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Abstract

By utilizing the Newman-Penrose tetrad formalism, we deduce the exact
set of non-linear partial differential equations which describe the
collision of gravitational and electromagnetic waves. Unfortunately,
this set of equations is too difficult to solve using today's
techniques and therefore several simplifications are adopted.

The first simplification treats the electroﬁagnetic field as a test
field and hence ignores its stress-energy. Both the exact and weak
gravitational metric are used. In both cases, we deduce explicit
expressions describing the effect of the gravitational wave on the
electromagnetic field., Later, the validity of these expressions is
discussed.

The second simplification uses a power-series approach which, although
it does not give an extensive solution to the exact problem, does give
several properties of the exact solution in the vicinity of the

initial interaction. In particular, the applica?ility of the Lichnerowicz
conditions is discussed.

We find that the gravitational wave changes the Petrov type of the
electromagnetic field and can even reverse its direction of propagation.
Also, observers may experience focusing of, and/or energy transfer to
the electromagnetic field.

Finally, although the effects described above are explicit, we find
that they are too small for experimental application to the detector of

gravitational waves.
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Notation and Conventions

The metric tensor is denoted guv. Its signature is

+ = - -, Tensor indicies |,V,p range and sum over
0,1,2,3. Spinor indicies A,B,... range and sum over
0,1. where small roman letters appear their sum
always ranges over the values 2,3, Symmetrization
is denoted by round brackets.

A(HBV) = !’(AUBV + A\)Bu)
Antisymmetrization is denoted by square brackets

A B . =X%(AB
W

- AB
V] u)

\Y v
Partial derivatives are denoted by

A or A
+H H

Covariant derivatives are denoted by

A
iH



Introduction

Although the set of equations required to describe the collision of two
electromagnetic fields in General Relativity have been deduced and shown
to be well posed (8), present day techniques are too primitive to solve
the system.

In the work below, we derive this set in Section 3 and then proceed to
simplify them in order to derive a solution. The simplification adopted
is to treat the electromagnetic field as a test field and hence ignore
its stress energy. Although this appears to be a rather drastic move,
it does provide explicit expressions for the effect of a gravitational
wave on an electromagnetic field,

We find in Section 4 that the Petrov type of the electromagnetic field
changes and, for a given observer, the effects have a reasonably direct
physical consequence. This observer detects changes in the electro-
magnetic Poynting Vector even to the extent of reversing its direction.
Thus, the electromagnetic field energy is apparently redistributed
and/or supplemented by the gravitational field.

This behaviour would indicate the possibilitylof'using an electromagnetic
field to detect gravitational radiation by observing the changes in the
field. However, even with the stronger electromagnetic coupling, we
show in Section 6 that this approach is of 1little use.

In Section 6 we also discuss the validity of ignoring the electromagnetic
field energy-stress and find, for a given observer, that there is a
reasonable range of validity. However, this task is complicated by the
ambiguity in defining the energy density of a gravitational wave.
Another approach the gystems of equations which are difficult to solve
explicitly is to use a power series and study the properties of the
solution near the initial interaction (12). We adopt this approach in
particular to study the effects on the continuity conditions of the
metric along the shock fronts of the two waves. We see in Section 5

that the Lichnerowicz conditions are suitable for all such interactions

(1)



except when two shock electromagnetic waves collide. We also find

that the previous simplification can apparently be refined by solving
Maxwell's equations in the colliding gravitational wave metric. Since
the problem we are to consider is, in effect, the classical equivalent
of a graviton-photon interaction, and further, since ignoring the
energy-stress of the electromagnetic field is in line with the approach
often adopted when studying quantum fields in curved space time, the
results deduced could be of use in considering the quantized problem.
To do this, we would require to quantize the electromagnetic and (weak)
gravitational fields in the Newman-Penrose null tetrad. This apparently
has not yet been done. It may well be a useful next step after this

thesis,

(2)



The Newman-Penrose Formalism

Throughout this thesis, the Newman-Penrose Spin Co-efficient formalism(1)
will be extensively used.

Since this formalism is relatively well known, only a statement of the
definitions and relevant results will be made here. (A full listing of

the resulting equations is contained in Appendix 1).

We introduce the tetrad of null vectors lu, nu, mu, au where lu and nu

are real and mu complex. Their orthogorality properties are

1 mu =n mu =0 1.1)
u u
1 nu =-ﬂlau = 1
u u
Z = (1 n m m m=1, 2, 3, 4
y ul U, pl u) ’ ’ ’

The tetrad indicies are raised and lowered by flat-space metric

o~ O
OO OM™

and we also have

=2 Z =1 n +n 1 - m - m 1.2a
guv my nv n u v u v mu mv mu mv )

n =2 Z

1.2b)
mn my  nv

The complex Ricci rotation coefficients are defined by

np _
m Zmu;v

g PV 1.3)

and by l.1) have the symmetry
Y =y

The tetrad components of a tensor Tuv
T =T Z :
m...p HV.e.ep m n o)
Intrinsic dervative with respect toc a tetrad vector is defined by

Y

T = T Z 1.4)
mn...p;q mn...p;v gq

(N.B. T is a scalar quality)
mn. ..p

(3)



Newman and Penrose introduce into l.4) the notation [

v (5 / /
DT =T =T 1 NI 1,54}
mn...p mn...pj;i1 mn...p;v g.at
v
AT = T =T n 1.5b)
mn...p mn...p;2 mn...p;v
v
8T = T = T m 1.5c)
mn...p mn...p;3 mn...p;Vv
8T =T =T i 1.5d)
MN...pP mn...pi4 mn...PV

Utilizing the relationship between tensors and spinors, and in
particular between null vectors and spinors, Newman and Penrose

introduce spinors oA and IA which satisfy

o1 = 01 =-1_0 = =1 = 0 .6
S EAB IA i vo AI 1.6)
and
u_ A -B TR A -B
1 g ap ° © n g AB 1 1
. 1.7
o = gt ok 75 :
AB
. R i o1l o1
where ; € is the Levi Civita symbol with € = € = € = € =1
AB 01 o1

; the dotted index differentiates between indicies of conjugated

spinors and unconjugated spinors.
; 0 - is a hermitian quantity satisfying

p v
oF + 0 =€ Ea..
(VRY AB CD AC BD

which sets up a correspondence between spinors and tensors, e.g., the

spinor equivalent to the tensor Tpv g is

P
B . .= ls] . «es 0 . .8
Tag o5k = Tuv...p 9 a8 @ b EF Ll

and inversely
AB CD  FEF

5§ . el .8b
Tagcd. ..e¢r% Oy P L E0)

T
HV...p
; Summation of spinor indicies, both dotted and undotted, is

over values 1 and 2.

(4)



We also have for the raising and lowering of spinor indicies

A AB A A AB A
3 = = € T =T €.
T (5 TB TB T EAB T TB B AB
Further, froml.6) we have
0.1 - 1.0 = g 1.9)

A B AB AB
(For an extensive introduction to spinors in General Relativity, see

(2)L1.9) is in fact a completeness relation and hence we can take

A . ] ] : :
oA and 1" as a basis for the spinor space. Doing this and adopting

the notation

T s B S )

Ef;\ = 5" 15 Zi‘ - Té‘ (=6;) S
the dyad components of a spinor, given by

I 1.11)

abé = "ABC “a b &
are identical to the spinor components.
It should be noted that although the lower case indicies behave in the
same algebraic way as the upper case indicies, there are not involved
in covariant differentiation.

Usingjlg)andQIJO) we see that

1 N A

1 —
1'11 . O'Ll- ITILl . O'u- m]'l = 0'1116

To represent covariant derivitives of spinors in this dyad we need to

. . ] ] B . 5 . .
introduce the spinor affine connection T Ay via the covariant derivative

TA;u of a spinor TA
P =7 - TO 1.12)
AU A;u B Au ’
where FB is fixed by the requirement that 0u = g = 0=€AB;v=0
Ay is xe v e quiremen a AB; v AB;v i
Using 1.12) on the dyad com ents ¢ (= 6A € = & _) we have
g n yad components &g a AR  aB
c E
— — I-‘ — =
EaA,u EaB,u Cac Ap ca I‘cAu FaAu

(5)



Hence

ST

I|ab021 - gaA;u Cb cd 1.13)
Also, to be consistent with 1.5), we can write

T e T e T
where the intrinsic derivatives become

D = aoé i E ali § = aoi § = 816 1.14)

With the above theory and notation, we can write out explicit dyad
component expressions for the complex Ricci rotation coefficients and
various other relationships which involve them and their background
(curved) Riemanian manifold. We have the following relationships

<> .
Ympn I|abcd

This is seen by the following

T T R
mpn mp;v p  n MWAB "a b ‘v e€b “c °d EF ‘e °f

B u C -D Vv E —é
. - s 5
b ;v CDh Cc Cd EF Ce Lf

EAC Eﬁﬁ (Fa ef CB a b fe c "d

I‘acef €phd + bdfe —ac 1.15)

Similarly

Tomn ~ Tomgm = T Voon ™ Youm 7 {aaﬁ 2.4 " 9.4 aaﬁ} T 1.16)

pPq rs = -
= . - - . . s . = Texs 3 . T
te (Fpacd aqb chab aqd) te (Frbdc 3as Frdba cs)}

and

mnp ;/ mng ; m Lni m in mnf ap Pg
YT iR g Py - Yy, TP 4y S PIE Pal

mnpq

+ R > e I « 3. . T =Pl {r T

- - - . + . T . .
fe "acdb db " acfe apdb " gcfe I1acpk§ gdfe

rs =
+ . Te. =T e B %
! € {Facdr sbef acfr sebd}

. T « = T . T .
apfe qcdb acpe qgfdb

+ v €.. + Asé- (e € + € e .)

acdf “eb b cd "af ad cf 1.17)

+ ¢acﬁé Efd

where Y corresponds to the Weyl tensor, ¢

ABCD corresponds to the

abéd
trace free part of the Ricci tensor and A corresponds to the Ricci

scalar.

(6)



Corresponding equations can also be written out for the Bianchi

identities but they will not be reproduced here. (See (1) or (2)).

Newman and Penrose adopted the following notation for the spin

coefficients Fabcé
ab 01
. 00 or 11
cd 10
00 K € T
Paboa = | 18 i M
ol o B u
11 T Y v

1.18)

Using 1.14) andl1.18), we can re-write1.15), 1.16) andl.17). The

resulting equations are quite long and are therefore re-produced in

Appendix 1.

Maxwell's Equations in the Newman Penrose Formalism

Maxwell's field equations for the antisymmetric electromagnetic field

tensor Fuv written as tensor equations take the form

MY =0
HAY

F =0
[pv;p]

Any antisymmetric rank two tensor F

takes on the appearance (2)

F >F . .= €.
) aBed ~ Yac °BD
h i = -
where, using va var
_ c
> = <% F = -%F
¢AB & A BC &

is a symmetric two-spinor.

Taking the dual of Fuv

*F =k ¢ op F
uv v ap

+ o

BD

€3
AB

Hv

(7)

1.19a)

1.19b)

when written in spinor form

1.20a)



its spinor equivalent is

P> i(9

v E -
uv BD AC ¢ )

Ee a
AC BD
Thus, defining the antisymmetric tensor

-~

S + i*F .2
Fuv 5 (FUV i UV] 1.21)

we have spinor equivalent

-

5 . 1.20
Fuv ~ ®ac %8b b)

Furthermore, bothl.19a) andl.19b) are incorporated in the field

~

equation for F
Hv

FW - o
HaY]

which has spinor equivalent

-0 1.22)

. . A . . .
Adopting spinors o and 1A as a basis in spinor space enables us to
re-write 1.22) in the Newman-Penrose formalism. The resulting
equation is

)

(T ) +¢ (T

b b . = s - . « = v
015 Yoa ob ¢1a ¢oa ol1b F110b la 100b r001b

+ ¢ ¢ (T )

< - § D)+ .
00 I‘a11b 01 aiob + Pa01b ¢11 I‘aoob

which in turn gives

D¢, - 86, = (m - 2a) ¢ + 20 ¢, - Kb, a)
Dy, = 8¢y = -Ady+2T &, + (p - 26)9, b)
1.23)
6¢1 - A¢0 = (u - 2vy) ¢o + 271 ¢1- od, c)
8¢, =~ Ap, = -vp, + 2u ¢, + (1 = 28) ¢, d)
where
_ v
% = Fuy e =l
¢, =uE S A L 1.24)
¢, = Fuv m n” = ¢11

(8)



Noting that from L 21)

1~:—¢> . GA}éocﬁ
w  'ac °BD 7 v

AE BF cG DH
€ E g €

= E "~ . g
*ac €BD Efu € GHV

Usingl.9 andl.10) we have eAC = cg cCa which when substituted into

the above gives

ac ef Bé
€ € ¢

o . 0o_:
ae cbuy fdv

= 2 m + .+ m + 1 ) 1.2
Ggmpunygt ¢ o Ly +mp mp) +¢, 1, m 2)
The field invariants of the electromagnetic field tensor F . will be
of interest to us. These invariants are
(3% 2 2
F N -
My B =Bt - =
1.26)
w w2 g B b)
Hv N N

where E and B

~

are the electric and magnetic field vectors respectively.

A

AY . \ :
In terms of FM + the invariants are given by

uv Stuvy 4
%Fuv F Re{Fuv F* '} = re{2¢, ¢, - 4¢,}

a)

1.27)
UV

LE AP

~ A 2
" LTn {F“v "V} = 1 {9 ¢, - 24} b)

0

From L21), the electromagnetic field tensor can be represented by a

. . P . .
symmetric two spinor ¢3B' Let T be an arbitary one spinor; we can
£+

form the polynonial in T! and T2 given by

L A B
P (T) —¢ABT

which may be factorized

A B
(e [T0) (BBT)

. A, : .
Since T is arbitary and ¢AB symmetric we therefore have

¢ B

= 1.28)
AB (A B)

The spinors uA and BB are called principal spinors and are unique up

to complex scalar factor. Each spinor uniquely corresponds to a null

real vector via the ouAé, i.e., there exists real null vectors.

7q)



Hence decomposition 128) allows classification of electromagnetic
fields corresponding to the number of unique real null vectors of

the field. These null vectors are referred to as null directions

of the field and the classification is called the Petrov Classification
of the field.

For a symmetric n-spinor there are at most n unique null directions,
thus, froml.28), there are at most two unique null directions for the
electromagnetic field.

Hence the Petrov Classifications for the electromagnetic field are

Multiplicity of null Classification Form of ¢AB
directions of Field
[ 1] General ¢ = B

aB = “(a"m)
[ 2] Null ¢AB = u(AuB)

It can be seen that for a null electromagnetic field there exists a
real null vector k" such that

x*F =0
i

Thus, by L25) for any null electromagnetic field there exists a null

tetrad in which Fuv has the form

A "~

F ox F =2¢,1
Hv o [ V] uv

1.29)

it
V)
<
21
=}

m
[ V]
where the principal null direction is nv and lv respectively. For a

general electromagnetic field we must have at least either %y and ¢,
DN-ZeX0 Qr d)l ron-zero. By choosing a particular kmsis, we may eliminate ¢1 from

the expression for a general electromagnetic field. Using 1L 7), L20a)
and the symmetry and antisymmetry of ¢AB and £aB respectively, ¢; in

1.24) can be expressed as

¢, =9 (o 17+ 17 07) =¢ 0

The only other condition oP and 1C must satisfy for the above

decomposition of F v is the equivalent of 1.6) i.e.
M

(10)



to specify our basis, rather than 1.10), the ¢, term in L23) andl.24)
1

will disappear.

(11)



thus either Wuv = 0, i.e. no discontinuity, or the surface S is null.

It can be shown that such a null surface is a characteristic surface (2).
Using the fact that Wuv is an antisymmetric four-dimensional matrix
which must have even rank (this can be shown by direct calculation of

the determinental rank for the various cases) and also by 22) the rank

cannot be four, (assuming Fuv is discontinuous), wUV can be written as
Yy =k L
HV (W V]

where ku and lv are linearly independent defined (but not uniquely)

on 5. From 2.2a) k“, lu and uu are linearly dependent and we can set

Ru = wuu. Since uu is null 2.2b) shows that ku is spacelike. Thus we
have
Y = vk u
Hv (b V]
2.3)
u uu =0 =u ku
u u

We can immediately see from2.3) that if we set fuv = o0 in 2.1), then

Fuv is null in terms of the Petrov classification and further has the
simple decomposition 1.29) in terms of the null tgtrad introduced

above.

Discontinuous or Shock Gravitational Radiation Fields

Just as the solution Fuv to Maxwell's equation has characteristics,

the solutions to Einstein's equations may have characteristics.

Einstein's equations are second order hyperbolic non-linear partial
differential equations inthe components of the metric and hence possess charecterist
surfaces which may be interpreted as wave fronts across which the

metric and its derivatives are discontinuous (4).

The problems of physically interpreting these apparently "radiative"
properties of gravitational fields has been discussed in other

works (2), (5), (6). Briefly, the problems stem from the fact that,

unlike Maxwell's equations, Einstein's equations are non-linear and

locally a gravitational field can be transformed away. Thus, we

cannot ascribe an "enerqgy content" to a gravitational wave.



Discontinuous or "Shock" Electromagnetic Fields

Maxwell's equations are first order partial differential equations in

the antisymmetric tensor Fuv' The solutions to such equations admit

"characteristic surfaces" (3), (4). These surfaces have physical
significance as wave fronts across which solutions can have
discontinuities (4). Thus electromagnetic fields can exhibit a
discontinuous behaviour across such characteristic surfaces. However,

we shall see that such surfaces have particular properties.

We adopt the approach used in (2). Let the surface S: u(xa) be a

hypersurface in flat space time. Let Fuv have the discontinuous form

F = f + Vv 0 (u) 2.1)
ny pv n

o) . . .
where fuv and va are C and piecewise c! and 0 (u) is the usual unit

step function.
Inserting 2.1) into Maxwell's equations gives

HAY) iV HAY] v
F = f + T8
T T va (u) + va §(u) u

F f + v 0 Yy § (u)
fuvipl bv;ip] [wvip] () + [uv up] “

. v . . . . .
where uv = u,v; u = uuq\)u and §(u) is the Dirac delta distribution.

Maxwell's equations must hold on and near S, hence the following

results
- iv
for u > o f =0 and f = 0
Hv fuv;pl
+ H
for u > o y Vo= o and Y = 0
pv [nvip]
and hence on S we must have
Y uv =0 a)
uv
and 2.2)
y u = b)
(uv p]

Contracting the second of these with uP gives

(12)



To deduce some mathematical results on the likely properties of
gravitational radiation, we cannot always use electromagnetic
radiation as an analogy. However, we can begin in a similar way when
considering gravitational radiation wave-fronts. For heuristic
reasons, the type of discontinuity of the metric allowed in General
Relativity is restricted to shock discontinuities in the second

derivative of the metric. Mathematically this is represented by guv

and gu being continuous whereas g v may be discontinuous across
u ‘

Vil ;L0

some hypersurface S: u(xu) = o.

Physically, this restriction corresponds to allowing nothing more

than shock discontinuities in the curvative tensor R.u . Allowing

Vo

discontinuities in guv and guv c would entail delta discontinuities
’

in Rquo which would be difficult to interpret physically.

This restriction on the type of allowable discontinuity is called
the Lichnerowicz condition (7). To study the implications of the
Lichnerowicz condition we use the method adopted by Pirani (2).
Let A denote the discontinuity across hypersurface S.

Thus we can write

= X = X 2.4)

(g wvze ~ Xuvog

UVJCU)
and we have assumed that

A(guv) - A(guv,ﬁ) -

Considering neighbouring points x" anda x* + ax" on s and the values
of g either side of S we have
uv, g
g (x + dx) = (x) + (x) dxO
UV, T guV:C ngygo

thus for the discontinuities

(o)
Ag (x + dx)) = A(guv’g(x))+ Mg, g (0

v, g ta

By the Lichrnerowicz conditions

o g
A — =
(guv,co) dx XquO dx o

(11)



—a

a . .
for all dx 1lying in hypersurface S. For such dx0 we have

thus we must have

Xuvee = Xuves
for some va§0° By symmetry of 2.4) we have
= 2'1'
xvaQ Xuv uc Yo 2

Furthermore, using the Ricci identity

+ terms continuous across S

R = ]
pvzo (o %21 m,v1
therefore
= 2.6
ARuvco 2 Yo Xz TR)
Since R = 0 in a vacuum and hence AR = 0 we have
uv uv
2 = u X u = M( uv u - u uv - uvu
I o "] [ V] Xzu v~ Xl Xev u
v
+ == 2.7
b ucuu) o )

Multiplying this by u . and antisymmetrizing on [uc] and [KZ]

gives

u[KXQ [uum uvuv =0

Comparing this with 2.6) shows that if RUVCO is discontinuous across

hypersurface S then S is null.

So, if g suffers a discontinuity across surface S then we can

UVe LO
b W
write for S: u(x ) = o

o]

Bl -9 v, zo

v, 2o + x uu_ 6(u) 2.8)
’

UV o

0 .
where g and ¥ are continuous.
v, o UV

" Although the Lichnerowicz conditions are widely accepted as the

continuity conditions to be imposed on the metric when considering a
Cauchy problem, P. Bell and P. Szekeres have shown (8) that there are

circumstances where they must be relaxed.

(15)



Their approach was to apply the Lichnerowicz conditions to an
electromagnetic field with two colliding shock fronts. One may
expect the most general form for such a field to be

d = 2.
Fuv fuv + Wuv 8(u) + ¢uv 8(v) + kpv 8 (u) 8(v) 9)

However substituting this form into Maxwell's equations gives at:

u=o0 wuv kuv 0 (v)

¥

“rutvi

vV =0 ¢uv + kpv 6 (u) o) f[qu]

where eu and f11 are spacelike vectors orthogonal to uu and VU

respectively. By using the transformation

e“ > eu + Otu]J and fu+ fu + Bvu
where
o= -euv and B = ~ Fuu
u X
uv u v
v v
we get
e uu = e vl'l = f vu = f uLl =0
H H H H

This transformation is well defined since uuvu=+o, the reason for
this being that u]1 and Vu are not proportional to each other by

assumption.

The continuity of wuv' ¢UV' Y, ¢ and kuv imply that at u = v = o,

kpv = o0 and hence doesn't contribute to the shock front. Thus, we

can set ku“ = o throughout the region u>o, v>o.

Before applying the Lichnerowicz conditions to the electromagnetic
field, we must note that the hypersurface S at which the shock
discontinuity occurs for such a field is null by way of the arguments
in the previous section rather than those of this section since for
such a field ARuv+0' However, the decomposition 2.9) (or 2.5)) is

still valid since we did not assum ARuv = o for that equation.

(16)



=0
Hence, for a shock electromagnetic field ARuv,%%'but since uu is still

null we can write in place of 2.7)

o+ %xv u_u 2.10)

AR = -u xu)v vl

Just as the kuv 0(u) O0(v) term in 2.9) has kuv = o it follows

analogously that for a double shock fronted electromagnetic field, the

Ricci tensor can only have the form

0 v v
R =R + [- v
e up P Xy v R w10 ()
- \Y) Y]
+ [_V(C S0V v o+ %= v chu 10 (v) 2.11)

0 . .
where R roX and E are all continuous (i.e. there are no terms
Hv BV Hv

of the form k]J 8{u) 6(v)). However, Einstein's field equations for

vCo

such an electromagnetic field are

ar
R = = =K F o - F F
HV KTuv Zﬁ-( uo v l“311\) ag )

which, upon the use of 2.9) (with kuv = o), will give

_ 0 o} o
Ruv = Ruv + fL W(fo(“(ev) u uv) e ) + LY uuuv
T
oz o o)
+ u = +5%0 v v
%guv fOC e u’) 6(u) + ;; <I>(f0(]J (ev)v V) © u Y
o I o} o
+ f £ s v) + e
%guv or v 6(v) + 5% <I>‘1‘(e(u fv) u v u(u Vv) o f
% e 2 u v®) 8w 6(v) 2.12)
guv . c v u i

Comparing 2.1]) and 2.12) we see that for colliding electromagnetic

fields, the coefficient of the 6(u) 0(u) term must be zero to satisfy
the Lichnerowicz conditions. However, that coefficient in no way need

u

be zero in general. This is seen by contracting it with e" giving

coefficient
Loy u vO £
o v

which is zero only if either or both of the shock fronts vanishes.

(17)



Thus, Bell and Szekeres (8) suggested a relaxation of the Lichnerowicz

conditions to allow guv c to have shock discontinuities across a
2

hypersurface S: u.by) = o0 i.e.

o]

i + 0 a1
T v,z () )

g9 X

UV, G uveg

4

o .
where g uv,z and Xuv are continuous. Using an approach similar to
[4

that which gave 2.5) yields

HVE uv

The second derivatives of the metric will therefore be

Iyv,t0 = 9w, Lo + Xpy Y Yy § (u)

where g! is piecewise continuous. This gives the Riemann tensoxr
u g

v, La

the form

Rivee = Ruveo ¥ 20000 %0 ¢ W 2.14)

where R is piecewise continuous.
nVZo
As we saw above, R v can have no worse than a shock discontinuity for
u
colliding electromagnetic shock waves since T v has only such
H

discontinuities. Therefore, we require that the delta discontinuity
term in 2.14) must disappear upon contraction over v and o. This gives

o]

_ 1.0
u XO(Euu) X L 2.15)

C

This equality is satisfied by enforcing the O'Brien-Synge conditions

on the metric (9). These conditions may be written in the form

oi
g (Agij,o) =0
ij =
g (Aglj,o) = 0
where Agqu represents the discontinuity across the null hypersurface

. - 0 . . .
whose equation is x = constant. using 2.13) above and the resulting

form for XUVC we find the O0'Brien-Synge conditions for the field under

consideration are

(18)



uv =¥ v u
Xy Xv o Y

which is seen to satisfy 2.,15). Therefore, although for colliding
plane gravitational waves the Lichnerowicz conditions are suitable (12)
for colliding plane electromagnetic waves, we must adopt the weaker
O'Brien-Synge conditions.

Furthermore, we see from 2.14) that the collision of two electro-
magnetic shock waves will give rise to two impulse waves propagating
along shock fronts u = constant and v = constant.

From the analysis above, we also see that thése impulse waves cannot

be transformed away.

(19)



The Exact Gravitational Wave Metric

Due to the non-linearity and non-tensorial nature of Einstein's field
equations, there is no simple method of constructing gravitational wave
solutions (2). General gravitational wave solutions cannot be generated
by superposition as with electromagnetic waves. As stated above,
however, analogy with electromagnetic waves can be utilized to some
extent,

The concept of "electromagnetic radiation" gntails a transfer of energy,
by the field, at the velocity of light. An example of "electromagnetic
radiation" is given by the plane electromagnetic wave which is described

by an electromagnetic tensor of the form

. O
=T
Fuv v exp (ix ko)

where Tuv and ku are independent of the co-ordinates. From Maxwell's
equations we immediately have

r k" =0 F k =0
uv [Hv o]

and from these we have

Thus the plane electromagnetic field is a null field by the
classification introduced above.

In a vacuum, the Weyl tensor satisfies the Bianchi identities which
may be written as

:0

L4 =

c = =0

pvzo 0 va[go;k]

which are similar to Maxwell's equations. This suggests that plane
wave gravitational radiation should correspond to the Weyl tensor

satisfying equations of the form

o
k- =0 c =0
cuvgc uv (Lo kA]

for some null vector k“.

These equations correspond to gravitational field which is null, or .,

Petrov type N, (2), (5), which mathematically means that the Weyl spinor



WABCD introduced above can be written in the form

Yapep = Y4 (a* B% ¢ p)

u aA aﬁ (c.f. The decomposition of the electromagnetic

u
he k" 0=
where g

field spinor ¢_._ on page 10).
AB
nvil
Exact solutions of this nature which admit at least onepKilling
vector are called plane-fronted gravitational waves (2) (5) (10). 1In

(10) it is shown that the metric for such an exact solution can be

mapped into the form

as? = 2dudr - U(u,y?,vyHdu?® - (ay?)2 - (ay’p 3.1)

A special case of this metric is the plane-wave which has five Killing
vectors. For such a gravitational wave the function U(u,yz,ya) has

the form (10)

U=fla) (D% - (v*?) + 2n(u)y?y? 3.2)
where f(u) and h(u) are arbitary functions.
If h(u) = 0, the plane wave is said to have constant
polarization.
The plane wave metric 3.1) and 3.2) can be transformed into the more

convenient Rosen form (11)

as? = 2™ auav - 9, axt ax’ (i,5 = 2,3) 3.3)

where M(u) and gij(u) are arbitary functions.

For the case h(u) = 0 this transformation is obtained by setting (12)
2P a 2 .
r=v+h(y?)? e b+ h(y*)2 &2
P
x% = y2e =y = yaeQ
where P = P(u), Q0 = Q(u),. = d and P and Q satisfy

du
-(B + %) = @+ 0% = f(w
The metric 3.1) then takes the form
op , 50
ds? = dudv - (e° (ax?)%+ e“?(ax’)?) 3.4)

In this case 95 5 is diagonal ; in fact g4 can always be diagonalized

(21)



if the wave has constant polarization. There are several properties
of the Rosen form 3.3) worth discussing. Firstly, the symmetries
exhibited by the plane wave are more obvious with the metric in this

form. There are five Killing vectors for the metric 3.4). By

definition a Killing vector " satisfies the equation

T
(piv)
which can be written as

0+ g +1° =0
gpv,c JHTOV V) guo

With the metric guv given by 3.4), we get the following partial

differential equations for e
! =0 ; ™ =0 a)
0 rl
™ +1! =0 b)
¢t 0 rl
2 2
o -eF 2 =0 ; Rl =0 c)
r2 r0 r 3 r 0
2
2 P2 -0 ;1 -®r =0 A
r2 [ r3 vl
s 0 2
PT +T =0 ; o +1d =0 e)
r3
2 2p
73 e Q + T2 e =0 £)
12 73
From 3.5a) and b) we have
0 = 7! =0
700 r11
Thus
0 _ 1 _
T = uf(x,y) T = vd(x,y)
for some f(x,y)and d(x,y)
From 3.5c) and a) and
2 2
P2 ) =0= (1 )

10 40 10 40

giving

=2P
72 = h(v,x,y) (Je du + g(v,x,v))

(22)



and similarly

T3 = F(v,x,y) (Ie_2Q du + k{(v,x,y) )

Now using 3.5d) we find

2P -2P
wdf = e {gh_(Je du + g )+ hig ]

ax ov av
however, in this equation, the right hand side is a function of v
whereas the left hand side is not. The only way to satisfy this is

to set:

il
o

f(x,y) g = g(x,y) . h = h(x,y)

Thus, 0 = 0, which immediately requires, by 3.5e)

h = h(y) , g=g(y) and j = 3(x) , k =k(x

which in turn, using 3.5f), requires that h, g, j and k are arbitary
constants. Hence we can write

™ =0

1_2 ]
T2=hJe Pau+g

. 1 =2 1
73 = 3 Je Q qu + k

Since T? = 0, T' = d(x,y) and using 3.5c) again, we find

7!

=h'x + j'y + 1'
where 1' is a constant

This gives the following five Killing vectors for the plane

gravitational wave

™= [ o i ™ = " o 7 ™ = 0
1 2 3
X Yy 1
Je—zpdu Je—2Qdu 0]
|0 | | o ] LOJ
L 3.6)
™ = 0 ™ = o0
N 5
0 0
1 0
. 0 L1

r93)



Of this set of Killing vectors, we will be mostly interested in the

last two. The transformations corresponding to these vectors are

- r_
ITu ; v=v' o+ oax' + ke 2P au x = x' + aJe 2E &
2Tu i v=v' + By' + %8° Je_zQ du y =y + BJe-zQ du

=]
<

I
<

+y

=
»
1l
»
+
(o)

™oy =y +e

where o, B, vy, 6, € are parameters.

Another advantage of the Rosen form is that it allows discontinuities
in the curvative tensor while still satisfying the Lichnerowicz
conditions stated above. The metric given in 3.1) and 3.2), however,
cannot accomplish this.

We can see the reason for its failure to satisfy the Lichnerowicz

conditions with discontinuous curvature is due to the presence of the

product terms (y2)2, (y3)2 and (y2)(y3). These terms result in f (u)

and h(u) appearing in the Riemann tensor (i.e. in guv or terms) and
! ’

hence for this quantity to be discontinuous, so must f(u) and h(u).
However, this cuts directly across the Lichnerowicz conditions.

Now, if we use the Rosen form 3.3) for the metric, this problem
doesn't arise. This advantage of the Rosen form is of particular
merit when we deal with sandwich gravitational waves below.

A third advantage of the Rosen form is that both u and v are null
co-ordinates thus in the collision problems (represented by Figure 1)
considered below both waves can be represented in the same co-ordinate
patch (6), (12).

A disadvantage of the Rosen form, when compared to the form 3.1) is
that 3.1) can completely cover the space time manifold (i.e. is
geodesically complete) (10) whereas there is a situation in which the
Rosen form suffers a co-ordinate singularity, as we shall see for the

sandwich gravitational wave (14) considered below.

(24)



The Co-ordinate System and Field Equations for Gravitational Plane
Waves

The properties and results deduced in this section, concerning the
co-ordinate system are effectively those given in (12) which are
produced in more detail in (6).

The metric 3.3) is particularly suitable to be represented by the use
of a double-null co-ordinate system. In this system we consider two
families of distinct null hypersurfaces given by

)

u= u(x' = C, v = v(x'u) = Cy (C; and C, constants)

which intersect in spacelike two-surfaces. We may choose one of these
spacelike two surfaces (say u = v = 0) and co-ordinatize it by
choosing suitable co-ordinates x? and x°. These co-ordinates can be
extended to the whole manifold by appropriate transportation.

Finally, we can adopt the co-ordinate x" for the family

)

1

u(x! = C, and x  for the family v(x'u) = C,. Since the two families

of null hypersurfaces are distinct we can define a pair of null vectors

1 andn b
H H 4

1 = 1u n = v ' 3.7)
v H a ¢,p A
requiring
u 5 uv
1 n =1 i.e. = u v
" A S A TR

Using the co-ordinates adopted above we have

llJ B (w_lIOIOIO) nu = (O,¢-]

70,0) 3.8)
To utilize the Newman-Penrose formalism, we require a null tetrad

1u, nu, mu, au which satisfies the relationships 1.1). It follows

that we require

" = (0,0,¥2,¥%) n* = (y,0,x%,%x%) nt = (g,0,62,6%) 3.9

. i i , i
where ¢, v, Y and X~ are real valued functions and £ are complex-

valued functions of the co-ordinates. We also require m" to satisfy

' m =

~1, w1, =0 and wm/n,z0.
3
"

,ll

(25)



Since we are dealing with the plane wave interaction depicted in
Figure 1, in which the metric, in the various regions of the figure,
is either a function of u or v or both u and v, but never x? and/or
x3 (12) we see that all the functions in 3.9) are, at most, functions
of u and v. Thus, we shall adopt the approach of (12) rather than
that of (6).
With this specialization the tetrad has the following five co-ordinate
freedoms

(i) Scale transformation

H H

1'% = a1 ntH = AT1pH A= A(u,v) 3.10)

Under this transformation, scale functions Y and ¢ transform as:

v'o= Aty $' = A¢ 3.11)
(ii) Spatial rotations

m'u = elc m" c = c(u,v) 3.12)

i
The £~ transform as

(iii) Relabelling of null hypersurfaces
u' = f(u) vt = g(v) 3.13)
This induces on ¢y and ¢ the transformations

y' o= yaf ¢' = ¢dg
du dv

(iv) Spatial co-ordinate transformations

u' = u vl = v x'l = xl + fl(u,v) 3.14)
These induce transformations
i i i i i i
Y=y o+ gft X't = xt o+ opar’

ov au

(v) Linear co-ordinate transformations
j i
X = a bd a 3 = constants 3.15)

We can now introduce the Newman-Penrose formalism and equations

referred to in Chapter 1 and presented in extensio in Appendix I.

/oo



Since the metric and hence the null tetrad involve components which
are functions of only u and v, the spin co-efficients will be likewise.

Further, the intrinsic derivatives D, A, 6 and § simplify to, using

3.9)
pz1"3 =¢ 5 Az=a"3 =yd 6&=n iLu= 0
e av 5 %M av X
Using this in the commutation relations Al.2) gives;
from A,.1.24d) no=q p = 5 a =8
Al.2c) v=20 T = 2a
Al,2b) T = K =0
Al.2a) DY = —-(e + €)¢ 3.16)
Ap = (Y + Y) 3.17)

By considering the commutation relations componentwise Al.2) gives

from Al.2a) AYE DXT = (y + 7)Y" + (e + 8)X* - 43 I - 40 ET 3.18)
Al.2b) DET = 0E  + (p + € - €)E" 3.19)
Al.2c) AET =XEY = (u+ Yy~ y)ET 3.20)

Following (12), we can deduce a set of scale invariant spin co-efficients
(i.e. spin co-efficients which are invariant under a scale transformation
given by 3.10) above.

From Al.l) we see that under such a scale transformation the spin

co~efficients transform as follows

p' = Bp g' = Ao U = A "y

A=Al m =1 ' =1

£ = Ae + &DA from which we see that
{e-€)"' = Aa(e - &)

v' = A 'y - yAn7!? which similarly implies



The dyad components of the Weyl, Ricci and Maxwell spinors transform

as
Yo=a%Y¥, Yr=ay o ¥=y,
Yi=na'Y, ¥ =aT?y,
b4 o= A2¢00 ®y = A%y, Q;l =%,
®5,= %, ¢, =A 1¢Iz Qéz = A-?(I)zzz
¢y = Ad, o = b, 9, =Aa'¢,

Finally the intrinsic differential operators transform as

D' = AD A'=alA

From 3.11) we can define a set of scale invariant quantities as

follows:
p® = pp ! o =o' p=wt
A= !
B = i(e - e)¢ ! c¢° =iy - Ny !
Yo = ¥ 97° wg = w1¢”‘
Yo o= v, 0! Yo = ¥,y

0 _ -2 0 _ -1
Poo= g0 5= 95,9

o
o
il
=
I
o
Il
[o%)

A® =y A= 3

v du
We can now proceed to write the commutation relations and field
equations in a scale invariant form.

Since 3.16) and 3.17) can be written in the form

€+ ¢

—¢ (lnu}) ’
¥ 3.21)

Y+

V(Ing),

we see that the real parts of € and Y cannot be written in a scale

invariant form.

/000



However, these quantities do not appear explicitly in any of the

other field equations. We can regard these equations as expressing

€ + € and Y + ; in terms of ¢ and .

To write 3.18) in a scale invariant form, we firstly note that the

i .
£ are automatically scale invariant. Thus using 3.21) we find

vO' X" = ge™ @ B 4 oagh 3.22)
Rt ,u

where Yol = ¢_1 Y* XOl = w—l Xl and

M = 1n(¢y) ' 3.23)

are all scale invariant.

From 3.22) and the co-ordinate freedom encapsulated in 3.14), we see
that o = 0 is a necessary and sufficient condition for there to exist
a spatial co-ordinate transformation 3.14) which makes Xi and Yi
simultaneously =zero.

The remaining 3.19) and 3.20) become

et = 0%ty (00 4 1% et 3.24)

gt = X0 Ei - - igYet 3.25)

The field equations presented in Al.3a)-r) reduce to

a) (reduces to) po'v = (po)2 - poM'V + 0% g 4+ @go a)
q) po'u = -1 + o%\% - 4e_M a&-—eﬂMQE b)
h) uo,v = pouo + 0’20 - 4e_M o + e ¥, c)
n) “O,u = - (u%)? —]PM’U A °), a)
b) o =0%2p" - M + 2iE) + ¥ e)
v Vv
p) o L= (2i6° - u")e® - X%° ~4e™ 32 3.26)
g 0, £)
) AU'V = A%(p° - 2iE") + g% + 4e™ &2
+ e ™ by, g)

roa0)



. 0 _ 40 0 L0y g0
3) A a =A@ e 2160 - v h)
= 0 .0 ~0= 0 .
d) a'v =a(3p” - iE’) + 0o + O, i)
r) a = —a(u® + ic?)-32% - y° 5))
,u 3
3.26)
-M -M - . Q 0
f e Y.+ 0 = -]12e +%i(c0 =-E° )
) ( 2 11) oo ( ,V ,
+ L
2 Muv k)
k) vl - 2% = 2(p% - o) 1)
1) e_M(‘lf2 - o) = uopo - A%?° m)
m) Wg - @22 = 2(p0a - 2% n)
Maxwell's equations 1.23) a) to d) reduce to
a reduce to = 200 a)
) ue ) ¢11V . ¢1
- _oy? b) 3.27)
d) ¢1’u u ¢1 )
0 _ _g¢.0 _ L0 0 _ -M - a, 0
c) ¢0,u = =(u iG )¢0 de o ¢{+0 ¢2 c)
0 _ 50,0 -M 0 _ ;1.0 0
b) ¢2 v A ¢, + 4e acﬂ + (p - iE ) ¢2 d)

From the definition of the scale invariant components of the Ricci

spinor and Maxwell spinor and using (1)
Qab = k¢a ¢b (k a constant)

for the electromagnetic field, we see that the scale invariant Riceci
components for the electromagnetic field are

-— f— _M -—
®e0 = ko) 6§ o001 = k¢§ d1 e Bgp = k¢ ¢,°

B0 = ko, ¢,° 3.28)

o

oY, = k¢, ¢

L=
—
—
1
~
-
—
<1
—

where Kk = G = «k

To proceed from 3.25), 3.26) and 3.27) to a meaningful set of field
equations, we can avoid an unnecessary complication by using several

features of the system we are studying.



We will be concerned with the interaction between particular types

of gravitational and electromagnetic waves, and hence we may exploit
the various properties of these waves to simplify the tasks at hand, The
first simplification arises from the fact that for a purely
gravitational wave the Ricci tensor vanishes (va = 0). Hence in the
equations above, all the corresponding Ricci Spinor terms vanish

(i.e. all the ¢°'s are zero) for such a wave.

Secondly, for the electromagnetic wave, we have the Ricci spinor
components given by 3.28); where the ¢0's are the electromagnetic field
spinor components. Thus, if we can set up the interaction such that
oreof the ¢0's vanish throughout the space-time, a further
simplification will arise.

In fact, by choosing the electromagnetic waves to be initially null in

the sense of the classification on page 10 we can set, in

particular, ¢1 to zero. If this is done, we see from 3.27 a) and b)

and the uniqueness of solutions of partial differential equations

that ¢1 will vanish throughout the whole space-time.

Thus from 3.28) 03, = ®;, = 3}, = 0 throughout the whole
space-time. ‘
With these results, we see that in both cases, (i.e. gravitational and
initially null electromagnetic wave interactions), the partial

differential equations 3.26 i) and j) for o become, using 3.26n)

a(3p? - ie") + 0% a

Q
Il

~a(3u’ + ic% - 2x%

jo3
li

For the collision problems we shall be studying, (see Figure 1) o is
is initially zero (i.e. Region I in Figure 1 is flat space) hence using
the above two equations to evaluate o throughout the space-time, with

initial condition o = 0, we see that o is zero everywhere.



However, it was noted above that if o vanishes then there exists a
, i i,
transformation 3.14)such that the components Y and X (i = 2,3) of null

vectors 1% ana n* respectively in 3.9) can be set to zero. Hence
these components can be set to zero throughout the space-time.

With these simplifications, many of the equations in 3.26) simplify
somewhat.

Using 3.26) m) with ¢,, = 0 on 3.26) b) and c), with a = 0, gives

= 2% p? a)
p " wop

3.29)
0

- ¢ 0
L. 2u” p b)

Combining 3.26) k) and m)

% = %% =31 -E° )+ LM c)
'V ,u uv

Finally, we have for the Weyl spinor components

Proceeding toward a more meaningful set of field equations we see that

| U

since 1“, n", m, and ot

form a null tetrad (satisfying 1.1)) we can
use 1.2), 3.8), 3.9) and 3.23) to write

das? = 2e_M dudv + gij dxl dxj

where i,3j = 2, 3 and

gt = — (1 4+ B,

J

Writing gij ax* dx~ in the form (12)

J v -
-e (e CoshW (dx2)2 + e v CoshW (dxa)2 ~ 2sinhw dxzdxa)
where

U = ~1n(det gij)

From 3.29) we have

£2 = 1 "V (coshhw + iSinhiwW) a)
V2
3.30)
£2 = 1 ) (sinhw + icoshwW) b)
V2

29



Substituting these into 3.24) and 3.25) gives

]

p? = Ly o= ~%U
v u

E’ = -4V Sinhw G° = -%v sinhw
v 1

0% = iWw - %V CoshW A% = Liw + LV CoshW
v v u u

where subscripts u and v represent partial differentiation taken with

respect to that variable.

3.26) and 3.29) to give

3.26 ¢),b) (gives)

a)

a)

e)

£) ,q)

£),9)

h)

k)

m)

Similarly, for Maxwell's

3.27) a),b) (gives)

U =U U a)
uv u v
20 -uU?24+20 M =W ? +V 2Cosh’w
vv v v v v v
+ 4%, b)
20 -U?24+2u M =w 2 -V ?Cosh’w
uu u u u u u
0
+ 4%, c)
w°0 = -%(V CoshW + 2V W SinhW
vv v v
\Y - + -W
v(Uv Mv) CoshW) %l(wvv "
(U = M) - V% CoshW Sinhw) d)
v v v
2W - U W -U W =2V V CoshW
uv u v v u u v
, -M
SinhW - 4de Im {@02} e)
2V - U V -U VvV ==2(V W
uv u v v u v u
-M
+ Vu WV) tanhW + 4e Re {0501} f)
¥ = -4(V CoshW - 2V W SinhW
b uu u u
-V (U - M) CoshW) -%i(w - W
u q u uu u
(U = M) - v 2CoshW SinhW) g)
u u u
_M i
e Y =% —4i(V W =V W )QshWh)
2 uv u v v u
e ¥, =-%U U + 4%V _ V_ CoshW
u v u v
+45W W -4 (W VvV - W V )CoshW i)
u v v u u v

equations 3.27 we get

¢, =0 a)

(33)

These values may now be substituted into

3.31)

3.32)



0

c) bo o = 50 - iVuSinhW)¢g - %(V_Coshw
- W) 4] b)

a) ¢g'v = =(V_CoshW + iwu)¢3 + 50 3.32)
3 ivVSinhw)¢g c)

To describe the interaction depicted in Figure 1 we must solve the
above set of equations. This task is somewhat simplified if we
re-arrange several of the equations realizing that some equations are
integrability conditions.

Upon re-arrangement and using 3.28) where neéessary we get the

following system of equations

3.31)a) U = -1n(f(u) + g(v)) a)
b) 20 -U? + 20 M =W 2 + vV 2Coshw? + 4k ¢° ¢° b)
vV v v v v v 0 0
c) 20 -U 2420 M =W 2 + v 2Cosh®W+ 4ko¢) ¢ c)
uu u u u u u
e) 2w -U W - W U = 2V V CoshWSinhWw 3.33)
uv u v u v u u
- 2ik(¢) 95 — o5 ¢9) a)
f) 2v -U V -V U ==2(V W 4+ W V )tanhW
uv u v u v u v u u
+ 2k(9) G5 + o3 ¢0) ' e)
i),h) 2M + U U -W W =V V CoshW £)
uv u v u v u v

These equations along with 3.32) form the set of equations to be
solved. 1In this set, we can see that 3.32) and 3.33) d) and e) are
integrability conditions for 3.33) b) ¢) and f). Hence, we may attempt

to solve 3.32) and 3.33) d) and e) for V, W, ¢y and ¢J in the

interaction region (Region IV in Fig.l) with the initial data properly
set, Then M can be found from 3.33) f) by integration and using its
initial values on u = 0 and v = 0.

As stated in (8) 3.32) and 3.33)d) and e) are a quasilinear hyperbolic
system of equations (see (4) for the definition of such a system) in
the two independent variables u and v. Junction conditions require

U, V, W and M to be continuous everywhere, ¢2 to be continuous across

v = 0 and ¢g to continuous across u = 0.

(34)



Therefore if we know the forms of U, V, W, M, ¢g and ¢g from initial

(non-interacting) plane waves in Regions II and III we can deduce
U(u,v) throughout Region IV from 3.33)a) and we will know the values
of the other functions on the appropriate boundaries. This is all the

characteristic initial value data needed to determine V, W, M, ¢z

and ¢g uniquely in Region IV(6)., Although this (characteristic) initial

value problem can be set, and further some of the properties of the
general solution studied (6), the system is too complicated to solve
for the general case, with present day partiél differential equation
theory.
Therefore, the approach to be taken here will be to simplify this system
in the following various ways,
1) Make the electromagnetic field a "test field" in that we
ignore its gravitational field
2) Since almost all of the experimental tests involving
General Relativity utilize the weak field approximation,
(13), (23) we could adapt 1) immediately above to a weak
field approximation. In the usual weak f}eld approach
the gravitational field is linearized which results in
mere superposition of waves, we shall slightly modify
the weak field assumptions to give a non-trivial interaction.
3) Although the system above cannot be solved exactly we can
find an approximate solution for values of u and v small
and positive by using a power series expansion (12) . This
will give us some general properties of the solution in

that region.

The Weak Gravitational Wave Metric

An extensive survey of the properties of weak or linearized
gravitational field and, in particular, gravitational plane waves

is contained in (13). 1In that reference, the gauge freedom properties

(35)



ofvthe weak field metric are uéed to introduce specific co-ordinate

systems (e.g. harmonic gauge and transverse traceless or TT gauge) .

‘However, since we are particularly interested in the Rosen form for

the exact metric, we shall retain this form.

Before proceeding, we must realize that the term "weak field" is

rather misleading for the single plane wave field. This is due to

thé problems encountered in measuring the strength of a gravitational

field (15). To measure this quantity we would ideally use some property of
the field invariant so that all observers woﬁld agree on the strength of

the field. &t first thought, ascalar invariant deduced from the Riemann tensor

VLo

appears suitable. (E.g. R or R R etc.) . Immost cases, such a quantity

nvLo
will be suitable, however for the plane gravitational wave all of these invariants
are zero (although thggis not) and therefore we must measure the field's
strength using some other method.,
In recognizing this problem Hawking and Ellis (15) suggest usingthe comporents of
the Riemann curvature tensor. Althoughix)(iS)their‘purposecﬁffers from ours,
in that they are studying space time singularities, we have little choice but to

b

follow their suggestion. Resulting from this, because the components R of
UV gao

the Riemann tensor are not invariant, we find that different observers will
dscribe different strengths to the same gravitational wave, the values
depending upon their worldline.

Furthermore, since the plaﬁe gravitational wave has no timelike Killing
vectors there is no "naturally implied" co—ordinate frame from which

we may analyse the wave and ascribe a strength7

However, for the interaction of two plane waves depicted in Figqure 1,
although the former problem persists (i.é. all scalar invariants are

» zero) the latter does not. We can see from the symmetry of the
interaction that a suitable reference frame is that with its worldline
tangent vector pointing vertically up the diagram. Such a worldline
is, in fact, a geodesic. Therefore, when we refer to a weak

gravitational wave, it shall be with respect to such an observer.
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As stated above, for weak field theory, the metric is assumed to have

the form

v = Nyt 3.34)

where an is the flat space metric and huv represents a small

perturbation from the flat metric. The conditions placed upon the

h are usually
uv
|h  |<<1 3.35)
uv

.36
|hUV1C||h0T’YI<<‘hU\)1EY| 265

We shall adopt both these conditions and also we shall adopt a kind
of generalization of 3.36) which we shall find useful. Mathematically
this condition has the form

h [y oyl
PHyeeeVp AR 'S Tan

| 3.37)
where h represents any of the hpv and 3.37) is assumed to hold for
all ., vj, ¢, and all m, n, including the case |h||h,p|<<lh,u|.

With these conventions, we may re-formulate the metric and field
equations above for the weak field. The metric now takes the form

ds? = 2(1-M)dudv - [(1-U+V) (dx2)2 + (1-U-v) (dx*)?

- 2Wdx%dx?] 3.38)
where the moduli of M, U, V and W are all much smaller than unity.

We have used

1 F
nt

and neglected all but terms of lowest order. Since the metric 3.38)
is of the same form as the exact metric, all of Einstein's field
equations apply as before, with the result that we can proceed to
deduce the scale invariant Newman-Penrose spin co-efficients and
equations.

Using a similar approach, we see from 3.38) and 3.29) we can write

2

£" = (1 + %(U-Vv) + iW)

=
r5 2

(37)



£ = 1 (i(1 + %(U+V)) + W)

V2

Substituting these into 3.24) and 3.25) gives

0 0o _
p %Uv Ho= %Uu

Q
Il

Furthermore, 3.26) becomes

U = f(u) + g(v)

— 0 70
U, = 2k¢g &g
_ 0 30
U, = 2k, 6
— 030 _ 1 0.0
wuv - lk(¢2 ¢0 ¢2 ¢Q)
_ 0 30 3.0 0
v, = k(3 85 + b3 9g)
M =0
uv
where k = G = K

8ct 64T

Also, Maxwell's equations 3.32) will give

- 0 _ 0 _
¢1 =0 ¢o,u =0 ¢2,v =0

Li W - &V A = Liw o+ LV
v v u u

a)

b)

c)

d)

e)

f)

These equations indicate that the two waves pass through each other

without interaction; i.e. superposition.
we have neglected all but the lowest order terms.
interaction by adopting 3.37) on Maxwell's equations and ignoring all

but the lowest two orders in h.

this occurs because

an

3.39)

In doing this, we must split Maxwell's

equations away from the system 3.39) since they are now quite different

in their meaning.

Using this approach gives Maxwell's equations as

¢, =0

0,u

-
=
1]

2,V

0 . 0
BU by - MV - W) b

¢ . 0 0
2, @ lwu) ¢o Y ¢2

a)

b)

c)

3.40)



We again treat the electromagnetic field as a test field and consider
3.39) merely as a set of equations describing a weak gravitational wave.

(Obviously since the electromagnetic field is a test field, the ¢g
and ¢g terms are set to zero in 3.39)).

If we had attempted to apply this "second order" approximation to the
full system, we would have resulted with a set of equations just as
intractable as the full theory equations.

Before proceeding any further, we should recognize a possible
disadvantage of using weak field theory. This criticism of weak field
theory was developed by Synge (14). Essentially Synge's argument
states that Einstein's field equations can be read from left to right
or vice versa. Therefore, we may ascribe an energy momentum

distribution (Tuv’ the energy momentum tensor) and find the

corresponding space-time metric, or we may start with the metric and
deduce the corresponding energy momentum tensor. Therefore what may be
an approximate metric for one given source is, in fact, an exact
solution for that source described by direct ca%culation of the energy
momentum tensor.

Although we are dealing with source-free fields, the essentials of
Synge's argument can still be applied. The weak field metric we have
utilized above may, in fact, represent an exact solution of a different
case of gravitational radiation. The form of the weak field wave
certainly satisfies the required conditions for it to represent
gravitational radiation (5), (6), (11), however, it does not share

the same properties as the exact gravitational wave metric.

The best example of this is related to the non-periodicity of exact
pure gravitational plane waves deduced by Synge (14). This property

is easily seen from 3.33)b) or ¢). For a non-interacting plane wave,
the metric is a function of only one variable; u say. Therefore, of

the equations in 3.33) only ¢) will survive,
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For a non-interacting wave, M = M(u) and therefore using the co-ordinate

transform
-2M(u

in the Rosen metric A2J) we can eliminate the Mu terms from the field

equations. This leaves 3.33)c) as

2

U, SU St WY Ccosh?w

uu u u

and therefore U cannot be periodic since U u>0. Also, the only component
u

of the Weyl spinor which is non-zero is qu which, from 3.31)g), is

Y] ==%(V_ CoshW + 2V W _ SinhW - V U CoshW)
ma u u u u
-Li(W - WV -V 2CoshW Sinhw)
uu u u u

From these two equations we see that for a gravitational wave which is

not trivial (i.e. trivial being U = V = W = constant) we have
v, fo 3.41)

We can see that the significant aspect of these equations is that U,

V and W are coupled by 3.33)c) in such a way that the condition 3.41)

is forced upon us for any such non-trivial graviﬁational wave.

However, in the case of the weak pure gravitational wave, the weak

field equations give no coupling between U, V and W; we have from 3.39)c)
Uuu =0

in contrast to 3.41).

The Sandwich Wave

The sandwich wave is a particularly interesting plane wave. It is, in
effect,a finitely thick layer of non-zero curvature propagating through
space~time bounded on both sides by null hyperplanes in flat space-time.
The gravitational sandwich wave was introduced by Bondi, Pirani and Sachs
(18) and its properties were further discussed by Synge (14). 1In both
these articles, reference was made to the co-ordinate singularities

which occur. This aspect of these waves was later shown by Penrose (17)

to be related to the focusing property of such waves.



We shall consider this property with respect to the collision
interactions we are studying. To do this, it is useful to briefly
review the properties of the plane sandwich wave using the Rosen form
for the metric. The appropriate equations for this task are, for the

pure gravitational field, with M set to zero;

20 =U?%+W?2+v ? cosh’w a)
uu u u u
Wﬂ = -%(V CoshW + 2V W SinhW - V U CoshW) 3.42)
uu u u u u
+%i(W - W U - V? CoshW Sinhw) - b)
uu u u u

These equations 3.42) must be satisfied throughout the space-time
manifold or, at least, throughout the co-ordinate patch for which they
are written.

In the initial flat Region I (Figure 2) we can set U, V and W to zero,
thus trivially satisfying 3.42). In the non-flat Region II, we see

from 3.42) that U(u) increases hence U(u)> O within this region,.

Obviously we also have Wﬂ + 0

Moving into the second flat Region III we must now have Wﬂ = 0. This

gives rise to the equations

V CoshW + 2V W SinhW - V U CoshW = 0O a)
uu u u u u
3.43)
W -W U -V 2CoshW SinhW = 0 b)
uu u u u

From 3.43)a) we have

v
Ca Sech’w

\Y
u

where C constant. Placing this into 3.42)a) and using

-0
20 -uU?=-4e%y Y%
uu u uu

gives

(e_ué)uu = -%efgfwuz + e?Y secn®) <o 3.44)

-T1
Since U is continuous throughout the co-ordinate patch, (e %) is

also continuous. Further, its initial value, i.e. in Region I, is

. -u
unity and (e ’ZL is initially zero.



Adopting the Lichnerowicz conditions, we see from 3.42)a) that Uuu
is continuous and hence Uuu diverges if and only if Uu does. Now

Vuu and W can, at most, have finite step discontinuities, therefore
uu

we can see by inspecting 3.42) that if Wﬁ diverges, so must Uuu'

Furthermore, 3.43) becomes meaningless since they contain divergent

quantities namely Uu' Referring back to 3.42) we then see that Uu

diverges before the second flat region, there can be no such region

. Qe 0
since Wﬂ cannot converge back to a finite value. Because Y,

diverges, the singqularity so produced is a real singularity and
covers the rest of the manifold after its initial divergence.

From this, we see that, using the Lichnerowicz conditions, we cannot
have a sandwich wave which contains a real singularity. The plane
wave must extend to infinity.

However, if we adopt the O'Brien-Synge conditions then although U "
u
can, at most, have finite step discontinuities, Vuu and Wuu can have

delta discontinuities. Therefore, we can have real (delta)
singularities occurring in a sandwich wave.

We can apply a similar argument as above to the behaviour of U u and
u
Uu to the 0O'Brien-Synge conditions. From this we see that only

"delta singularities" can occur in a sandwich wave under the O'Brien-
Synge conditions.
With these considerations, we can assume that for a sandwich wave, U is

. =U/. .
finite at u = u', the "far-end" of the wave. Therefore, (e ‘2) is

finite (and less than unity by 3.42)). From 3.44), e_Uvznmst go to

zero in Region III and hence U must diverge in that region. So, again,
we have a singularity however, this is a co-ordinate singqularity since

¥, is zero in Region III.

F o

(42)



This is the singularity referred to by Penrose (17) and corresponds
to the focusing properties of such plane gravitational waves. The
properties of these co-ordinate sinqularities are found by solving
3.43)a) and 3.42). In doing so, we simplify this task by assuming the
waves are linearly polarized (i.e. set W = 0).

a)
uu u u 3.45)

\Y -V U =0 b)
As found in (18), there are several possible solutions. The first is
trivial, i.e. U = constant, V = constant, and since we are in
Region III we have, from above, U + 0.

Secondly, setting Vu = constant gives, using U = -21nY in 3.45)a);
u(u) = -21ln(au + b)

Applying the Lichnerowicz conditions (both these and the O'Brien Synge
conditions are equivalent in this case) we find

-U(u')

a=-%e Uu(u') b = e'HéEL)

(1 + %0 (u') u')
u

Since U u >0 and U = 0 atu = 0, Uu > 0 for u > 0. Therefore, a and
u u

b will have opposite signs, hence the resultant metric
ds? = du dv - (au + b)? ((ax’)? + (ax*)?)

is singular.
Alternatively, we can combine 3.45) a) and b) and set (U + V) = ¢
giving
2
2 - =0
¢uu (¢u)
This is done in Appendix II and the existence of unavoidable co-ordinate

singularities is shown.
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The Electromagnetic Test Field Case with Exact Wave Metric

The set of equations for this case is given in 3.32) and is reproduced

here with the appropriate changes

0 _ . .
¢0,u = %(Uu J.Vu SlnhW)¢n a)
0 .
= - + iW )¢ b) 4.
¢2,v %(Vu CoshW 1Wu)¢~0 ) 1)
20 -U?=wW24+vV 2% cosh’w c)
uu u u u

where the initial conditions are
0 0 _ 0 _ _
b, = ¢, (V) at u=20 ¢, =0 at u = 0

U=V=W=M=0 at u=20
and U, V, W are all functions of u only. Since the gravitational field
of the electromagnetic shockwave is neglected (since it is a test field),
there are no ¢ terms in the gravitational wave field equation. Also, as
far as the gravitational wave is concerned, it is propagating through flat
space and hence there are no v dependent terms in 4.1)c). For the same
reason, the terms in 4.1)a) and b) there are no terms involving the

derivatives of U, V or W with respect to v and M = 0. The characteristic

initial value problem depicted by 4.1) is easily solved for ¢g and ¢g

in the interaction region. From 4.1)a)

0 _ s .
(Ingy) = li(Uu v, Sinhw)

therefore

62 = A(v)e (U - ij';vu,Sinthu')

From the initial conditions we have

5 (U-if v g '
¢S (a,v) = ¢5 ()| o e* TtV Tsinhi du’) 4.2)
L ]
Placing this into 4.1)b), with the initial conditions, gives
u
Lyyg—i/f V 'SinhwWdu')

¢2(u,v) = =% (v, ,CoshW +iwu)e“U i Yy

v
el 4.3

Jo 0 u=0

(44)



Therefore, in Region IV (the interaction region) we have, from 1.25)

A . 4 (U-i [V v ,sinhw du') o -
- T * =
Fuv Fuv +]_Fuv 2e 0 u [¢U(v)]u=0 m[uvv]
v
-%(V Coshw + iw )J 0y ' m ]
u ui il by (v )|u=0dv u[u J 4.4)
(Since M = 0, we have 1 = u andn =v )
H U u U

From inspecting 4.4), we see that the resulting electromagnetic field
is not null (and therefore not a plane wave). We can see that there has

been a fundamental change in the field. This fact is reflected by the

change in the field invariants Fuv Fu\)(=2(B2 - Ez)) and F *FUV(=4 E*B)

v
where E = (E1 E? Ea) and B = (B1 B2 Ba) are the components of the electric

and magnetic fields, respectively, in an orthonormal tetrad for an

observer with a timelike tangent vector.
Given F__ we have
)

T\ uv . R T\Y 5
FUV F 2(FUV r + lFU\) F) 4.5)

Since we can set the initial value of ¢8(v) to be real, we can calculate

these invariants for the interacting electromagnetic field directly
from 4.4).
For the initial electromagnetic field (Region II), from 1.25) with only

¢g not zero, we see that both the invariants are initially zero.

However, in Region IV, substituting 4.4) into 4.5), we find

P Voo P4 oir wpHY

F )
n v yv

v

u )
(U—ifO V 'SinhwWdu') ) 0 0, 4
R d ]
e u (vucoshw + 1Wu) d)o(v)lu=0 0¢°(&)|u=0 v

= -2

A5)



Which, in turn, gives

u
Vd Sinhwdu') Coshw + Wusin(J Vu'Sinthu')
0

u

= U
Fuv F = -e (VuCos(f

0

0 Vi 0 ’
X (9 W’f 9o (V) av')
0

u
u . . -
= -e (20  =TU 2)li Sln(f V ,SinhWdu' + tan ! (V _Coshw))
uu u 0 u u

W
u
0 v
X 0
(¢0(V) JO q)o(vl)dvu) 4.6)
and similarly
Hv U b . i = : '
F *F" = -e (W Cos(| V SinhWdu') - V Sin(| V_, SinhWdu') CoshW)
UV u 0 u' u 0 u

v

X (¢, (v) j ¢, o) dv')
0

u

U _ ) -
= - e (20 = U 2)% Sln(f V SinhWdu' - tan 1(V CoshWw) )
uu u ut s u

0

W
u

v
X (¢ (v) fq)g(v')dv') 4.7)
[\]

where we have used a trigonometric identity and 4.1)c). Since ¢g(v)

is a function of v only the " u=0" is understood. From 4.6) and 4.7)

we can show that the electromagnetic field must become non-null. For the
field to stay null we would require both 4.6) and 4.7) to be zero.
However we shall show that this can only happen if the gravitational wave
vanishes.

For both 4,6) and 4.7) to be zero, for a non-trivial electromagnetic

field, we can require either (2U . Uuz) to vanish or the two Sine terms
u

to vanish.

If 2Uuu - Uu2 = 0, from 4.1)c), the gravitational wave disappears. If

the Sine terms are zero throughout the interaction region then we require

(46)



u
Jovu'Sinthul + tan ! (VuCoshW) 2Tn

1)
u

I

u
J V Sinhwdu' - tan ! (V CoshW) 27m
o u i u

W
u

where n and m are integers. From these equations we have

u
j V  Sinhwdu' = (m + n)m
0o W

giving Vu = 0 (hence V = constant) or W= 0
Also,

VuCoshW = tan (n - m)T =0
W
u

givingV = constant, In this case, from 4.1)c) we get for the field

equation of the gravitational wave

20 - U =0
uu u

which has a solution of the form U = 1ln(aut+b) which, in turn, gives a

flat-space metric (i.e. RUVCU = 0). Therefore again the gravitational

wave disappears since Wﬂ = 0, From this, we see that if the gravitational

wave is non-trivial, then the resultant electromagnetic field in
Region IV must be non-null for all observers.

A quantity of significant importance in experimental physics and
microwave engineering is the Poynting Vector (19) defined by

P = E x B 4.8)

1=
aT
Although the Poynting Vector is not an invariant, for a given observer
it represents the energy flow per unit area of electromagnetic field
wave front, and is an experimentally measureable quantity.

Consider a geodesic observer in the plane gravitational wave space-time

given above.

ra7v)



If the motion is restricted to the planax2 = constant, x? = constant,
since the only non-zero Christoffel Symbols are ey Her 526, Rayor F%a,

Fgo, I'3;, we see that the path of the observer is given by

u=23as +u v =RBs +v 2AB = 1
o] o
By using a co-ordinate transformation u' = ku, v' = k v (k a constant)
‘ Y . . .
we can make A = B = 4/Z. Therefore, we lose no generality by considering

observers whose worldline has the unit tangent vector.

eu(o) = ax" = 1 (uu + vu) a) 4.9)

ds /2—

We can construct the orthonormal tetrad field

eu(l) = 1 (uu - Vu) b)

7z 4.9)
ef(2) = 1 (" + " c)

T
H3) = 1 @ - M a

/7
with respect to which we can calculate the electric and magnetic field
strengths.

Using this tetrad and 4.4) with ¢8(v) set to be real initially, we see

that for Region II we have

[ -
F=%| 0 0 ¢ov) 0
0
0 0 _(bo (V) 0
0 0
=0 (0 b (v) 0 0
0 0 0 Y
that is E, = =0J(v) B3 = =05 (v)
From this, the Poynting Vector is
P=_1 ¢g(v)2 e (1) 4,10)

64m

where e(l) represents the space part of eu(l) as a vector in three-

space.
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For the electromagnetic field in the interacting Region IV we use the

same procedure, however since the calculations are much more involved

we shall include several steps. Further, it will be convenient to

simplify the notation in the following way: let

u
A(u) = J V 'SinhwWdu’
0 u
4.11)
B(u) = V CoshwW
u
With these, we have from 4.4 and 4.9)
%
Pt AR, = e 2(CosA(u) - isinA(u) [¢g(v) (e ,(2) — ie (3D
- - . 0 ' '
(eV](O) eV](l)) %(B(u) + qu) J¢°(V )av (e[p(O) + e[u(l)
(ev](Z) + 1ev](3))]
Since all the functions in this expression are real, to get va we only

need separate out that part of the expression with no "i" term involved.

Considering the first term on the right hand side, we have

e/2 ¢g(v) (CosA(u) - iSina(u)) [e,  (2)

(0) - e , (1)
(u ,

(gv] V]

- ie[u(3) (ev](O) - eV](l)]

The real part of this is

e/ﬁ ¢g(u) [CosA(u) e, (2) (ev](O) - ev](l)) - SinA(u) e

[u

(ev](O) - ev](l)]

Considering the second term on the right hand side

v
(CosA(u) - iSinA(u)) (B(u) + iwu) J ¢g(v')dv'
0

U
"lje /2

[(e U(O) + e

[

[U(ln ev](Z) + i(e[u(O) + e[u(l))ev](BH

which gives

3
[U( :

4.12)

U
“he /2 (B(u) CosA(u) + W SinA(w) + i(W CosA(u) - B(uw)SinA(u))...

this part of the expression can be written as



U
ke lo (B (w)? + wuz);’ (Sin(A(u) + tan ! B(u)) + iSin(A(u)

W
u

- tan ' B(w))...

W
u

With this and using 4.11) and 4.1) we get for the real part of this

term
U 5 (v -
e’ 2y - U?) f ¢J(v*)av' [ Sin(A(u) + tan ! B(u))
uu u Jo ?T—
u
0 — a3 |
(e[U( ) + e[p(l)) ev](2) Sin(A(u) tan ﬁéu))
u
e[u(O) + e[u(l)) ev](3)]

Combining 4.12) and 4.13) and taking the components in the given

observers tetrad 4.9), we get

F = o 0 “E;  -Ej]
0 0 Bj -Bo
Esy -Bj 0 0
L_.Eg By 0 OJ
where
F& v
Ey, = -S 2 { ¢g (V) COSA(U.) + lﬁ J q)g (V')dV' (2U - U 2)%
4 0 uu u
Sin(A(u) + tan ! B(u)) ]
W
u
F> 0 v
2
Ez = e’ [¢g(v) SinAa(u) + ’:J o (v')dv' (2U - U 2);’
4 0 uu u
Sin(A(u) - tan ' B(u))]
W
u
(% o v 1
= @ = : 1 0 v 1 - 2
B2 % [0y (v) SinA(u) + 1J0¢0(v )dv (2Uuu L )
sin(A(u) - tan ' B(u))]
%)
u
I& v Y
Bs = ? [~y (v) CosA(u) + %L ¢gptvhrav' (2u - U )
Sin(A(u) + tan~! B(u))]
W
u

(50)
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From this and 4.8), the Poynting Vector is seen to be [

P=_1_ (E2 B3 - By E3) e(1)
~ edrm ~
U A -
= o dp(v)? - -‘z(J ¢g(v)an2 (2u - u ?) (sin’@(u) + tan”! B(u))
641 0 uu u "—“—w
u
+ sin®(A(u) - tan ! B(u))) 4.15)
W
u

where A(u) and B(u) are given by 4.11).

In considering the physical implications of 4.6), 4.7) and 4.15) we must
always be aware of the simplification adopted in deducing these equations.
We have effectively introduced a distinction between "dlectromagnetic
field" energy and "gravitational field" energy. In reality this is
completely artificial. However, for the present we shall persist with
this discrimination and consider the results which follow.

From 4.6) and.4.7) we have for all observers

u

2 _g?2 = xV(u -V 2)% gin J V ' SinhWdu' + tan ' (V CoshW))
A uu u u _L__

B
~ 0

W
u

v
X 90 (v) L) 0% (v') av’ 4.16)

u
;o8B = |E||B|cosd = —4e"(2u - U 2) %40 (J vV ' sinhwdu' - tan !
~ ~ A uu u 0 u

~

v
(VuCoshW))x ¢g(v) Jo ¢z(vﬁ)dv') 4.17)
W
u

where 0 is the observed angle between E and B. For a non-trivial

~ ~

gravitational wave, we can see that there must be some modulation of the
electromagnetic field quantities. Further, since the quaﬁtities above are
invariants, all observers will detect this modulation.

Turning to the Poynting Vector, for the observer introduced above, we

have 4.15). From this, assuming ¢g(v) is a simple sinusoid,we can see

that the magnitude of the Poynting Vector almost inevitably eventually

increases.



This is primarily due to the eU term since Uuu>0 by 4.1)c). As a

result of this, there will be detected, by our observer, an ultimately
increasing energy flow in the electromagnetic field. This may be the
result of either or both of two possible mechanisms. Either the
gravitational field is supplying energy in some way to the electromagnetic
field or the gravitational field is focusing the electromagnetic field.
The former has been the subject to some studies along the view of
graviton-photon conversion (20), (21), (22). The latter is effectively
the phenomenon discussed by Penrose in (17). We shall see an example of
this below.
We may also consider the direction of propagation of the average
Poynting Vector as this indicates the direction of electromagnetic energy
flow. Before the interaction, this Vector, for a simple sinusoid such
as

¢g(v) = ¢Sinv

has the form

_ 2
Eave = 1 ¢ f(l) 4.18)
1287

and we can see the energy in the electromagnetic field propagates in the
same direction as the field.

However, in Region IV, from 4.15)

U 2 b NP -1 . 2 e T
P = e ¢*[L-%(2u_ -U 9" (sin“(A@) +tan ° B(u))+ Sin () -tan B(u))le(l) 4.
~Aave ""'12'8"""“_ uu u Wu Wu ~

The magnitude of P ove will behave similarly to the magnitude of the

can change, depending

Poynting Vector. However, the direction of Eave

upon the gravitational field guantities.

Since it is Pave which is experimentally measured, we can determine from
AN

4.19) what our observer may experience as they progress up their world-

line through the interaction Region IV,

ool



The average Poynting Vector may change direction several times, alternating
between that of the electromagnetic field and gravitational field.

An example of what such an observer may detect is given in Pigure 3.
Physically, the observer will experience changes in the average intensity
of the electromagnetic field. At points such as A on their worldline,
there will be a maximum in the electromagnetic field strength. At points
such as B, there will be a minimum. This type of behaviour of the
interacting field would point more toward the gravitational field
redistributing the energy of the electromagnétic field to give maxima

and minima.

However, we can see from 4.19) the possibility of there being a persistent
increase in the electromagnetic field strength. By arquments of energy
conservation alone, the observer would have to conclude that there is

some external source which is providing the extra energy. The only source
available is the gravitational wave, hence there is the possibility of an
energy transfer between the fields,

Unfortunately, due to the difficulty and ambiguity of defining gravitational
field energy, one cannot make precise quantitative statements about this
apparent phenomenon., A further result of the interaction under
consideration is the apparent "dragging" of the electromagnetic field in
the direction of propagation of the gravitational wave. This is revealed
by the possible change in direction of the average Poynting Vector. Since
this Vector indicatesthe direction of propagation of energy of the
electromagnetic field, its change in direction due to the gravitational
field quantities indicates the electromagnetic field has reversed its
directioh of propagation to correspond with that of the gravitational
field.

We could use for the electromagnetic field a sandwich field such that

2 v
% . < 0 ~
Yolv) = U ror v>v but Jo $o(v)dv + 0 where v = v>0 corresponds

to the "far edge" of the field. In this case, from 4.4) we have for V>V



u
Lol V
~ (U—J V. SinhWdu') . a
F = -e u' V CoshW + iW ! ! .
) 0 ( uC° u) 0¢0(v )dv ulumV] 4.20)
Although the initial electromagnetic field ¢g(v) = 0 for v>v there is

still some kind of "echo field" present which is propagating in the
direction of the gravitational wave. Further, since the v dependent
term in 4.20) is constant for v>;, any variation of this field is due
to the gravitational wave only.

From 4.6) and 4.7) we see that this "echo field" is null. We can
easily deduce the field components, for our observer, from 4.20) as

we did previously. Further, the average Poynting Vector for a

sinusoidal ¢, (u) is

U , -
Pave = in_.¢2(2uuu - Uu)2 (sin®(a(u) + tan ' B(u))
512w W
u
+ sin”(A(u) - tan” ! B(u)) e(1) fin BB
w Ea
u

We can see that Eave cannot change direction.

The Sandwich Wave Colliding with the Test Field

The equations describing this interaction are a particular case of
4,1) above, in which we have set W = 0 throughout the space-time and,
although U and V must obey only 4.1)c) in the non-flat region, when
we consider the second flat region (u>u' in Figure 2), U and V have
the explicit forms listed in Appendix II,.

With W = 0 4.4) becomes

~ v

U
_ /2040 N _ 0, )
Fuv = 2e [¢0(v) m[uvv] %Vu Jo dp (V') dv u[umvl] 4.22)

From the list of explicit forms for U and V given in Appendix II, we
can immediately see that there is the possibility that the electro-
magnetic wave will become null again after the interaction with the
sandwich wave, This isg the case V = constant for u>a'. However, for

the other cases, the wave will become non-null.

(64)



For convenience, we shall consider the case when
U(u) = ~ln(autb) V(u) = ln(autb) for u>u'
where a # 0 and b 4 0 with a<0 and b>0.

Using 4.22) with these gives

1

'
. = 1 I ¢g(v)|u=o m[va] - % a Jo¢g(v') dv' u
T (au+b)

14.23)

[um\)]

The focusing effect of the sandwich gravitational wave discussed above

1

is immediately apparent, through the presence of the (au+b) ! terms.
Turning to the invariants, from 4.16)
v
p \Y)
B2 -E2=%p FV=_y g g (v) | ¢S vy | _, av’
o L Taasb) u=0 Jo'0 "~ u=0

and 4.17)
v
iy 0 0
EeB = LF *p =1 a ¢ {u)l Jd)(vu)' av'
~ ~ L R, 0 = 0 =
Hy (au+b) u=0 Jo u=0

From these equations, we see that although the region on the far side
of the gravitational wave is flat, the electromagnetic wave remains
non-null (i.e. non-plane).

From 4.11) and 4.15) we see that the Poynting Vector, in the flat

region u>u', becomes,

v
E = 1 [ ¢g%v) - % a? ( f0¢g(v7) dv')Z] e (1)
647 (au+b) (au+b) 2
Therefore, again setting ¢g(v) = ¢Sinv, we get
- 2 2
EaVe = ;_ - 1 -% a ] f(l)
1281 (au+b) (au+b)2

We can now evaluate what our observer sees. Since (au+b) goes to zero
for some value of u>u', although the average Poynting Vector may
initially have a direction corresponding to the direction of the electro-
magnetic field, as the observer moves up their worldline they will see
the average Poynting Vector change direction so that it would ultimately
point in the observed direction of propagation of the gravitational

wave.
(55)



Further, the magnitude of the average Poynting Vector would diverge

at u such that aut+b = 0. At the value of u for which Pv is zero,
N~

e

the observer would see a local inflexion in the energy of the electro-

magnetic field. Then, as Pa diverges, the observer would experience

ve
the focusing of the electromagnetic field referred to above. Notice
that an effect of the interaction is to reverse the observed direction
of propagation of electromagnetic field.

If we had used a sandwich electromagnetic field as well, we would have,
from 4.21)

P = -1 ¢*  a’ e (1)

~ave 3-.:-6-—-
20T (au+b) 2

Although Eave obviously diverges for these cases, there is little doubt
that it is due to the focusing effect of the sandwich gravitational
wave and not due to any form of energy transfer between the two waves.
Since sandwich plane waves have infinite total energy content, these
divergences in Eave offer no problem in interpreting their physical

meaning. '

The Electromagnetic Test Field Case with Weak Wave Metric

In experimental physics, the weak field limit of General Relativity is
usually used to predict results of experiments and tests of the Theory.
Similarly, the weak gravitational wave field is commonly used when
discussing gravitational wave detectors. Examples of this are (13),

(20), (21), (23).

The above results are easily adopted to the weak wave metric. This

being so, below we effectively quote the results and give a brief analysis.

The appropriate equationsare, from 3.39) and 3.40) using a test field,

0 -
¢0’u = %Uu ¢0 a)

0 - - . b) 4.24
¢2'V %(Vu + 1wu) ¢0 ) )
U =0 c)

uu



V and W can be arbitary but must satisfy the limits on their magnitude
given by 3,35) and 3.36). Since the solution for U is of the form
autb, which will ultimately fail to satisfy 3.35) we shall set a = 0
and |b|<<1,

Then this set of equations gives

A v
— 0 - I | 3 0 ] ]
Fuo = 200, () mpp vy = BV, + iW) jo o (viidv? um,) —
which in turn gives
[SAY) 2 2 0 N 0
Pt =2B° -EY = -¢,(v) Jod)o (vi)av' v 4.26)
_ Hv 0 v
Foo *F = 4(E.B) = =y (V) jod)g(v')du' W, 4.27)

Since, for the weak field, we can write
yo o _ + iW
4 %(Vuu uu)

we see that the electromagnetic field must become non-null.
Adopting the same observer as before to calculate an observed Poynting

Vector, we get

v
B, = =% (v) - igvu J0¢g(v-)dv.

v
T o= 0 '
E, = ;%Wu J0¢0(V )dv 4.28)

2 u

5 1 v 0 ] '
B, = 4W ¢, (v')av
0

v
B, = _5¢g(v) & Lavu f0¢g(v')dv'

From this

V )
P=_1 [¢g(v)? - u(wv?+uw? (J ol (vhrav') 1 e() 4.29)
~ A ’ u u 0 ~
64T
and for a sinusoidal ¢g(v)
= 2 - 2 2 .30
Pwve = 1_ ¢ [1 (VT AW T)) e (1) 4.30)

128w
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From these results we see the phenomena occurring for the weak
gravitational wave metric are very similar to those occurring with the
exact metric. However there are several differences, the most

obvious being that the field quantities and invariants cannot diverge.
Where as before the gravitational field quantities occurred in rather
complicated functions, in the weak field case their appearance is
somewhat simple and direct.

Further, due to the conditions on the magnitudes of the gravitational
field quantities, in several cases their effect would be difficult to

2

measure, For example in 4.30), the %(Vu + Wuz) term would most likely

be so much smaller than unity as to be negligible,

Despite this, we can see that the phenomena of "“dragging" the electro-
magnetic field in the direction of the gravitational field and the echo
field for a sandwich electromagnetic field are still present although
their effects may be small.

Finally, we can see from 4.26), 4.27) and 4.28) that although the
Poynting Vector may not be discernably affected by the interaction, the
field components and invariants most likely are detectably affected.
These results could possibly imply experimental techniques to detect

and analyse gravitational waves, We shall discuss this below.



Approximate Solution for the Exact Equations

The set of equations 3.32), 3.33) although well-posed are not exactly
solvable by modern techniques. However we can extract some information
about the solution of the system by adopting a power series approach
which will give approximate solutions in the regions around u = 0 and
v}= 0.

This technique was used by Szekeres, (12) (24), to deduce some properties
of the similar collision of plane gravitational waves.

In using this method, we must remain aware of the continuity conditions
we are imposing on the metric. As shown in a previous section, the
Lichnerowicz conditions are too strong for the interaction we are
considering and hence we must adopt the 0'Brien-Synge conditions.
Although this is so for the interacting waves, it is not necessary for
the non-interacting Regions II and III. In these regions we can, and
shall, adopt the Lichnerowicz conditions. Even so doing, we find the
O'Brien-Synge conditions forced upon us in the interaction Region IV.
We shall follow the method adopted in (12) and further since the

interaction we are primarily interested in (which has ¢2(u) =0

in Region II) is just the general interaction with a particular initial
condition, we shall consider the general case.
From 3.33)a)

U = =1In(£(u) + g(v))

which will give U(u,v) throughout the space-time. Further U,V,W,M,d)0
and ¢2 must satisfy the system 3.33) throughout the space-time. With

the metric given by A2.1), we can write the following forms for the
various functions in the various Regions.
Region I (Minkovski space-time)

f(u) = g(v) = % M=V=W=¢, =¢, =0

IRl



Region II (the u-wave)
g=5% £f = f(u) M = M(u) vV = V(u) W = W(u)
o= 0 9,= b, (u)
W3= Tﬁ(u) all other ¥%'s zero

Region III (the v-wave)

g = g(v) f=% M= M(v) V = V(v) W = W(v)

¢

0, () $,= 0

0 2

Wg= Wg(v) all other ¥°'s zero

For the non-interacting waves we adopt the Lichnerowicz conditions.
Hence the metric and its first derivatives are continuous across the
boundaries between Regions I and II and Regions I and III. Consider

the I-II boundary (u = 0 v<0). We have

¢, () = ¢2(0)
Note that ¢2(u) has a step discontinuity across this boundary.

From 3.33)c) we have on the boundary

1 ¢ 2 _ =
7 I, £ Tun = 29,0,

b

But with the boundary values of f and fu we get

fuu = - k9,9, 5.1)

Differentiating 3.33)c) gives

fuuu - _k(¢2¢2)u L

and again gives

. 3 2 2 -
Gouau ~ Yuu * 2Muu Un® (wuu + vuu) + 2k(d, ¢, )uu

which in turn gives

P 2 2 hrd 2 — 2 -
foaun = TDEOV L F W) 2KM G0+ KT (9,0,)% + (9,0, 1 5.3)

AN



We see from 5.1) to 5.3) that the Lichnerowicz conditions are satisfied

and provide expressions relating the various derivatives. Note that
Ws may have a discontinuity on this boundary.

Assuming a power series at u = 0 (as in (12)) we find that for u>0

2

¢, = a, + aju + a,u” + ... a)
2
V =bu" + ... b)
W o=cpu®+ ... c) 5.4)
_ 2
M = dlu + d)
_ 2 3 4
f =h%+eu +e,u’ +eu + ... e)
where
e, -k aga, e, = —E(aoa1 + alao)
2 6
= 2 2 . 2 - 2
e, = - _;l__[b1 + ¢, + 2k daja,+ 2k“ (aya,)
12
+ k(a,a, + a,a; + a,a;)]
and
0 _ _ s
Wq = -b1 ic, + ... 5.5)

Similarly, for the I-III boundary v = 0 u<0 we have

¢y = hy + hv + h2v2 + ... a)
v —j1v2+. . b)
W = llv2 + e c) 5.6)
M = mv o+ . a)
g =%+ n1v2 + n2V3 + navl+ + ... e)

(61)



where

n, = -khoh0 [y = = Eihoh; + hlhO)
) 6
n =-1 (3;°+ 1%+ 2kmh;h; + 2k*(h h,)?
12

+k(hh +h,h +hh)]
and
Yy o= -3, + 41, + ... | 5.7)
To now study the forms of the functions in the interaction Region IV,
we must relax the continuity conditions to the 0O'Brien-Synge conditions
(i.e. the metric is continuous but its first derivatives can have step
discontinuities). Therefore, we have the following conditions. U, V,

M and W are continuous everywhere. Further, since we are disallowing

shock waves of the form 2.9), ¢2 is continuous across v = 0 and ¢,

across u = 0. Therefore given these functions in Regions II and III,
by the continuity of U, f(u) and g(v) will have the same form in
Region IV as they have in Regions IT and III respectively. We know

V, Wand M along u = 0 and v = 0 as well as ¢2(u) along v = 0 and ¢o(v)

along u = 0.

With these conditions, we can use 3.33) to deduce the leading terms of
these functions within a small region close to the origin with u>0

and v>0. In deducing these terms, we must be mindful of the fact that
since the functions U, V, W etcetera appear in several equations the
higher power terms in the power series will begin to "feed back".

That is, the expression for, say, V will depend on terms in the

expression for ¢,, however terms in ¢, will also depend on terms in V.

This "feed back" occurs only for terms with powers of v and u above a
certain value. Although, theoretically, one could deduce the full
power series expansion, for convenience we shall not go above the

"non-feed back" limit.

(62)



Reviewing the system 3.32), .33) we recall that we may attempt to

solve 3.32) and 3.33)d) and e) for Vv, W, ¢g, ¢g and then find M

from 3.33)f). U will be given directly by 3.33)a).

We shall deduce the power series expansion for W(u,v) in some detail
and since the expansions for the other functions are found similarly
we shall quote those results.

Since the expansions are made near u = v = 0, we can utilize the
Taylor expansions for the logarithmic and hyperbolic functions.

These give

uw o fu Uv T 9%
CoshW = 1 + W’ SinhW = W + W3
2" 30
tanhW = W - W’
3

Viewing 3.33)d) we see, using the expansions above, that the lowest
order terms are of order two, for U Wv and UV Wu' order four for
u o

2V v, CoshW SinhW and zero for 2ik(¢2$0- $2¢0). Therefore the lowest

order in W will be two and when inserted back into 3.33)d) will

contribute an order of one. The only contribution of this type will
be from the 2ik(¢)250 - $2¢0) term. Therefore, we can take the series

for W to the fourth order provided we make allowance for this "feed
back".

We can do this by writing

Wo=21v 4 3L,v7 4 L ~2ik(agh, - ashg)u + ...

W 2

s

We should write similar equations for Vu and Vv to be inserted in

2c1u + 3c,u” + ... —Zik(aoh0 - aoho)v + ...

3.33)d) , however, the term involving these quantities only contributes

to W above order six, and therefore will not enter our calculations.
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Inserting the appropriate power series to 3.33)d) gives the leading

terms for W in Region 1IV.

W= clu2 + ... + llv2 + ... —ik{(aol—l0 - aoho)uv

+%(a150 - glho)uzv + %(aol_l1 - a—lohl)uv2 + %ﬂ(azﬁo - gzho)
-2(aghy - aghg)e] u’v + Xl(agh, - a,h,) - 2(azh, - ayghy)n,juv’}

-4(le, + cn, + %§ (a,h; - ah))) wiv?+... 5.8)

Repeating the same procedure for V gives, in Region IV,

v=nbu®+ ...+ 3 v+ ...+ kl(ash, + aghy)uv + %(ahy + a,h))u’v

® + 4 [(a,h, + a,h;) - 2(a,h, + a,hy)e,lu’y

%(a,h, + agh))uv
+ % [(agh, + agh,) - 2(azh, + aphy)n,l uv® + }

—%(bln

L+ e, - %k(a,h, +ah))u® v+ oL 5.9)

Turning now to ¢g and ¢2 we see by arguments similar to the above that

there is no "feeding back" for powers of two or less in the expansions
for these quantities. Using 5.8) and 5.9) with 5.6) and 5.4) in 3.32)b)

we result with the following for ¢g in Region IV,

¢y = hy + h v+ h,v> + ... - h(ka,a

2
0 0 + %el)u

0

-~ ag(d, - ilpuv + ... 5.10)

and for ¢)

0 _ 2 o 2
¢, =a, +au+au + ... -a;(khyh;, + kn )v

- hy(b, + icuv + ... 5.11)

Finally, from 3.33)f)

2

- . 3
M= dlu + (d2+ _j:%_k(blB00 - 1ClA00))u

+ m,v® + (m

1

: - 3
o 1L k(3,Byy = 11 A,))v +
3

+ %(c;1; + byj, - en; + ¥k (B - A ) u’v? 5.12)
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where = -
Ay, aoh0 aoh0 and Byo aoh0 + aoh0

Before calculating the Weyl spinor components, we shall consider the
continuity properties of the metric and its derivatives. In doing this
we must be aware of the shock nature of the electromagnetic waves.
Rigourously speaking, in the expansions for ¢g and ¢g we should have

in place of each hi' hie(v) and in place of each a s ai6(u) respectively.
To evaluate the derivatives of the metric, we must make these insertions

and calculate the derivaties accordingly. Therefore, from 5.8) we can

write

Wu = 2cu + ... - ikG(u)G(v){(aOh0 - a,h))v + (ahy ~ ahj)uv

+ h(agh, - aghy)vi+...} +...

WV =21, v+ ...~ ike(u)e(v){(aoﬁ0 - aoho)u + %(alﬁo - g.lho)u2

+ (aoﬁ] - aohl)uv E SR
and similarly forx Vu and zr' In deducing these derivatives we have
used
S{x)x =0 .
From these expressions, we see that both Wu and Vu have step discontinuities

at u = 0 similarly WV and VV have step discontinuities at v = 0. We

have
wu'u =0 -ik(agh, - ElohO) B(u) O(v)v
Wv|v -0~ _ik(aoh0 - aoho) 0(v) O6(wu
Vulu =0 k(aoﬁo B aghol B(u) O(v)v
Vvlv =0 k(aoﬁo + goho) B(v) O(u)u
conclitions

As a result of these equations, the Lichnerowiczaare inapplicable to this
interaction, however the O'Brien-Synge conditions still apply.
We should also include O(u) and 6(v) in the power series for v, W, U and

M. However, for these quantities, the first derivatives always give rise

to terms of the form 5(x)xn and G(X)xn, n>_ 1,
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Therefore step discontinuities appear only on the second derivative and
delta discontinuities never appear in the curvature quantities. This is
why the Lichnerowicz conditions are suitable for the collision of two
plane pure gravitational waves (12). On the other hand for the inter-
action we are considering, we can see that step discontinuities in the

first derivative are unavoidable if a, and h; are non-zero.
Calculating the leading terms of the Weyl spinor gives
l{lg = _jl + ce s = 12]({ Boo e(u) G(V)u + 12 B]O e(u) 6(v).uz

+ By, u+ ... )= 2j,(n; + ml)v2 + ...
~2k tho(n1 + my)uv + ...

+ i1, + ...+ 8k{ Ay, 6(w S(v)u + %A, B(w) S(vu®

00
+ Ay, u+ ... b+ 2i1 (n) +m)vE 4oLl 5.13)
Yo = -b. - ... -hk{By, O(v) S(u)v + By, O(v) S(wv?® + Bv+ )

2
2b1(e1 + dl)u
- 2ka0ho(e1 + dl)uv LD .

-~ dicy; - ... =kk{agy 6(v) S(u)v + %Ay, 6(v) S(u)v? + AoV + ...}

2

+

2ic,(e; + dJu” + ... 5.14)

\{Ig = {Clll + bljl - e,n, + lak(BOzo - Aozo) + 2i(jlcl - blll)} uv

- k(b,A,, - ic,By)u’ + k(3,8y, - i1 By )v® + ... 5.15)
where A,, = agh, - ajh, A,, = a;h; - ahy
By, = ash; + agh, B,, = a,h, +ah

and the unit step and delta functions appear explicitly only to indicate

delta discontinuities in the quantities,
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For all the other terms, the appropriate step functions are understood.

Finally,

To consider the initial effects of the interaction, we consider the
equations 5.8) through 5.15). These confirm that the 0O'Brien-Synge
conditions are the appropriate continuity conditions for the metric.
Further, we can see that the electromagnetic fields are the reason for
the Lichnerowicz conditions failing. This is in line with the
considerations above regarding shock fields and continuity conditions.
It is interesting to note that although the Lichnerowicz conditions
fail when two electromagnetic shock waves collide, they do not fail
for an electromagnetic shock-gravitational wave collision. We see
from 5.13) and 5.14) that the co-efficients of the delta terms depend

on both ¢g and ¢g being initially zero.
From 5.10) and 5.11), the two electromagnetic components, ¢g and ¢g,

will inevitably arise even if one is initially zero. However, if one
is initially zero, the consequential effect on the other quantities
(U, V etc.) is somewhat less than if they were both initially non-zero.
This would imply that another suitable approximation to our initial
problem of a gravitational-electromagnetic wave collision would be

to solve Maxwell's equations in the solution metric of the collision
of two pure gravitational waves.

The two pure gravitational wave collision for linear polarization

(W = 0) has been solved by Szekeres (12) and slightly generalized to
two plane waves of matched polarization by Panov (16). Thus, we only
need insert the resulting forms for V, U etcetera into 4.1) and follow
the analysis through as done above. Unfortunately, the explicit
solution for V is not easily integrated to give a form which can be

easily manipulated.
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Finally, 5.10) and 5.11) do not give rise to any terms of the form
kuv 0(u) B(v) hence our exclusion of such terms can be considered

justified since it is consistent with our results.
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Conclusions

Although we have been able to give explicit expressions for the effect
of a pure gravitational wave when it collides with an electromagnetic
field, we have had to make some apparently drastic simplifications.
That is, by treating the electromagnetic field as a test field, we have
entirely ignored its possible contribution to the space-time curvature.
Regarding the power series approach, although it does provide us with
one useful result (see below), it certainly 'does not give an extensive
solution throughout the interaction region.

Therefore, we must now consider whether the results deduced are valid
and, if so, what restrictions exist on their applicability.

We could adopt the viewpoint that since we have effectively neglected
the energy-stress of the electromagnetic field, the results we have
deduced would be approximately correct for an interaction in which the
energy density of the electromagnetic field is in some way negligible
compared to that of the gravitational field,

Unfortunately, the definition of energy-density of a gravitational
field is, in the least, somewhat ambiguoug. Thié matter was discussed
above,

However, for our purposes, there is a reasonable definitionof energy

density which we can adopt for the case at hand. The energy-momentum

pseudo-tensor tUV introduced by Landau and Lifshitz (25) is directly
anologuous to the energy-momentum tensor of the electromagnetic field (26).
Unfortunately, the energy-momentum pseudo-tensor can be transformed

away since it depends on Christoffel Symbol quantities and not their
derivatives. However, again referring to the observer introduced

above, we can make meaningful comparisons between the electromagnetic
stess-tensor and the gravitational stress pseudo-tensor.

Therefore, we may write, as the condition which determines the "domain

of validity" of the results above, the inequality
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W WY

<
Tem tGw 6.1)
Hv
where T are the components of the energy-momentum stress—tensor of

EM

ny

the electromagnetic field and tGW the energy momentum stress pseudo-

tensor of the gravitational field and both are evaluated in the given

UV

observer's frame. Since tGw

can be explicitly deduced for a weak

gravitational wave (25) and also since, from 4.14) where the exact

Y

M not satisfying 6.1)

metric is used, there is the possibility of TE

throughout the interaction region, we shall restrict our considerations
to the weak field case.
From (25) and using 3.38), since the gravitational wave depends on u

only, we have

tg; = c®2 (h®* +%Mh  +h )?)
161G 23 22 33
= c* mM?2+v?d 6.2)
l6mG u .

To get an understanding of the orders of magnitude we are dealing with,

we can proceed as follows. By 6.1) we require

4 2 2
= >> =
t (e} 0(h° ) TEM 1 O(F7)

16ng ' am
where F represents the field components of the electromagnetic field
and O(A) indicates "the order of A", Therefore

& om

ach e

O(F) <<

or, using c.g.s. units
o(F) << 10%* 0o(h R 6.3)
!

We shall set the flux of the gravitational wave to be of the order of

10'° ergs/cmz/sec, which roughly corresponds to flux, experienced at

the Earth, of a gravitational wave generated by the conversion of about
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5 seconds at the centre of the

lO_“MG)to gravitational radiation in 10~
galaxy (8). From (25) this flux is given by cté&. Therefore, from
6.2)

10 = ° @ ?+v?)
167G v

which gives, assuming O(Wu) o O(Vu)

om ) =10 23 cm ! o) =10 2% cm™ ! 6.4)
u u
Thus, from 6.3) we require

0(F) << 10} gml5 cmmli sec ! 6.5)
This corresponds to an electromagnetic flux, given by the Poynting

Vector, of

0(P) = ¢c_ 0(F?) << 10° ergs/cmz/sec 6.6)
4m

This is quite a reasonable flux for an electromagnetic field, and
certainly well above that used in experimental physics. Therefore, the
above analysis will be quite reasonable for experimental purposes.
Having deduced a "domain of validity" which is easily satisfied, we may
now consider whether the results given in 4,28) -.30) can be used to
detect and/or analyse gravitational radiation.

Placing 6.4) into 4.30) immediately shows the average Poynting Vector

is of little use for such a use. However, it is not immediately clear
whether or not we can use 4.28) in some way.

Before considering this question in detail, it should be noted that
since we have shown that no curvature impulses occur in the collision of
pure gravitational and on electromagnetic waves, we are effectively
forced to look toward 4.28) to provide a mechanism to detect gravitational
wéves by this means. Further, although it has been shown that two
electromagnetic waves in collision give rise to curvature impulses, in
general we would expect the gravitational waves impinging upon the Solar

System to be pure.
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This is because the processes which produce the fluxes used above
require massive obijects to participate in the catastrophe (e.g.
gravitational capture) and one would expect such objects to be almost
electrically neutral. Even if the objects involved were sufficiently
charged, the stronger interaction of the resulting electromagnetic
field with charge distributions would probably cause it to split off
from the gravitational wave. So, looking to 4.28), we need a me thod
by which we can measure the various components of the electromagnetic
field., This is provided by (13) on page 72. 1In brief, since magnetic
fields only act upon charges with a non-zero non-parallel velocity, by
appropriate choice of a charged particle's velocity we can measure the
various components of the field,

Although in (13), all the components of the field are measured, we

shall consider measuring E3 in 4.28) only. This will be sufficient to

indicate whether or not we can use 4.28) to detect gravitational waves
since to use the magnetic field, we would require the velocity of the
charged particle to be close to that of light. Therefore, if we

cannot detect the effect of the gravitational wave on Es’ we will be

even less able to do so using the magnetic field.

From 6.6) we can assume

c 0(¢°%) = 108 ergs/cmz/sec
am )

that is

0(¢g) = 10 2 gmli cm“12 sec * 6.7)

Now that we have some grasp of the orders of magnitude which we are

dealing with, we must consider the behaviour of the quantities. Since
¢g(v) is something we can dictate by the experimental set up, we can

leave consideration of this quantity until last and exploit it to
maximize the sensitivity of detector.

The quantities W and Vu' however, are dictated by the physical event
u
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which gives rise to the gravitational radiation. BAbove, we adopted a
radiation flux which corresponded to a conversion of matter to

gravitational radiation at the centre of the galaxy. This flux, if

it occurs, would correspond to the capture of a small star by a black

hole since only such a catastrophe would give rise to such fluxes.

Sﬁch a process takes the order of 10" ° seconds to occur during which

there is a significant gravitational radiation burst.

The profile of the curvature tensor components duringthisburstis, strangely
enough, fairly restricted. In (l27) , it is shown that the components of the curvature
tensor must change sign so that the gravitational wave burstonlyhas finite energy.
Therefore, the behaviour«ofVﬂJand thusthaoscillatory in some way. From (27),
we can expect the Fourier Transform frequency components of the

curvature tensor to have a maximum at a frequency of the order

=1

w =2TT
)

where T is the duration of the gravitational radiation

burst. The bandwidth would be of the order of w also. To detect the

E, field, let us use a small charged particle on a spring which can be
set into vibratory motion by the E3 field only. Although the particle,

once moving, is acted upon by the magnetic field, if its velocity is
small, these magnetic field effects will be negligible. Thus, the

equation of motion will be

2 2
g_{+_(klg_§£+wgz=gE3 6.8)
at? @ dt m
where E, is given by
T
3 =0 0
E, = 1 e J b, (t) at 6.9)

0

since we are using the observer previously adopted and hence there is

no spatial change in their position.
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For simplicity and since we are primarily interested in orders of
magnitude, let us assume that at the observer Wﬂ is such that
= i v =~ A Sin (W t + o
Wy A Sin w t tt 5 (w, )
Further, we shall set ¢g(t) to be a sinusoid,
ie.
¢8 (t) = B Sin (w,t + B)

Therefore 6.8) can be written as

2
d°z , wo dz + w’z = -q BB JCos((w+ wp) t + B)

at? " gae 0 TeM wuw,

+ Cos((w - w,) t - B)]
Setting w, << w, and tuning the system such that w; = w,, we can
write

e z t Wo  dz + w,’z * -q AB_ Cosw;t
dt Q dt 8M  wiws2

This system will give the response (28)

zZ{t) = C(w,) Cos (w;t - MNn)

where C(wy) = -q AB
BMWwiWw2

b

2 2 2 .2
((w? - w))? + wiwg)

If we assume the detector is tuned close to w;, we get

Z(t) = -gABQ Cos(wt -

)
8["][013&)2 z

For the duration of the pulse, the energy absorbed by the electro-

magnetic field detector will be
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T
E.A.; = j q E3 (dz)at = 1% ¢° a® B® g 6.10)
o M dt 128(2m) M w,?

If we now repeat this experiment, however we use an uncharged mass on a

spring directed along the x? or x°

axis, and rely solely on the
gravitational fields coupling, we have from the equation of geodisic

deviation

2
dz’_ 4 We gz + wozz = - ¢?1 Ro2o2
at? 9 at

=~ =41 A Sin wit

where 1 is the length of the spring.
Repeating the same analysis for this system gives the energy absorbed

by the gravitational wave detector during the pulse is of the order

E.A.; =~ ml?A%Q 12 6.11)
16T

We can now compare E.A.; and E.A., to see if the electromagnetic field
detector is any better.

We can see that for long bursts, the electromagnetic detector will be
far more sensitive, however the most energetic gfavitational wave pulses
will most likely be the short bursts corresponding to gravitational
catastrophes such as collapse into a black hole. Next, the ratio qz/m
will favour highly charged small particles such as electrons. There
may be the possibility of looking for a change in atomic electron
energy levels or the like to detect gravitational waves. This ratio
does give the electromagnetic detector an advantage in that a large
massive detector is not required.

Finally, there is the presence of the electromagentic field frequency
jwz) and amplitude(B) in 6.10). We could, within limits, attempt to

manipulate these to improve the detectors sensitivity.



We can see that a stronger field of low frequency is desirable, however
the field strength must satisfy the limits deduced above for it.

Wwith the electromagnetic detector, there are several quantities which
can be manipulated to improve its sensitivity, where as with the direct
gravitational wave detector, there are relatively few.

To compare the sensitivities of the two detectors, let us assume that
both have the same mass, lOngs, are 10%cm long. This will give

E.A.; _ T2 g’ B __ q2B2 10 !®

E.A.2 T 64Tt M2 12 (3p2 - 73;5.

2

Assuming B satisfies the limitation given above and Wz = 103Hz we get

E.A.1

= 2 —38
—— [ 10
E.p..

Therefore, to make the electromagnetic gravitational wave detector as
sensitive as a "Weber type" detector, we would require it to carry a
charge in the order of 10? coulombs which is rather large for such an
apparatus. We could go to the other extreme and consider the use of an
electron as the charged particle, as was suggested above. 1In this

case, the energy absorbed would be

E.A.; = 10 %%ergs
This is way too small to be measureable (e.g. the cosmic background
radiation photons have energies of the order 10716 ergs) .
Thus, we can see that although the analysis utilized above has some
validity, it does not help solve the technical problems involved in
detecting gravitational radiation. In fact, the numbers deduced above
would indicate very little promise for such detectors even in the

future.
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APPENDIX 1

Using the Newman-Penrose formalism 1.14) has the form

k =vy131 = lu;v m" lv T = =Yy = —nu;v n" lv

€ = %(y121 = Y3u1) = %(Ru;v L A L n V)

P = Yiay = Qu;v m" ﬁv A= =Yoauyy = -nu;v o mY

a = %(yi24 ~- Yauy) = %(Ru;v n" ﬁv - mu;V o ﬁv)

0 = Y13z = Qu;v e mv U = ~youg3 = —nu;v ﬁu mv Al.l)
B = %(yi23 ~ vaus) = %(Eu;v o o - my o n”)

V= =Ya2u2 T —nu;v " n\) T = Y132 = Ru;v n" nv

Y = %(y122 = v3u2) = %(Ru;v ¥ n¥ - moy o' nY)

1.15) has the form

(AD = DA) T =1[(y+7y) D+ (¢ + €)A - (T + 7 )8

- (T + m8IT a)

(D -~ DE)T = [(a + B - MD + kA - 06 - (p +€ - )81 T b)
Al.2)

(A = A8)T = [FD + (T -0 -B)A+A 8+ (u-vy+y)8]lT <)

|

(68 - 86)T = [(ﬁ—u)D+ (5 —p)A—(a - B)& - (B-a)81T Q)
1.26) has the form

2

Dp - Sk = (p° + 05) + (e + E)p - kT - k(30 + E - m) + do0 a)

DG - 6k = (p+ plo + (36 - )0 =(T = 7 + a + 3B)k + Yo b)
DT-AK=(T+E)p+(?+1r)o+(e—€)r+(37+§)l<
+ Y1+ P c)

Da - &g = (p+e - 2e)a + Bo - BE - kA - kY + (e + P)m+9,, A)

(77)



DB -8e=(a+ Mo+ (p-€B~ (u+7y)Kk= (2 =7)e+¥ e

D'Y-AE=(T+:I.T)OL+(.'1T+‘K)B+(€+E)Y-(’Y+‘?)€

+Tm - vk + ¥y - A+ 0, f)
DA = 8w = (pA+ou) +n2+ (a - B)w - wk - (36 - £)A

+ 229 g)
Du = 81 = (PU + OA) + T + (g + €)p = T(% = B) - vk

+ ¥, + 2A h)

Dv=-Ar = (T + Dp+ (T+ DA+ (y ~y)1m - (3 + €)v

+ Y3 + 09y i)
Al.3)

AN -8v=-(U+ WA= By -TA+ Ba+B+m-1v -¥ 3

Sp - 8a=pla+B) -—0(3a~-PB) + (p-pT+ (n = MWK

Y1 + &g, k)

8o ~ §B8= (up, - A0) + aa + BB ~ 2aB + y(p - p)

+e(p=q) - ¥ + A+ &g - 1)
60 =8u=(pP-PV+ (u-WT+ula+B) +ArA(@ - 38)
- ¥3 4+ 02y m)

Sv = Ap = (W2 4 AX) + (Y + YU - Vg + (T - 38 - &)V

+ P22 n)

&y = AB = (T -a - B)y + Ut = oV - ev - B(y -y - 1)

+aX+<I>12 o)
8T = AC = (o *+ Ap) + (T + B - )T ~ (3y - y)o - KV
+ ®o2 p)
Ap = 8T = (P + OA) + (B - a=-1)T + (y + y)p + VK
-y, - 2A Q)
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where

¥

Yo

P12

P10

®31

Pg2

®o2

LD

—8Y=(p+E)V - (T+B)A+ (Y - Wa + (B - T)y - ¥3
= - Cy313 = - CaBY5 1% By 8 - Yoo000
== Ci1213 = - Cdﬂyﬁ 1% P 1Y m6 = ¥go001
= ~%(C1212 = Ci234) = % Cu6y6(la b 1Y n
. nB n' ia) = Ygo011
= Cya24 = C 1* 0P Y 20 = Yo111
- aByd
= —Caygy = —CaBYG n® wf a¥ 28 - Y1111
= =hR11 = ®o0b8 = Foo
= ~%(Ri2 + Ray) = 0018}
= ~%R;3 = ®g081 = &1
= -%Rp3 = 91311
= -4R1y = 90106 = ®o1
= ~4Roy = 91151
= =%R33 = Dgpil = B2y
= =%Ro2 = 0;1i1
= =%Ryy = 1154
R/24
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APPENDIX IT

The Sandwich Plane Gravitational Wave

Using the Rosen form for the metric of a plane gravitational wave:

-M -U, v . ~
ds? = 2e dudv - e (e CoshW (ax%)?% + e VCoshW (dxa)2

- 28inhwW dx? dx?) A2.1)
Where M, V, U and W are all functions of u only and satisfy the field

equation, when written in the Newman-Penrose formalism.

20 -U?+2MV =W % + vV ?cosh?w A2.2)
uu u u u u u

The only non-zero component of the Weyl tensor is given by
YO = -4V  CoshW + 2V W SinhW - V (U - M ) CoshW]
i uu u u u u u

+ %ilW - W (U - M) -V *CoshW SinhW] A2.3)
uu u u u u
If the wave propagates undisturbed through flat spacetime, we can set
M(u) = 0 without loss of generality.
To describe the sandwich wave in Figure 2, we require that A2.,2) be

satisfied throughout the whole space-time patch and that ¥% be non-zero
N

in the non-flat region O<u<u' and be identically zero elsewhere. This

gives the following set of equations for the flat regions:

20 -U2=w?2+vV ? cosh’w a)
ua u 11 u
v CoshW + 2V W SinhW - V U CoshWw = 0 b) A2.4)
uu u u u u
W =-WU - V 2CoshW SinhW = 0 c)
uu u u u

For the region u<0, we have the trivial solution U = V=W = 0. For
the region u>u', A2.4) is a characteristic initial value problem where
the initial data are provided by the junction conditions at u = u'
i.e. U, V and W are continuous. The initial values of Uu, Vu and Wu
will be given by U, V and W in the non-flat region if we adopt the
Lichnerowicz conditions, but if we adopt the O'Brien=Synge conditions,

they would have to be inserted. The solution obtained will determine

U, V and W uniquely in the given co-ordinate patch.
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Unfortunately the system A2.4) is not amenable to a straightforward
solution. However if we assume the W = 0 throughout the region u<u',
i.e. the sandwich wave is linerarly polarized, then by A2.4)c) W= 0

throughout the region u>u' (4). This reduces the system to

20 - U =V a)
uu u u A2.5)
\' -VvVuyuu =0 b)
uu u u
This system has a straightforward solution.
Setting
X(u) = U(u) - v(u) ‘ A2.6)
and adding A2.5)a) to twice b) gives
2 2
2(0 -V ) - (U =-2vU0 +V ) =20
uu uu u uu u
which is
2x -x%=0 A2.7)
uu u
Setting X(u) = -21ln Y(u), we find
X =-2y 'y X =2v2y?-2v'ty
u u uu u uu
giving from A2.7)
Y = 0
uu
Thus we have
X(u) =-21ln(au + b) A2.8)
where a and b are constants. This gives rise to several possible

solutions. These solutions are found by substituting A2.8) into
A2.6) and in turn, this into A2.5)b) giving

V -V (=-2a +V)=0
e Y (autb) v

This equation is simplified using the substitution

V(u) = =1ln Z(u)
giving
a’z + 24  dZ =0 A2.9)

du? (au+b) du

Let A(u) = dZ(u) giving
du

gé + 2a A=20
du (au+b)



which has solution

i

A(u) C(au + b) 2

which in turn gives

1

Z(u) = d(au + b) ' + f

where d = -c

a

Therefore the solutions for U(u) and V(u) are

U(u) = -21n(au + b) - In(d(au + b)

-Inf(au +b) (4 + f(au +b))]

= -1n[(au + b) (gu + h)]

V(u) = - Inf(au + b) ! (qu + h)]

where g = af and h = d + fb

1+ 5)
a)

A2.10)

b)

The case with a = 0 in A2.8) also satisfies A2.7) however this case

gives a different equation in A2.9). 1In this situation we, instead,

have
2
dz = 0
du2
giving
U(u) = £ -In(au + b)
V{u) = -1In{au + b)

a)
A2.11)
b)

Therefore, the set of possible solutions to A2.5) are

U(u) = V(u) =0

U(u) = -1nf(au + b) (gu + h)]
V(u) = -1nl(au + b) ! (gqu + h)
U(u) = f -1In(au + b)

V(u) = -In(au + b)

where the values of the constants a, b,

a)

b)
A2.12)

c)

...f are deduced from initial

conditions which we shall take as given by the Lichnerowicz conditions.

It is worthwhile calculating these constants since their values

demonstrate the unavoidability of co-ordinate singularities in the

region u>u'.
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We can immediately discount A2.12)a) as a solution in the region
u>u' since it would require the gravitational wave to vanish.

The presence of the co-ordinate singularity is more obvious using
A2.12)c) hence we shall consider this first. It is easily seen that
we have u = u'

f = U(u') - v(u'")

-\ L]
g = =g @1 U, (u') A2.13)
-V 1
b=e"M) @y un
Since we have assumed U(u) = V(u) = 0 for u<0, from A2.5)a) Uuu>0

for u>0 and hence Uu>0 for u>0 therefore a<0 and b>0. Further, the
value of u for which au+b = 0 is seen to be greater than u' and hence
the co-ordinate singularity is unavoidable for this solution.

To prove the similar result for the metric A2.12)b) is similar. From
A2.12)b) we have

a = k27U VM) oy v @)
u u

_ e%(-U(u') + V(u'))

b = (1 + %(U (u') -V _(u")) u')
u u ‘
u u
h = e-'!’(U(u') + V(u')) (1 T lf(Uu(U-') + Vu(ul) ul)
From these results we see that the values of u for which (autb) = 0

and (gu+h) = 0 are greater than u'. Therefore the co-ordinate
singularities are again unavoidable.
The table below sets out the metric and the appropriate co-ordinate

transformations to transform away the co-ordinate singularities.
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Metric
as? = 2dudv - ((au+b)? (ax?)?

+ (gu+h)2 (ax3) 2y

as? = 2dudv - e T ((ax?)2

+ (au+b)? (ax?)?)

The resulting flat metric is

ds? = 2ax° ax! - (ax?)? -

(R4)

Transformation

u = X
v=x!- 2% - (x%)?
(axV+b) (gx%+h)
22 %2 <3 = x3
(ax0+b) (gX0+h)
u = X0
(aX%+b)
x2= efX2 x3 = efX3
(aXU+b)



Interaction Reqion

N

ln\haﬂ\ Plane -wave
a Qvn(jlt-non of v oy\l7

Qe%lon I[I

\V\\*W(l\ ‘D\cif\ez"VUC[VGZ

a function of w 0“\)’

Reqon T

Flat S‘mce—hMe,
Re%mn T

UWL=0

Figure 1

A "head-on" collision between two plane waves as viewed by an observer
with worldline u = kv (k>0) x2 = constant, x3 = constant. For other
timelike observers the collision will not be head~-on but at an angle.
This more generalsituation can also be analysed using the present

approach. The hypersurfaces u = constant, v = constant are null.
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Ruwf’O' *O
Ryv=0
Reclmv‘ T
Non— €la¥ —
3 a‘c,c-\'\me' RuN"o*-—O
v \le%wn T
leuvgcf==C)
Flal S‘;o,ce—‘i'\me
Re%lov\ T

Flat Sspoces-iwrn<2

Figure 2
Plane sandwich gravitational wave. The metric is a function of u only.

' The non-flat region is bounded by null hypersurfaces u = 0 and u = u'.
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Reqion T

T Observers
+avu3ev\+ NVector

Figure 3

A schematic diagram indicating a possible observed behaviour of the
direction and magnitude of P - in the head on collision of a gravitational

~a

plane wave and "test" electromagnetic plane wave.
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