irritial values of Ur,r, V' and Vrl'

will be given by U, V and lrl in the non-flat region if we adopt the

Lichnerowicz co¡rditions, but if we adopt the OrBrien-Synge conditions,

they would have to be inserted. The solution obtained wilt determine

U, V and lrl uniquely in the qiven co-ordinate patch.
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unfortunately the system A2.4, is not amenahle to a straightforward

solution. Hov¡ever if we assume the V'I - O throughout the region u(ut,

i"e. the sandwich wave is linerarly polarized, then by 42.4)c) lrl = 0

throughouÈ the region u)u' (4). This reduces the system to

2u -v2=V2 a)uu u t o''u)
v -vu -0 b)' uu uu

This system has a straightforward solution.

Setting

X(u) = U(u) - V(u) A2.6)

and adding a2.5)a) to twice b) gives

2(u-v)-Ít2-2vv+v2)-o
UU UU Li UU la

which is

2X - X 2 = O A2.1)uuu
Setting X(u) - -21.n Y(u), we find

x =-2y-rY x =2Y2Y2- 2Y-lYuuuuuuu
giving from 42.7)

Y =Quu

Tlrtrs we have

x(u) =-21n(au + b) 42.8)

where a and b are constants. l'his gives rise to several possible

solutions. These solutions are found by substituting 42.8) into

42.6) and in turn, this into 42.5)b) giving

V -V(-2a +v)=ouu " lã;Ð u

This equation is simplified using the substitution

v(u) = -ln z(u)

g.iving

d.2z + Ja dZ=0
ou (air+b) du

= dZ(u) giving
du

f,et A (u)

+dA
du

2a A=0
(au+b)

A2.9)



which has solution

A(u)=C(au+b)-2

which in turn gives

Z(u) = d(au -r ¡)-l + t

where d = 
=.a

Therefore the solutions for U(u) and V(u) are

u(u) = -21n(au + b) - ]r(a(au + b)-t + f)

= -fn [ (au +'b) (d + f (au +n¡ ¡ 1 a)

= -tn [(au + b) (qu + h) ] A2.I0)

v(u)=-In[(au+b)-r(gu+h) ] b)

whereçf-afandh=d+fb

The case with a = 0 in 42.8) also satisfies A2.7) however this case

gives a different equation in A2.9). In this situat-ion we, instead,

have

2

dz:o
=-2ou

giving

U(u)=f -In(au+b) a)
A2 . I1)

V (u) = -ln (au + b) b)

Therefore, the set of possible solutions to 42.5) are

u(u) =v(u) -9 a)

U(u) = -In[(au + L¡) (gu + h)]
b)

v(u) = -1n[ (au + b)-l (gu + h)] A2.l-2)

u(u) = f -ln(au + b)
c)

V(u) = -ln(au a. b)

where the values of the constants a, b, ...f are deduced from initial

conditions which we shall take as given by the Lichnerowicz conditions.

It is worthwhile calculating these constants since their values

demonstrate the unavo-idability of co-orclinate singularities in the

region u)u!.
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V\Te can immediately cliscount 42.I2)a) as a solution in Lhe regi-on

u)u' since it would require the gravitational wave to vanish-

The presence of the co-or:dinate singularity is more obvious usiJìg

A2.I2rc) hence we shall consider this first. It is easily seen that

rde have u = ur

f =U(u,) _V(u')

-V (u')a=-e 'U(u') 42.13)

' -v (u')b = e (1 + Uu(u,)'u')

Since we have assumed U(u) = V(u) = Q fe¡ ¡(0, from 42.5)a) Ur,rto

for u>O ancl hence U >O for u>O therefore a<O and b>0. Further' the

value of u for which âu*b = 0 is seen to be greater than ut and hence

the co-ordinate singularity is unavoidable for this solution.

To prove the similar result for the meÈric À2.12)b) is si¡nilar. From

lr2.f2)b) we have

, L(-u(u') + v(u') )a = ïe r-ü (u') + V (rr'))

b=e t(-u(u') + v(u')) (r + +(u (u') - v (u')) u')'uu

9=-Le -L(u(u') -r V(r¡')) (u (u') + v (u'))
u u

. -b(u(u') + v(u') )h = e ' 
T v\u 'r'' (1 + L(urr(u') + v,r(ur) ut)

From these results we see that the values of u for which (au+b) = o

and. (su+h) = 0 are greater than u'. Therefore the co-ordinate

singularities are again unavoidable.

The table below sets out the mebric and t-he appropriate co-ordinate

transformations to transform away the co-ordinate sinqularities.
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ds2 = 2ciudv - ((au+b¡2 (a*')z

l',letric

+ (gu+Ìi) 2 (a*t't2')

ds2=2dudv-e-f((ax2)2

+ (au+b) 2 (a*t) 2)

The resulting flat metric is

ds2 = 2dxo dxl (dx2)2 - (dx3¡2

Transfonnation

u=xo

v = xr - (x212 - (x3) 2

Gffi Gxn_ñt

2 3
Xx

u=xo

v=xl

nfcx'= e X-
f3 e X3x

T"?+b)-

(R/t)
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Figure 1

A "head-on" collision between t\^/o plane h¡aves as viewed by an observer

with worldline u = kv (k>0) x2 = constant, x3 = constant. For other

timelike oLrservers the collision will not be head-on but ¿rt an angle.

This more generalsituation can afso be analysed using the present

approach. The hyper:surfaces u = constant, v = constant are nul-I'
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Figure 2

Plane sandwich gravitational wave. The metric is a function of u only.

The non-flat region is bounded by nu1l hypersurfaces u = O and u = u'.
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