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Modelling the quark propagator
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The quark propagator is at the core of lattice hadron spectrum calculations as well as studies in other non-
perturbative schemes. We investigate the quark propagator with an improved staggered action (Asqtad) and an
improved gluon action, which provides good quality data down to small quark masses. This is used to construct
ansätze suitable for model hadron calculations as well as adding to our intuitive understanding of QCD.

1. The lattice quark propagator

The quark propagator is a fundamental quan-
tity of QCD. Though gauge dependent, it mani-
festly displays dynamical chiral symmetry break-
ing, contains the chiral condensate and ΛQCD,
and has been used to compute the running quark
mass [1]. Some model hadron calculations rely on
ansätze for the quark propagator [2], yet on the
lattice we have the opportunity to study it in a
direct, nonperturbative fashion.

We use the “Asqtad” quark action [3], a highly
improved staggered action that formally has no
O(a2) errors. We extend some earlier work [4]
by also using an improved gluon action. We have
calculated the quark propagator on three sets of
configurations: 123 × 24 and 163 × 32 at β =
4.60 (a = 0.125 fm) and 163 × 32 at β = 4.38
(a = 0.167 fm), each ensemble consisting of 100
configurations. The configurations were fixed to
Landau gauge. Most results shown here are from
the larger, finer lattice, where we used 8 quark
masses: ma = 0.012, 0.018, 0.024, 0.036, 0.048,
0.072, 0.108, 0.144 (19 to 114 MeV).

In the (Euclidean) continuum, Lorentz invari-
ance allows us to decompose the full quark prop-
agator into Dirac vector and scalar pieces

S−1(p2) = Z−1(p2)[iγ · p+M(p2)]. (1)

Asymptotic freedom means that, as p2 → ∞,
S−1(p2) → iγ ·p+m, (the free propagator) where
m is the bare quark mass.
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From consideration of the tree-level form of our
lattice action, we define the momentum variable

qµ ≡ sin(pµ)
[
1 +

1

6
sin2(pµ)

]
(2)

for the Asqtad action, where pµ is the usual lattice
momentum,

pµ =
2πnµ

aLµ
nµ ∈

[−Lµ

4
,
Lµ

4

)
. (3)

By considering the propagator as a function of qµ
instead of pµ, we ensure that the lattice quark
propagator has the correct tree-level form for Z
and hopefully better approximates its continuum
behaviour. It has already been seen that this pro-
duces a significant improvement in the rotational
symmetry of Z [4]. This prescription does not,
however, tell us how to treat the mass function
and in the past it has been considered as a func-
tion of either p or q in different studies.

Figure 1 shows the quark mass function for the
coarser lattice as a function of both p and of q. M
clearly has less anisotropy when plotted against q.
This issue has been studied for the overlap quark
propagator and there the mass function appears
to converge to the continuum limit most rapidly
as a function of p [5]. The optimal momentum
variable must therefore be determined for each
action.

We test for finite volume effects by comparing
the quark propagator on the two β = 4.60 lattices
in Fig. 2. No sign of finite volume artefacts is seen
in the mass function, but the infrared supression
of Z is stronger on the smaller lattice.
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Figure 1. Quark mass function at β = 4.38 (a ≃
0.167 fm) for bare quark massm ≃ 114 MeV. Top
figure uses the näive lattice momentum, while the
bottom figure uses the momentum derived from
the tree-level behaviour of the action.

2. Parameterising the data

The mass dependence of M(q) can be seen in
Fig. 3. Dynamical chiral symmetry breaking can
be seen in the infrared enhancement of the mass
function which, for small quark masses, is almost
independent of the bare mass. For large quark
mass, the function flattens off. In the case of the
Z function, dependence on the quark mass is very
weak.

In the continuum, in the chiral limit, the
asymptotic behaviour of the quark mass function
is related to the chiral condensate [6]. We per-
formed an extrapolation to the chiral limit using
a quadratic fit in the quark mass to the cylinder
cut data. A determination of the chiral conden-
sate was then be made by fitting to the tail of

Figure 2. Quark Z function for mass ma = 0.036,
at β = 4.60. Comparison on 123×24 lattice (open
circles) and 16 × 32 lattice (solid squares). For
M(q) on the same lattices there are no discernible
finite volume artefacts.

M(q). We chose 2-3 GeV (ap = 1.27 − 1.9) for
the fit region and set ΛQCD at 691 MeV1. We find
(−〈ψψ〉)1/3 = 270(27) MeV; the quoted error is
purely statistical.

A fit to each of the mass functions was done
using the ansatz

M(q2) =
cλ2(α−1)

q2α + λ2α
+ m̂. (4)

This is the same as the ansatz used in Ref. [4],
but written slightly differently. We shall refer to
it here as the “simple” ansatz. Fit results are
shown in Table 1.

As before, we see that at small quark masses
α ≃ 1.5 is favoured, while it is near one for the
heavier quarks. In this model, α is acting as a
function of the bare mass, controlling the dynam-
ical symmetry breaking. One fit is shown, for
M(q2) at zero quark mass, in Fig. 3.

We also investigated a more “complete” ansatz,

M(q2) = c

(
Aλ2(α−1)

q2α + λ2α
+

1

q2 + λ2

[
ln
q2 + λ2

Λ2
QCD

]γM

)

+
m̂

[
ln

(
(q2 + λ2)/Λ2

QCD

)]dM

, (5)

1This was computed by taking the ALPHA result of

ΛMS = 239 MeV [7] and converting it to the M̃OM

scheme as described in Ref. [8].
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Table 1
Best-fit parameters for the simple ansatz, Eq. (4). Statistical uncertainties are determined by jackknife.

am a3c λ (MeV) m̂ (MeV) α M(0) (MeV) χ2 / d.o.f.
0 0.040(3) 719(50) 0 1.47(11) 302(33) 0.72

0.012 0.043(2) 777(35) 25(2) 1.51(2) 308(19) 0.70
0.018 0.044(2) 795(28) 37(2) 1.50(2) 311(13) 0.65
0.024 0.045(2) 820(29) 49(2) 1.48(2) 313(11) 0.60
0.036 0.046(2) 802(27) 70(3) 1.31(1) 353(10) 0.53
0.048 0.050(3) 838(27) 92(3) 1.28(1) 370(9) 0.48
0.072 0.059(2) 946(29) 138(5) 1.30(8) 397(12) 0.44
0.108 0.071(5) 997(27) 199(6) 1.12(3) 478(4) 0.37
0.144 0.090(9) 1100(32) 255(10) 1.01(5) 547(4) 0.35

which is an extension of the one used above that
has the correct asymptotic behaviour. A is di-
mensionless, m̂ is the RGI quark mass, dM is the
anomalous dimension of the mass, γM = dM − 1,
and c can be related to the scalar condensate [6].
Unfortunately, the current data is insufficient to
simultaneously determine A and c. It is possi-
ble to determine c separately from the asymptotic
behaviour, as above, but the end product fits the
data no better than the simple ansatz.
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Figure 3. Quark mass function for all masses
studied (top) and in the chiral limit (bottom) on
the larger β = 4.60 ensemble. In the chiral limit
there is also a fit using the simple ansatz Eq. (4).
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