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Abstract

This thesis describes methods associated with general random effects models. It
is divided into two parts. Part one describes a technique for investigating mean-
variance relationships in random effects models. A simple one-way random effects
model is proposed as a basis for deriving a score test for homogeneity of variance
in one-way random effects models. An arbitrary mean-variance relationship is cap-
tured by a single parameter which allows for the possibility of detecting situations
where the variance changes systematically with the mean. Part two derives an
approximation to the likelihood function using a Laplace expansion to the fourth
order. This approximation may be applied to general models with multiple crossed
and/or nested effects. The score test of homogeneity and the approximate likelihood

function are examined using simulations and simple data analyses.
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Chapter 1

Introduction

1.1 Mixed effects models

Mixed effects in linear, generalized linear and non-linear models are used widely
throughout the statistical world. The range of areas where they may be used is var-
ied and extensive. One use of random effects is to explain the error terms when we
have multiple sources of variation. Classical texts such as Scheffe (1959) and Searle
(1971), show the common, standard methods for describing and working with lin-
ear models with fixed and random effects, estimating coefficients, deriving expected
mean squares and analysis of variance. Searle et al. (1992) have written a recent
book devoted entirely to estimating variance components. It covers ANOVA esti-
mation, matrix formulation of models, maximum likelihood estimation, prediction
of random effects, all for balanced and unbalanced data.

Recent publications in the general area of variance component estimation in-
clude Aitkin (1999), Steele (1996), Cox (1998), Abrams & Sanso (1998), Breslow &
Clayton (1993), Breslow & Lin (1995), Fraser et al. (1994), Lee & Nelder (1996),
Lin (1997), Schall (1991) and Gilmour et al. (1985) to name a few. Most of these

authors are interested in estimating the actual variance components; another use of



mixed models is to estimate the effects of data that comprises from a sample of a
larger population and repeated measurements are to be taken from this population.
In this case we can estimate the actual random effect predicted values by using
BLUPs (Best Linear Unbiased Predictions).

Robinson (1991) discusses the use of BLUP for estimating random effects. A brief
history of the derivation of BLUP is given including the classical case, Bayesian, and
Henderson and Goldberger’s derivations. Robinson then goes on to link these with
other statistical theories, such as the recovery of inter-block information, random
effects models, estimation of outliers and ranking and selection, giving a number of
applications.

Breslow & Clayton (1993) discuss approximate inference in generalized linear
mixed models. They consider hierarchical generalized linear models with random
effects which are distributed with a multivariate normal distribution, then go on to
discuss the use of penalised quasi-likelihood and variance component estimation.

A major difficulty with such models is that the true likelihoods are typically
intractable, and usually involve high-dimensional integrals which need to be ap-
proximated or estimated in some way. In this thesis, the major themes are firstly
the application of Laplace approximations (Barndorff-Nielson & Cox, 1989) and
Solomon & Cox (1992) approximations to specific models and problems, and sec-
ondly the derivation of generalizations of these approximations to models with mul-
tiple random effects. The outline of the thesis is described below.

This thesis is in two parts, Chapter two comprising part one and Chapters three
to five comprising part two. The subdivision represents two distinct problems in the
analysis of complex data, namely establishing if a mean-variance relationship exists,
and incorporating random effects in general models. The need to approximate the

likelihood in the two cases provides the connecting theme of the thesis.



1.2 Part One

This part of the thesis forms the foundation for a submitted paper (Hunt & Solomon,
1999) which is currently being revised. It is common in repeated measures data to
observe a mean-variance relationship. Authors such as Liu & Pierce (1993), Com-
menges & Jacqmin-Gadda (1997), Jacqmin-Gadda & Commenges (1995) and Cook
& Ng (1999) have considered this problem. In part one, a test to determine the
possible existence of a relationship between the mean and the variance in longitu-
dinal data is proposed. This score test statistic is based on a proposed one-way
mean-variance model having a parametric representation which is indexed by a sin-
gle parameter k. The parameter x is zero if no mean-variance relationship exists
and non-zero otherwise. The likelihood function underlying the procedure must be
approximated and the approximation is based here on high-order Laplace expan-
sions. The score statistic is therefore also based on this approximation and this
forms the material of Chapter two. The performance of the test is then studied via
simulations and analytical results. Applications are given using data on CD4 cell
counts and blood pressure.

The simulation studies showed the distribution of the test statistic to be ap-
proximately standard normal under a reasonably broad range of assumptions and
thus the test is reasonable both when the parameters are assumed known and also
when one or more parameters are estimated. When applied to CD4 data from the
San Fransisco Men’s Health Study and blood pressure data from the International
Prospective Primary Prevention Study in Hypertension, mean-variance relationships
were detected by the test, and transformations of the data were shown to decrease

the relationships.



1.3 Part Two

Part two discusses approximations of the likelihood function with the aim of finding
an expression which can represent any general model. Chapter three shows the
second-order approximation as used as a basis in papers such as Shun (1997) and Lin
& Breslow (1996). These authors have discussed the use of a second-order Laplace
approximation and have extended this in various ways to make their approximations
behave more like the true likelihood.

Chapter four establishes a general form of the approximation to the fourth-order
with no adjustments. We want to show that this approximation compares well to the
other approximations of this kind, but in a simpler form. Approximate likelihoods
for a single variance component are extended to balanced models containing two
or more variance components. Laplace expansions have been considered by other
authors such as Steele (1996), Vonesh (1996), Wolfinger (1993), Lin & Breslow
(1996), Shun (1997) and Shun & McCullagh (1995).

A fourth-order approximation to the true likelihood is obtained for general mod-
els with two or more random effects. This approximation is for fully crossed models,
nested models and models with interactions, as long as the model has a well-defined
conditional log-likelihood, which is differentiable to the fourth-order. Models with
two independent crossed or nested effects are further examined in an explicit form.

The performance of these approximations is studied in Chapter five using simu-
lations and examples. It is shown that our approximation to the likelihood for the
linear model is very close to its true likelihood. Simulations are performed for a
Poisson model, a model with an exponential function of nested random effects and
a logistic regression model. In all cases the variance components are estimated and
compared to the known simulation values, and profile likelihood plots show the shape
of the approximation. The major example studied is the well-known Salamander

data (McCullagh & Nelder, 1989), for which estimates for the variance components



are found and compared to previous results on these data.



Chapter 2

A Test for Homogeneity in
one-way variance component

models

Variance components in nonlinear models and generalized linear models in particu-
lar are currently receiving considerable attention in the literature (see for instance
Vonesh, 1996, Breslow & Lin, 1995, Wolfinger, 1993, Solomon & Cox, 1992, Breslow
& Clayton, 1993, Lee & Nelder, 1996, Shun, 1997, Lin & Breslow, 1996 Cox, 1998
and Hodges, 1998). Such models are often handled with much attendant complexity.
However simpler methods, both formal and informal, are required to give one an
idea of when and why more sophisticated analysis is needed, and to provide starting
values for parameter estimates in more complex models.

In this Chapter, we propose a score test for investigating whether a particular
kind of relationship exists between group means and variances in repeated measures
data. Such a relationship may be due to an exponential family error structure or to
an arbitrary error structure, and although it may be difficult to distinguish between

them, we are interested in detecting situations where the possibly arbitrary error



variance changes systematically with the mean. How to handle such relationships
in practice will depend on the context and purpose of the particular problem un-
der study. Whatever the context though, it is useful to have available formal and
informal techniques for assessing potentially important mean-variance relationships
in models with variance components and often to check if a transformation has been
effective in removing it. Solomon (1985) and Solomon & Cox (1992) suggest some in-
formal procedures and Hodges (1998) and Cox (1998) provide overviews from rather
different perspectives. The purpose of this Chapter is to provide a formal test for
determining mean-variance relationships based on a general random effects model.
Score tests for homogeneity in generalized linear and other models are considered by
Jacqmin-Gadda & Commenges (1995), Commenges & Jacqmin-Gadda (1997) and
Cook & Ng (1999), among others. Authors such as these consider, for example,
testing for homogeneity in terms of differing distributions or testing for differences
in variation between groups effects. Our aim is to test for a specific kind of homo-
geneity, that is, one defined by a simple one-way model which captures a possible

mean-variance relationship.

2.1 Introduction

Suppose we have m groups or individuals, indexed by ¢, and r; repeated measure-
ments for each individual. Many forms of mean-variance relationships commonly

encountered in practice may be credibly modelled by v;;,2=1,...,m, j=1,...,7,
Yig = p+m + €™ (2.1)

where p is the overall mean, x is a constant, the 7; are normally distributed with
mean O and variance af’, independent of the errors e, which are also assumed inde-
pendent normal with mean 0 and variance 0. The multiplicative term e allows

the error variance to change systematically with increasing or decreasing 7;. When

7



k = 0, we obtain the usual homoscedastic normal theory one-way variance compo-
nent model.

For a situation with & # 0, the usual random effects analysis of variance that
ignores this relationship would not give accurate estimates for o? and 0727. In studies
where estimation of the variance component or% is of primary importance it is vital to
detect the existence of a mean-variance relationship that can for example artificially
give an impression of a large variance component between individuals where none
in reality is present.

We note that the parameter x cannot be separately estimated from the 7;, even
conditional on 7;. However, for our purposes, this does not pose a problem.

Solomon & Cox (1992) propose an approximate non-linear model
Yij = U + Ai =+ Bij —+ 01201412 —+ OénAiBij + OZOQBiZj (22)

where A; and B;; are random effects, both with mean zero and standard devia-
tions 04 and op respectively. This model is proposed as a basis for investigations
of departures from the normal-theory model y;; = p + A; + By;. The parameters
(g0, 011, Qp2) are defined to capture skewness of the random effects and heterogene-
ity of the within-group variation. This model may be directly compared to model

(2.1). By assuming no skewness (crap, (ro2) We can rewrite the model as

yij = p+ Ai+ Biy(1+and)

SN -+ Ai -+ BijeauAi.

They define a dimensionless parameter p;; = 1104, which measures the rate of
change of the conditional standard deviation of the within-group variation with the
group mean. Our & is directly related to p1; by £ = p11/ Uf’, which follows from our
model (2.1) and the Solomon and Cox model (2.2) (i.e. s is approximately equal to
the interaction parameter oy defined in their paper). This issue is discussed further

in Section 2.7.2.



By letting 7; be fixed for one individual ¢, the conditional mean and variance of

y;; (from model 2.1) become

E(yiilm) = p+mn
Var(yy|m) = o° exp(2kmn;)

= o exp {2k(E(yyln) — w)}-
The log likelihood for the ith group conditional on 7; for model (2.1) is given by

Yo (ysg — b —m)* (2.3)
202 exp(26m;) ‘

fr'.
Li(p, 0% Ky yilmi) = —51 log(2mo?) — rikm; —

throughout, this is referred to as [;.
The likelihood for the model with random effects n;, 7 = 1,...,n is obtained by

taking expectations of the conditional likelihood:

m fove) 2
L(p, 0% k,0%:y) = H(27f0727)_5/ exp (li— i )dm-

g oo 20,2,

In section 2.2 the exact score test of null hypothesis called mevarl is developed.
The score test statistic is simplified by using a Laplace approximation to the true
likelihood. Two score test statistics are developed in section 2.4, firstly mevar2, a
score test statistic with all parameters known, and mevar2a, a score test statistic
which allows for estimation of parameters. We then study the performance of these
tests using simulations and power calculations and explore the behaviour of observed

variability in CD4 cell counts from the San Fransisco Men’s Health Study and in

blood pressure data.

2.2 A Score test

A detailed discussion of the score test method may be found in Cox & Hinkley
(1974). Essentially, for any parameter 6, a vector of length p, the score U is defined

9



as a vector having the ith element as the derivative of the log-likelihood function

with respect to 6; ie.

oL
061

oL
90,

The variance-covariance matrix of the U;’s is the information matrix Z with dimen-
sion p X p containing elements given by
&l
I=—-——;
00007
this is also known as the observed Fisher information matrix. To test the hypothesis

8 = 6y, evaluate

utz-'v (2.4)

at § = 6,. This statistic is approximately distributed as X;Q) if the null hypothesis
is true. The score test for the null hypothesis Hy : k = ko against the two-sided
alternative Hy : k # ko for model 2.1 is based on this statistic.

As an example of the use of this formula consider model (2.1) as a fixed effects
model. The form of the score test for fixed 7;, known p and ¢ and for the null

hypothesis k = 0 is given by

ol mo (S (Y — )’
U — ] . J J -7
81‘6 o ;m ( 0_2 T
7= Lo = i 272 Y7 (Y — e — i)
Or? k=0 i=1 o?

The development of the test statistic mevarl follows.
The test for Hy : k£ = 0 is based on the statistic given in (2.4). Now let the n;’s
be random effects, and assume all parameters u, 02 and 0?' are known. There are m

random effects. Then the score function is
U = al/OKJ‘H:O

10



m

% ‘ [log/exp(f(m,m))dm} | k=0

i=1

& [ (Jexp(f(kymi))dmi)
a Z[ (J exp(f(k,m:))dmi) Lzo'

For our model with conditional log likelihood I; and random effects n;,7 = 1, ..., m,

i=1

the function f is f(k,n;) = l;—log(2m0})/2—n} /207, note that the full log-likelihood
can be written as a summation since the 7; are independent.

Now consider just one term in the summation.

Assuming sufficient regularity to interchange the order of integration and differ-

entiation, we can write
O 1 [ exp(sts, i lewo = [ (5 explf )l ) i
Ok exp Ky i Ni| k=0 — Ak exp Ky 1) )| k=0 Uiz
Using l; = —7; log(210%) /2 — rakm; — Ty (g — 1 — i)/ (207 exp(26m;)) we get
_ ' ST (g — p— 1)
(2%02)_‘27‘(2%@2,)_5 / (—Tim + i Doy (g — b ) )

o2

i
2q2 202

-.rq

exp {_Z;;I(?ﬁi —p—m)® }dm

_ (QWUQ)(I_T")/Z exp (Z;;I('.Uij — ) (yi. — '!‘u‘f')gf?-;"; )

Jo?+rol —2072 20%(0? + 1i0;
o2 (yi. — Tit) i
o i TN 02— rie? — 202) (02 + 1502)?
o%(02 +r;i02)3 (jz::l(yw p)” — 10 o) (o )

—00(20% 4+ 1i07)(Yi. — r:p1)? + 30%0kri(0® 4 Tioy)

The expression [[ exp(f(k,7:))dm] |«=o reduces to the true likelihood (considering

just one term 7); from the total summation) for a standard linear model, i.e.
(2mo?)(t=ra)/2 (Z;Q(yij —p)? (v —rip)’oy )
——————exp :

[o? + 1502 —202 202%(0? + 1;02)

11



giving the full expression for the score, U, as

moopl i) | <
3y = S (i — ) - rio? — 20%)(0* + riaf])z

a2(o? + 1;02)3

1==1 j=1
—02(20° + ri07) (Y. — rip)? + 30%0nri(0? + rio2) | - (2.5)
Now the information is written
0%l
= %2
d2 m
= o {log / exp(f(f-”v,m))dm] -
_ i d,{z feXp(f(’fﬂ?i))dni)
i=1 feXp(f(K’a nl))dnz) 0
feXP(f(n,m))dm)r
—+ di 5 2.6
Z [ (fexp(f (s, m))dms) || . 2)

and considering one term only from the total summation gives

j—; [/ exp(f(li,m))dm} | k=0

_ (gexpw,m))lﬂ:o) dn,

—n)2 N (s — 11— )2\ 2
= COIISt/ l:( J 1y:2 H 771) >+ ((—Tini+ Uy ijl(yz(]TQ L Th) )> :l

NV (s — 11— 1:)2 2
Xexp{ Yy —p—m)® % }dm

202 20,%

_ (2mo?)mra/2 oxp Sl — w)? | (4 —mip)’oy y
[o? + ri0? —20? 20%(0? + 1i07)

12



202 i
n 202 242 2 2y 2 2 2
R ) ; =T
0-2(0-2 Tia?])4 jgl(yzj ,u) (O’ + ’T‘lo‘n) ((O’ +7r O'n)O' -+ (y 'r'hu) o )

+ 3riotol(o? + 10 02)? - 6(c” + ri07) oro ot (yi. — rip)? — o (s, — rip)*(20° + rio7)

o2 6rio o2(rio? — 20?)
2(~y2 . 235 i2 2 ’L 7724 i 7 21 ! 2\92 (y—ﬂ,u«)Mz-f‘Mf
0%(0% + rio2) (02 +1;02) (02 + ri02)
rio’od Aol — 20°)
15 1 2 2 - 2.7
i (0 +7"10'2)3 (02 + ri02) ( (s = raps)” + (y. = rant) ) (2.7)
where

N = (0®+rioy)( (yij—M)Z—ﬁ'ag)—Ug(yi.—ﬁu)z(402+ﬁfﬁ)
1

((02 + Ti072,)2(i(yij —p)? —rio?) = Uf,(yi. - 7"1‘#)2(7"1'012, + 202))

j=1

M; =

j=
;‘:(‘i)&' Tift)
o?(o? + rio2)?

This leads to the full expression (2.6) for the information as

2
- Z 02 + rio?)t [Zl(yij — (o + 7‘1'0'72,)2 ((02 + 7"@'05)0’2 + (v — w>203)
) j=

+ 37"1-04072](02 + riag)z —6(c* + naf,)of,a‘l(yi, —rip)? — Uﬁ(yi. —rip)t(20% + 7",-05)

2 2 6

o m 6r;0 mr: 020
n N2 _’_ N; + 15———— 1
+02(02 + ria?])5 ?::1 it (02 + naQ 4 Z (02 + naf])?’

208(rio2 — 202 S (yi. — rip)?
+ 2 2)1 (2.8)
(0% +ri02)

The expression for the score test statistic under the null hypothesis £ = 0 i written
as the score function, (2.5) divided by the square root of (2.8). This version of the

test will be referred to as mevarl.

13



Although mevarl is an exact expression for the score test statistic for testing
the null hypothesis & = 0, it is very cumbersome, therefore we seek to find some
simpler expression that performs well. It is also only obtained relatively simply
under the null hypothesis & = 0. It would be an advantage to have a more general
analytical form which allows for non-zero hypotheses. Another alternative could
be, for example, numerical integration. We have chosen to explore an approximate
score test statistic by approximating the true likelihood as detailed in the following

Section.

2.3 An approximate likelihood function

We base our approximation on a Laplace expansion of the true likelihood (see
Barndorff-Nielson & Cox (1989) for a discussion of Laplace expansions). The ap-
plication of Laplaces’ method has had much discussion, see for instance Barndorfi-
Nielson & Cox (1989), Liu & Pierce (1993), Breslow & Lin (1995).

Essentially, the approximation is derived from a Taylor series expansion. Pre-
vious work by Solomon & Cox (1992), Breslow & Lin (1995), Shun & McCullagh
(1995) have shown that including higher-order terms in the expansion may substan-
tially improve the approximation to the true likelihood. More detailed discussion of
Laplace approximations and previous work in this area is given later in the Thesis,
see particularly Chapter 3.

We consider including up to 4 terms. The fourth-order Taylor expansion for

2
(l,- _ ) about its (local) maximum, denoted by j;, evaluated at x, 0%, o7 and &,

207
is given by
2 ~9 -
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where I; = Li(7), lNl(k) n k |

By definition, 7; /0> o, = l therefore the approxima-

tion to the full likelihood becomes
m 00 ~o ) 1. .
2 2_%/ 777, li —l(2)—-— 1:-—~7:2
[1(no?) " o {- o it 50 = )= )

1 N 1 -~ N
+gl§3)(m — )% + ﬂll@ (mi — ?71')4} dmn;

This is simplified by the expansion of the exponential term

1. 1 s
L 0O (g — ) + 18 (i — i 4]di
X[+6z(n n)+241(77 )" | dn

Now make a substitution y(m;) = /=5 — I® (n; — ;) and the equation becomes
n

epl._Zch

L = 1;[1 ’—271'02 ,——_ 1(2) ( 1) )

-

: : 74
O PR G Ey@) |
6(z — ") 245 1Y)

n

207 i

- H - T = [\/L’ﬂ"—l— 272
i=1 \/ 2’”0-?,1 \/ 1— U%li 8(] = 0y 7 ) )

xp(l; — _’L) el ]

ﬁ exp(l; — 2—:;7 J_z:ftdl
<= | |5 —rE
=1 w r‘,ﬂ‘z) 8(1 - !}?21}2

&

m 1 - 72 U,‘%l?)
H __'~“('2_) eXp ll - 2 2 + 2~(2) 2
i=14/1 — a2l; oy 8(1—oa2l”)

This leads to an approximation of the log-likelihood

z~fj T (1— o2l 1, — e +1§j — (2.9)
N- 2 g 7]1 7 20_ 8 ( ._"‘ o .




For the model with conditional log likelihood given by equation 2.3:

o 1 [ T i

@ = - —r; —4 E: i) — 2 22: — — ;)2
A o2 exp(2;<;f)i) _ K Yij — B — 77 K j:1(yj M 771) _

10 L P 35 ) — K35 . )2'
= | =31, — 4k = = 1) — K == 1)
‘ o2 eXP(Qmﬁi) i =1 i j=1 I ]

substituting these into equation (2.9) then the approximation to the true log likeli-

hood for our heterogeneity model is
U 2 2 2 1 2 -
P =i _ 3 log(o® exp(2k7);) + o, (ri + 46S; + 267Q;)) + 5 log(o*) + K
o :

™ 0 exp(267))opi? (—3r; — 4kS; — K2Qs)
, == : - 2
i=1 (rr! exp(2k1;) + aé(r; + 4kS; + '2};.*562,;))

(2.10)

where I; is given by equation (2.3), S; = Y7L, (yi; — p— ;) and Q; = (Y — o —
7i)°.
Note that the expression includes the parameter x, therefore we can more readily

explore behaviour under non-zero hypotheses for &.

Expansion around zero

One can alternatively expand the Taylor series about = 0 (Solomon & Cox (1992),

rather than the m.l.e.. Then the approximation to the true likelihood takes the form

m 2l(1 1 1
[1L:{1 - 023} % exp —"—“JT + (D1 + <19)0k 8 {1+ o(od)}. (2.11)
i=1 2(1 o2l )) 2 4

nzO

Here, the higher order terms are included in the exponent. In this case, ll%’ )

the wth derivative of the conditional log-likelihood with respect to 7;, evaluated at

w _ Ol _ ,
n; = 0 (iLe. l§0) = ). For the conditional log likelihood as given by 2.3,
;=0

the Solomon-Cox approximation to the true log likelihood for the one-way random

q
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effects model is

m ) : il 1
> [—% log(2mo?) — Qo 1 log(o? + U%(Ti +4KSi0 + 267 Qo)) + 5 log(o?)

i=1 202 2 >
02(Sio — KQip — Tiko?)? (204
N\~ 7 1 _ n 3 : 4 Si 2 l
202(02 + o2(r; + 46Si0 + 26°Qi0)) 02 (3r; + 4KkSi0 + K°Qio)
oy , , 2
+;(3l€’ri + 06K Sio + 2K Qi())(sio — H’Qio — 7RO )

where Sjo = 301, (yi; — p) and Qi = X7 (vij — )2

Breslow & Lin (1995) compare the performances of Laplace, Solomon-Cox and
penalized quasi-likelihood approximations. For situations where the between-group
variance component ag is small they find there is not much to choose between the

methods.

2.4 Approximate score tests

2.4.1 All parameters assumed known

The score test statistic mevar2 is developed by assuming p, o2, and 03 are known,
and we treat the estimates 7j; as “metaparameters” which are by definition functions
of u, 02, and 03 and thus are also assumed to be known. From equation (2.10),

i 0'2771'62’“7" + 0'1%(281' + 25@1‘)
dr " o226 ag(ri + 4kS; + 4K2Q);)

al m ol
B = Z[

i=1

2020182k (3r; + 6K5; + 262Q; + ik (3r; + 4KS; + K°Qi))
= 2
(0'262’"”71' + o2(r; + 4KS5; + 452Q¢))

400 e k2 (3r; + 4kS; + K2Q;) (0 €™ + 03 (25 + 26Q;))
= - 3
<0262””7i + o2(ri + 4KS; + 4,%2@1-))
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021
= 2

i=1

&l; 20272e* 4 202Q);
Ok?  o2e28Mi + ag(n + 4kS; + 4K2Q);)

(?,.Jl‘zﬁit?g”ﬁ" a8 53(45,- - 4!{@;))2
2 ((;zezh‘m + 02(r; + 4KS; + 41-:3(-,),-))

20207,e* (3r; + 12K5; + 6K2Q; + 6Nrik + 127;k25;) + Tk (..)
- _ 2
(0262’”}1‘ + 0,2,(7"1- + 4KS; + 4/4;26,21))

~+terms containing multiples of x.

We first consider the simplest null hypothesis, £ = 0. Substitute x = 0 into the

above, and the score and information become:

ol ml Y Q0 o’ 42005
Grlemo = o= 30| =i+ S =
_8_2ll e i [272Q; 27207 + 207Q; 3 6r;0%0p — (Mio® + 20,5;)°
o2 =0 H =1 s o2 + ;02 (02 +7i02)?

The score test statistic mevar2 for testing the null hypothesis Hy : £ = 0 is now

given by
m = 5 2 2
B Q. . Mo’ + 20,5
Z{—nm—i— Z2 +m————l 5 "2 -
= ‘ 0 S li% - (2.12)
i 207Q; n 27702 4 202Q; n 6rio%ol — (Mio? + 20735:)?
el 0'2 0'2 + 7"1'0',?] ({J‘Q ] ?‘-,20',3)2

Under Hy, this should be approximately normally distributed with zero mean and
standard deviation one.
When expanding about zero rather than the maximum functions 7;, ¢ = 1,...,m,
Uy and 777 reduce to
m 0'7210'281‘0(2 + Ti) —+ Si()QioO'TQ] 20’;1](51'0)3 30’;1]’('1'31-0

= 0%(0% + ri0}) 2o+ ri07)? o*
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™ [20%02Qi0 — 07 (Qio + rio?)? B 207 (Si0)*(3Qio0 + 402 + 4r;0?)

111=Z

= o?(0? + 7"1'0%) o?(0? + riag)Q

6r;od 875(9;0)* o
120080l 715502 — 6r,(Qu + 7i0%)

o? o?(o?+rio2)t o

The advantage of this version is that the 7; do not need to be estimated. Un-
fortunately though, this form of the score test is not as tractable as that based
on the Laplace expansion about the 7;. This is due to the information not being

positive-definite for some combinations of variance components.

2.4.2 Using the estimation of parameters (02, 0,27, 1)

The score test statistic mevar2a follows. In practice, one is likely to estimate
the mean and variance parameters using the data, and this additional variability
should be accounted for in the test statistic thus improving its accuracy. When the

remaining parameters are estimated, the null and alternative hypotheses are:

Hy: k=0, with ,0? and o, unspecified.

2
7
Hi: k0, with u,0® and 0727 unspecified.

Unlike previous forms of the score test, the estimated residual or measurement error
variance 5% may be very large in the case where x # 0.
The test statistic becomes a x? score test statistic with score given by

Al

U= %

and information obtained by defining a (4 x 4) matrix of second derivatives of the

log-likelihood with respect to the four parameters and partitioned as

82l/8/<;2 112

I, Ip

I
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where Iy is the 3 X 3 matrix containing all the second derivatives with respect to all

combinations of the three parameters o2, 03] and u. Both the score and information

are evaluated at x = 0 and the maximum likelihood estimates of 0% = 6%, o, =

03, W=

The score test statistic for the null hypothesis k = 0 becomes

ol

5 (%) ~ N(0,1). (2.13)

For our heterogeneity model, [ is given by the log likelihood approximation (2.10),

and the terms from the 1 x 3 vector Ij:

o521 _ m __'Fh'Qi - i 0'2771' + 251'(73
i | ot oPtmor (0% +Tio])?
0%l _ ‘Z« [ 2.5; ri(ii0” + 2035’,—)]
OkdoZ| _, | o2+ ol (0F+ 1102)?
an - i [ —2?"?;5', 20‘;2}1".1-
Or0p k=0 - i=1 L o? o? + ?',-o';-g

and from the matrix Ioo:

82l o f: _m — 1 1 @
002002 | __, =l 20t 2(0+r02)? of
oL,
doldoZ| _, S| o8 2(0% +rmiod)?
0?1 B f: [ T
8028021 5 N — |2(0? + ri0; E
02l " o—r;
Bu2 - Z 2 }
P k=0 =10
&°l - [ (g — )
do*dpl,_y i=1 ot




%1

= 0
80,2}8;1 o

Substituting these into equation (2.13) gives the score test statistic mevar2a. The
performance of this version of the test statistic is examined in the next Section.
mevar2 and mevar2a contain terms 7; which we have referred to as “meta
parameters”. In a general model these will need further investigation, however here
we are considering a score test, where under the null hypothesis kK = 0 we have a

linear model. Therefore in this case we are able to estimate 7);:

- 1) ~
n = lz( )U%
_ Xy — p)o?
g2+ riag

rio2(5i. — Ji)
52 + 1i02

From here we can notice that when r;02 >> &2 the estimates 7j; are essentially

n
¥i. — it). When 5% >> riaN? then the 7; are shrunken versions of (%; — f1). This
7

feature is picked up further in next section.

2.5 Simulations

Data were simulated from model (2.1) on page 7 under the null hypothesis with
k = 0 and various variance component combinations ranging from 0.01 < o2, 072] <1,
=1, m = 20 individuals and r = 20 replications.

The simulated data were used to calculate mevar2, equation (2.12), mevar2a,
equation 2.13, using estimated variance components &% = 3 ;;(yi; — 7:.)%/m(r — 1)
and 62 = Y (. — §.)%/(m — 1) = 5% /r, i.e. the estimates from a standard normal
linear model and mevarl, Section 2.2. This procedure was repeated 100 times to

give the three score test statistics for 100 simulated data sets. Table 2.1 shows a

2



typical sample of the sample means and variances from these simulated data. The
number of rejected points (5% level) from these 100 values when compared to the
standard normal distribution were noted and the results given in figure 2.2.

This selected sample is typical of the overall results obtained from all possi-
ble combinations of parameters. Generally, the distributions of the statistic under
H, : k = 0 are observed to be approximately standard normal, although there is
a tendency in the approximation versions for the standard deviation to be slightly
underestimated. It also appears that the test works better when o7 > 02, i.e. the
between variance component large relative to the random error. The test seems to
behave differently when o? is very much larger than 072]. This is because the error
term, o2 exp(2km;) is very much larger then the mean, u + 7; for all values of 7;, so
it is hard to detect a true mean/variance relationship.

Tables 2.4, 2.5 and 2.6 show the results of the null hypothesis test Hy : £ = 0
when k departs from 0. The number of rejected values appears unstable when o? >
af, (as noted for xk = 0 simulations above). The rejection is quite strong for other
variance component combinations. Notice however, particularly in figure 2.6, that
the test becomes unstable as the magnitude of the variance components increases.
This instability is dependent on the combination of x and 0%.

To investigate what happens as k is changed keeping 0727 and o? fixed, data were

2 — 1 and the results are shown in table 2.3. For this set of

simulated using 0* = o

parameter values, the score test is definitely detecting when « departs from 0. Also,
as k departs further from zero the mean becomes larger (so a P value would be more
significant), but when & is around £0.4 away from 0, the standard deviation starts
to increase enormously and the significance level may start to drop, the exact test
appears to be more sensitive in these areas.

Figures 2.1 and 2.2 show typical representations when using the same simu-

lated data to find the test statistics mevar2a, mevar2 and mevarl. Figure 2.1
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shows data simulated with x = 0 with mevar2a as the solid line. It shows that
mevar2 and mevarl are very similar under the null hypothesis. The distributions
are roughly symmetric around 0 for all versions of the test statistic. The plots are
very similar between versions of the score test. This is typical for all other plots
with different parameters.

Figure 2.2 shows the distributions of the score test statistics for simulated data
with x = 1. There is now a non-zero mean and slight skewness indicating a distri-
bution which is not normal. There is also present a change in standard deviation
between versions. This is very apparent for k = 1, but as x gets closer to zero the
standard deviations all approach 1 and the differences between the versions of the
statistic become less obvious.

It may be reasonable to assume that the test mevar2a may be different to the
others since its form is composed of a larger information matrix, therefore let’s
compare the differences in mevar2 and mevarl. In figure 2.3, both mevarl and
mevar2 were found for the same set of simulated data with parameters m = 30,7 =
10,4 = 5,k = 0, 072] = 2,02 = 1. After 100 repetitions the mean and standard
deviation for the exact statistic were 0.009,1.114 and for the approximate statistic
were 0.010,1.073. These results together with the plots show that both distributions
are very similar.

In table 2.3 mevar2 appears to be more stable than the other two. This dis-
tribution is represented graphically by figures 2.4 and 2.5. Figure 2.4 shows that
the distribution of mevar2 is roughly normal for simulated data with x # 0. As
k increases the distribution indicates an increase in standard deviation. Figure 2.5
shows that on the same scale, the means are increasing and the standard deviations
are staying roughly equal for x = 0.2, however for x = 0.6 the distribution starts to
skew and become non-normal with a large standard deviation.

The combination of 072] =1 and 0% = 1 seems to give rather odd results in figure
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2.6 and table 2.3, this was examined further. Figure 2.6 shows the distributions for
k= 0.2 and k£ = 0.6 with variance components o7 = 0 = 1. These plots show how
the distributions change as k becomes larger. mevarl appears to have the greatest
change in standard deviation, showing “skewness” for this combination of large £
and large variance components. It also appears that mevar2a is behaving better

than the others, which was not seen by first examination of the table.

2.6 Power of the test

The power of the test is defined as P(H4|Hy false ), the probability of rejecting the
null hypothesis given that Hy is false, i.e. given that x = 0. Given k 7 0 and the

score test statistic S with distribution N(pa, o4), for a 5% rejection region
Power = 1 — P(—1.96 < S < 1.96).

The power was calculated using sample distributions similar to those given in table
2.3. For each value of , 100 repetitions of simulated data with m = 30,7 = 10, u =0
and 02 = 1 were used with two different values for 0. Figure 2.7 shows that for
simulated data with ofl = 1, power is 1 around x = 0.2 and for simulated data with

o=

5 = 0.5 power is 1 around x = 0.3. For larger variance 03], the score test will reject

the null hypothesis for smaller values of .

The drop after about x = 0.5 is due to the increase in standard deviation around
this value. The exact test, shown by the dashed line, appears different from the two
approximations, it rises more sharply and then levels off roughly, but appears not

to decrease again like the approximate tests.

2

We now wish to consider what will happen to the score test statistic when oy

becomes very small. All three expressions contain terms involving the data and
approximations of the fitted effects from a linear model, and the 7; terms. Firstly

note that as 0727 approaches zero 7; = l;m 03] also approaches zero. Also, as ag — 0, n;

24



will tend towards its expected value of zero, therefore the model y;; = p+mn; +€;;€™™"
will become y;; = p + €55, a model which is independent of k, therefore estimates of
o? and p will be unaffected by changes in .

This implies that the score test statistic for the null hypothesis £ = 0 for data
with very small 03 will remain constant independent of the value of x and therefore
the power for very small 072, will always be small. k£ would need to be very large
to show any significance at all against a very small 072,, a k this large would not

realistically fit the model proposed here.
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Table 2.1: Means and standard deviations of the score statistic under the null hy-

pothesis Hy :

ranging from 0.001 to ©.

k = 0 for simulated data with x = 0, with variance components

mevar2 mevar2a mevarl
0—§ z 8 z 8 T s
iy
0.1 ]-0.065 0.728 | -0.038 0.629 | -0.097 1.077
0.01 | 0.034 0.471| 0.093 0.462 | 0.158 3.332
10 [ -0.133 1.022 | -0.008 0.962 | 0.118 1.176
0.1| 0.013 0.710| 0.074 0.705| 0.107 1.131
100 | 0.095 0.970 | 0.158 1.031|-0.064 1.063
10 | -0.110 0.890 | -0.096 1.069 | 0.046 1.058
1| 0.074 0952 | 0.037 0.969 | -0.086 0.971
0.5 | -0.121 0.955 | -0.005 0.817 | 0.039 0.985
21 0.108 0.925 | -0.081 0.947 | 0.107 0.989
0.5]-0.039 0.826 | 0.043 0.918 | -0.118 1.045
1(-0.038 1.014| 0.099 0.983 | 0.037 1.009
51(-0.070 1.057 |-0.144 0.887|-0.045 1.038
2.5 0.076 0.905| 0.118 1.028 | 0.017 0.937
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1 | 4 3 | 3 16
L2 2 3 2 3 2 3 2 5 2
0.1 22 0 20 3 2a 3 2a 3 2a 5 2a
1 3 | 5 I 5 1 4 i 3
x 2 3 2 2 5 12 ‘2 3 2
001:2a 3 ‘2a 5 ‘25 ‘22 4 ‘2a 3 :2a
001 = 005 0.1 025 i 05 : I
2
Oy

Table 2.2: Number of rejected points from 100 repetitions of the score test statistic

for simulated data with xk =0
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Table 2.3: Means and standard deviations of the score statistic under the null hy-
pothesis Hy : k = 0 for simulated data with variance components 072] =02 =1 and

various k.

mevar2 mevarla mevarl

K z S T S r S

-1 (-5.35 12.56 | -8.31 6.47 | -12.98 14.07
-0.51-6.93 1.06|-8.82 2.03|-11.86 7.49
-0.41]-6.32 099|-772 1.71| -9.66 6.80
-0.3]-5.02 1.05|-5.66 147| -6.19 1.53
-0.2]-3.68 1.09]|-3.89 1.11| -4.09 0.93
-0.1]1-1.99 095]-199 1.01] -2.17 0.82
-0.05|-096 090 |-1.04 0933 | -0.99 0.98
0(-0.19 1.03| 0.14 100| -0.04 0.93
0.05| 1.09 081| 0.96 0.99 1.01  1.05
01| 1.78 098 1.99 0.98 2.13  0.89
02| 3.69 094 | 3.81 1.23 3.94 1.04
03] 5.18 0.78 | 6.06 1.47 6.06 1.30
04| 6.11 1.07| 731 1.46| 19.95 13.67
0.5 693 099| 870 2.14| 11.42 4.65
1| 6.15 394 | 897 7.29| 1875 25.37
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Figure 2.1: Distributions of the score test statistic for simulated data with x = 0,

o7 =0.5,0% = 0.1, 100 repetitions
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Table 2.4: Means and standard deviations of the score statistic under the null hy-
pothesis Hy : k& = 0 for simulated data with x = 0.5, with variance components

ranging from 0.01 to 0.5

mevar2 mevar2a mevarl

o? @ s gy s T s
0.01 0.01| 1.134 0.994| 0.984 0.966 | 1.053 1.042
0.01 0.1 0.598 0.610 | 0.476 0.717 | 0.758 1.215
0.1 0.01| 3.524 1.200| 3.579 1.064 | 3.422 0.931
0.1 0.1 3.203 0.902 | 3.132 1.276 | 3.270 1.234
0.25 0.5 4.637 1.149 | 4.277 1.335| 5.254 1.464
05 0.25| 7.446 1.695| 7.563 1.662| 6.924 1.149
0.5 0.5 6.716 1.250 | 6.776 1.624 | T7.412 2.244
1 0.5 |10.134 2.532|10.227 1.963 | 9.494 2.036

1 1 9.578 2.185 | 8.882 1.845 [ 11.028 4.287

3N
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I 25 1 39 1 67 1 9% 1 9% 1 93

| i 27 2 3 2 8 ‘2 100 -2 100
20 0 :2a 3 - 2a 32 ‘2a 93 - 24 99 < 2a 100
13 I 59 59 197 | 99 1 88
2 2 16 2

: : 62 2 99 ‘2 100 ‘2 100
05 22 0 2a 17 ‘23 60 2a 9 22 100 2a 100

Lo 1 e 1 8 1 99 1 100 ‘1 100

o f2000 %) 30 L2 70 i 2 100 2 100 2 100
025:2a 0 2a 30 ‘22 71 ‘2a 99 ‘2a 100 ‘2 100

1 41 1 59 1 8 i1 100 1 100 -1 100

202 o) 48 2 83 12 99 12 100 2 100

0.1 i 2a 3 ‘2a 52 ‘2a 87 ‘2a 99 ‘2a 100 ‘2 100

: 7 1 66 i1 9 1 100 ‘1 100 1 100

f2 13 12 67 ) 94 2 100 2 100 2 100

0.01  2a 13 2a 7l 2a 92 ‘2a 99 ‘22 100 :2a 100

001 005 o0l . 025 . 05 |

Table 2.5: Number of rejected points from 100 repetitions of the score test statistic

for simulated data with x = 0.5
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20 ‘2 49 2 % ‘2 100 ‘2 100 2 97
05 :2a 1 ‘22 58 ‘2a 94 2a 99 ‘2a 100 ‘2a 93
| st ‘1 88 ‘1 95 1 93 il 94 i1 9
X 2 1 2 8 2 9 ‘2 100 2 100 2 100
025 2a 2 ‘2a 80 ‘2a 99 ‘2a 100 2a 100 2a 100
1 59 1 98 95 | 9 1 99 1 99

100 2 100 2 100

i
‘2 10 2 9% 2 99
2 ‘22 100 2a 100 2a 100

01 20 14 22 93 21 99

o N

I 55 ‘1 9 1 100 -1 100 1 100 1 100
S 2 49 2 100 2 100 2 100 2 100 100
001 : 2a 48 ‘2a 99 ‘22 100 :2a 100 ‘2a 100 ‘2a 100

(]

Table 2.6: Number of rejected points from 100 repetitions of the score test statistic

for simulated data with k = 1
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Figure 2.3: Comparisons of mevarl and mevar2 distributions data simulated with

k=0,00=20"=1.
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Figure 2.7: Power of the score test
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2.7 Examples

2.7.1 CD4 Count Data

Our data come from the San Fransisco Men’s Health Study (SFMHS) as described by
Winkelstein et al. (1987). Recent papers which have considered these data include
Bacchetti & Moss (1989), Brookmeyer & Gail (1988), Boscardin et al. (1998),
DeGruttola et al. (1991), Lange et al. (1992), Pawitan & Self (1993) and Satten &
Longini (1994). Bacchetti & Moss (1989) and DeGruttola et al. (1991), for example,
use the SFMHS data to model times to infection using a parametric linear growth
curve model with random effects. Satten & Longini (1994) studied the probability
density function of the time to HIV infection.

The data consist of 427 HIV+' male patients in San Fransisco who where scheduled
to visit a clinic every 6 months, however some patients visited over irregular periods
of time. Each patient was enrolled in the programme sometime between June 1984
and January 1985 and were followed up to September 1992, some patients were HIV™
some were already HIVY. The data we are considering here is only concerned with
the measurements taken after the subject was declared HIV'. At each visit a blood
sample was taken and from this a CD4 cell count was determined. The virus that
causes AIDS is accompanied by a decline in the CD4 cell count (measured in counts
per microlitre) which are white blood cells associated with the immune system. The
first HIV* observations appeared between May 1984 and May 1990. The dataset
contains the five baseline covariates for each patient: patient ID number, month
and year of the first HIV* observation, age of the subject at entry, and the number
of visits, and with each visit is associated a triplet consisting of time, CD4 count
and treatment indicator, and finally an indicator of AIDS status (-10 if the patient
developed full AIDS).

Early analysis on the entire data set consisted of plotting the distribution of age,

39



starting CD4 cell count and month of entry, these are shown by the kernel density
estimates in figure 2.8. The starting CD4 cell counts are those counts taken at the
time the patients were first diagnosed as HIVT. The mean starting CD4 count is
687.28mm? with a standard deviation of 292.66mm?®. The ages of patients range
from 25 to 54 years with an average of 38.61 years and standard deviation 8.4 years.
The month of entry ranges from 5 (May 1984) to 77 (May 1990), this is an indication
of when each patient was diagnosed as HIVT. The month of entry histogram shows
that 93 percent of patients were declared HIV* in the first 24 months, with 78
percent in the first 12 months.

The data were split into 2 cohorts. The “AIDS” cohort contains those patients
who contracted full AIDS (indicated by the -10 as mentioned above) and then were
removed from the study, and “NoAIDS” contains all patients who never contracted
full AIDS throughout the duration of the trial.

Figure 2.9 shows plots of the age distributions and the distributions of CD4
cell count at entry for the AIDS and NoAIDS data separately. The mean starting
CD4 cell count for the AIDS patients is lower than the starting CD4 cell count for
the NoAIDS patients (545.91 versus 772.54), as expected since the patients who
developed AIDS are sicker with poorer immune function and therefore lower CDA4.
The NoAIDS cases are more variable (standard deviation is 239.51 for AIDS, 289.13
for NoAIDS). The age distributions do not differ very much, the mean age for AIDS
is 35.91, versus 34.27 for NoAIDS.

Figure 2.10 shows the trajectories for the four combinations of AIDS and treat-
ment factors. It shows that the patients’ CD4 counts decrease more rapidly when no
treatment is given, in particular, the plot representing Untreated AIDS decreases at
a very rapid rate. We can also see from these plots that the starting CD4 cell count
for the “AIDS” patients were overall lower than the “NoAIDS” group. The entire

data set contains unequal numbers of observations for each patient either because
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the patient developed full AIDS, or because the patient failed to appear regularly.

To enable a more complete study, two balanced cohorts were chosen.

The selected Cohorts

From the two groups (AIDS and NoAIDS above) cohorts of 38 AIDS patients and
141 non-AIDS patients were analysed. Each cohort was selected as those patients
who attended the clinic 9 or more times regularly throughout the course of the trial,
the data from the first 9 visits were used as balanced data sets for the analyses.
The analyses conducted included investigating transformations of the CD4 counts
and simple regression analysis. The procedure for selecting the cohorts is outlined
below.

Firstly we took the number of visits for each subject (column 5), and selected
those who had 9 or more observations. The intervals between visits by each patient
was examined. A good cohort would consist of those patients whose data was
measured at regular intervals. Although the aim of the trial was to have regular
six monthly visits, there were patients who were quite irregular, a histogram of
intervals between visits for the total data set showed a large peak at 6 months. It
was reasonable to assume there were enough 6 monthly intervals to create a sizable
cohort. The intervals were firstly examined for all patients from the AIDS group
who had nine or more visits. It could be seen that there were about 50 patients who
had 9 or more visits. After a patient was diagnosed AIDS (or perhaps died) labels of
“.10” are used repeatedly to indicate a visit occurred but no reasonable measurement
could be determined, the CD4 data from the AIDS cohort was then examined to
ensure that all the data was count data. It was found that only 38 of these patients
had 9 or more CD4 cell count measurements. These 38 patients were then analysed
and shown to be a good cohort for the AIDS patients.

A similar procedure was carried out for the group of patients who didn’t develop
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AIDS. In this case there was no need to look for -10’ labels.

Transformations

Let the CD4 counts be represented by Y. The transformations considered were
1 1
Y&A:—L—é,o,i,l. (2.14)

For each subject, the mean and standard deviation of their (9 or more) readings was
calculated. Figures 2.11 and 2.12 show these means versus standard deviations of
CD4 cell counts for each of these transformations for the AIDS and NoAIDS groups
respectively. It was found that Y, Y=} and Y~3 all had increasing mean-variance
relationships, log(Y) appeared to have a slight decreasing relationship, but mostly
random, and VY had a random looking relationship.

Because of the assumptions for standard normal theory linear models having
a random mean variance relationship, log(Y) and VY were chosen as the ‘best’
transformations and used in further investigations. Figure 2.13 shows individual
CD4 cell count trajectories for the two cohorts over all transformations. The raw
CD4 cell counts declined over time as the mens’ immune systems were increasingly
compromised. Overall, the counts are lower and less variable for the AIDS cohort.
The relationship between the individual means and standard deviations appears to
be positive and linear for both cohorts. The square root transformation stabilises the
variance in the AIDS cohort, but log transformation is better for the more variable
NoAIDS cohort.

Although CD4 cell counts are count data, the numbers are large and known to

be well approximated by normal or log normal distributions.

Fitting a 2-Stage Random Effects Model

Assume the relationship between CD4count and time is linear for each patient, and

that the linear regression parameters vary amongst patients. Here time is charac-
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terised by visit number (in this case 1...9). To fit the best straight line to each

trajectory we consider the following model
Yi=p+F+bz;+Vy (2.15)

Where p is the group mean, P; ~ N(0, Jf,) is the patient effect, b; ~ N(b, o) is the
trend, z;; is the jth visit number for patient ¢ and V; ~ N(0, 0/) is the error term.

For each individual i, fit
Y = pi + bxy; + Vi (2.16)

where p; = p+ F;. Under a fixed efects model, E(j;|14) = 1, E(bllbz) = b, var(f;) =
o2 var(bh) = obd, ¢ = (% + ﬁf——x)?) ,and ¢ = TLE—)Q
Now assume random effects p; ~ N(u,02) b ~ N(b,07), and let £ denote

expectation under random effects. Then we can show
m
[ Z it — [ } =0+ o2t

1
——Zi) b.) } =02+ o2 (2.17)

Here o2 is the pooled mean square error from individual regressions -2 (Welsburg,
1985) The results from this theory are presented in table 2.7

The intercept in the above model, u;, represents the initial CD4 count for the
ith individual. In table 2.7, it can easily be seen that the mean initial CD4 count is
lower for the AIDS group than the non-AIDS group. The difference between each
group may be accounted for by assuming the patients that contracted full AIDS
were brought into the observation program at a later stage of their disease than
those who didn’t contract full AIDS.

The slope, b;, is the rate of change in CD4 count over each time interval. In this
case the time interval is 6 monthly. Therefore, in the raw data AIDS case, a mean

slope of —40.83 indicates an average drop in CD4 count of 40.83 cubic centimeters
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Table 2.7: Results of regression on raw data, log and square root transformations

I b Pooled o2 o) of
AIDS
Raw Data 648.5497  -40.83333 14687.0  30377.8 429.58
Sqrt Data 25.6378  -1.056128 8.09219 14.00732 0.3546412
Log Data 6.536823 -0.1195582 0.1076965 0.110335 0.007317455
Without AIDS
Raw Data 762.9612  -29.55331 96644.5 269616.1 1691.69
Sqrt Data 27.1866  -0.612743  35.82079 84.92848 0.6462528
Log Data 6.574461 -0.0535784 0.2739325 0.477713 0.005485728

over 6 months. Table 2.7 shows that on average the CD4 counts for the non-AIDS
group decrease at a rate of 29cm® over 6 months, which is a less rapid decrease over
time than the AIDS group. For the logged data set, the AIDS group has an average
percentage drop of 12% over each 6 monthly period.

The variance of the initial CD4 counts, o>

2, is in general a lot smaller for the

AIDS group then the non-AIDS group. Making transformations of the data does
not alter these differences dramatically.

For the raw data the slope variance, o2, is smaller in the AIDS case. However,
taking transformations alters the slope variance in such a way that for the log

transformation, the AIDS case has a larger slope variance than the non-AIDS case.

Score test results

Table 2.8 gives the estimated score test statistics under the null hypothesis £ = 0 for
the two HIV™' cohorts on the original and transformed scales. All the P-values are
small, demonstrating the presence of systematic relationships between the individual

means and the variances of the CD4 cell counts even after transformation. Note
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though, that the raw and square root counts for the AIDS cohort are not statistically
significant at the 1% level. As a comparison, table 2.9 shows similar statistics when
the parameters are assumed known and equal to the estimates from a standard

one-way analysis of variance using maximum likelihood estimation.

Table 2.8: Score test mevar2a results for the CD4 cell count data
Score test statistic mevar2a P-value

AIDS data

Raw Data 2.0563 0.040
Sqrt Data -2.0901 0.037
Log Data -7.5574 0.000
NoAIDS data

Raw Data 10.4504 0.000
Sqgrt Data 3.3185 0.000
Log Data -6.5767 0.000

Table 2.9: Score test results for the CD4 cell count data versions mevar2 and

mevarl
ol 0’ mevar2 mevarl
AIDS data
Raw Data 19103.85 29942.85 2.0311 3.296
Sqrt Data 11.491 18.835  -2.0328 -3.542
Log Data 0.14142 0.2655 -6.596  -12.268

NoAIDS data

Raw Data 50736.94 35240.48 10.533 11.944
Sqrt Data 19.9456  13.4876 3.287 3.756
Log Data 0.1456 0.1042 -6.342 -7.440
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Square root transformation (NoAIDS-Cohort) reduces the mean-variance rela-
tionship and variability observed in the data, but there is still substantial variability
unaccounted for in our modelling process. The one-way random effects model for the
CD4 cell counts on which the variance component estimates are based ignores serial
correlation, trend and possibly other effects. Nonetheless, the score test appears to
be responsive to real effects in the data, and behaves in trend as we expect from the
exploratory analyses.

The results from the two-stage regression procedure above indicated strong vari-
ation between individuals decline in CD4 cell count over time. We can use the
variance components obtained from this method (table 2.7) to get score test statis-
tics from our all parameters known methods mevarl and mevar2. These statistics
are shown in table 2.10. They show a similar behaviour as those given previously
in table 2.9. In particular notice that the mean-variance relationship for the square
root transformation (NoAIDS-Cohort) is now not significant for the approximate
score test mevar2. Allowing for trend in our analyses has not made a substantial

difference in our conclusions of the behaviour of these data.

2.7.2 Blood Pressure Data

Blood pressure data from the International Prospective Primary Prevention Study
in Hypertension (IPPPSH) were analysed by Solomon (1985) and Solomon & Cox
(1992). Repeated quarterly measurements were made on 25 men over a four year
period (r = 16). The results are shown in Table 2.11 and confirm Solomon’s find-
ings that log transformation stabilises the variance, and substantially reduces the
relationship between the individual means and standard deviations.

Solomon and Cox estimated their parameter p;; to be 0.1254 and 0.0411 for
the diastolic blood pressure on the original and log transformed scales, with corre-

sponding estimates 0.1669 and 0.0479 for systolic blood pressure. Estimating x by
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Table 2.10: Score test results for the CD4 cell count data versions mevar2 and

mevarl using variance component estimates from the two-stage regression.

mevar2 mevarl

AIDS data

Raw Data 3.0244 6.176
Sqrt Data -3.4364 -9.298
Log Data -10.6457  -28.914
NoAIDS data

Raw Data 5.8413 8.207
Sqrt Data 1.8027 2.731
Log Data -3.5111 -5.692

Table 2.11: mevar2a Score test statistic for the blood pressure data

BP Data Score test statistic mevar2a P-value

Diastolic

raw data 2.9264 0.003
sqrt 1.9170 0.055
log 0.9412 0.347
raw data 3.7178 0.000
sqrt 2.4122 0.016
log 1.0859 0.278

p11/ 04, gives 0.0248 and 0.7568 on the original and log scales for diastolic pressure,
and 0.0121 and 0.5308 respectively for systolic blood pressure. Here, the behaviour
of p1, should be consistent with the performance of the score test statistic under
Hy : k = 0, and the results presented in Table 2.11 confirm that this is so. Hp is

retained for both log diastolic and systolic blood pressure data, but rejected in the
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direction of x > 0 on the original scale.
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Figure 2.11: Means versus standard deviations for transformation of the AIDS data
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Figure 2.12: Means versus standard deviations for transformation of the NoAIDS
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Figure 2.13: Individual trajectories of the CD4 data for AIDS and NoAIDS cohorts
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Chapter 3

Laplace approximations

The following chapters deal with likelihood approximations for general models with
multiple random effects. Works in the field of likelthood approximation functions
for generalized linear models include Fraser et al. (1994), Wolfinger (1993), Lee
& Nelder (1996), Shun (1997), Shun & McCullagh (1995), Lin & Breslow (1996),
Breslow & Lin (1995) and Lin (1997) to name a few. Classic papers on the use of
likelihoods in random effects models include Gilmour et al. (1985), Lindstrom &
Bates (1988) and Schall (1991), while other authors such as Abrams & Sanso (1998)
use a likelihood approximation as a basis for a meta-analysis.

When considering a general approximation most authors firstly consider taking
a second-order Laplace approximation to the true likelihood for generalized linear
mixed models and add in some type of correction term. For example Shun & McCul-
lagh (1995) add a correction term inside the exponential term of the second-order
Laplace approximation to the likelihood. Shun (1997) uses this modified Laplace
approach to analyse data from the Salamander mating experiment (McCullagh &
Nelder, 1989). Lin & Breslow (1996) extend their results from Breslow & Lin (1995)
(see previous chapter) to allow for GLMMs with multiple random effects. Their

likelihood approximation uses a correction factor derived from Penalised Quasi Like-

ols}



lihood estimates (Breslow & Clayton, 1993).

The form of likelihood approximation presented in the following chapters is based
on a multivariate fourth-order Taylor series expansion. We will consider both the
second-order and fourth-order expansions and compare these to decide if taking the
expansion to fourth-order offers any advantage for the problems studied.

The rest of the current chapter leads discussions on background into Laplace ap-
proximations including previous work in this area. Chapter 5 is a complete derivation
of the approximation to the likelihood function starting with the most general case.
This general case is shown to the fourth-order and is applicable to all models with
terms that are crossed, nested or mixtures of these. To explore further the form
of this approximation, a complete algebraic expression is found for a fully crossed
model with two independent terms followed by a brief discussion of the form for a
model with an interaction term. Next we consider a model with two nested terms,
the form for the likelihood here is shown for the case of the linear model and a
nice form is found for the fourth-order approximation to the likelihood for a general
model. Chapter 4 concludes with discussions on expanding around the true values
of the random terms (that is expansion around zero). Finally, Chapter 5 shows
the behaviour of the approximation for simulated data, the linear form, a crossed
Poisson model, a nested exponential type model and finally a logit example using

data from the Salamander mating experiment.

3.1 Example: 2-way table

Take a model with two independent random effects a = (ay,as, ..., ar) and b =
(by, b, ..., by), distributed normal with zero mean and standard deviations o4 and

o respectively. An example is the linear model:
Yik =p+a;+b +egri=1...,mji=1.,nk=1..,n,
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where ¢ is the error term which is normally distributed with mean zero and standard
deviation 0. The conditional log-likelihood is defined as the log-likelihood obtained
by fixing the random effects a; and b;, therefore becoming a function of the fixed

effect 1 and these two fixed terms. For the linear model mentioned above this would

) Zzzl(yz‘jk—u—ai_bj)z
B 202 R

be written If;(Yijx, i, o?la;, b;) = —%log2mo separately for
each 7 and j.

The expression for the true likelihood for any model with conditional log like-
lihood [f; is found by taking expectations over the distributions of all the random

effects (m + r integrals):

m

L = (2r)~(m+n)/ / / exp{ ZQUA }: }dal...damdbl...dbr'
i=1g=1

=1

or in matrix form

_ (mer)/ a’a b'b
L=(n) / /exp{;;l %7 " 307 }dadb (3.1)

Define ¢ as a function of (yix, 4, 02, a, b, 0%, 0%) then (3.1) becomes
L = (2m)~mtn/2g mopr / : --/exp(d))dadb. (3.2)

The resulting likelihood is a function of the variance components 0%, 0% and the
fixed effects (for now assume there is only one fixed effect p, in reality there could
be many such as for a regression component X7).

As an example of the types of general models applicable here, consider for ex-
ample models whose conditional expectation is a linear function of the two random
effects, E(yi;]a:, bj) = py; = f(pu+a;+b;), for example, suppose y;; ~Bin(1, p;;) and
we have a logit link:

logit(pi;) = p+ a; + b;.

Then we have conditional log likelihood for this written

li;(ylai, b)) = wyi;log(piy) + (1 — yiy) log(1 — Dij)
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= yii(1 4 a; + bj) —log(1 + exp(p + a; + bj)), (3.3)

and therefore the likelihood is

(QW)—(mH")/QO_ZmO.ET / . -/exp |:Z Z {yij(/vb +a; + bj)__

i=1j=1
a? b?
log(1 + exp(p + a; + b;)) — 3r0% ~ Imol day...day,db;...db.. (3.4)

Although these integrals may be approximated numerically without too much
fuss, our purpose is to find an explicit algebraic expression for any model with
independent crossed random effects and conditional log likelihood represented by
If;. High order integrals such as (3.4) are complex, so we propose an approximation
based on the Laplace expansion for this expression.

The Laplace approximation is based on a Taylor series expansion for the exponent
¢, which in this case is given by 37, >7_ (I5; — ﬁ% — 5773%), about estimators
denoted a and f), where (aj,... am,z}l . 57«) is the point where the exponent is a
(local) maximum. These estimates will behave like functions of (y, 0% 0%, 0%) that

maximize the function ¢

b~ 0aB)+ 22 (ab)a—a) + 2@ b)(b - B)+ 5 (6 b)a— a)(b— )
1228, B)(a—a) + 2 5(a B)(b— b

- ] - 2 —_—
(b—b) 24-(a,b) Z4(a,b)

b’
Define a vector v = (a,b) of length m + 7 and an (m +r x m + r) matrix D

17 ) @erx © 8¢ (% T B
= ¢(a,6)+%[(aa)} sat (8 é) éaa%(a’b)> (a—a)} (3.5)

of negative second-order derivatives of ¢, sometimes referred to as the “Hessian”

matrix for ¢, making the Taylor series expansion for ¢

i = %(u — @)TD(u— i),
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Then the integral (3.2) is approximated by

T
— (4 — ®)TD(u — @)} du.
(27r)(m+r)f20AaB /exp{ Z(U @) Dl u)} B

Since the matrix D is symmetric and positive definite, the integral here is in the

form of a multivariate normal distribution, and therefore may be approximated as

|D| 2 (27)™2" and the approximation to the log likelihood is

_g10g<02>__10g03+iz(.— a ‘j’-ﬂ)—é—logavn, (3.6)

o2 2
Pl 2roy  2moyp

which is a common representation of a second-order Laplace approximation to the

true log likelihood.

3.1.1 Other representations

Shun & McCullagh (1995) and Shun (1997) use this representation in their modified
Laplace approximation. They refer to the third and fourth-order terms as correction
terms, ¢y below, and put them inside the exponent of the likelihood to obtain an

approximation for the log likelihood of the form

m 1 a? b?
—;log(oz) — Elog(oB) - —log (|D|) + ZZ ( 5 J 2) + €. (3.7)

st 2roy  2moj

D may be written as a function of the information matrix, Z, (matrix of negative

second derivatives):

Im_lf - Qz_l;‘ - Al
D = o4 oa sad
_( a2'c )T ] 1 62lc
saob re%  ab®
= Y147

where ¥ is the (m +7) x (m + r) variance matrix for (a, b).
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To show that (3.6) is the same as the expression used by Lin & Breslow (1996) we
need to express it slightly differently. By rearranging (3.6) slightly the log likelihood

approximation is equal to

o~ jC 6%2 E? \ 1 2 2 -1
ZZ lij - 27”0124 - 2m0)25) - 510g(HUAHUB|I+IE“E )

J

- iz(z a5 )—glogmle) (33)

2ro%  2mo%

which is written in the form used by Lin & Breslow (1996). They refer to (3.8) as
the first order Laplace approximation for generalized linear mixed models. They
extend this to create an approximation using penalised quasi likelihood estimates;

they concentrate on correcting for bias due to these estimates.
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Chapter 4

Approximate likelihood functions

4.1 An approximation to the likelihood function
for general random effects models

We wish to find an expression for the approximate likelihood function which al-
lows for a model containing p sets of variables. Given p sets of independent normal
variables, b1, by, ..., b, with variances o, 03, ..., 07 respectively, each b; is a vec-
tor containing r; elements. Let Y ;r; = N. The likelihood is given by finding

the expected value of the conditional log likelihood I., where the N variables have

multivariate normal distribution with mean zero and variance matrix >

(—2”)—;@//.../6)@ {Zlc_ %UTEAU} du (4.1)

where u is a vector of length N, u = (b], b7, ...bg). The conditional log likelihood
I, is a single number dependent on one particular value from each of the p variables.

Firstly define a matrix D of order (N x N). Take the conditional log likelihood
as a function of the p sets of variables and find the second derivative w.r.t. either

one or two of these and sum over the remaining (p — 2) sets of variables to create a
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matrix for each combination of sets of variables:

. A,
(i g) = Z Fbuby, (diagonal matrix)

1111 g J
= 0%,
l12(7’7j) = Z abl b2

iD2;
= 0?1
ha(i,j) = :
m; .y OD15bsg;
ete...

Then [); is an (1, x ;) matrix corresponding to the sets by and b;. The matrix D,

as defined before, is partitioned as

pllfrl — —l1 —l13
A .
% —13 I, — I3
3

where I, is the identity matrix of size r1. Let J = (j1,J2, ..., Jp) be a sequence of
nonnegative integers with norm |J| = j1 + jo + ... + jp and J! = jilj!. ..l A
general fourth derivative is given by |J| = 4 and the differential operator

o
obl 0b} ... ob%

dy=

A fourth-order Taylor expansion gives the expression for the approximate likeli-

hood as

exp {Zl — —UTEQU} |D|'/? 1 T -
PRIEE / YIE exp {—i(u—u) D(u—u)}

1+ir§2m S {Z }'djl x (u— @) (u_a);é (u—u)JpHdu

i=1j=r1+1 p=N—-rp |J|=4

The first term of the integral is in the form of a multivariate normal distribution,

u — @ ~ Ny(0,D71), since the matrix D is symmetric and positive definite.
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Moment generating function
The moment generating function for a multivariate normal distribution is written
I ry
M(u—ﬁ,) (t) = exp{ét D t},

so to find the fourth-order terms of the likelihood approximation we need to use this

expression to find
3161 +ko+...

Y M a®)| .
oot . )()t:O

E((u-a)f(u—d)f..)) =

In our fourth-order likelihood approximation we have 5 different types of expected

values to find; define these by

4,0,...,0),7j; = 4 for some %

—

3,1,0,...,0),5: = 3,j; = 1 for some i # j

2,2,0,...,0),7 = 2,j; = 2 for some i # j

) = (
) = (
J(2,2) = (
) = (2,1,1,0...,0),5; = 2,j; = 1,5 = 1 for some i # j #k
) = (

1,1,1,1,0...,0),5i=1,j; = 1,jx = 1,5, = 1 for some i # j # k # L.

Now we find expressions for each of these in turn.

Consider the following expectations (where D;;' is the ijth element of D1):

ot
4exp{ tTD 't}

E(u— fb)‘ll o7

t=0

_ - N _ N N Ry
= (3(D111)2 + 6D (h Dy + Z tjD1j1)2 + (D + Z tjD1j1)4) exp{QtTD '}
i#1 J#1

t=0

= 3(Dy")?

_ 5 N
Blu - a)i(u— )} = gazm (57D

t=0
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i (D;llD;; + D Doy + ) tjD;jl)2
J#2

+2(D)? + 2D, (D + D tjD;jl)(tQD;; +3° tjD;jl)
j#1 7#2

1
+ terms involving t) exp{EtT'D—lt}

t=0
=Dy Dy +2(D1;)
Similarly,

E((u-a)}(u—1i)) = 3DyDy
K ((u — )7 (u — @)a(u — ﬂ)B) = Dy'Dy + 2Dy, ' Diy

E((u—@)1(u— @)o(u—@)3(u—%)1) = DDy + DDy + Dy Doy

Therefore the Laplace approximation to the true log likelihood for a model with

multiple crossed main effects is

%ic— %aTz-la— %log(IDEl)JrZ{ > diw ( )

N S J(4)]

Y dyenl3D; D5t +ﬁ S Dol (DF'D;} +2(D5")’)

i 1 17GD) 17@2)]

tomm 2 ek I. (D' Dy + 2D5' D)
e |J211)|

+ 3 draainle (D "Dt + D' D; +D1.711>;,§)} (4.3)
1J(1,1,1,1)]
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When directly compared to (3.7) we can see that this is in exactly the same form
and the correction term here is simply the terms resulting from the fourth-order

expansion.

4.1.1 Models with nested random effects

The nested case may be represented in a similar way as equation 4.3 for crossed
models. In the case of two random effects, the matrix D (partitioned) is given by

the (ry 4+ 7172) X (r1 + 7r172) Matrix

[ 4 0 ... 0 |l 0, ... O
0 Ay ... 0 O,  112(29) ... Op
. 0 0 A, Or, Or, li2(r1j)
IL(15) 0, Or, By 0 0
Or,  I12(29) Or, 0 B 0
\ On O, ... I(rj)| O 0 ... Bun )

where 0,, is a 0 vector of length ry, and

1 2 .
Ai - - l ¥
ra0? j§:1 11(23)
B 1 i (i5)
iy = 5 ¢
j o3 22\2]

ho(i7) = (l12(61),112(2), - . ., lia(ira)).

For many random effects this matrix has dimensions (r1 4+ rirg + rimer3 + ... F
I, 7)) x (ry 4 rire + rirers + ..+ T ;) which is very big! The next section

shows an explicit form of the second-order approximation for nested models.
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Additive models

For models where the effects always appear as a summation, as in the previous logit
example, each combination of second and fourth-order derivatives are the same, i.e.
liy = lip = log and lj111 = Liiie = li1ge = .... Proof is given by the chain rule as
follows:

The conditional log likelihood is a function of a summation
l=f(g(x)), where g(z) ==
Now,

g(x) = 1+ T2+ 23+ ...

b9 () = 1 for all 2
8331'
2
&g(@) = 0 for all 4, j combinations
81‘18%]'

The derivatives of the function f(g(z)) are

%ﬂix)) = ¢(@).f (g(2) = £ (9(z))
21 (o(x)
0z;0x;
similarly
9 ()
01,0x;0x,01;

= ¢"(2)-f' (9(x) + (¢'(@))" 1" (9(=)) = f" (9(=))

= f"(g(z)).

This simpilifies the expression for the approximate log likelihood by grouping all
the fourth-order derivatives. This proof will be especially useful in Chapter 5, where

we find the approximation to the likelihood for some examples of additive models.
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4.2 Approximations for models with two random

effects: explicit expressions

4.2.1 Two-way crossed with no interaction

The fourth-order Taylor series expansion for a function f(z,y) around two variables

(a,b) is
4 p o
) S

The function we wish to expand is ¢, as defined earlier. “f(a,b)” is ¢(a, b):

ZZZ

i=1j=

2 r b2

-2

j=1

20A 202"

We wish to expand around (&, b), hence our approximation to the true likelihood is

found by expanding this as below:

—(m—+r -m ,_—T LA 7 a’zg 62
(2m) ( +)/20A 05 /.../epoZ[lc i 32

2roy  2moj

im1 j=1

1.~ . 1 N 1, .. 1 =
+§(111(U) - E)(ai —a5)% + 5@22(”) - m_o%)(bj — b;)?

INZE = 7 1~ 3, 1y 7 \3
+119(47) (a; — @) (b; — b;) + 6l111 (a; — a@;)° + 61222(51‘ —b;)

1. e s i S, 1 .
+—l112(ai = ai) (b] e bj) —+ —llgg(ai — ai)(bj — bj) + —lun(ai — ai)

2 2 24

b lyan(bi = By) + <z e — ) (b — by)

24 2222 6 1112\04 — a4 5 '

L ) S, 1s ) )
+ 6[1222((]4 — ai)(bj — bj)3 + Zlugg(_ai — ai)z(bj - bj)Q dal...damdbl...dbr.
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In the notation above, the number of digits in the subscripts for each [ representing
the order of differentiation of the conditional log likelihood fij, that is, 2 digits such
as l~11(ij) or Zlg(ij) represents a second derivative, 3 digits such as l11; represents
a third derivative etc. The actual numbers themselves represent the variables the
differentiation is with respect to, 1 refers to an a; and 2 refers to a b;. For example,
In(if) = d?lij/da?|a=s;, hi2(3§) = dli;/day...damdby...db,| s, ;. _5,and similarly for
higher orders.

The method is to complete the square and make substitutions for a; — a; and

b; — b; so that the integral is in the form [ [exp{—3{L, ¥7/2 — 35, 3 /2}dydz.
First rewrite the above expression as
1 (& A _ "\ B; ~
Constant] /exp — (S e —a)>?+ ) = (b — b;)?
2\i50a 508

% (1 + third and fourth derivatives)da;...da,db;...db;

where A; = 1 —Y_, In(ij)o} and B; = 1 -7, lo2(i5)0%. A second-order approx-
imation to the true likelihood is defined as the first term of this integral, i.e. the

exponential term. A second-order approximation is

exp Xily Yj—1 (ic - 2:0 -

zma)/ T e |- > B By
(2m)(mtn)2g R o . f b)

=1

L =

A B
—2 i CLZ -2 Z Z llg ’Lj - al)(bj - bj)}:| daldag e dbr (44)
0a

i=17=1

Since all the terms a; will have similar integrals we can make a general substitution.
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; o oa Xy (i) (b — b)) _ 0a
- (a; — ;) A and da; = JA

m r 7 a2 b2
exp ) ioy i1 le — 54

s .
J 2ra4 2mazB )
PRl [ } Jofew

Let y; = dy;, and we get

{ 5y —L(b; — by)?

1UB

1=1 A,;_ dyldymdbldbr

RS ) WY NEYSSF
111

(271') (m+r /20- I \/_

P

UB =1

b
_2Z§01Iu(s} bi)!u(zk)(b,g ;L)} by
k#j 433

i=1

Now create an (r X r) symmetric matrix C' = diag(B;) — o20210(i7)  diag(A; o,

where
B 0

dlag(BJ) = 0 B2
The above integrals can now be written in the form we require,

/ /exp { % _ —1—(b DTk - 5)} dyr...dymdbr...db,

26

m 2
- |C|1/2/ /exp{ ; - XTX}dyl“'dymdxl-ndxr

where X is a vector of length 7 with elements z; and there exists an (r X r) matrix

P such that X = P(b— b)/op and PTP = C, also |P| = |C|"/2.
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The second-order terms of the Laplace approximation can now be written

exp ity iy <l~ —Ly )
2 / /exp{ i A ly’ — lXTX}dyl...dxr
(271') m-I-r)/QH \/_|C|2 2

xp T o (e~ iy~ g
Hi\/_i|o|2

The second-order terms of the approximation to the true log likelihood may also be

(4.5)

written
~ 2 BQ

s ( ) - 5 log (diag(4)

27“0 2 2mod
x |diag(B;) — o403 (if)" diag(A7 ) a(ig)]) - (4.6)

If we create a partitioned matrix D,

0 C

D=

then 4.6 becomes

iz ( & __ 5% 2) _ %10g(|D|). (4.7)

2ro3  2mo B
|D| is equal to |D| in section 3.1, and thus compares directly to past forms of the

Laplace approximation, especially Lin & Breslow (1996).

Adding in the higher order terms

Now return to the fourth-order expansion. We need to express the third and fourth-
order terms in terms of y; and some vector X representing the substitution for b;.

The full substitutions are

T

ai—di =

and b; —b; = op(PX);.
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Note here that the transformation for b; — Ej can be written op > ;_; Pﬁclxk and also

Plp=Cc — Y .C;=>_P
J=t 4,J
and

—1( p—1\T -1 p-1y2
PPy =0T — Z =>_(P7)
0
Remembering that the first and third moments are zero for a standard normal,
the third and fourth-order terms in the series become

: 5 :
zz[ i (“’Aﬂ + 24 alig)os(P~ X)) + A;‘uf(zzuu)mstp )))

i=1j=1 M j=1

(1)i (?GASB% Z?u i) (P X);) (P X); + 74¢ B(Zlm GPTX) (P ]X))

Ji=

1~ o4 o%y? OhTE
ol (— PV (P=1X) 4 TATB (S D) (P X),((P" 'A)))
1 j=1

l: 0305 <+ ) ; - T 4
+ -31222 52512(’&? 1X);((P1X);)% + 45222201{3((1) X))
i=1

1'
The fourth-order approximation to the true log likelihood for a two-way crossed
model with no interaction is found by multiplying this by exp { ™oyl =Xt X}
then integrating w.r.t. all the y; then the z; and putting this together with (4.5) to

get

2
1 mor - 0_4 O' O' roor
+3.2. . lun;l% ( A £ [112(13 )12 (1K) Cy; ])

j=li=1 1 j=1k=1
- 040% 04BN [7 T (i =1]y -1 UAUB
2 =2 | (1+ =1 (i) 2 (iR)C | Ot + 221 (3 (i) O )?
! v j=lk=1 % P



4 2 r
+4l112 j‘4 ( f‘4 ZZ [112(i5) 12 (k) Ci ]) Z (ik)Cit

U U _
+4l222103 A £ Z Icll,{Q ki) +l2222043(0jj1)2]

where C’j_jl are the diagonal elements of the matrix C~', the inverse of C. This may
be written in semi matrix form as follows:

Define a vector A of length 2 with elements referring to a particular ¢, 7 combination:

a2 0%6% —r 7 /- —
A o 1—4‘?'(1 + —A:A_lﬁ 2]21 llQ(ZJ)Qijl)
O’%Cj_jl
Then

m i __‘_ aZ bZ 1
~ lc - : — = — 1 — =1 C

jz::l = 2ra?  2mo% Z og(4 2 og(|C1)
12 [ L f1122 2 ~

+§ Z AT = 5 A+ 4 A l12(Z])C ( line lioo )A (4.9)

.

=lLi=1 | lize  logzo !
Investigations of expression (4.3) for two random effects (p = 2)

As an example of the indepth form of expression (4.3) we now compare (4.8) above
to our previous general expression. We will now take our approximation (4.3) and
rewrite it in its explicit form; this is made easier by the fact that there are no terms
with J(2,1,1) or J(1,1,1,1) and some nice symmetries appear. Firstly rewrite
matrix D in terms of A and B,

Ai = 1- O'iZle(Z_])

J=1

Bj = 1- 0'%3 Zigg(’t])

i=1
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D — ﬁ;dia~g(Ai) —ilz
—lfz ;%diag(Bj)

An expression for the inverse of D (= D™!) may be partitioned as

D_l _ Dl_ll D1—21
Dy Dy

_ o3diag(A; 1) (I + o%o% l~120‘1lN}12diag(Ai_1)) o2 odiag(A; )0t
0%03C T diag(A; ) o3C™t

Consider the term l~1111 in equation 4.8:
hin = dyale

Remember here that J = (j1, j2, - - - » Jr4+m), s0 for the term l1111 J(4) refers to some

4i = 4, for one 7 in [1 : m:

2
l~1111(73111(%))2 = 5‘4—’3 {1 i 0,240129 Z [Z ilz(ik)ck—jliﬂ(ﬂ)l‘li_l} }
J

j=1k=1

2
0.4 0.2 0.2 T T . L . )
= A—g {1 —+ IZ‘B Z Z [l12(2])l12(1k)ckj1:l} )
Similarly:
Z2222(D2_21(jj))2 = 043(0;1)2

UAUB

I Dy (37) Dot (5i6) = Colly (ki)

’L

2.2 r
Z Z [lu ZJ l12 ’Lk)Cm ]} Uz& Z llZ(ik)Ck_jl

Al k=1

o’ o402
hne Dy (@)D (i) = - {1 + =7

hzz (D1 (6)D3 (j5) + 2D55-65) Dai' (59))
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) 2?6 B o ) i )
o L1 S S iatncg] by <2528 (S e

j=1k=1 k=1

All these expression can be directly compared to (4.8), so for models with two crossed

terms, these expression are equivalent.

4.2.2 Two way crossed with interaction

Models in this category, such as vijx = p + a; + b; + ¢i; + €% have two random
effects a; and b;, as before, but now include a random interaction term c¢;; which
is distributed with mean zero and standard deviation oc. The likelihood for these

type of models is of the form

a? b? c2
/ / [/ /exp {ZZ ( 202 2mja,23 — 20%) } dcu...dcmr} day...da,,db;...

i=1j=1

and we need to integrate out the three random effects by making an expansion
around three terms etc.

Consider the second-order terms. Firstly integrate out the c;; variables to get an
approximate integral

11 NI 555 (a%(l]s(ai — @) + (b — Bj))2> .

ij 1 - 1330'(- 2(1 e l330’%)

exp [ 3 {0 a0 L) o,

ro? mog

_%xmmr@M@‘@%H

Now define
Ali - (1—11](2)?03‘1 B Zlgglj)20%2>
= ro% 1— I33(47)0%
and
n 1— ng(Z])mU 523(?:_’}')20'2'
Bl, =Z< 2 B_- 7 --'(-z
—1 maop 1 — lys(ij)oé

74
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and the approximation becomes

/-'-/exp—%{i(ai—di)2A1i+i(bj—b )2B1; —QZZ i — i) (b; — by)

i=1j=1

q 7 . Z’ e 2
« (oalis) + b (1) 23§§J)02'c)} day...damdb; ...db,. (4.10)
1— l33(’L])O’C

This is of the same form as (4.4), so the procedure from here follows exactly the
same method as before. Remembering that each second derivative of the conditional
log likelihood has (m x r) terms corresponding to each ij combination, we can define

an (m x r) matrix L2 with elements L2;; given by

li3(i5)las(ig)o 20
1 — ls3(ij)od

L2 = Lia(i5) +
Now define a new matrix C'1 as
C1 = diag(B1;) — o405 L2" diag(A1; ') L2

and the second-order Laplace approximation is

iz le G _ B? - ‘i —lilog(Alf)—llog(lClD. (4.11)
P C 2r0%  2mo%y  20% s S2

The fourth-order terms may be found explicitly by following the procedure outlined
previously, or using the general formula with D defined using a mixture of nested

and crossed terms.

4.2.3 Models with two nested random effects

The standard normal theory linear two-way nested model, with b;; nested in a;, may
be written i, = p+a; +bij + e withi=1,...,m, 5 = 1,...,;and k=1,...,n
The a; and by; are random effects with a; ~ N(0, 0%) independent of b;; ~ N(0, %),

e ~ N(0,0?) is the random error term.
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b2

“arg edb;da;

The true likelihood in the case of a nested model is
I - ﬁ/oo 1 a 20_' H/
i=17-% \/210% \f27m
b2 42
_n o1 b=
= H/ I:H/ (2r0%) 2 (2mog) " Ze B Ti%adb;| dag

where [;; is the conditional log likelihood.
The true log likelihood for a normal theory linear model (balanced) is

_mrn log(2r) — mr(r;— 1)

log(c®) — _75 log(nro’ + nog + o°)

m(T _ 1) 2 2 1 2 n OB Zz](yw /1')
_ 1 _ )2 =
5 og(nog + o) 557 ;j k(yz]k 1) o
2
w20t S (S0 — )

(no% + o2)(nro? + no% + o?)

as given by Searle et al. (1992).

Random effects may enter non-linearly, which causes the integral representing
the true likelihood to be intractable. The integral may be approximated with a
Laplace approximation using a Taylor series expansion for the exponent. Similarly

to the crossed case, the expansion is

B2 52 . a2 - b -
c H : - : () ~1 ly — - b’L - bz
20%  2r;0% + (& mai)(a @)+ (b a%)( )

1 .. 1 _ 1. 1 = = B .

+'2‘(l11(w) — —)as — @)? + = (Ilaa4g) — =) (bij — biz)* + ha(ig) (@i — @) (biy — biy)
04 2 ok
1 _ 1 . 1- . .
ﬁlllll(a ai)4 + ﬂl2222(bij - bij)4 111122( P ai)2(bij - bij)2

. ~ 1 _ B
+6l1112(ai — ;)% (bij — bij) + ‘él1222(ai — ;) (bs; — byj)°

As in the crossed case, I, = l.(d;, l;ij) i.e. the conditional log likelihood (fixed a; and

bi;) substituting in the maximizing estimates a; and I~)U Similarly for all conditional

log likelihood derivatives.
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Firstly integrate w.r.t. by;:

/eXp {—% [(bij - Bij)Q(Ul—% —Inlig)) — 2(bi; — biy)ha(ig)(a; — @)
+ (a; — di)z(% - le(ij))} } dbi;

T’iO-A

2

= /ex _1 1-— l~22(ij)0'123 (b N B) B le(ij)O'B(ai . ai)
N = 2 0B i i m

l2 Z”O'2 CLi—NiQ - 1 Y ..
_ () ~B( = 2a ) + (a5 — ) (— — l11(70))] } dby;
1— ZQQ(Z])O'B 7’.'L‘O-A

Now integration yields

_2_7WB exp _l(ai — ;) L= lulignog ZFQO%
) 2 2

1-— lgg (Z] o rio_?‘l 1- l22 (ZJ)O-QB

1
2

Now multiply by (2rc%)~2 and take the product over j to get

ri ri 1 — 1143902 2. 52
H eXpZ—g(ai AT [ 1 (i5)rios - 1298 }

1 — lQQ(l]) j=1 Tio% 1 — lao(ig)o%

Integrate over a;

N

LY [ 1 (1 — I3 (i5)ri0%) (1 = Ina(4§)0%) — Byoh0r;
izl_Il {31—11 V1 — lao(i)0% l; ri(1 — o2 (i) 0%) }

So the second-order approximation to the true log likelihood becomes

|

- B a 1 Wi
Z lc - F Te—— = -2—10gB = Z Elog(C) (412)

i=1

where

B = 1-lyp(ij)od

" (1 — I (if)ric3)B — 12,0%0%7;
G = Z Bri 12V B

j=1
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Now, making the substitutions

l120’%( - di)

B

<
S

o
g

Il

0B
=W+

\/—

a; — &Z = C X
into the Taylor expansion for the higher-order terms, we get an expression for the

fourth-order Laplace approximation to the true log likelihood:

+ Z B4C2 [lllllB + 4l1112l12038 + 2l1122033 (CB + 3[120'3

- 4l1222l120'BB(BC + llQOB) + lQQQQ(CBO'B —+ llQUB) ] (413)

4.2.4 Expansion around the true values

Solomon & Cox (1992) find an approximation to the true likelihood by taking the
Taylor series expansion around zero, i.e. the true values, using a fourth-order approx-
imation. For a crossed model with two independent random effects, the second-order

approximation is

ZZl — —1og IC]) - —Zlog Jlxrlelag(A D Jpr + 7KTO 1K
i=1g=1
(4.14)

where C' is the (m x m) symmetric matrix

C = diag(B;) — 050515 diag(A; s,

K is a (r x 1) vector:

K = o3Il diag(A7 )] + Iy

and lNC is evaluated at a; = 0,b; = 0.
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The second-order approximation to the log likelihood for a nested model with

two random effects is
m
=1 J:

+%i{ (lB—Ci—UBlgllg /B ZZQO'B}

1=

ri

l\)l'—‘

<l~c - %10g8) Z

e,
—_

—

where

B = 1—l~220%3

7 e i (1 — lyyri02)B — By0%0%r;
= Br;
also defined before.

Lin & Breslow (1996) generalize these forms and discuss Solomon-Cox approxi-
mations for GLMMs with multiple components of dispersion, and use it as a “step-
ping stone” to derive their bias correction procedure.

These approximations have the advantage that there is no need to calculate the
maximizers d; and Bj. One problem is that to expand beyond the second derivative

is not as straight forward as the Laplace approximation since the expected values

for odd powers do not cancel and thus the expression becomes very complicated.

4.3 Using approximations to the log-likelihood in
estimation of effects in mixed models

Firstly take the Laplace approximations. To estimate the components of some
(known) model we take the conditional log-likelihood for that model, choose start-
ing values, estimate the local maximisers (for example a; = I1(i,7)0% and b; =

) (4,7)0%) as functions of the starting values, substitute these into the approximate

79



log-likelihood function, maximise this to obtain new estimates of the model compo-
nents, use these to find new local maximisers and so on until the iterative process
converges. This process is similar to a Newton-Raphson type algorithm.

From the expansion around the true values, as mentioned previously, to estimate
components of a model we avoid the internal process of finding the local maximum at
each level and use the values from the previous iteration, similar to an EM algorithm
approach.

Lindstrom & Bates (1988) compare the Newton-Raphson and EM algorithms.
They conclude that although the EM will converge, it will take many more iterations
than the Newton-Raphson. We can make a comparison here with the two methods
of likelihood approximations and conclude that the Laplace may be preferable when
estimating components from a model. For this reason the simulation Chapter which

follows considers the Laplace approximation only.
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Chapter 5

Simulations of the likelihood

function

To illustrate properties of the likelihood approximation, I will use it to approximate
all the fixed effects and variance components for four general models. The examples

I will use are
1. linear model — this will enable comparison with known results,
2. Poisson,

3. a logistic regression simulation including an example from the Salamander

mating experiment,
4. and a normal nested model with exponential mean.

Suppose, for example, our model contains one fixed effect and two random effects.
The parameters we wish to estimate are (4, 0%, 0%). The estimation procedure may

be considered as two stage. The steps are as follows:

e Firstly fix initial values for (u, 0%, 0%)
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1 Find a;, b; as functions of (fi,6%,5%)

2 Substitute these into expression for the Laplace approximation and maximize

this to find estimates (f, 5%, %)

e Repeat stages 1 and 2 until the approximate log likelihood is a maximum.

5.1 Two-way linear crossed model

To investigate the behaviour of the approximations to the likelihood, firstly consider
the normal theory linear model. The approximation for this model is simplified
because the third and fourth-order derivatives of the conditional log likelihoods are
zero, and so we will only need to consider up to two derivatives. A linear crossed

model with 2 random effects and no interaction is
Yijk = uw+a; +bj +€ijk,With 1= 1,..,m j = 1,...,'[‘ k= 1,...,n

where a ~ N(0,02), b~ N(0,0%) are the random effects and & ~ N(0,0?) is the
random error term. We simulated data using this model with r = m = 20, n = 2

and found the Laplace approximation to the log likelihood using the conditional log

likelihood

Sk (Yige — 1 — a; — by)?
202 '

n
le(yijklas, b;) = 3 10g(2702) —

The estimated values of p, 04,05, 0 were compared with the results obtained from
a random effects analysis of variance (with maximum likelihood method). Table 5.1
shows estimates from two different sets of simulated data. They compare reasonably
well. The estimates of the fixed effects are identical, but there is a tendency for the
variance components o4 and 0% to be slightly underestimated by the approxima-

tions.
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Table 5.1: Estimates from a linear model with two random effects

b o 0% o2
Approximate likelihood 1.07471 0.93751 0.58527 1.037188
RAOV 1.07471 0.96906 0.59796 1.037165

Approximate likelihood 0.42698 0.09894 0.14636 (.41794
RAOV 0.42698 0.10141 0.15142 0.41792

5.2 A Poisson model

Consider Poisson simulated data with two independent crossed random effects, a; ~
N(0,0%) and b; ~ N(0,0%), and E(y;|a;, b;) = exp(p + a; + b;).

The distribution is Poisson with conditional log likelihood given by
Le(yijlas, by) = i (1 + ai + by) + exp(p + a; + b;) — log(yyg!).

From here:

L = yi+exp(p+ad;+ b,)
i = exp(p+d+Db;)
and
i = exp(p+a; + lN)g)

The expression for a Laplace approximation to the true log likelihood has the foru

(4.8) with

A = I—Zexp(u—i-di—ki)j)ai

J

B; = 1-) exp(p+di+ b))%
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Table 5.2: Estimates of the variance components for simulated Poisson data with

various starting values

Simulated values 2nd order 4th order

I 04 OB 7 oA OB Log-lik L oA OB Log-lik

1 1 1 1.711 0.962 0.706 -9227.734| 1.711 0.962 0.706 -9227.671
1 1 1 1.220 0.936 0.999 -6327.444 | 1.221 0.936 0.999 -6327.349
2 0.707 1 2.093 0.656 1.009 -18390.44 | 2.093 0.656 1.009 -18390.40
3 0.316 0.316 | 2.932 0.305 0.321 -17436.00 | 2.932 0.305 0.321 -17435.98

Table 5.2 shows estimated variance components from the second and fourth-order
likelihood approximations for four simulated datasets with m = 7 = 20 and values
for the fixed and random terms as given in the table. Most estimated values appear
close to the true (simulated) values. There is little to choose between the second
and fourth-order approximations in these simulations. p is over-estimated by both
methods. Note though that the log likelihood is slightly higher for the fourth-order
approximations in each case.

The Laplace approximation to log likelihood for simulated Poisson data with
values 04 = 0% = 0.1, m = r = 20 is shown graphically by figures 5.1 and 5.2. The
estimated values are 4% = 0.074 and ¢5? = 0.106. The plots show a well defined

curve and definite maximising near the true values.

5.3 A nested model

Consider normal data v;;; with two nested random effects, a; and b;; and mean
E(yijr|ai, bij) = exp(u + a; + b;) and variance o®. The conditional log likelihood is
written

n 1
l, = 5 log(2mo?) — 52 > (Wijn — exp(p + a; + bij))’ (5.1)
P
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The derivatives of the log likelihood are

g

1
h = lb=— > exp(p+ ai + bij) (yije — exp(p+ ai + bij))
k

n
i = he=lp=4L- ) exp(p =+ ai + by)?
on
hin = lu— ) exp(p + a; + bi)”
hie = liize = lizes = laoo

Data were simulated over a range of variance components using 7 = m = 20,n =

5,02 =0.1 and p = 5. For each set of variance components, the same simulated set

of data was used to find both the second-order approximation and the fourth-order

approximation to the log likelihood by substituting these into equations (4.12) and

(4.13) respectively. The results are shown in table 5.3. The estimated values appear

to be close to the simulated values and, for this model at least, a second order

approximation is enough.

Table 5.3: Variance component estimates for the exponential nested model for both

a second-order Laplace approximation and a fourth-order approximation.

second-order

fourth-order

oA OB Ta 0B Fa 0B
1 1 0.876 1.031 | 0.876 1.031
1 0.71 | 1.036 0.747 | 1.036 0.747
0.71 1 0.662 1.026 | 0.662 1.026
0.71 0.71 10.744 0.756 | 0.744 0.756
0.5 0.71]0.479 0.719|0.479 0.719
0.5 0.5 |[0.485 0.538 | 0.485 0.538
0.71 0.5 |0.726 0.498 | 0.726 0.498
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In figure 5.3, data were simulated with ¢4 = 1,0% = 1,0° = 0.1, = 1,m =
20,7 = 20,n = 5. The approximation to the log likelihood function for these data
was plotted against its parameters 0% and o%. The function appears to be maxi-
mizing near the true values of the parameters, although the log likelihood functions

are rather flat for values greater than the maximum.

5.4 The Salamander mating data

Shun (1997) used a Laplace approximation with data from the salamander mating
experiment, where ten male and ten female salamanders from two populations (rough
butt (RB) and white side (WS)) were mated. The full set of data is described in
McCullagh and Nelder (1989 page 440). We wish to use these data to find estimates
for the variance components, ignoring the populations and assuming 20 independent
males and females (random).

This binary y;; is a measure of success or failure (O=failure, 1=success) when

mating female f;,4 = 1,...,20 with male m;, j = 1,...,20. The model is
logit(P(yij = 1|fi,mj)) =on+fi+mj, (52)

where f; ~ N(0, UJ%) and m; ~ N(0,02,) are the random effects, and « is the vector

of fixed effects, & = (u, WSy, WSm, WS; x WSp,). The conditional log likelihood is
Le(is| iy mj) = yij(Xa + fi + my) — log(1 + exp(Xa + fi + my)). (5.3)
The derivatives are

i = lhp=lp=-K+K°

iy = —-K+7K?—-12K%+6K*

- l1112 = 11122 . l1222 = 12222
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where

_exp(Xa+ fi +my)
L+exp(Xa+ fi +my)

The estimated values for both the fixed and random effects are shown in table 5.4.

The estimated standard errors for the random effects were calculated numerically

by fitting a quadratic regression through the approximate log-likelihood function.

Table 5.4: Estimates of parameters for the Salamander mating experiment

second-order fourth-order

" 1.335 1.330
WSy -2.940 -2.935
W S, -0.422 -0.436
WS; x WS, 3.181 3.196
of + SE 1.255:£.63  1.2594.67
Om £ SE 0.269+.79  0.344+.75

The second-order estimates are comparable to the estimates obtained from past
authors, see Shun (1997) Uncorrected Summer '86 results. Contour plots of the two
approximate likelihoods are shown in figure 5.4. From this we can see that the two
are very close, although again the likelihood is better defined for the fourth-order
approximation.

Table 5.5 was produced using simulated data with 20 females (m = 20), 20 males
(r = 20) and g = 1. In most cases the estimates are greater than the simulated
values. There is only a slight difference between the fourth-order and second-order

estimates in about the third decimal place.
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fourth-order

Table 5.5: Variance component estimates for the logit model for both a second-order

Laplace approximation and a fourth-order approximation.

second-order

01 1

0.5
0.5
0.5
0.2

0.5
0.2
0.1
0.1

20, p = 1
1.230
1.552
0.218
0.675
0.441
0.171
0.244

1.250
0.222
1.144
1.039
0.569
0.589
0.301

1.240
1.584
0.217
0.672
0.440
0.169
0.244

1.258
0.224
1.153
1.040
0.569
0.585
0.301

m =71 =
0.5 0.5
02 0.5

20, 4 = 2
1.104 0.697
0.349 0.765

1.157
0.361

0.724
0.793

m=40,r =10, u =2

0.2 0.5
0.2 0.2
0.1 0.1

0.517 0.771
0.665 0.395
0.333 0.209

0.537
0.697
0.340

0.794
0.408
0.212
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Approximate log likelihood

Figure 5.1: Profile plots for Poisson simulated data with 03 = 0.1 and 0% =0.1
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Figure 5.2: Approximate log likelihood for Poisson simulation model with g7 = 0.
and 0% = 0.1.
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Figure 5.3: Profiles and 3D perspective plots showing the approximation to the log

likelihood for data simulated from the nested model with exponential mean and
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Figure 5.4: Contours of approximate log-likelihood functions for Salamander data.
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Appendix A

Splus functions

A.1 Score test statistics

mevari<-function(data)
{

#y = data in matrix form, mu = grand mean

#s2 error variance, s2a = eta variance

#mm = number of individuals, r = number of reps
#this functions calculates my derived score test based on exact
#likelihood
size <- dim(data)
mm <- size[1]
r <- size(2]
s2 <- sum((data - apply(data, 1, mean))"2)/(mm * (r - 1))
s2a <- sum((apply(data, 1, mean) - mean(data))"2)/(mm - 1) -
s2/r
mu <- mean(data)

A< 82 +r * g2a
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sumy <- apply(data, 1, sum) - r * mu

sumy2 <- apply((data - mu)~2, 1, sum)

botl <- A"2 * sumy2 * (A * s2 + sumy"2 * s2a) + 3 * r * s272
* s2a * A2 - 6 * s2a * sumy"2 * A * s272 - sumy”
4 * s2a™2 * (r * s2a + 2 * s2)

N2 <- (s2a * (A"2 * (sumy2 - r * s2) - s2a * sumy 2 * (4 *
s2 + r * s2a))"2)/(s2 * A"5)

NP <- (r * s2a"2 * (A"2 * (sumy2 - r * s2) - s2a * sumy 2 *
(4 * 82 + r * s2a)))/A"4

0 <- (s2a * sumy * (-2 * s2 + r * s2a))/A"2

M <- (s2a * sumy * (A"2 * (sumy2 - r * s2) - s2a * sumy 2 *
(r * s2a + 2 * 82)))/(s2 * A"3)

P2 <- (r"2 * s2 * s2a"3)/A"3

totop <- sum(0 + M)

bot2 <- sum(N2) + 6 * sum(NP) + 15 * mm * P2 + 2 * sum(072)

tobot <- (2 * s2a * sum(botl))/(A"4 * s2) - bot2

total <- (totop/sqrt(abs(tobot)))

return(total)
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mevar2<-function(data) {
#y = data in matrix form, mu = grand mean

#s2

error variance, s2a = eta variance

#mm = number of individuals, n = number of reps
#this functions calculates the score test with all parameters known
size <- dim(data)
mm <- size[1]
n <- size[2]
eta <- sumy <- sumy2 <- top <- numeric(mm)
botl <- bot2 <- bot3 <- numeric(mm)
s2 <- sum((data - apply(data, 1, mean))~2)/(mm * (n - 1))
s2a <- sum((apply(data, 1, mean) - mean(data))”~2)/(mm - 1) -
s2/n
mu <- mean(data)
eta <- ((apply(data, 1, sum) - n * mu) * s2a)/(s2 + n * s2a)
sumy <- apply((data - mu - eta), 1, sum)
sumy2 <- apply((data - mu - eta)"2, 1, sum)
#top (numerator) of score test
top <- eta * (1 - n + sumy2/s2) * (s2 + n * s2a) - (eta *
s2 + 2 * s2a * sumy)
#bottom (denominator) of score test
botl <- (2 * eta"2 * sumy2 * (s2 + n * s2a)”~2)/s2
bot2 <- (2 * eta"2 * s2 + 2 * s2a * sumy2) * (s2 + n * s2a)
bot3 <- - (eta * 82 + 2 * s2a * sumy)"2 + 6 * n * s2 * s2a”2
totop <- sum(top)
tobot <- sum(botl + bot2 + bot3)

return(totop/sqrt(abs(tobot))) 1}
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mevar2a<-function(data)
{
#y = data in matrix form, mu = grand mean

#s2

error variance, s2a = eta variance

#mm = number of individuals, n = number of reps
#this functions calculates score test with 4x4
#information matrix.
size <- dim(data)
mm <- size[1]
n <- size[2]
Info <- array(dim = c(4, 4))
s2 <- sum((data - apply(data, 1, mean))"2)/(mm * (n - 1))
s2a <- sum((apply(data, 1, mean) - mean(data))”"2)/(mm - 1) -
s2/n
mu <- mean(data)
eta <- ((apply(data, 1, sum) - n * mu) * s2a)/(s2 + n * s2a)
sumy <- apply((data - mu - eta), 1, sum)
sumy2 <- apply((data - mu - eta)"2, 1, sum)
A <- 82 + n * s2a
#top (numerator) of score test
top <- eta * (1 - n + sumy2/s2) * A - (eta * s2 + 2 * s2a *
sumy)
#bottom (denominator) of score test
botl <- (2 * eta”2 * sumy2 * A"2)/s2
bot2 <- (2 * eta”2 * s2 + 2 * s2a * sumy2) * A
bot3 <- - (eta * s2 + 2 * s2a * sumy)"2 + 6 * n * S2 * s2a”2

I22 <- ((1 - n)/(2 * s2°2) + sumy2/s273) * A"2 - 1/2
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112 <- (A"2 * eta * sumy2)/s2"2 + eta * A - (s2 * eta + 2 *
sumy * s2a)

133 <- (eta"2 * A"2)/s2a"3 - n~2/2

I13 <- 2 * sumy * A - n * (eta * s2 + 2 * s2a * sumy)

123 <= ( - mm * n)/2

Infoll, 1] <- sum(botl + bot2 + bot3)

Info[2, 2] <- sum(I22)

Infol[l, 2] <- Infol[2, 1] <- sum(I12)

Info[3, 3] <- sum(I33)

Info[1l, 3] <- Info[3, 1] <- sum(I13)

Info[2, 3] <- Infol[3, 2] <- 123

Info[4, 4] <- (n * mm * A~2)/s2

Info[3, 4] <- Infol4, 3] <- 0

Infol[2, 4] <- Infol[4, 2] <- (A"2 * sum(sumy))/(s2°2)

Infol[1l, 4] <- Info[4, 1] <- (2 * A"2 * sum(eta * sumy))/s2 -
2 % A xn*xmm * s2a

tobot <- det(Info[2:4, 2:4])

C <- det(Info)

total <- sum(top) * sqrt(abs(tobot/C)) #distrib. N(0,1)

return(total)
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A.2 Approximate likelihood functions

Second order Laplace approximation to the true log likelihood using the Salamander

data.

function(alpha,sgma)
{

on.exit (if (((started <- exists(".newmin", frame = 1)) && (v <
.newmin)) || !started) {
assign(".newmin", v, frame = 1)
cat(v, ":", format(sigma), "\n")

}

)

sigma <- c(alpha,sgma)

sigma[5] <- sigmal[5]~2

sigma[6] <- sigma[6]°2

m <- length(levels(Sal$Female))

r <- length(levels(Sal$Male))

if (lexists("Est", frame = 1))
Est <- rep(0, m + 1)

tmp <- nlminb(start = Est, objective = Logitmax, gradient
= GLogitmax, hessian = T, sigma = sigma)

assign("Est", tmp$parameters, frame = 1)

v <- tmp$objective + log(det(tmp$hessian))/2 + (m * log(
sigmal51))/2 + (r * log(sigmal6]))/2
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Fourth order Laplace approximation to the true log likelihood using the Sala-

mander data.

function(alpha, sgmas)

{

on.exit (if (((started <- exists(".newmin", frame = 1)) && (v <
.newmin)) || !started) {
assign(".newmin", v, frame = 1)
cat(v, ":", format(sigma), "\n")

}

) #on.exit (cat("Likelihood =", v, "\n"))

sigma <- c(alpha, sgmas)

sigma[5] <- sigmal[5]°2

sigmal6] <- sigmal[6]~2

m <- length(levels(Sal$Female))

r <- length(levels(Sal$Male))

n<-m+r

if (lexists("Est", frame = 1))
Est <- rep(0, n)

tmp <- nlminb(start = Est, objective = Logitmax, gradient
= GLogitmax, hessian = T, sigma = sigma)

assign("Est", tmp$parameters, frame = 1)

a <- Est[1:20]

b <- Est[21:40]

eta <- as.vector(Sal$X %#*% sigmal1:4] + a[Sal$Female] + bl
Sal$Male])

K <- exp(eta)/(1 + exp(eta))

11111 <- - K + 7 * K2 - 12 * K"3 + 6 *x K74
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# Now calculate the approximation to the log-likelihood

i <- cbind(as.numeric(Sal$Female), as.numeric(Sal$Male))

L1111 <- array(0, c(m, r))

L1111[i] <- 11111

Dinv <- ginv(tmp$hessian)

totl <- diag(Dinv)“"2 * c(tapply(11111, Sal$Female, sum),
tapply(11111, Sal$Male, sum))

Dm <- rep(diag(Dinv) [1:m], r)

Dr <- rep(diag(Dinv) [(m + 1):n], rep(m, r))

D3 <- as.vector(Dinv[1:m, (m + 1):n])

D2 <- 4 * Dm *x D3 + 4 * Dr * D3 + 2 * (Dm * Dr + 2 * D372)

tot2 <- sum(totl) + sum(as.vector(L1111) * D2)

v <- tmp$objective + log(det(tmp$hessian))/2 + (m * log(
sigma[51))/2 + (r * log(sigmal[6]1))/2 - tot2/8
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Logitmax<-function(Est, sigma = ST) {
# on.exit(cat("Logitmax =", v, "\n"))
a <- Est[1:20]
b <- Est[21:40]
eta <- Sal$X %*% sigma[1:4] + a[Sal$Female] + b[Sal$Malel
s2a <- sigmal[5]
s2b <- sigmal[6]
v <- sum(a”2)/(2 * s2a) + sum(b"2)/(2 * s2b) - sum(Sal$y *

eta - log(l + exp(eta)))

GLogitmax<-function(Est, sigma = ST) {

a <~ Est[1:20]

b <- Est[21:40]

eta <- as.vector(Sal$X %+% sigmal[l:4] + a[Sal$Female] + bl
Sal$Male])

s2a <- sigmal[5]

s2b <- sigmal[6]

p <- 1 - 1/(1 + exp(eta))

H <- crossprod(p * (1 - p) * Sal$Xab, Sal$Xab)

diag(H) <- diag(H) + rep(l/sigmal[5:6], c(length(a), length(
b)))

list(gradient = c(a/s2a, b/s2b) - crossprod(Sal$Xab, Sal$y -

p), hessian = H[!lower.tri(H)]) 1}
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