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Abstract

This thesis describes methods associated with general random effects models. It

is divided into two parts. Part one describes a technique for investigating mean-

varia¡ce relationships in random efiects models. A simple one-way random effects

model is proposed as a basis for deriving a score test for homogeneity of variance

in one-way random effects models. An arbitrary mean-variance relationship is cap-

tured by a single parameter which allows for the possibility of detecting situations

where the variance changes systematically with the mean, Part two derives an

approximation to the likelihood function using a Laplace expansion to the fourth

order. This approximation may be applied to general models with multiple crossed

and/or nested effects. The score test of homogeneity and the approximate likelihood

function are examined using simulations and simple data analyses.
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Chapter 1

Introduction

1.1 Mixed effects models

Mixed effects in linear, generalized linear and non-linear modeis are used widely

throughout the statistical world. The range of areas where they may be usecl is var-

ied and extensive. One use of random effects is to explain the error terms when we

have multiple sources of variation. Classical texts such as Scheffe (1959) and Searle

(1971), show the common, standard methods for describing and working with lin-

ear models with fixed and random effects, estimating coefficients, deriving expected

mean squares and analysis of variance. Searle et al. (1992) have written a recent

book devoted entirely to estimating variance components. It covers ANOVA esti-

mation, matrix formulation of models, maximum likeiihood estimation, prediction

of random effects, all for balanced and unbalanced data.

Recent publications in the general area of variance component estimation in-

clude Aitkin (1999), Steele (1996), Cox (1998), Abrams & Sanso (1998), Breslow &

Clayton (1993), Breslow 8¿ Lin (1995), Fraser et al. (1994), Lee & Nelder (1996),

Lin (1997), Schall (1991) and Gilmour et al. (1985) to name a few. Most of these

authors are interested in estimating the actual variance components; another use of

1



mixed models is to estimate the effects of data that comprises from a sample of a

larger population and repeated measurements are to be taken from this population.

In this case r,¡/e can estimate the actuai random effect predicted values by using

BLUPs (Best Linear Unbiased Predictions).

Robinson (1991) discusses the use of BLUP for estimating random effects. A brief

history of the derivation of BLUP is given including the classical case, Bayesian, and

Henderson and Goldberger's derivations. Robinson then goes on to link these with

other statistical theories, such as the recovery of inter-block information, random

effects models, estimation of outiiers and ranking and selection, giving a number of

applications.

Breslow & Clayton (1993) discnss approximate inference in generalized linear

mixed models. They consider hierarchical generalized linear models with random

effects which are distributed with a multivariate normal distribution, then go on to

discuss the use of penalised quasi-likelihood and variance component estimation.

A major difficulty with such models is that the true likelihoods are typically

intractable, and usually involve high-dimensional integrals which need to be ap-

proximated or estimated in some 
"¡/ay. 

In this thesis, the major themes are flrstly

the application of Laplace approximations (Barndorff-Nielson & Cox, 1989) and

Solomon & Cox (1992) approximations to specific models and problems, and sec-

ondly the derivation of generalizations of these approximations to models with mul-

tiple random effects. The outline of the thesis is described below.

This thesis is in two parts, Chapter two comprising part one and Chapters three

to five comprising part two. The subdivision represents two distinct problems in the

analysis of complex data, namely establishing if a mean-variance relationship exists,

and incorporating random effects in general models. The need to approximate the

likelihood in the two cases provides the connecting theme of the thesis.
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L.2 Part One

This part of the thesis forms the foundation for a submitted paper (Hunt & Solomon,

1999) which is currently being revised. It is common in repeated measures data to

observe a mean-variance relationship. Authors such as Liu & Pierce (1993), Com-

menges & Jacqmin-Gadda (1997), Jacqmin-Gadda & Commenges (1995) and Cook

& Ng (1999) have considered this problem. In part one) a test to determine the

possible existence of a relationship between the mean and the variance in longitu-

dinal data is proposed. This score test statistic is based on a proposed one-way

mean-variance model having a parametric representation which is indexed by a sin-

gle parameter rc. The parameter rc is zero if no mean-variance relationship exists

and non-zero otherwise. The likelihood function underlying the procedure must be

approximated and the approximation is based here on irigh-order Laplace expan-

sions. The score statistic is therefore also based on this approximation and this

forms the material of Chapter two. The performance of the test is then studied via

simulations and analyticai results. Applications are given using data on CD4 cell

counts and blood pressure.

The simulation studies showed the distribution of the test statistic to be ap-

proximately standard normal under a reasonably broad range of assumptions and

thus the test is reasonable both when the parameters are assumed known and also

when one or more parameters are estimated. When applied to CD4 data from the

San Fransisco Men's Health Study and blood pressure data from the International

Prospective Primary Prevention Study in Hypertension, mean-variance relationships

were detected by the test, and transformations of the data were shown to decrease

the relationships.

,
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1.3 Part Two

Part two discusses approximations of the likelihood function with the aim of finding

an expression which can represent any general model. Chapter three shows the

second-order approximation as used as a basis in papers such as Shun (1997) and Lin

& Breslow (1996). These authors have discussed the use of a second-order Laplace

approximation and have extended this in various ways to make their approximations

behave more like the true likelihood.

Chapter four establishes a general form of the approximation to the fourth-order

with no adjustments. We want to show that this approximation compares well to the

other approximations of this kind, but in a simpler form. Approximate likelihoods

for a single variance component are extended to balanced models containing two

or more variance components. Laplace expansions have been considered by other

authors such as Steele (1996), Vonesh (1996), Wolfinger (1993), Lin & Breslow

(1996), Shun (1997) and Shun & McCullagh (1995).

A fourth-order approximation to the true likelihood is obtained for general mod-

els with two or more random effects. This approximation is for fully crossed models,

nested models and models with interactions, as long as the model has a well-defined

conditional log-likelihood, which is differentiable to the fourth-order. Models with

two independent crossed or nested effects are further examined in an explicit form.

The performance of these approximations is studied in Chapter five using simu-

lations and examples. It is shown that our approximation to the likelihood for the

linear model is very close to its true likelihood. Simulations are performed for a

Poisson model, a model with an exponential function of nested random effects and

a logistic regression model. In ail cases the variance components are estimated and

compared to the known simulation values, and profile likelihood plots show the shape

of the approximation. The major example studied is the well-known Salamander

data (McCullagh & Nelder, 1989), for which estimates for the variance components
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are found and compared to previous results on these data.
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Chapter 2

A Test for Homogeneity in

one-way variance component

models

Variance components in nonlinear models and generalized linear models in particu-

lar are currently receiving considerable attention in the literature (see for instance

Vonesh, 1996, Breslow & Lin, 1995, Wolflnger, 1993, Solomon & Cox, 7992, Breslow

8z Clayton, 1993, Lee & Nelder, 1996, Shun, 7997, Lin & Breslow, 1996 Cox' 1998

and Hodges, 1998). Such models are often handled with much attendant complexity.

However simpler methods, both formal and informal, are required to give one an

idea of when and why more sophisticated analysis is needed, and to provide starting

values for parameter estimates in more complex models.

In this Chapter, we propose a score test for investigating whether a particular

kind of relationship exists between group means and variances in repeated measures

data. Such a relationship may be due to an exponential family error structure or to

an arbitrary error structure, and although it may be diffi.cult to distinguish between

them, we are interested in detecting situations where the possibly arbitrary error

6



variance changes systernatically with the mean. How to handle such relationships

in practice will depend on the context and purpose of the particular problem un-

der study. Whatever the context though, it is useful to have available formal and

informal techniques for assessing potentially important mean-variance relationships

in models with variance components and often to check if a transformation has been

effective in removing it. Solomon (1985) and Solomon & Cox (1992) suggest some in-

formal procedures and Hodges (1993) and Cox (1993) provide overviews from rather

different perspectives. The purpose of this Chapter is to provide a formal test for

determining mean-variance relationships based on a general random effects model.

Score tests for homogeneity in generalized linear and other models are considered by

Jacqmin-Gadda & Commenges (1995), Commenges 8e Jacqmin-Gadda (1997) and

Cook & Ng (1999), among others. Authors such as these consider, for example,

testing for homogeneity in terms of differing distributions or testing for differences

in variation between groups effects. Our aim is to test for a specific kind of homo-

geneity, that is, one deflned by a simple one-\May model which captures a possible

mean-variance relationship.

2.t Introduction

Suppose we have n? groups or individuals, indexed by'd, and r¿ repeated measure-

ments for each individual. Many forms of mean-variance relationships commonly

encounteredinpracticemaybecrediblymodelledbyA¿¡,'i:7,'..)rn)i:I,...,ri,

a¡i: l-t|_n¡+roi"o' (2.r)

where p is the overall mean, rc is a constant, Ihe r¡¿ are normally distributed with

mean 0 and variance ofr, independent of the errors e, which are also assumecl inde-

pendent normal with rnean 0 and variance o2. The multiplicative term eo?n allows

the error variance to change systematicaily with increasing or decreasing rl¡. When

7



K:0, we obtain the usual homoscedastic normal theory one-way variance compo-

nent model.

For a situation with rc I 0, the usual random effects analysis of variance that

ignores this relationship would not give accurate estimates for o2 and o]. In studies

where estimation of the variance component ofi is of primary importance it is vital to

detect the existence of a mean-variance relationship that can for example artiflcially

give an impression of a large variance component between individuals where none

in reality is present.

We note that the parameter rc cannot be separately estimated from the 4¿, even

conditional on r¡¿. However, for our purposes, this does not pose a problem.

Solomon &¿ Cox (1992) propose an approximate non-linear model

Ur¡ : ll t A¿ -l B¿¡ I aroA? I a¡A¿B¿¡ I as2Blt (2'2)

where A¡ and, B¿¡ àre random effects, both with mean zero and standarrl clevia-

tions ø¿ and o B respectively. This model is proposed as a basis for investigations

of departures from the normal-theory model a¿j : þ -l At. -f B¿¡. The parameters

(tro,.rr,,a¡2) are defined to capture skewness of the ranclom effects and heterogene-

ity of the within-group variation. This model may be directly compared to model

(2.1). By assuming no skewness (o2¡, a62) we can rewrite the modei as

A¿i : þ -l A¡ + Bii(7 + onAi)

È ¡t t Ae + Bnj"ottAo.

TheydeflneadimensionlessparameterPt :(1t1-oA,whichmeasurestherateof

change of the conditional standard deviation of the within-group variation with the

group mean. Our rc is directly related to pt, by rc: Pnf ofl, which follows from our

model (2.1) and the Solomon and Cox model (2.2) (i.e. rc is approximately equal to

the interaction parameter all deflned in their paper). This issue is discussed further

8
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By letting 4¿ be fixed for one individual '1, the conditional mean and variance of

A4 (ftom model 2.1) become

Ð(ao'lno)

Yar(y¡¡lrÌ¿)

: þln¿
: o2 exp(2nr¡¿)

: o'e*p {2n(E(y¡)rto) - p)}

The log likelihood for the ith group conditional on r¡¿ for model (2.1) is given by

Ðl:t(a¡¡-þ-T¡): (2.3)l¿(¡-t, o2 , K;ailni) : -\rIog(2tro2) - r¿Krl¿ - 2o2 exp(2rcr¡¿) )

throughout, this is referred to as l¿.

The likelihood for the model with random effects fl¿, 'i: I,...,tu is obtained by

taking expectations of the conditional likelihood:

L(rr, o' , o, ol.,;a) : fretro2,¡- i /- ""o 
( t, - !\ or,

o-'t'-""'' J-* "--- \" 2"'4)

In section 2.2 tihe exact score test of null hypothesis called mevarl is developed.

The score test statistic is simplified by using a Laplace approximation to the true

Iikelihood. Two score test statistics are developed in section 2.4, frtslly mevar2, a

score test statistic with all parameters known, and mevar2a, a score test statistic

which allows for estimation of parameters. \Me then study the performance of these

tests using simulations and power calculations and explore the behaviour of observed

variability in CD4 cell counts from the San Fransisco Men's Health Study and in

blood pressure data.

2.2 A Score test

A detailed discussion of the score test method may be found in Cox & Hinkley

(1974). Essentially, for any parameter á, a vector of length p,the score U is defrned

I



as a vector having the ¿th element as the derivative of the log-likelihood function

with respect to d¿ ie.

U-
At.

õ0,

The variance-covariance matrix of the Ll's is the information matrix T wit'h dimen-

sion p x p containing elements given by

t - --õ'laeaïT '

this is also known as the observed Fisher information matrix. To test the hypothesis

0 : 0o, evaluate

urT-ru (2.4)

at 0 : 0o. This statistic is approximately distributed as X3 if the nuil hypothesis

is true. The score test for the null hypothesis Hs : K : Ko against the two-sided

alternative H¿: K f rc6 for model 2.1 is based on this statistic.

As an example of the use of this formula consider model (2.1) as a fixed effects

model. The form of the score test for fixed 4¿, known ¡1" and o2 and for the null

hypothesis n:0 is given by

u:Yl : i.r(Di':'(a'¡ -P-ù' -",)oKlo,:o l:t \ ø' /

OL

ae,

A2l,,T-
(l K,"

Tzn?Di':r(ao¡- þ-rù2
2r'rc:0

The development of the test statistic mevarl follows.

The test for Hs: rc:0 is based on the statistic given in Q.\. Now let the 4¿'s

be random effects, and assume all parameters ¡.1, o2 and o| arc known. There àre rn

random effects. Then the score function is

U 0llðnl":s

10



il^rla
0n

exp(/(rc, n¿))dn¡ rc:0

$ |-*¿ (/ exp(/(rc,nt))dùll:ltMl 
l":o

For our model with conditional log likelihood l¿ and random effects T¡,i : 1,...,rn,

the function / is Í(o,no) : I¡-Iog(Zro'zr)12-n? 12"1, note that the full log-likelihood

can be written as a summation since the \i are independent.

Now consider just one term in the summation.

Assuming sufficient regularity to interchange the order of integration and differ-

entiation, we can write

Atî I

ã " lJ 
exp(/(rc, n¡))dn¡) l^:o * "*r t r ro, no))l -:o) aro

Using l¿ : -r¿Iog(2ro2) 12 - rircr¡i - Ði":JA¿¡ - tt - no)' l(2o' exp(2rcq¡)) we get

(2no2)-? Q""iYt | (
nr,Ði':t (uo¡-p-n¿)2

:I(

-r¿h I o

exp I
I

dno

(2ro2)(t-rt)lz

o2 + r¿ol

(2no2)(t-'t)/z

exp

g,2(r,, -r,r,.\ f t'

"fffiffi * 
l 
(I(ru, - p,)' - r¿o2 - 2o')(o' + rool)'

\u ,,t,u\l I j:l

I
-o]ç2"' + r¿o?)(ao - r¿tt)2 -l So2oflri(o2 + r,otì)'

The expression [/exp(/(rc, n))dn¡]lo:s reduces to the true likelihood (considering

just one term r¡¿ from the total summation) for a standard iinear model, i.e.

(Di':,(a¡¡ - P')2 (a,. - 'opt)'ol \exp 
\ -2d'? 

r zo'z(o\ rpi) ) '
o2 + r¡ofi

11



giving the full expression for the score, U, as

(Ð(vn¡ - tò' - rto2 - 2o')(o' +'¿o])2
j:7

- of, (zo' + r ¿o?) (a n. - r ¿ trù2 t 3 o2 olr ¿ (o2 + r ¿o?t) (2.5)

Now the information is written

.T
-L

a2l

8n2

and considering one term only from the total summation gives

(2.6)

(-runo *noDî":'fu't P - nò' ,)')

# V exp( / (rc, no)) d,nn) i:o

: I (#exP(/(rc, n,Ðl':o) ano

: const ¡l(-"f A:'ør r-''f) . (

xexp{ry-&\*'
(2ro2)(t-'t)lz

o2 + r.iofi
exp

1.2

X



----4-liro,, - t)"(o, * r¿ol,)2 ({o, + r,o})o2 + (ao - rotùrorr)
o'(o' + rn"fi)o l:,

¡zrioao2r(o'+roolr)"- 6(o'+ro2r)o2ron(ao.- r¿lr)2-"fi(uo.-r¿¡t)a(2o"+r¿o?.,)

+ = =ol ,,=w?+ , =u'ool =,,¡¡ *ro1('ooî-zo')@..-r¡tùM¿iMo'+ o\o, + 1"prì51vi 
-t 

GrT r,ff"i 
-r " ç¿ ¡ Toozrf

rlo2ol "fl(rofi - 2o')' (.+rs# * "iffi# Q@n 
_ r¿p,)2 + (a _ rlòr)

\o' + r¡ofi)' (o'? + rp'zrtY \"
(2 7)

¡/,
ri

(o' +rnol,)'(Ð(E¡¡ - p)2 - r¡o2) - "l(uo - r¿p)2(4o' + rno?,)

where

M¿

j:t
tz

(o' + rn"l)' (D,(a¿¡ - tò2 - r¡o2) - "'r(uo - ri¡'t')2 (r¿o] + zo'¡
j:r

This leads to the full expression (2.6) for the information as

m nn2 f t,
\- ""tl I

?_, or(o, -t r¿o2r)a l>,rrrt 
- p)2@2 + r¿o|)2 (1"' + r¿of,)o" + (ao - ,ntùt"'r)

+zr¿oao2r(o'+roolr)'- 6(o'+ro])o2ron(uo.-r¡rù2-ofi(uo-r¿¡t)a(zo'+rno?r)

.-G!ræi*:.æqi*,+rcffi
, 2ofi(rofi - 2o')' Dq'(an - r¡LL)2

l"t + rp'rf

The expression for the score test statistic under the null hypothesis rc : 0 is written

as the score function, (2.5) divided by the square root of (2.8). This version of the

test will be referred to as mevarl.

13



Although mevarl is an exact expression for the score test statistic for testing

the null hypothesis K : 0, it is very cumbersome, therefore we seek to flnd some

simpler expression that performs well. It is also only obtained relatively simply

under the null hypothesis rc : 0. It would be an advantage to have a more general

analytical form which allows for non-zero hypotheses. Another alternative couid

be, for example, numerical integration. We have chosen to explore an approximate

score test statistic by approximating the true likelihood as detailed in the following

Section.

2.3 An approximate likelihood function

We base our approximation on a Laplace expansion of the true likelihood (see

Barndorff-Nielson & Cox (1989) for a discussion of Laplace expansions). The ap-

plication of Laplaces' method has had much discussion, see for instance Barndorff-

Nielson & Cox (1989), Liu & Pierce (1993), Breslow & Lin (1995).

Essentially, the approximation is derived from a Taylor series expansion. Pre-

vious work by Solomon & Cox (1992), Breslow & Lin (1995), Shun & McCullagh

(1995) have shown that including higher-order terms in the expansion may substan-

tially improve the approximation to the true likelihood. More detailed discussion of

Laplace approximations and previous work in this area is given later in the Thesis,

see particularly Chapter 3.

We consider including up to 4 terms. The fourth-order Taylor expansion for

(t, - +) 
about its (local) maximum, denoted by ñt,evaluated at, ¡'t,o2,o2, and' n,

is given by

t,- + : r, - +* (t', fr) (no- ñn) *T(,:', h) ?to- ñn)'

* 
åtÍ', 

(n, - ñ.)' * hr,, (no - ñ,)n

14



where in : to(ño), t:r) : 
#t0,. 

By defini tion, r¡¡f of;: l:t), therefore the approxima-

tion to the full likelihood becomes

fiçz*r?,)-+ l* "*o{ +
*åtÍ" Øn - ño)' * hr,, Øo - ñn)n\ anu

This is simplified by the expansion of the exponential term

,/i \
2o4l

Í i¿ + *,to' - L¡rr, - ñ)'o un

expil
i:1

X

li(

2rofi ,Ll ""0 {i,,Y'- þ(n,-ñ,)'}
L

fr 
* |iÍ', Øo - ño)" * hr:^, Øo - ño)nf ano

Now make a substitution g(r¡¿) : h, - ¡f;' Øo - ñr) and the equation becomes

rr,-#l-"4

,Ë ""o{- }uØ')'}
exp

L
i,:r
il

X

1

on

2rofi I ¡(2)
-4

du(nn)

il

n
i:r

rn

il
i,:r

1 ,r-4P

This leads to an approximation of the log-iikelihood

t =ä[-],"*,t - olt") * i, - + t
i,:1.l.å

15
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4'' : --+* l-r,- nof(ro,- u- ñ,) _ 2rc2il(0,, - r-ø)'l" o'2 exp(2nrù | ¡:t j:r ' 
)

l:n) : -- i,Ë-_ 
f-r", -n*Ltrij- tr-ñ¿)- orf(ao,- tr-il,],"'¿ o2 exp(2nrli) | 

v'I 
j:l j:r " I 

'

substituting these into equation (2.9) then the approximation to the true log likeli-

hood for our heterogeneity model is

ål- ñ? I ^ 1 ^ -l
I l¿ - ,h- ,ros(o2 

exp(2m¡¿) + ofi(r,it 4nS¡+2n2Q)¡ + ,Ios@2) 
+ nnl

¿:l L -"n

+ Ë , (2.10)
i:7

where l¿ is given by equation (2.3), S¿:Ðin:t(Un¡- p-ñ¡) andQ¿:Ði':t(Urj- tL-
- .o
rÌ¿ )' .

Note that the expression includes the parameter rc, therefore rù/e can more readily

explore behaviour under non-zero hypotheses for rc.

For the model with conditional log likelihood given by equation 2.3:

Expansion around zero

One can alternatively expand the Taylor series about T : 0 (Solomon & Cox (7992),

rather than the m.l.e.. Then the approximation to the true likelihood takes the form

rn -1 ( 4tlÅ)'.,, 
**t¿l8,¿iJ, +lrtlâ,1"*Ìt r+o(ol)). (2.rr)

!t,1t - o,,t[i) ]-å.*p \r0Ïil6,, ¿ 4 
)

Here, the higher order terms are included in the exponent. In this 
"ut", 

ljfr) it

the øth derivative of the conditional log-likelihood with respect lo nr, evaluated at

?¿:0(i.e. t:i)

the Solomon-Cox

: l+l I For the conditional tog liketihood as given by 2.3,
ðn? lro:o,

approximation to the true log likelihood for the one-way random

16



effects model is

ä¡Zrog(2r 
o2) - # - |u,src' + o',(rt i 4nsis + 2n2 q oo7¡ + f,bgço'¡

, o](Sio - nQ¡o - r¿no2)2 *2n4
+ - 'åftr¡ t 4rc5¡s t- n'Q¿o)

o1 ^ )n ^ 3n \/. I+2 ßnr, + 6n2 Sn, + 2n3 qoo¡(S,o - nQ¿o - riço2) 
|04' I

where S,o : Di':t(y¿¡ - ¡r) and Q¿o: Ði":Ja¡¡ - t-t)'.

Breslow & Lin (1995) compare the performances of Lapiace, Solomon-Cox and

penalized quasi-likelihood approximations. For situations where the between-group

variance component øfr is small they find there is not much to choose between the

methods.

2.4 Approximate score tests

2.4.L AII parameters assumed known

The score test statistic mevar2 is developed by assuming þt, o2, arrd ofi are known,

and we treat the estimates f¿ as "metaparameters" which are by definition functions

of ¡t, o2, anð,of, and thus are also assumed to be known. From equation (2.10),

o2¡oe'2"ñ, + olQsi -l2nQt)

62¿2nr¡t + o](r; -f 4nS¿ * 4rc2Q1)

2o2 e2"ño n(3r¿ I 6nS¿ I 2n2Qo -f ñ¿n(3r¿'l 4nS¿ + "'Qo))
(o2 ez"ñt + o](n t 4nS¿ + an2 Q ))

tñ¿

"2nt¡to2(3"0 
+ 4rc5¿l n2Qù(o2f¡0e2"ñn ¡

(o2 ez"ñt + ofi(r i I 4rc5¿ + an2Q ))
4o2

77

(2So + 2nQ¿))



a2l ðrIo 2o2qle2"ño + 2olQt
D
i:IdR," 0n2 62s2nr¡t + ofi(rr * 4nS¿ -f 4n2Qo)

2o2
"znñe(3h 

]_1.2nSi + 6n2Qo l6rl¿r¿n + L2r¡¿n2 S¿) + ñn"(..

(o2 ezoñt + o](r,i I 4nSi + +^' Q n))''

*terms containing multiples of rc.

ñ¿o2 + 2o2rS¿

äl-,,n,+rytñ¡-
SlznTeo . zù?o'+2ofiQr.

àl ", 
-r 

02 + rpl -r

We first consider the simplest null hypothesis, K : 0. Substitute rc : 0 into the

above, and the score and information become:

#r.:o 
: Lro : äl',r,.ry i ñi -'%#l

_a2t I : 7.. _ #lzø?q, *zñ?o2 +2o2rQ¡ *or¡o2ol--(ñ¿o2 !?olS¿)21- Ar",lrc:o 
: Ltt : 

kl ", 
r o\ rprn -T (g, + rpÐ, l

The score test statistic mevar2 for testing the null hypothesis flo : K :0 is now

given by

o2 + r¿o 2

(2.12)

Under 110, this should be approximately normaliy distributed with zero mean and

standard deviation one.

When expanding about zero rather than the maximum functions ñ¿, i': I,...,rn,

[/6 and fi1 reduce to

m I olo2516(2 + ri) + S¡oQ¡ooî zo16¿o)3 
-3olr¡S¿olus:Dl 6-affi*-æ-)
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In

,6r¡ofl aof (,S,o)a 14 .l

*+ - ;ry +;pT - ;t72(siù2 - 6r¡(Q'o+ ro2)))'

The advantage of this version is that lhe q¿ do not need to be estimated. Un-

fortunately though, this form of the score test is not as tractable as that based

on the Laplace expansion about lhe r¡¿. This is due to the information not being

positive-definite for some combinations of variance components.

2.4.2 Using the estimation of parameters ço2 , ofi, F)

The score test statistic mevar2a follows. In practice, one is likeiy to estimate

the mean and variance parameters using the data, and this additional variability

should be accounted for in the test statistic thus improving its accuracy. When the

remaining parameters are estimated, the null and alternative hypotheses are:

{ l2o2o}Q¡o - olr(Qoo I r¿o2)2 2ol(S¿o)2(3Q¡o + 4o2 + 4r¿o2)Ll@-@,

Ho:

H¡'

K: 0, with ¡r, o2 and afr unsPecified.

K + 0, with ¡;, o2 and of unspecified.

Unlike previous forms of the score test, the estimated residual or measurement error

variance õ2 may be very large in the case where K + 0.

The test statistic becomes a ¡l score test statistic with score given by

U

and information obtained by defining a (4 x 4) matrix of second derivatives of the

log-likelihood with respect to the four parameters and partitioned as

ôt
A"

I ð21f0rc2 In
rL rzz

19



where I22 is the 3 x 3 matrix containing all the second derivatives with respect to all

combinations of the three parameters o2,o| and ¡,t. Both the score and information

are evaluated at n : 0 and the maximum likelihood estimates of o2 : õ2, ol :

ol, tL: p.

The score test statistic for the null hypothesis n: 0 becomes

atl lllzll* - r,n ,,
ôol^:o' \ tll 

(2'13)

For our heterogeneity model, I is given by the log likelihood approximation (2.10),

and the terms from the 1 x 3 vector I12:

a2l

ônôo2 t
i:7

Ínt
i:7

fnt
i.:r

ñoQ¿ ño o2ñ¿ + 25¿
+04 o2 I rp] (o' + roofi)'

a2t 
I

A"At'rl

rc:0

rc:0

r,:o

ô21

ônðp,

and from the matrix I22

a2I

Oo"do" äl#. Q¿

2(o2 + r¿o])2 06

1

rc:0

a2t I _+l_n;* ,? f
ôo]ðo]1._n 3l ofl 2(o2 +riol)2)

a2l ti:r

t
i:t

ôo2ôof;

a2l

n:o

ðo2ô¡r, x:0
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a2l

ôofiðp,
0

rc:0

Substituting these into equation (2.13) gives the score test statistic mevar2a. The

performance of this version of the test statistic is examined in the next Section.

mevar2 and mevar2a contain terms f¿ which we have referred to as "meta

parameters". In a general model these will need further investigation, however here

we are considering a score test, where under the null hypothesis n : 0 we have a

linear model. Therefore in this case we are able to estimate f¿:

rl¿ 19;?,

Ði":t(Yu¡ - tt)"?,

o2 1- r¿ol

o2 + r¡ol

From here we can notice that when ,ool >> õ2 lhe estimates Qi are essentially

@n. - tò When õ2 >> ,oã', th"n ;he fi¿ are shrunken versions of (E¿ - Pt). This

feature is picked up further in next section.

2.5 Simulations

Data were simulated from modei (2.1) on page 7 under the null hypothesis with

n : 0 and various variance component combinations ranging from 0.01 1 o2, ol < 7,

LL : I, m : 20 individuals and r : 20 replications.

The simulated data were used to calculate mevar2, equation (2.12), mevar2a,

equation 2.13, using estimated variance components õ2 : Ðn¡(Au¡ - Au)'l-(r - 1)

and, o] : ¡,L,,(A. - g.), l(- - 1) - ã2 f r, í.e. the estimates from a standard normal

linear model and mevarl, Section 2.2. This procedure was repeated 100 times to

give the three score test statistics for 100 simulated data sets. Table 2.1 shows a

q/ 
- -\rrofi\At - F)

2T



typical sample of the sample means and variances from these simulated data. The

number of rejected points (5% level) from these 100 values when compared to the

standard normal distribution were noted and the results given in fr.gtne 2.2.

This selected sample is typical of the overall results obtained from all possi-

ble combinations of parameters. Generally, the distributions of the statistic under

Hs : K: 0 are observed to be approximately standard normal, although there is

a tendency in the approximation versions for the standard deviation to be slightly

underestimated. It also appears that the test works better when o1 ) o', i.e. the

between variance component large relative to the random eruor. The test seems to

behave differently when o2 is very much larger than o]. This is because the error

term, o2exp(2nr1¿) is very much larger then the mean, þlT¿ for all values of r7¿, so

it is hard to detect a true mean/variance relationship'

Tables 2.4, 2.5 and 2.6 show the resuits of the null hypothesis test H0 : rc : 0

when rc departs from 0. The number of rejected values appears unstable when o2 >

ofi (as noted for n:0 simulations above). The rejection is quite strong for other

variance component combinations. Notice however, particularly in figure 2.6, that

the test becomes unstable as the magnitude of the variance components increases.

This instability is dependent on the combination of n and o].

To investigate what happens as rc is changed keeping o] and o2 frxed, data were

simulated using o2: o1:1 and the results are shown in tabie 2.3. For this set of

parameter values, the score test is definitely detecting when rc departs from 0. Also,

as rc departs further from zero the mean becomes larger (so a P value would be more

significant), but when ¡c is around +0.4 away from 0, the standard deviation starts

to increase enormously and the signiflcance level may start to drop, the exact test

appears to be more sensitive in these areas.

Figr"rres 2.1 and 2.2 show typical representations when using the same simu-

lated data to flnd the test statistics mevar2a, mevar2 and mevarl. Figure 2.1
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shows data simulated with n : 0 with mevar2a as the solid line. It shows that

mevar2 and mevarl are very similar under the null hypothesis. The distributions

are roughly symmetric around 0 for all versions of the test statistic. The plots are

very similar between versions of the score test. This is typical for all other plots

with different parameters.

Figure 2.2 shows the distributions of the score test statistics for simulated data

with rc : 1. There is now a non-zero mean and slight skewness indicating a distri-

bution which is not normal. There is also present a change in standard deviation

between versions. This is very apparent for K : 7, but as rc gets closer to zero the

standard deviations all approach 1 and the differences between the versions of the

statistic become less obvious.

It may be reasonable to assume that the test mevar2a may be different to the

others since its form is composed of a larger information matrix, therefore let's

compare the differences in mevar2 and mevarl. In figure 2.3, both mevarl and

mevar2 were found for the same set of simulated data with parameters rn : 30, r :

I0,þ:5,K:0,o1 :2,o2 :7. After 100 repetitions the mean and standard

deviation for the exact statistic were 0.009,7.774 and for the approximate statistic

were 0.010,1.073. These results together with the plots show that both distributions

are very similar.

In table 2.3 mevar2 appears to be more stable than the other two. This dis-

tribution is represented graphically by fi.gures 2.4 and 2.5. Figure 2.4 shows that

the distribution of mevar2 is roughly normal for simulated data with rc I 0. As

rc increases the distribution indicates an increase in standard deviation. Figure 2.5

shows that on the same scale, the means are increasing and the standard deviations

are staying roughly equal lor n:0.2, however for n:0.6 the distribution starts to

skew and become non-normal with a large standard deviation.

The combination oT o] : 1 and 02 : 7 seems to give rather odd results in figure
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2.6 and table 2.3, this was examined further. Figure 2.6 shows the distributions for

n : 0.2 and rc : 0.6 with variance components o?, : o' : 1. These plots show how

the distributions change as ¡; becomes larger. mevarl appears to have the greatest

change in standard deviation, showing "skewness" for this combination of large rc

and large variance components. It also appears that mevar2a is behaving better

than the others, which was not seen by first examination of the table.

2.6 Power of the test

The power of the test is defi.ned as P (H ¡lils false ), the probability of rejecting the

null hypothesis given that É16 is false, i.e. given that m : 0. Giveî K + 0 and the

score test statistic S with distributiot N(/r¿, oa),1or a \Vo rciection region

Power - 1 - P(-1.96 <,S < 1'96)'

The power was calculated using sample distributions similar to those given in table

2.3. For each value of rc, 100 repetitions of simulated data with rn - 30, r : 10, ¡-t : 0

and. o2 : 1 were used with two different values for of,. Figure 2.7 shows that for

simulated data with orr:1, poweï is 1 around n:0.2 and for simulated clata with

ol:0.5 power is 1 around rc: 0.3. For larger variance o2n, the score test will reject

the null hypothesis for smaller values of rc.

The drop after about K :0.5 is due to the increase in standard deviation around

this value. The exact test, shown by the dashed line, appears different from the two

approximations, it rises more sharply and then levels off roughly, but appears not

to decrease again like the approximate tests.

We now wish to consider what will happen to the score test statistic when of

becomes very small. Atl three expressions contain terms involving the data and

approximations of the fitted effects from a linear model, and the ry terms. Firstly

note that as of; approaches zero fi¿ :lÍt) "l also approaches zero. Also , as o] -- 0, n¿
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will tend towards its expected value of zero,, therefore the model A¿j: þirltl€¿ieftni

will become Aij -- ¡L,l €4, a model which is independent of rc, therefore estimates of

o2 and ¡l will be unaffected by changes in rc.

This implies that the score test statistic for the null hypothesis n : 0 for data

with very small of, wiII remain constant independent of the value of rc and therefore

the power for very small o2, will always be small. rc would need to t,e very large

to show any significance at all against a very small o3, u rc this large would not

realistically fit the model proposed here.
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Table 2.1: Means and standard deviations of the score statistic under the null hy-

pothesis Hs : K : 0 for simulated data with K : 0, with variance components

rangrng from 0.001 to 5.

mevar2 mevar2a mevarl

,J r s s :x

0.1

0.01

10

0.1

100

10

1

0.5

2

0.5

1

5

2.5

r
-0.097

0.158

0.1 18

0.107

-0.064

0.046

-0.086

0.039

0.107

-0.1 18

0.037

-0.045

0.017

s

r.077
.) ,Ð.'lJ.JJ¿

7.776

1.131

1.063

1.058

0.971

0.985

0.989

1.045

1.009

1.038

0.937

-0.065

0.034

-0.133

0.013

0.095

-0.110

0.074

-0.727

0.108

-0.039

-0.038

-0.070

0.076

0.728

0.471

7.022

0.710

0.970

0.890

0.952

0.955

0.925

0.826

1.014

1.057

0.905

-0.038

0.093

-0.008

0.074

0.158

-0.096

0.037

-0.005

-0.081

0.043

0.099

-0.744

0.1 18

0.629

0.462

0.962

0.705

1.031

1.069

0.969

0.817

0.947

0.918

0.983

0.887

1.028
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ol

c.ì
b

0.05 0.25

5

5

5

2

2a

3

3

3

3

2

2a

1

2

6

6

5

5

I
2

I

2

I

2

1

2

2

2a

0

0

2

2a

2

2a

7

I

I

2

2

2a

2

2a

I

2

I

2

0.01

2a 2a0

2

3

I

I

2

0.01 : za 2a6
26

5

5

5

l3 16

6

0

0 2a62a5

3

3

3

4

3

3

8

2

2O.25" za

4

4

4

4

4

4

3

2

2

2t

5

1

1

6

5

52a1

2

?

6

5

6

5

3

?

4

3

3

6

I

I

2l
I ll :l

3

3

3

4

4

4

I

2

2a

l1

0

0

Table 2,2: Number of rejected points from 100 repetitions of the score test statistic

for simulated data with rc : 0
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Tabie 2.3: Means and standard deviations of the score statistic under the null hy-

pothesis Hs: R: 0 for simulated data with variance components of;: o2 :7 and

varlous K

mevar2 mevar2a

K rr s s

mevarl

rs
-1

-0.5

-0.4

-0.3

-0.2

-0.1

-0.05

0

0.05

0.1

0.2

0.3

0.4

0.5

1

-r2.98

-11.86

-9.66

-6.19

-4.09

-2.77

-0.99

-0.04

1.01

2.73

3.94

6.05

19.95

77.42

18.75

74.07

7.49

6.80

1.53

0.93

0.82

0.98

0.93

1.05

0.89

7.04

1.30

13.67

4.65

25.37

-8.31

-8.82

-l.lz

-5.66

-3.89

-1.99

-1.04

0.74

0.96

1.99

3.81

6.06

7.37

8.70

8.97

6.47

2.03

7.77

t.47

1.11

1.01

0.933

1.00

0.99

0.98

t.23

1.47

t.46

2.74

7.29

-5.35

-6.93

-6.32

-5.02

-3.68

-1.99

-0.96

-0.19

1.09

r.78

3.69

5.18

6.11

6.93

6.15

12.56

1.06

0.99

1.05

1.09

0.95

0.90

1.03

0.81

0.98

0.94

0.78

1.07

0.99

3.94
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Figure 2.1: Distributions of the score test statistic for simulated data with rc : 0,

o?t : 0'5, o2 : 0.7, 100 rePetitions
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Table 2.4: Means and standard deviations of the score statistic under the null hy-

pothesis H¡ : K : 0 for simulated data with K : 0.5, with variance components

ranging from 0.01 to 0.5

mevar2 mevarl

2o ,o' TT

mevar2a

r
n

0.01

0.01

0.1

0.1

0.25

0.5

0.5

1

1

0.01

0.1

0.01

0.1

0.5

0.25

0.5

0.5

1

1.053

0.758

3.422

3.270

5.254

6.924

7.472

9.494

11.028

s

1.042

7.2r5

0.931

I.234

L.464

r.r49

2.244

2.036

4.287

s 5

0.984

0.476

3.579

3.132

4.277

7.563

6.776

70.227

8.882

0.966

0.777

1.064

7.276

1.335

r.662

7.624

1.963

1.845

7.t34

0.598

3.524

3.203

4.637

7.446

6.716

10.134

9.578

0.994

0.610

1.200

0.902

r.t49

1.695

7.250

2.532

2.185
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o2"n

cl
b

67

36

32

s9

62

60

83

70

7l

89

83

87

90

94

92

59

16

17

62

30

30

59

48

52

66

67

0.050.01

2

2a

I

2

100

100

I

2

2

3

2

2a

2

2a0.1

I

2

0

0

2

2a

I

2

2

2a

I

2

I

2

2

2a

1

2a 2a

2a

2

2a

I

39

0.01 : za 2a 100

I

2

141 100

99

99

0.25'. za

O.5 " za

90

88

93

97

99

96

l3

0

0

7

3

100

100

99

100

100

100

17

13

13

100

100

100

100

100

100

100

100

100

100

100

100

99

100

99

88

100

100

93

100

100

99

100

100

94

100

99

25

0

0

Table 2.5: Number of rejected points from 100 repetitions of the score test statistic

for simulated data with rc : 0.5
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õ2"71

ôì
b

83

63

t5

90

90

94

95

99

99

95

99

0.01 0.05

0.01

I

2

I

2

2

2a

99

100

2

2a

I

2

1

2

2

2a

I

2

2

2a

89

96

96

2

2a

I

2

2a

2

2a

2a

1
2

26

I

2

100 t2a

21
I

2

0.5rza 1

90

85

:1
92

97

93

20
I

2

130

0

0

88

97

94

100

100

100

100

100

100

100

100

100

100

100

r00

99

100

99

99

100

100

99

100

r00

r59198
2t0294

0.1 2a t4 2a 93

93

100

100

94

100

100

94

100

100

92

100

r00

93

100
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Table 2.6: Number of rejected points from 100 repetitions of the score test statistic

for simulated data with rc : 1
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Figure 2.7: Power of the score test
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2.7 Examples

2.7.L CD4 Count Data

Our data come from the San Fransisco Men's Health Study (SFMHS) as described by

Winkelstein et al. (1937). Recent papers which have considered these data include

Bacchetti & Moss (1939), Brookmeyer & Gail (1988), Boscardin et al. (1998)'

DeGruttola et al. (1991), Lange et al. (1992), Pawitan & Self (1993) and Satten &

Longini (1994). Bacchetti 8¿ Moss (1989) and DeGruttola et al. (1991), for example,

use the SFMHS data to model times to infection using a parametric linear growth

curve model with random effects. Satten & Longini (1994) studied the probability

density function of the time to HIV infection.

The data consist of 427 HIV+ male patients in San Fransisco who where scheduled

to visit a clinic every 6 months, however some patients visited over irregular periods

of time. Each patient was enrolled in the programme sometime between June 1984

and January 1985 and were followed up to September 1992, some patients were HIV-

some were already HIV+. The data we are considering here is only concerned with

the measurements taken after the subject was declared HIV+. At each visit a blood

sample was taken and from this a CD4 cell count was determined. The virus that

causes AIDS is accompanied by a decline in the CD4 cell count (measured in counts

per microlitre) which are white blood cells associated with the immune system. The

first HIV+ observations appeared between May 1984 and May 1990. The dataset

contains the five baseline covariates for each patient: patient ID number, month

and year of the first HIV+ observation, age of the subject at entry, and the number

of visits, and with each visit is associated a triplet consisting of time, CD4 count

and treatment indicator, and finally an indicator of AIDS status (-10 if the patient

developed full AIDS).

Early analysis on the entire data set consisted of plotting the distribution of age,
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starting CD4 cell count and month of entry, these are shown by the kernel density

estimates in figure 2.8. The starting CD4 cell counts are those counts taken at the

time the patients were first diagnosed as HIV+. The mean starting CD4 corrnt is

687.28mm3 with a standard deviation of 292.66mm3. The ages of patients range

from 25 to 54 years with an average of 38.61 years and standard deviation 8.4 years.

The month of entry ranges from 5 (ivlay 1984) to 77 (May 1990), this is an indication

of when each patient was diagnosed as HIV+. The month of entry histogra,m shows

that 93 percent of patients were declared HIV+ in the frrst, 24 months, with 78

percent in the first 12 months.

The data were split into 2 cohorts. The "AIDS" cohort contains those patients

who contracted full AIDS (indicated by the -10 as mentioned above) and then were

removed from the study, and "NoAIDS" contains all patients who never contracted

full AIDS throughout the duration of the trial.

Figure 2.9 shows plots of the age distributions and the distributions of CD4

cell count at entry for the AIDS and NoAIDS data separately. The mean starting

CD4 cell count for the AIDS patients is lower than the starting CD4 cell count for

the NoAIDS patients (545.91 versus 772.54), as expected since the patients who

developed AIDS are sicker with poorer immune function and therefore lower CD4.

The NoAIDS cases are more variable (standard deviation is 239.51 for AIDS, 289.13

for NoAIDS). The age distributions do not differ very much, the mean age for AIDS

is 35.91, versus 34.27 for NoAIDS.

Figure 2.10 shows the trajectories for the four combinations of AIDS and treat-

ment factors. It shows that the patients' CD4 counts decrease more rapidly when no

treatment is given, in particular, the plot representing Untreated AIDS decreases at

a very rapid rate. We can also see from these plots that the starting CD4 cell count

for the "AIDS" patients were overall lower than the "NoAIDS" group. The entire

data set contains unequal numbers of observations for each patient either because
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the patient developed full AIDS, or because the patient faited to appear reguiarly

To enable a more complete study, two baianced cohorts were chosen.

The selected Cohorts

From the two groups (AIDS and NoAIDS above) cohorts of 38 AIDS patients and

141 non-AIDS patients were analysed. Each cohort was selected as those patients

who attended the clinic 9 or more times regularly throughout the course of the trial,

the data from the first 9 visits were used as balanced data sets for the analyses.

The analyses conducted included investigating transformations of the CD4 counts

and simple regression analysis. The procedure for selecting the cohorts is outlined

below.

Firstly we took the number of visits for each subject (column 5), and selected

those who had 9 or more observations. The intervals between visits by each patient

was examined.. A good cohort would consist of those patients whose clata was

measured at regular intervais. Although the aim of the trial was to have regular

six monthly visits, there were patients who were quite irregular, a histogram of

intervals between visits for the total data set sh.owed a large peak at 6 months. It

was reasonable to assume there were enough 6 monthly intervais to create a sizable

cohort. The intervals were firstly examined for all patients from the AIDS group

who had nine or more visits. It could be seen that there were about 50 patients who

had 9 or more visits. After a patient was diagnosed AIDS (or perhaps died) labels of

'-10' are used repeatedly to indicate a visit occurred but no reasonable measurement

could be determined, the CD4 data from the AIDS cohort was then examined to

ensure that all the data was count data. It was found that only 38 of these patients

had,9 or more CD4 cell count measurements. These 38 patients were then analysed

and shown to be a good cohort for the AIDS patients.

A similar procedure was carried out for the group of patients who didn't develop
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AIDS. In this case there was no need to look for '-10' labels

Transformations

Let the CD4 counts be represented by Y. The transformations considered were

YÀ, ) - -1, -1, o, 1, t. (2.r4)'2',2'
For each subject, the mean and standard deviation of their (9 or more) readings was

calculated. Figures 2.7I and 2.12 show these means versus standard deviations of

CD4 cell counts for each of these transformations for the AIDS and NoAIDS gror.rps

respectively. It was found lhatY, Y-l and Y-à aII had increasing mean-variance

relationships, log(Y) appeared to have a slight decreasing relationship, but mostly

random, and JY had a random looking relationship.

Because of the assumptions for standard normal theory linear models having

a rand.om mean variance relationship, log(Y) and t/Y were chosen as the 'best'

transformations and used in further investigations. Figure 2.13 shows individual

CD4 cell count trajectories for the two cohorts over all transformations. The raw

CD4 ceil counts declined over time as the mens' immune systems were increasingly

compromised. Overall, the counts are lower and less variable for the AIDS cohort.

The relationship between the individual means and standard deviations appears to

be positive and linear for both cohorts. The square root transformation stabilises the

variance in the AIDS cohort, but log transformation is better for the more variable

NoAIDS cohort.

Although CD4 cell counts are count data, the numbers are large and known to

be well approximated by normal or log normal distributions.

Fitting a 2-Stage Random Effects Model

Assume the relationship between CD4count and time is linear for each patient, and

that the linear regression parameters vary amongst patients. Here time is charac-
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terised by visit number (in this case 1...9). To fit the best straight line to each

trajectory we consider the following model

Yi : þ'l P¿ I b¿r¿¡ | I\¡ (2'L5)

Where ¡z is the group mean) P¿ - N(0, o|) is the patient effect, b¿ - N(b, oo2) is the

trend, r¿¡ is the 7th visit number for patient 'i andVj - N(0,øfr) is the error term.

For each individual i, flt

Y¡: tt'ilbr¿¡¡\tot (2.16)

where þ¿ : þl P¿. Under a fixed efects model, E(p,lù : ¡t¿,E(btlbo) : bn,uar(ft) :

oî"l,uar(b¿): oîr1,4 : (i * ÐÊñ) . u"a "l: yfa.
Now assume random effects þ¿ - N(p, øN) b¿ - N(b, of;), and let t denote

expectation under random effects. Then we can show

: 03 + oTcl

: o? + oTel (2.17)

Here ol is the pooled mean square error from individual regressions ffi (Weisburg,

1985) The resuits from this theory are presented in table 2.7

The intercept in the above model, p¿, represents the initial CD4 count for the

¿th individual. In table 2.7 , it can easily be seen that the mean initial CD4 count is

lower for the AIDS group than the non-AIDS group. The difference between each

group may be accounted for by assuming the patients that contracted full AIDS

were brought into the observation program at a later stage of their disease than

those who didn't contract full AIDS.

The slope, b¿, is the rate of change in CD4 count over each time interval. In this

case the time interval is 6 monthly. Therefore, in the raw data AIDS case, a mean

slope of -40.83 indicates an average drop in CD4 count of 40.83 cubic centimeters

'"[ø5ä,0,-ù,)
'"[@5ä,r,-a),]
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Table 2.7: Results of regression on raw data, Iog and square root transformations

îi b Pooled al o| ol

AIDS

Raw Data

Sqrt Data

Log Data

Without AIDS

Raw Data

Sqrt Data

Log Data

648.5497

25.6378

6.536823

-40.83333

-1.056128

-0.1 195582

14687.0

8.09219

0.1076965

30377.8

74.00732

0.1 10335

429.58

0.3546412

0.007317455

762.9672

27.1866

6.574467

-29.55331

-0.612743

-0.0535784

96644.5

35.82079

0.2739325

269676.r

84.92848

0.477773

1691.69

0.6462528

0.005485728

over 6 months. Table 2.7 sliows that on average the CD4 counts for the non-AIDS

group decrease at a rate o129cm3 over 6 months, which is a less rapid decrease over

time than the AIDS group. For the logged data set, the AIDS group has an average

percentage drop of l27o over each 6 monthly period.

The variance of the initial CD4 counts, o3,, is in general a lot smaller for the

AIDS group then the non-AIDS group. Making transformations of the data does

not alter these differences dramatically.

For the raw data the slope variance, of;,is smaller in the AIDS case. However,

taking transformations alters the slope variance in such a way that for the log

transformation, the AIDS case has a larger slope variance than the non-AIDS case.

Score test results

Table 2.8 gives the estimated score test statistics under the null hypothesis rc : 0 for

the two HIV+ cohorts on the original and transformed scales. All the P-values are

small, demonstrating the presence of systematic relationships between the individual

means and the variances of the CD4 cell counts even after transformation. Note
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though, that the raw and square root counts for the AIDS cohort are not statistically

signiflcant at the 1% level. As a comparison, table 2.9 shows similar statistics when

the parameters are assumed known and equal to the estimates from a standard

one-way analysis of variance using maximum likelihood estimation.

Table 2.8: Score test mevar2a results for the cD4 cell count data

Score test statistic mevar2a P-value

AIDS data

Raw Data

Sclrt Data

Log Data

NoAIDS data

Raw Data

Sqrt Data

Log Data

2.0563

-2.0901

-7.5574

r0.4504

3.3185

-6.5767

0.040

0.037

0.000

0.000

0.000

0.000

Table 2.9: Score test results for the CD4 cell count data versions mevat2 and

mevarl
o] 02 mevar2 mevarl

AIDS data

Raw Data

Sqrt Data

Log Data

NoAIDS data

Raw Data

Sqrt Data

Log Data

19103.85

11.491

0.14142

29942.85

18.835

0.2655

2.0311

-2.0328

-6.596

10.533

3.287

-6.342

3.296

-3.542

-I2.268

7r.944

3.756

-7.440

50736.94

19.9456

0.1456

35240.48

73.4876

0.1042
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Square root transformation (NoAIDS-Cohort) reduces the mean-variance rela-

tionship and variabiiity observed in the data, but there is still substantial variability

unaccounted for in our modelling process. The one-way random effects model for the

CD4 celt counts on which the variance component estimates are based ignores seriai

correlation, trend and possibly other effects. Nonetheless, the score test appears to

be responsive to real effects in the data, and behaves in trend as we expect from the

exploratory analyses.

The results from the two-stage regression procedure above indicated strong vari-

ation between individuals decline in CD4 cell count over time. We can use the

variance components obtained from this method (table 2.7) to get score test statis-

tics from our all parameters known methods mevarl and mevar2. These statistics

are shown in table 2.10. They show a similar behaviour as those given previously

in table 2.9. In particular notice that the mean-variance relationship for the square

root transformation (NoAIDS-Cohort) is now not significant for the approximate

score test mevar2. Allowing for trend in our analyses has not made a substantial

difference in our conclusions of the behaviour of these data.

2.7.2 Blood Pressure Data

Blood pressure data from the International Prospective Primary Prevention Study

in Hypertension (IPPPSH) were analysed by Solomon (1985) and Solomon & Cox

(1992). Repeated quarterly measurements were made on 25 men over a four year

period (r : 16). The results are shown in Table 2.11 and confirni Solomon's flnd-

ings that log transformation stabilises the variance, and substantially reduces the

reiationship between the individual means and standard deviations.

Solomon and Cox estimated their parameter pn to be 0.1254 and 0.0411 for

the diastolic blood pressure on the original and log transformed scales, with corre-

sponding estimates 0.1669 and 0.0479 for systolic blood pressure. Estimating rc by
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Table 2.10: Score test results for the CD4 cell count data versions mevar2 and

mevarl using variance component estimates from the two-stage regression'

mevar2 mevarl

AIDS data

Raw Data

Sqrt Data

Log Data

NoAIDS data

Raw Data

Sqrt Data

Log Data

3.0244

-3.4364

-r0.6457

5.8413

7.8027

-3.5111

6.776

-9.298

-28.974

8.207

2.737

-5.692

Table 2.11: mevar2a Score test statistic for the blood pressure data

BP Data Score test statistic mevar2a P-value

Diastolic

raw data

sqrt

log

2.9264

1.9170

0.9472

0.003

0.055

0.347

Systolic

raw data

sqrt

log

3.7r78

2.4722

1.0859

0.000

0.016

0.278

pnlo¿., gives 0.0248 and 0.7568 on the original and log scales for diastolic pressure,

and 0.0121 and 0.5308 respectively for systolic blood pressure. Here, the behaviour

ol p,,., should be consistent with the performance of the score test statistic under

Hs: K:0, and the results presented in Table 2.11 confirm that this is so. Ë/o is

retained for both log diastolic and systolic blood pressure data, but rejected in the
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direction of rc > 0 on the original scale
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Figure 2.13: Individual trajectories of the CD4 data for AIDS and NoAIDS cohorts
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Chapter 3

Laplace approximations

The following chapters deal with likelihood approximations for general models with

multipie random effects. Works in the field of likelihood approximation functions

for generalized linear models include Fraser et al. (1994), Wolfinger (1993), Lee

& Nelder (1996), Shun (1997), Shun & McCullagh (1995), Lin & Breslow (1996)'

Breslow & Lin (1995) and Lin (1997) to name a few. Classic papers on the use of

likelihoods in random effects models include Gilmour et al. (1985), Lindstrom &

Bates (1988) and Schall (1991), while other authors such as Abrams & Sanso (1993)

use a likelihood approximation as a basis for a meta-analysis.

When considering a general approximation most authors firstly consider taking

a second-order Laplace approximation to the true likelihood for generalized linear

mixed models and add in some type of correction term. For example Shun & McCul-

lagh (1995) add a correction term inside the exponential term of the seconcl-order

Laplace approximation to the likelihood. Shun (1997) uses this modified Lapiace

approach to analyse data from the Salamander mating experiment (McCullagh &

Nelder, 1939). Lin & Breslow (1996) extend their results from Breslow & Lin (1995)

(see previous chapter) to allow for GLMMs with muitiple random effects. Their

likelihood approximation uses a correction factor derived from Penalised Quasi Like-
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lihood estimates (Breslow & Clayton, 1993).

The form of likelihood approximation presented in the following chapters is based

on a multivariate fourth-order Taylor series expansion. We will consider both the

second-order and fourth-order expansions and compare these to decide if taking the

expansion to fourth-order offers any advantage for the problems studied.

The rest of the current chapter leads discussions on background into Laplace ap-

proximations including previous work in this area. Chapter 5 is a complete derivation

of the approximation to the likelihood function starting with the most general case.

This general case is shown to the fourth-order and is applicable to all models with

terms that are crossed, nested or mixtures of these. To explore further the form

of this approximation, a complete algebraic expression is found for a fully crossed

model with two independent terms followed by a brief discussion of the form for a

model with an interaction term. Next we consider a model with two nested terms,

the form for the likelihood here is shown for the case of the linear model and a

nice form is found for the fourth-order approximation to the likelihood for a general

model. Chapter 4 concludes with discussions on expanding around the true values

of the random terms (that is expansion around zero). Finally, Chapter 5 shows

the behaviour of the approximation for simulated data, the linear form, a crossed

Poisson model, a nested exponential type model and finally a logit example using

data from the Salamander mating experiment.

3.1 Example: 2-way table

Take a model with two independent random effects " 
: (or, a2,...,ø-) and b :

(br,br,...,br),, distributed normal with zero mean and standard deviations o4 and

06 respectively. An example is the linear model:

At¡n: þ I a¿ -f b¡ -l €u*,i: 1, ..., m, i : L,...,r,k : 7,...,n,
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where e is the error term which is normally distributed with mean zero and standard

deviation o2. The cond,i,ttonat tog-ti,keti,hood is defined as the log-likelihood obtained

by fixing the random effects ai and br., therefore becoming a function of the flxed

effect ¡t and,these two fixed. terms. For the linear model mentioned above this would

be written ti¡(ao¡r,lt,o2lat,b¡) : -îIog2¡ro2 - Di-Ja¿¡\-!-"¡-at)', separately for

each i and j.

The expression for the true likelihood for any model with conditional log like-

lihood lo", is found by taking expectations over the distributions of all the random

effects (m * r integrais):

L : (2tr)-(m*r) t2 o-m o¡' I " | "*o{:,¿'i, - L& - f^e\ o*, oo^dnt d'b'

or in matrix form

L--(2n)-(mir)t2o-m,;, |...|"*o{ii t",,-*-$}} o"oo (3 1)^ 
l. = Á "' '2oÁ '¿""u 

)

Define þ as a function of (A¡¡n,lr,õ2,a,b,02¡,o2") lhen (3.1) becomes

1:(2r)-(m-fi)t2o-m"¿'l' '1""o(r)d'ad,b. (3'2)

The resulting likelihood is a function of the variance component" o'o,o2" and the

fixed effects (for now assume there is only one fixed effect ¡.r,, in reality there could

be many such as for a regression component Xr).

As an example of the types of general models applicable here, consider for ex-

ample models whose conditional expectation is a linear function of the two random

effects, E(Ao¡loo,b¡): pij: f 0t+a¿-lb¡), for example, suppose A4 -Bin(7,Pt¡) and

we have a logit link:

logit(p¿¡) : t-L + a¡ * b¡.

Then we have conditional log likelihood for this written

ti,(yla¿,b¡) : arilos('p ¡ + (1 - ai¡)Iog(I - Po¡)
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: a¿i1t' + a¿ -l b¡) - log(1 f exp(p * a¿'f b¡)), (3 3)

and therefore the likelihood is

Iog(1 * exp(p t a¡ t b)) - Å- - J-\l o*'"'oo-clb1"'d'b,' (3 4)
2ro2o 2mo2, J)*-'

Although these integrals may be approximated numerically without too much

fuss, our purpose is to find an explicit algebraic expression for any model with

independent crossed random effects and conditional log likelihood represented by

lfr. High order integrals such as (3.4) are complex, so we propose an approximation

based on the Lapiace expansion for this expression.

The Laplace approximation is based on a Taylor series expansion for the exponent

/, which in this case is given by I3, Di:rUi¡- +,- ffi1, about estimators

denoted ã and 6, where (or,.. .ã^,tr...br) is the point where the exponent is a

(locai) maximum. These estimates will behave like functions of (p,o",o2o,o2") that

maximize the function þ

- 8ó ã(h ^D'
ó x d(ã,b) +x(à,b)(.-ã) +ffita,¡)i¡- Ú+ffi(ã,b)(a-â)(b-b)

Iô2ó.^ A2ch
+Uffiø,È)(" - â)'+ #@,È¡1u - n¡'

(2n¡-t^+'¡/2oÀ^on' I l""r [å 
i{r,,tr + a,-t b¡)-

: 6ça,n1 +| (

(;_;ll'(
ffi{a,i')
a'4 la.6lâaâD.

#@,ol \ l("-¿) l
ffra,Èl / Lro-È) l

(3.5)

Define avector u: (u,b) of length mlr and an (*+r xrnlr) rnafiixD

of negative second-order derivatives of @, sometimes referred to as the "Hessian"

matrix for þ, making the Taylor series expansion for /
-1

ó(ã, b) - ifu - ù)'D(u - ù).
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Then the integral (3.2) is approximated by

exqÐilÐi-_t la aíLij-r4-
:.
b1I,*4

| "*, {-i, - a)ro(u - al} au
(2tr)tu+'¡ oToh

Since the matrix 2 is symmetric and positive definite, the integral here is in the

form of a multivariate normal distribution, and therefore may be approximated as

lDa+ Qr)'# and the approximation to the log likelihood is

rm
log(lal), (3.6)

1

-)..sç"i) - ä 
t*r

"T) + tt 2i:7 j:I

which is a common representation of a second-order Laplace approximation to the

true 1og likelihood.

3.1.1 Other representations

Shun & McCullagh (1995) and Shun (1997) use this representation in their moclified

Laplace approximation. They refer to the third and fourth-order terms as correction

terms, e¡ below, and put them inside the exponent of the likelihood to obtain an

approximation for the log likelihood of the form

-\tos(o'A) -;ros(o2") -|r"rç1ol) + Ëå (ti¡
^,)ei

2ro2a 2mo2p

b? * eo. (3 7)

D may be written as a function of the information matrix, Z, (matrix of negative

second derivatives):

.n ('^n_# -# Iu 
| -( u't'\' ¡ s 

-ð2¿:1\ - \ôaôb- ) "4 - ab" /

D-r +T

where X is the (m + r) x (m 1- r) variance matrix for (a, b)
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To s same as the expression used by Lin & Breslow

need to fferently. By rearranging (3.6) slightly the iog

approxi

äÐ rr, - h- -t-\ - jr"sr[I "iilo2" r +rD E-'I )

: Ëi (r,-Å:--4-l-lrog0r +rr,l) (3.8)
3?-\"' 2ro) 2moþ ) 2'"a\t-

which is written in the form used. by Lin & Breslow (1996). They refer to (3.S) as

the first order Laplace approximation for generalized linear mixed models. They

extend this to create an approximation using penalised quasi likelihood estimates;

they concentrate on correcting for bias due to these estimates.

60



Chapter 4

Approximate likelihood functions

4.L An approximation to the likelihood function

for general random effects models

We wish to find an expression for the approximate likelihood function which al-

lows for a model containing p sets of variables. Given p sets of independent normal

variables, br, bz, ...,bo with variances of , o3,...,o| respectively, each b¿ is a vec-

tor containing r¿ elements. Let l?iar¿ : N ' The likelihood is given by finding

the expected value of the conditional log likelihood 1", where the l/ variables have

multivariate normal distribution with mean zero and variance matrix E:

-J,- t t ["*o{t," -T,", ,u\au (4 r)
(2r)z l)lz "' r r

where z is a vector of length N, u: (bT,tt|, bil.The conditional log likelihood

l" is a single number dependent on one particular value from each of the p variables.

Firstly define a matrix 2 of order (,n/ x ,n/). Take the conditional log likelihood

as a function of the p sets of variables and find the second derivative w.r.t. either

one or two of these and sum over the remaining (p - 2) sets of variables to create a
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matrix for each combination of sets of variables:

ir'(i, i) : t :+ (diagonal matrix)
T'2¡"''rPôb1¿b1¡ ' "

irr(i,j) : t ,u","
r'2,..'i,p AlJrb2i

ð"1.
trt(i, i)

r2
t
T4¡.. ,o Ôbvb3¡

etc.

Then l¿¿ is an (r¡,xr¿) matrix corresponding to the sets b¿ and b¿. The mattixD,

as defined before, is partitioned as

þ,1,, - lrt ltz -hz

-n
_77

'13

àt,"

{ ¿ ia,l" x (u - u)'o' (u - u)J"...(u - i,)'i}],

- lzz -lzsD (4 2)
tTs þ"1,, - ltt

where 1", is the identity matrix of size 11. Let J : (it,iz,'..,iò b" a sequence of

nonnegative integers with norm l/l : it'l iz +... + jo and ¡t': jrlj2l...iol' A

general fourth derivative is given bv IJI :4 and the differential operator

d': ññT uor

A fourth-order Taylor expansion gives the expression for the approximate likeli-

hood as

W I W,,*o {-; @ - u)rDr, - ú)\

x
11 rt*rz ¡¡1+t t t
i:l j:71!I p--N -Tp

The first term of the integral is in the form of a multivariate normal distribution,

u - u - l/¡¡(0, D-t), since the matrix 2 is symmetric and positive definite.
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Moment generating function

The moment generating function for a multivariate normal distribution is written

M6-a)(t) : exp{ }t'o-'t¡,

so to flnd the fourth-order terms of the likelihood approximation we need to use this

expression to find

ôktIkz+"'
M6-n1(t)n (@ - t)1,@ - û3" ..)) at!' att' t:o

In our fourth-order likelihood approximation we have 5 different types of expected

values to find; define these by

J(4) : (4, 0, . . . , 0), j¿ -- 4 for some i

J(3,1) : (3,1,0,...,0), j¡:3,i¡:Ilor sorne'if j

J(2,2) : (2,2,0,. . . ,0), i¿:2, i¡ :2 for sorne 'i f j

J(2,1,I) : (2,L,7,0...,0), j¿:2,ij:7,i*:1for some 1'+ i + k

./(1,1,1,1) : (1,1,1,1,0.. .,0), jn: I,ij:7,in: \,it: 1 for some ti + i + k + I

Now we find expressions for each of these in turn.

Consider the following expectations (wher" Drt is the i,jth element of 2-1):

E(u - ")t: Ìrttli'oA4

atlu*v

(r,"-)'+ao¡l(t'Drt'*D,rrt,Dr¡')'+(trDrl*D,*rt,Dri'Y)
1

exp { trD-rtj
2

¿:0

:3(Dlr')2

æ 1

aüaú

and
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DrrtD;r'+Drrt(trD;rt + ! t¡Dl¡\'
i+2

+2(D L2\2 + zo¡] (tro-,i + I t ¡D r¡t) (trD;r' + I t iD;j')
i+r i+2

1
f terms involving ú

"*p{
trD-rt\

2
t:o

: otlDlzl + 2(D¡r1)2

Similarly,

n (@ - a)1@ - û,) : 3D¡,tD;,1

ø (@ - n)?(" - úr)r(u - ¿)') : Drr'D;r' + zo¡rto¡]

E ((" - ür)r(u - u)r(u - u)r(u - ")n) 
: Dr"tDlt +D¡rLD;nt + O¡]O;'I

Therefore the Laplace approximation to the true log likelihood for a model with

multiple crossed main effects is

N A a N [''lJ(4)l

*$ t d"¡6,1¡t"JD^' Dujt * $ t D, (r,r)i" (oi' ol,t + z(D;' )')
"''' ¡J13,r¡¡ '''' ¡t{z,z)l

+

t ü(z,r,t)ï. (o;'r;; + zo;Lo;rt)
lr(2,1,1)l

t drÍ,t,r,t)i. (ruto^' + D;r|o¡r + o¡ro;Ì) (4.3)

64

I

i

I

i

L

L

lJ(1,1,1,1)l



When directly compared to (3.7) we can see that this is in exactly the same form

and the correction term here is simply the terms resulting from the fourth-order

expansron.

 .L.L Models with nested random effects

The nested case may be represented in a similar way as equation 4.3 fot crossed

models. In the case of two random effects, the matrix 2 (partitioned) is given by

the (r1 * r¡2) x (rr + r¡2) mat'rix

Aro lrz(7j)

0,,

0r"

lt (2j)0

0

0

0,,

0r"A2

0 0 Ar, 0r" 0r, lt (rti)
D

tT,Gj)

0r"

L)D17

0

0

0

Bn

0r"

tT"Qj)

B¿j

Ip(ij)

0r"

0,.'

0

0

where 0r, is a 0 vector of length 12, and

0r' 0r" ff ('rj) 0 8,,,,

,lp(i,r2)).

Ai
1 12-: -+ -\)t',(i'j)TcOí

']: r
1_: 
" - l"r(ij)oi

: çtr"çtt\,lrrçr21,. .

For many random efiects this matrix has dimensions (rr + rf2 I r1r2r3 + . ' . +

[I!tr¿) x (", + r7r2i- r1r2rs + . .. + l|Trr¿) which is very big! The next section

shows an explicit form of the second-order approximation for nested models.
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Additive models

For models where the effects always appear as a summation, as in the previous logit

example, each combination of second and fourth-order derivatives are the same, i.e.

ln : ln : lzz and ],¡rn : lmz : lttzz : .... Proof is given by the chain rule as

follows:

The conditional log likelihood is a function of a summation

t: f @@)), where g(r):Dt,

Now,

s(r)
ag@)

or¿

ô" g(r)

11l 12 i rs I ...

1 for all 'j

0 for all 'i,7 combinations
õr¿ðr¡

The derivatives of the function f (g(r)) are

ar G@))
ôr¿

a'r b@))
0r¿õr¡
similarly

ant Ø@))

: s'(r).f' Ø@)): Í' (g("))

: g"(r).f' (g(")) + (s'(r))' .r" Ø(")): f" (g(r))

1"" (g(*))
ðr¿0r¡0r¡,ðr¿

This simpilifies the expression for the approximate log likelihood by grouping all

the fourth-order derivatives. This proof will be especially useful in Chapter 5, where

we frnd the approximation to the likelihood for some exampies of additive models.
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4.2 Approximations for models with two random

effects: explicit expressions

4.2.L Two-way crossed with no interaction

The fourth-order Taylor series expansion for a function f (r,g) around two variables

(ø, b) is

tt æ
f (",b)(, - ")o(a - b)n-a

P:o d:o dl(p - d)l ðaaô6n-a

The function we wish to expand is /, as defined earlier. "Í(o,b)" is /(a,b):

d(.,b) :tit"-i*_i_&
i:l j:I i=t tu A j:l

We wish to expand around (ã, t,), hence our approximation to the true likelihood is

found by expanding this as below:

p
1

(2r¡-l^+'¡/2oÃ*o,' I I exptttTt. r -)o,;

2ro2¡

b3

2mo2p
l"-

i:L j:r

1

To2A
)(oo - au)' t

1-
+;(rÍ(i.i) - 1

t
1

t)

1
+ln(ij)(a¿ - a¿)(b¡ - [,) + ltrt(oo - ao)t t lrrr(bo -t¡)t6

+|trr"çon - ao)'(u¡ - u) +L'lrrrçoo - ou)(b¡ -6¡)' * hlrrrr(oo - on)n

1
I-
'24lrrrr(bo -6¡)n + lrrr"(oo - 0")3 (bj - bj)

1

6

1
I-,6 trrrr(oo - o¡)(bi -6¡)' *ii,,zr(ao - î,n)'(bi- or)'l d"a1...d,a^d,br...db,

I
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In the notation above, the number of digits in the subscripts for each I representing

the order of differentiation of the conditional log liketihood l¿¡, that is,2 digits such

u" trrçt¡¡ ot trrçl¡¡ represents a second derivative, 3 digits such as i111 represents

a third d,erivative etc. The actual numbers themselves represent the variables the

differentiation is with respect to, l refers to an o¿ and 2 refers to ab¡. For example,

iu(¿j) : d,2l¿¡ld,a?lon:uo, lrr(ij) : d,2l¿¡ld,at...d,a,nd,bt...db,lon:ao¡ -6 and similarly for

higher orders.

The method is to compiete the square and make substitutions for a¿ - ã'¿ ànd

b¡ -6¡ so that the integral is in the form / /""p{- Ð\ta? 12 - Ði:tr?|2)dadr.

First rewrite the above expression as

constant exp { ;(i fiø'-ã')'.å

Ë

Bj
oþ

(b¡ -l¡)'

2
ä -r^t,"(i 

i) (on - ão)(r, - õ, ) 

) )

x(1 + third and fourth derivatives)da1...da^dbr...db,

where A¿ : l.- Dî:r iuçt¡¡"'o and, B¡ - 1 - DLrtrr(ij)o'u. A second-order approx-

imation to the true likelihood is defined as the first term of this integral, i.e. the

exponential term. A second-order approximation is

LÈ
exp ÐLr Dï:r

--r12I-ai 
- 

"júc 2ro2o 2mo'¿"

(2r1{*+' oTob t: exp

+t Ai
o2A

(on - ão)' - rä2r-Ui)@o - oo)þ¡ - t )\fo,,o, db, (4 4)
i:1

Since all the terms a¿ will have similar integrals we can make a general substitution.
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\fÆ
Let g¡: :--:

oA
, oAÐi:rln1j)(bi - bi) 

.d, d,a¿: !!dyo, and we ger\a¡-a¡) T"" t/A¡

expÐLtDi:t --t12t 
- 

al 
- 

"jLc 2ro2o 2ttto2"

l+aU l*'[-; {Ðftr'-6¡)'(2r)(^+' oToh

.ä,,-ä 
)]

dat...da,ndfu...d,b,

(ft-än"f/)r
+ I(b¡ -6¡)'

j:7

-riy \] or, or^d,b1...d,b,
i:r k+j ) )

Now create an (r x r) symmetric matrix C : diag(Br) - o2¡o2ulp(l¡)rdiag(Ao\lrr,

where
BL0

diag(Br) : 0Bz

The above integrals can now be written in the form we require,

I l"*o { 
-ä+ - +çu - u¡rcçb - b)} or, oo^db, db.

: &I I""o{-ä+_T*"*}d'v d'E^d'rv d'r'

where X is a vector of length r with elements x)¡ and there exists an (r x r) matrix

P such that X : P(b - U¡ 1"" and, Pr P : C, also lPl : lcltl'.
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The second-order terms of the Laplace approximation can now be written

(2r)@+')tz nt \/4lcl

exp DZ, ,î:,(f" - ;d - ,#)

expr[rt;:, (L - &,- #* I I.",{-ry-T","\dyl dr.

nnJÆlclL
The second-order terms of the approximation to the true log likelihood may also be

written

(4.5)

(4.6)

äÐ('.-&,#
1

log (ldiag(A¿)l
2

x 
I 

aiag (B, ) - o'¿o2*l r2(t ¡ )r diasça;' ¡i -tt i )l)

If we create a partitioned matrix D,

then 4.6 becomes

t: (
diag(A¿) 0

OC

rn 1r

2
tog(lDl)

i:I j:7

lDl is equal to lDl in section 3.1, and thus compares directly to past forms of the

Laplace approximation, especially Lin & Breslow (1996).

Adding in the higher order terms

Now return to the fourth-order expansion. We need to express the third and fourth-

order terms in terms of Ei and some vector X representing the substitution for b¡.

The full substitutions are

-o-2ra¿ - a¿ : --!-,- -go + + \,ltr(ii)(b¡ - bi)
t/ A¿ a¿ lt

and, b¡ -t¡ : oB(P-L X)t

tt (4.7)
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Note here that the transformation for b¡ -6¡ can be written onDi:t Putrr and also

r

>,Pa
i,i

P,J

PrP:C Dctt:--->

21

(t
i,i

; -1.t-r

and
r

+ \-c. 1' ^/¿ ".1.1
:_1
J-L

r-t çp-y : C-7

Remembering that the first and third moments are zero for a standard normal,

the third and fourth-order terms in the series become

#-] - ;äLog(A¿) - å'"*il"t)

(' . # Ð;flt,, tr i )î - {c k) c ; ;l)

så l a7I x ttl¡.---
H,1 l"' 2ro24

o\
trl 

A?
h

+ 2t n,+: (,' * # Ðfflt u çr ¡ ¡t u çr,n¡ c ; |l) c u' + r# çy t,, çr n¡ 

" 
;,\')
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+41
l,

oÀo'B
1.772 

^2'-x

l4l2221olCrr D, c ;r'fTrtki) + lrzzro| Q j jt )'

(, . #É å liult¡¡iuçck)c ;;l\
\ 

,'? j:1k:t /
\lrrçttc¡c;,r
k:r

"',q,"'"
Ai

,\-

r

k:7
(4.8)

where C¡L are the diagonal elements of the matrix C-1, the inverse of C. This may

be written in semi matrix form as follows:

Define a vector A of length 2 with elements referring to a particular i, j combination:

* ft * "# >î :,1,,çt ¡12 c ¡' )

"'"C.nt

Then

rnr -,0,i

2ro2¡ 2mo2u
Ai log(lcl)

2

nz".1

(,,,,,
LL22

iä^r
1¿=DD l" ( )

^
(4 e)

Investigations of expression (a.3) for two random effects (p:2)

As an exampie of the indepth form of expression (a.3) we now compare (4.8) above

to our previous general expression. We will now take our approximation (4.3) and

rewrite it in its explicit form; this is made easier by the fact that there are no terms

with J(2, 1, 1) or J(7,I,1,1) and some nice symmetries appear. Firstly rewrite

matrix 2 in terms of A and B,

)^. 
+ffi,xii)c,'

j:7 i:t

.ååå
[^" 

( ll;;
t,222

I2222

r
Ai 7 - "'oD,lrt(¿j)

Bj : 7-o'uDlu(¿j)

j:t

TN

i:1
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D fidras(A¿)
7T1_Lr2 

V"

An expression for the inverse of D (: D-r) may be partitioned as

-i,,
diag(B¡)

D-

: ( o\dras(A;t) (r + o2¿o2ul12c-rtl"aias(Att)) o2ao2"dias(A¿\irrc-t \
\ o2¡o2tC-Lî[2diag(A;1) o2"ç-r )

Consider the term i1111 in equation 4.8:

Remember here that J : (jr, jz, . . . , j,+*), so for the term lrtt J (+) refers to some

jt : 4, for one i, in l7 : ml:

1
D,,, D,,,

D;tr D;"t

t : drØ)ï.111

lrrrrço¡lçl,q¡2 : o\
4
oa¡

4

r + o\o2"å 
tå ft,çu,¡c;,'ry,uùo;')\

r + # ä;lli,, çr ¡ ¡ t u çt k) c ; ;)\

Similariy:

irrrr(D;rt (i i))' : ofl (c ¡L)2

l rrr,.Dlr' (j j)D;l (j i.) : ric ut # þ__rt 
r;t r*U

i,,,,D;,rçöi)D,;(i,i):*{r.#f-f 
flt-ça¡¡tuçrec;,t)\"+ii,,u,Ðc;i

I ur, (o rrt (u)D;rt (j j) + zo¡rr (t ¡)o;r' (i i))

-,tù



2

All these expression can be directly compared to (4.8), so for models with two crossed

terms, these expression are equivalent.

4.2.2 Two way crossed with interaction

Models in this category, such as a4n : þ I a¿ -l b¡ * c¿¡ I €4* have two random

effects ø¿ and b¡, as before, but now include a random interaction term c¿¡ which

is distributed with mean zero and standard deviation oç. The likelihood for these

type of models is of the form

I |ll I"*o{åå (,"-h ,# #) },,'' d"-,)da1 da^.br db.

and we need to integrate out the three random effects by making an expansion

around three terms etc.

Consider the second-order terms. Firstly integrate out the c¿¡ variables to get an

approximate integral

o2"(fu(a¿ - an) +lttçat - a,¡¡'

* {' . #å å lt,,çt¡¡tuçtk) c ;;l\'zr;' * r# 
{D 

i,"rnoc ;;

il
ij 2(1 - lssob)

7 - 122(i,j)mo2u

ffio2n

X

)tl- ztn(ij)(oo - oo)(b¡ - b)

Now define
rt

and

t
i:t

AI¿
fu(i'i)2o2,1

7 - h(ij)o2ç

B7¡ :
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and the approximation becomes

exp I(oo - ctò2Ari+ I(b¡ - r',¡'m, - 2DÐ(,,o - a)(bj - bj)
2

1
rn

i:I

T

J:L

rfl r

i:7 j:I

1

îrr(¿ùlrr(¿j)"'"
)

7 - lzzØj)"'"
da1...da^dbr...db,

This is of the same form as (4.4), so the procedure from here follows exactly the

same method as before. Remembering that each second derivative of the conditional

log likelihood has (m x r) terms corresponding to each i, j combination, we can deflne

an (m x r) matrix L2 wllin elements L2¡¡ givenby

L2¿j ttz(ij) * t':þ¡Y':ut-)y-''"
r - [æ\xJ )oA

Now deflne a new matrix C1 as

C r : diag(B1¡ ) - o2oo2u rzr dtag(At;r) Lz

x (tp(i.j) + (4.10)

log(lctl) (4.11)

and the second-order Laplace approximation is

(i-
n7r
\- \-
/- /J

i:I j:r

q 
"?¡2mol 2"'"

A1Ëto*
i:l); 2

The fourth-order terms may be found explicitly by following the procedure outlined

previously, or using the general formula wílh D defined using a mixture of nested

and crossed terms.

4.2.3 Models with two nested random effects

The standard normal theory linear two-way nested model, with b¿, nested in a¿, may

be written ?)4p : þ l a¿ -f bi¡ -f s¿¡¡ wrlih'i : 7, . . ., ffi, i : 7, . . .,ri and k : I, "', n'

The ø¿ and. bi¡ are random effects with ø¿ - N(0, ø]) independent of b¿¡ - N(0, o!),

e - N(0, o2) is the random error term.

75



The true liketihood in the case of a nested model is

m¡æL: II/. . J-æx:I

1
ha__t+

e 2o'B et'dbi¡da¿

2
"i ri ¡æ

'u" fI I. .J-æ
']: I

1

2ro2p

: fr l**tÚ I -t' 
tro)¡-ï (2tro2"¡-à "'"-ft-#4 aani)aoo

where l¿3 is the conditional log likelihood.

The true log likelihood for a normal theory linear model (balanced) is

rn,T'TL mr(n - 1) -

-T log(2r) log(ø2) - Çøs@ro) + no2" + o2'

-Ú?-s(no2" + o') - #{L,n,,r - t )' -"'zo'sÐL{@*'t; 
tù'z

n'o'aÐZt Ði:t(a¿¡ - tt)

(no2B + o2)(nro -l o')

2

as given by Searle et al. (1992).

Random effects may enter non-linearly, which causes the integral representing

the true likelihood to be intractable. The integral may be approximated with a

Laplace approximation using a Taylor series expansion for the exponent. Similarly

to the crossed case, the expansion is

i, - h - #+ (ir - ffii@n - 
ã'¡) + G, - ftlro,, - 

bn¡)

+|fî,,UÐ - *l@, - oo)' +)lt-fen - þþo¡ -boì' 'rÌ,2(ii)(o, - oo)þoi - b,¡)

*hlrrrr(ou - ã,0)n + 
fitrrr"çan¡ - bn¡)n +)lrrrrçou - on)'(bn¡ - bo¡)'

1*-
ri

lrrr"(ou - oo)t (bo¡ - bo¡) + irrrr(on - on)(bo¡ - bo¡)t
6

1

As in the crossed case, l" : l"(ã¿,b¿¡) t.e. the conditional log iikelihood (fixed tr¿ and

b¿¡) substituting in the maximizing estimates õ¿ and ãu¡. Si-ilttly for all conditional

1og likelihood derivatives.
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Firstly integrate w.r.T. b¡¡

| "*o{-; ¡,,,, 
-t,,Y(ä - tuØù) 2(bn¡ - bij)lL2(ij)(oo - o)

(bo¡ - b,¡) -
ln(i,j)on(a¿ - ã¿)

I - 122(i,j)o2u

(on- o)'(+ -lrr(ii))r¿oÁ
db¿j+

2

I {;l(
t - l"rçt¡¡"7

exp
Op

_i?r1i)o=T@o_.- g)2 + @¡ _ o,)r(+ _Irr(ij))
7 - L22Qj)o', r¡o A

¿bq

Now integration yields

J2tro,
| - t22(i,j)oþ

exp )'
r - irr(t¡)roo'o i?r"'u

{-Lr,- u, r¿o2¿ t - lrrçt¡¡"7

Now multiply by (2ro2)-à and take the product over j to get

""pI-
1

-(2',

r - Irt(r¡)roo2o l?r""u1
Ti

ilj:r

r
2ar-ã¿

7 - 122(ij)o2u r¿a2A I - 122(ij )o'u

Integrate over a¿

where

riI
j:t

II
i:t

1t*,î
i:t

j:t

Lå

lz"Ll

2olt 2r¿o2a 2

1

1 r - l r, (i, j ) r a o2o) 0 - I 22 (i i ) "'") - l'r" o"u o'o, n(

| - 122(ij)o2B ,o(7 - 122(i.j)oþ)

So the second-order approximation to the true log likelihood becomes

c)(i- a?1
IogB (4.12)

1.,J

ß t - lrr(¿j)o2"

å (i -i,,rçt¡1roo'o)ß -llro'uo)r,
?. ßr¡J: t-

c

(I



Now, making the substitutions

b¿¡ - bn¡
lno2e

B
(oo - o)

- n-L tzA¡.-û¿ : L'¿Ai

into the Taylor expansion for the higher-order terms, we get an expression for the

fourth-order Laplace approximation to the true log likelihood:

oB \r.. -
{B"t '

u?¡t
i,i 2o"u 2r¿o2a 2

u) * i-:Ios(o2oc)
/r:rL

ã?1
l" 1og

4.2.4 Expansion around the true values

Solomon & Cox (1992) find an approximation to the true likelihood by taking the

Taylor series expansion around zero, i.e. the true values, using a fourth-order approx-

imation. For a crossed model with two independent random effects, the second-order

approximation is

. 
n # llrrrrßn + 4i 1712lpo'"Bt + 2irr"ro2uß2 (c B + 3Ê"oT

4l e22l p oaB B (ß c + llro2") + t 2222 (c ß 
"'u 

+ llrofi'f

where C is the (m x rn) symmetric matrix

C : diag( B ) - o'oo2ullrdr"s(Ao t 
)Trr,

K is a (r x 1) vector:

K : 
"'oE 

drag(A;r)L +12

and.l" is evaÌuated. at a¿:O,bj :0.

(4.13)

(4.t4)

rnr
\- \-./¿./¿
i:7 j:L

l" - ;Log(lcl) - ;äIog(A¿) + ! t,*,1ï diag(A;\l1J,xt t "3 7a' ç-' *
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The second-order approximation to the log likelihood for a nested model with

two random effects is

Ëi0"
i:1 l:1 \

1 t
i.:l

c(
1

2
Iogß Iog

2

+
1

2

where

ß

c

I - l22o2p

{l (1 - ît1r¡o2o1ß - llro'"o'or,

- ßr,

also defrned before.

Lin &¿ Breslow (1996) generalize these forms and discttss Solomon-Cox approxi-

mations for GLMMs with multiple components of dispersion, and use it as a "step-

ping stone" to derive their bias correction procedure.

These approximations have the advantage that there is no need to calculate the

maximizers õ¿ and t¡. Orr" problem is that to expand beyond the second derivative

is not as straight forward as the Laplace approximation since the expected values

for odd powers do not cancel and thus the expression becomes very complicated.

4.3 Using approximations to the log-likelihood in

estimation of effects in mixed models

Firstly take the Laplace approximations. To estimate the components of some

(known) model we take the conditional log-likelihood for that model, choose start-

ing values, estimate the local maximisers (for example a¿ : It(i, j)o) and, b¡ :

l2(i,, j)o2) as functions of the starting values, substitute these into the approximate
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tog-likelihood function, maximise this to obtain new estimates of the model compo-

nents, use these to find new local maximisers and so on until the iterative process

converges. This process is similar to a Newton-Raphson type algorithm.

Fïom the expansion around the true values, as mentioned previousiy, to estimate

components of a model we avoid the internal process of finding the local maximum at

each level and use the values from the previous iteration, similar to an EM aigorithm

approach.

Lindstrom & Bates (1938) compare the Newton-Raphson and EM algorithms.

They conciude that although the EM will converge, it will take many more iterations

than the Newton-Raphson. We can make a comparison here with the two methods

of likelihood approximations and conclude that the Laplace may be preferable when

estimating components from a model. For this reason the simulation Chapter which

follows considers the Laplace approximation only.
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Chapter 5

Simulations of the likelihood

function

To illustrate properties of the likelihood approximation, I will use it to approximate

aII the fixed effects and variance components for four general models. The examples

I will use are

1. linear model - this will enable comparison with known results,

2. Poisson,

3. a iogistic regression simulation including an example from the Salamander

mating experiment,

4. and a normal nested model with exponential mean.

Suppose, for example, our model contains one fixed effect and two random effects.

The parameters we wish to estimate are (p,,o"¡,o'à.The estimation procedure may

be considered as two stage. The steps are as follows:

o Firstly fix initial values lor (p', o't, o'")
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1 Find ãi,b¡ as functions of (¡t,o'",o'u)

2 Substitute these into expression for the Laplace approximation and maximize

this to find estimates (p, 6'o,ã'u)

o Repeat stages 1 and 2 until the approximate log likelihood is a maximum.

5.1 Two-way linear crossed model

To investigate the behaviour of the approximations to the likelihood, firstly consider

the normal theory linear model. The approximation for this model is simplified

because the third and fourth-order derivatives of the conditional log likelihoods are

zero, and so we will only need to consider up to two derivatives. A linear crossed

model with 2 random effects and no interaction is

Ut¡t : þl a¡-lb¡ -l €¿¡¡a,wtth'i : I,..,m i : 1,..', r k : L, "',h

where a - N(0,o2t), b - l/(0, ofu) are the random effects and e - l/(0,ø2) is the

random error term. We simulated data using this model with r : rn - 20, n:2

and found the Laplace approximation to the log likelihood using the conditional log

likelihood

l"(ao¡*loo,b¡) : -|bgQ*o') -Lt'(a¡¡n 
- !L- a¿ - b¡)2 

.

The estimated values of p, oA,oBto were compared with the results obtained from

a random effects analysis of variance (with maximum likeiihood method). Table 5.1

shows estimates from two different sets of simulated data. They compare reasonably

well. The estimates of the flxed effects are identical, but there is a tendency for the

variance components o2o and o2u l,o be slightly underestimated by the approxima-

tions.
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Table 5.1: Estimates from a linear model with two random effects

p o2¡ o2t o2

Approximate likelihood

RAOV

1.07477

1.0747t

0.93751

0.96906

0.58527

0.59796

1.037188

1.037165

Approximate likelihood

RAOV

0.42698

0.42698

0.09894

0.10141

0.14636

0.15142

0.41794

0.41792

6.2 A Poisson model

Consider Poisson simulated data with two independent crossed random effects, ø¿ -
N (0, o\) and b¡ - -ð/(0, o2"), and E(Ao¡loo,bi) : exp(É¿ * a¿ l- bi).

The distribution is Poisson with conditional log likelihood given by

l"(Ao¡loo,b¡) : ao¡(tt I a¡ ló¡) + exp( þ I a¡ + bi) - log(g¿r!).

FYom here:

t, : U4 * exp(p, + a¿ -l b¡)

ln: exP(P+ã¿+b.¡)

and

irrrr: exp(p+ã¡+b¡)

The expression for a Laplace approximation to the true log likelihood has the foun

(a.s) with

^ 1 texp(p*ã¿lb¡)"'"-r,i. r _ 
J

Bj: 1-texp(P*ã¿*u)oT
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Table 5.2: Estimates of the variance components for simulated Poisson data with

various starting values

Simulated values 2nd order 4th order

l-L o¡ oB t-L oA oB Log-lik

111
111
2 0.707 1

3 0.316 0.316

1.7r1 0.962 0.706 -9227.677

1.22t 0.936 0.999 -6327.349

2.093 0.656 1.009 -18390.40

2.932 0.305 0.32t -17435.98

Table 5.2 shows estimated variance components from the second and fourth-order

likelihood approximations for four simulated datasets with rn : r : 20 and values

for the fixed and random terms as given in the table. Most estimated values appear

close to the true (simulated) values. There is little to choose between the second

and fourth-order approximations in these simulations. ¡-l is over-estimated by both

methods. Note though that the log likelihood is slightly higher for the fourth-order

approximations in each case.

The Laplace approximation to log likelihood for simulated Poisson data with

values o2¡: o'B:0.1, rn:r:20 is shown graphically by figures 5.1 and 5.2. The

estimated values are õ¿2 : 0.074 and dp2: 0.106. The plots show a well defined

curve and definite maximising near the true values.

5.3 A nested model

Consider normal dala g¿¡¡, with two nested random effects, a¿ alrd b¿¡ and mean

E(an¡rloo,br¡) : exp(p i a¡ I b¿¡) and variance o2. The conditional log likelihood is

written

U: -;Iog(2ro2) - #D@o,r- exp(p + a¿-t b¿¡))2

I,7TT

7.220

2.093

2.932

0.962

0.936

0.656

0.305

0.706

0.999

1.009

0.32I

-9227.734

-6327.444

-18390.44

-17436.00

t-L oA oB Log-lik
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The derivatives of the iog likelihood are

l1

I
111

1-
z : iI""p(¡, I a¿ I bø) (Aoio- exp(p + a¿ -l b,¡))o"T

ln: lzz - ft - 3"r(, + a¿ * b¿¡)2

t.-Texp(É¿ +a¿tb¡¡)2lnr.
r _ I _l 

-lLttl2 : LlI22: 01222 - 12222

Data were simulated ovel a range of variance components using r : m : 20,n :

5,02:0.1 and þ:5. Foreach set of variance components, the same simulated set

of data was used to flnd both the second-order approximation and the fourth-order

approximation to the log likelihood by substituting these into equations (4.12) and

(4.13) respectiveiy. The results are shown in table 5.3. The estimated values appear

to be close to the simulated values and, for this model at least, a second order

approximation is enough.

Table 5.3: Variance component estimates for the exponential nested model for both

a second-order Laplace approximation and a fourth-order approximation.

second-order fourth-order

oA og oA op O¡ Op

0.876 1.031

1.036 0.747

0.662 1.026

0.744 0.756

0.479 0.719

0.485 0.538

1

1

0.71

0.77

1

0.71

1

0.7r

0.5 0.77

0.5 0.5

0.77 0.5

0.876

1.036

0.662

0.744

0.479

0.485

0.726

1.031

0.747

t.026

0.756

0.7r9

0.538

0.498
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In frgure 5.3, data were simulated with o2¿: l,o": l,o2 :0'L,l'L:I,rn:

20,r : 20,n :5. The approximation to the log likelihood function for these data

was plotted against its parameters o2a and o2". The function appears to be maxi-

mizing near the true values of the parameters, although the log likelihood functions

are rather flat for values greater than the maximum.

5.4 The Salamander mating data

Shun (1997) used a Laplace approximation with data from the salamander mating

experiment, where ten male and ten female salamanders from two populations (rough

butt (RB) and white side (WS)) were mated. The full set of data is described in

McCullagh and Nelder (1989 page 440). \Me wish to use these data to find estimates

for the variance components, ignoring the populations and assuming 20 independent

males and females (random).

This binary U4 is a measure of success or failure (O:failure, 1:stlcc€ss) when

mating female f¿,'i:1,...,20 with malem¡,i:I,...,20.The model is

Iogit'(P(y¿¡ :7lf¡,^¡)) : Xa I fi I m¡, (5 2)

where ,f, - N(0, o]) aúrrL¡ N N(0,o2^) are the random effects, and o is the vector

of fixed effects, t : (lr,W S¡,W S*,W S¡ xW S-). The conditional log likelihood is

t"(gn¡lfo,*¡) : Ur¡(Xa'l l¡,-l m¡) - 1og(1 + exp(Xo t Í¡ I *¡))- (5 3)

The derivatives are

It: In:lzz--K+K2

/rln : -K+7K2-72K3+6K4

llrtz: htzz : lszzz : lzzzz
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where

K- exp(Xa * f¡ -+

lfexp(Xttfot^¡)
The estimated values for both the fixed and random effects are shown in table 5.4.

The estimated standard errors for the random effects were calculated numerically

by fitting a quadratic regression through the approximate log-likelihood function.

Table 5.4: Estimates of parameters for the Salamander mating experiment

second-order fourth-order

p

WS¡

WS^

WS¡ xWS*

o¡ L SE

or-L SE

1.335

-2.940

-0.422

3.181

1.255+.63

0.269+.79

1.330

-2.935

-0.436

3.196

r.259+.67

0.344+.75

The second-order estimates are comparable to the estimates obtained from past

authors, see Shun (1997) Uncorrected Summer '86 results. Contour plots of the two

approximate likelihoods are shown in figure 5.4. From this we can see that the two

are very close, although again the likelihood is better deflned for the fourth-order

approximation.

Table 5.5 was produced using simulated data with 20 females (* :20),20 males

(r : 20) and p : 1. In most cases the estimates are greater than the simulated

values. There is only a slight difference between the fourth-order and second-order

estimates in about the third decimal place.
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Table 5.5: Variance component estimates for the logit model for both a second-order

Laplace approximation and a fourth-order approximation.

oA og

fourth-order
-, -to'A oh

second-order

-o -to'A o'B

rn:r:
11
1 0.1

0.1 1

0.5 0.5

0.2 0.5

0.1 0.5

0.1 0.2

m:f:

0.5 0.5

0.2 0.5

20,11:

1.230

7.552

0.218

0.675

0.44r

0.171

0.244

20, p,:
1.104

0.349

1

1.250

0.222

1.744

1.039

0.569

0.589

0.301

2

0.697

0.765

7.240

1.584

0.2t7

0.672

0.440

0.169

0.244

1.258

0.224

1.153

1.040

0.569

0.585

0.301

r.t57

0.361

0.724

0.793

m: 40,r : 10, þ: 2

0.2 0.5 0.517 0.771

0.2 0.2 0.665 0.395

0.1 0.1 0.333 0.209

0.537

0.697

0.340

0.794

0.408

0.212

88



A
pp

ro
xi

m
at

e 
lo

g 
lik

el
ih

oo
d

E ûc H o s¡ f F
Ú E + o o <
+

(n o ts tú (t
)

(n ? C
')

tD d o o- p- tÐ -+ Ê
Þ { d - q Þ
N il ¡ g ;J o- q H
N il ¡

¡9
50

 6
 

¡9
50

 4
 

-1
95

0 
2 

-1
95

0 
0

-1
95

0 
4

-1
95

0-
2

-'t
95

0 
0

-1
95

0 
8

-1
95

0 
8

-1
95

0 
6

-1
95

 t
 0

q !N
'o !

A
pp

ro
xi

m
at

e 
lo

g 
lik

el
ih

oo
d

oo I

q ùN



Figtrre 5.2: Approximate log likelihood for Poisson simulation model wit'h o2¡: 0.1

and o2u: 0.1.
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Figure 5.4: Contours of approximate log-likelihood functions for Salamander data.
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Appendix A

Splus functions

4.1 Score test statistics

nevarl (-f unct ion (data)

{
#y = data in natrix form, mu = grand nean

#s2 = error variance, s2a = eta varia¡ce

#mn = number of individuals, r = number of reps

#this functions calculates my derived score test based on exact

#Iikelihood

size 1- din(data)

nm (- size [1]

r <- sizel2)

s2 <- sum((data - apply(data, 1, nean))^Ð/ (mn * (r - 1))

s2a (- sun((apply(data, 1, nean) - nea¡(data))^2)/(mn - 1)

s2/r

mu (- nean(data)

A<-s2+rxs2a
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]

suny <- aPply(data, 1, sum) - r * nu

suny2 <- apply((data - nu)^2, L, su-m)

botl <- A 2 * sumy2 * (A * s2 + suny^2 * s2a) + 3 * t * s2^2

* s2a * A 2 - 6 * s2a x sumy^2 * A x s2^2 - sumy^

4*s2a^2*(rxs2a+2*s2)
N2 <- (s2a * (l Z * (su-ny2 - r * s2) - s2a * suny^2 * (4 *

s2 + r x s2a))^2) /(s2 x A^5)

NP <- (r * s2a^2 * (l^Z x (su-my2 - ¡ * s2) - s2a * sumy^2 x

(4*s2+r*s2a)))/t+
0 <- (s2a * sumy * (-Z * s2 + r x s2a))/l Z

M <- (s2a * sumy * (A^z * (suny2 - r * s2) - s2a x sumy^2 *

(r * s2a + 2 * s2)))7¡s2,'. A^3)

P2 <- (r^2 * s2 * s2a^3)/A^3

totop .- 
"ur1g 

+ M)

bot2 <- su.n(N2) + 6 * sun(NP) + 15 * 6¡ * P2 + 2 * sun(0^2)

tobot (- (2 * s2a't sr:m(bott))/(A^4 * s2) - bot2

total <- (totop/sqrt(abs(toUot)))

return(totaI)
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mevar2<-function(data) {
#y = data in matrix form, mu = grand mean

#s2 = error varia¡ce, s2a = eta variance

#mm = number of individuals, [ = number of reps

#this functions calculates the score test with all parameters knor,rn

size (- dim(data)

mm (- size [1]

n <- sizel2l

eta (- sumy <- suny2 <- top (- numeric(mn)

botl <- bot2 <- bot3 <- nuneric(mn)

s2 <- sun((data - apply(data, 1, nean))^2)/(mn * (n - 1))

s2a <- sum((apply(data, 1, nean) - mean(data))^2)/(nm - 1)

s2/n

nu (- nean(data)

eta(- ((apply(data, !, sun) -n xmu) * s2a)/G2+ n x s2a)

sumy <- apply((data - nu - eta), 7, sr:m)

suny2 <- appty((data - mu - eta)^2, 1, sum)

#top (nurnerator) of score test

top <- eta * (1 - n + stny2/s2) * (s2 + n * s2a) - (eta x

s2+2*s2axsumy)
#botton (denominator) of score test

botl <- (2 * eta^2 * sumy2 * (s2 + n * s2a)^2) /s2

bot2 <- (2 * eta^2 * s2 + 2 * s2a x suny2) * (s2 + n x s2a)

bot3 <- - (eta * s2 + 2 * s2a * suny)^2 + 6 * n * s2 * s2a^2

totop <- sun(top)

tobot <- sum(bot1 + bot2 + bot3)

return(totop/sqrt (abs (tobot) ) ) Ì
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mevar2a<-f unct i- on (data)

{
#y = data in natrix form, mu = grand mean

#s2 = error varia¡ce, s2a = eta variance

#nm = number of individual-s, D = number of reps

#this functions calculates score test with 4x4

#information matrix.

size (- din(data)

mm (- size [1]

n <- size [2]

Info <- array(dim = c(4, 4))

s2 <- sum((data - apply(data, 1, nean))^2)/(mn x (n -

s2a (- sun((apply(data, 1, meaa) - mean(data))^2)/6n

s2/n

mu (- nea¡(data)

eta (- ((apply(data, L, sun) - n x mu) * s2a)/(s2 + n

sumy <- apply((data - mu - eta), t, sun)

sumy2 <- apply((¿ata - nu - eta)^2, !, sum)

A<-s2+n*s2a
#top (numerator) of score test

top (- eta * (1 - n + stsmy2/s2) * A - (eta'* s2 + 2 *

sr:ny)

#botton (denoninator) of score test

botl <- (2 * eta^2 x sumy2 * A 2) /s2

bot2 <- (2 * eta^2 * s2 + 2 * s2a * sumy2) * A

bot3 <- - (eta * s2 + 2 * s2a * suny)^2 + 6 * n * s2

I22 <- ((t - n)/Q * s2^2) + surny2/s2^3) * A2 - I/2

1) )

_ 1)

* s2a)

s2a x

* s2a^2
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)

TI2 <- (A^Z * eta * su.my2) /s2 2 + eta * A - (s2 * eta + 2 *

suny * s2a)

I33 <- (eta^2 * A^2) /s2a^3 - n^2/2

I13 <- 2 * sümy * A - n * (eta * s2 + 2 * s2a * suny)

I2B<_(_nn*n)/2
Info[l, 1] <_ sum(bot1 + bot2 + bot3)

rnfol2, 2l <- sun(r22)

Inf o [1, 2] <- rnf o [2, 1] <- su-m(I12)

Info[3, 3] <- sun(I33)

Inf o [1, 3J <- Inf o [3, 1] <- sun(Il3)

Info[2, 3] <- Info[3, 2] <- 123

Info[4, 4] <-

Info[3, 4] <- Info[4, 3] <- 0

Info[2, 4] <- Info[4, 2] <-

Info[1, 4] <- Info[4, 1] <-

2*A*n*mm*gf¿
tobot <- det(Info12:4, 2:al)
C <- det(Info)

total <- sun(top) * sqrt(abs(tobot/O) #distrib. N(0,1)

return(totaI)
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A.2 Approximate likelihood functions

Second order Laplace approximation to the true tog likelihood using the Salamander

data.

function(alpha, sgma)

{
on.exit(if (((started <- exists(".newnin", frame = 1)) k'ls (v <

.newmin)) ll !started) {

assign(".nelnmin", v, frame = 1)

cat(v, ":", fonnat(sigma), "\n")

Ì
)

sigma <- c(alpha,sgna)

sigura [5] (- sigma t5] ^2

sigma[6J <- sigma16]^2

m (- length(l-evels (Sal$Fenale) )

r (- length(levels(Sa1$Male))

if(!exists("Est", frame = 1))

Est <- rep(O, m + r)

tmp <- nlninb(start = Est, objective = Logitmax, gradient

= Glogitmax, hessiaa = T, signa = signa)

assign(rrEstrr, tnp$parameters, frane = 1)

v <- tnp$objective + log(det(tmp$hessian))/Z + 1¡ * Iog(

sigmalû)) /2 + 1¡ * log(signa16l)) /2

v

)
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Fourth order Laplace approximation to the trrie log likelihood using the Sala-

mander data.

function(alpha, sgmas)

{
on.exit(if (((started <- exists(".net¡min", frame = 1)) &'&' (v <

.newnin)) ll !started) {
assign(" .neInmin", v, frame = 1)

cat(v, ": ", f ormat(sigura), "\n")

)

) +on.exit(cat("Likelihood =", v, "\n"))
sigma <- c(alpha, sgmas)

signa[5J <- signatS] ^2

sigma[6J <- signat6] ^2

m (- length(Ievels(SaI$FenaIe))

r <- Iength(Ievels(SaI$MaIe))

n<-m+r
if(!exists("Est", frame = 1))

Est <- rep(O, n)

tnp <- nlninb(start = Est, objective = Logitmax, gradient

= Glogitnax, hessian = T, signa = sigma)

assign(rrEstrr, tnp$para-neters, frame = 1)

a (- Est [1:20]

b <- Estl2!:40)

eta (- as.vector(Sal$X 7,*7" sigpall:4] + alSal$Female] + bI

Sal$Malel )

K <- exp(eta) /Q + exp(eta))

11111 <- - K + 7 * K2 - L2 * K^3 + 6 * K^4
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I

l

# Now calculate the approxination to the log-likelihood

i <- cbind(as.numeric(SaI$FenaIe), as.numeric(SaI$MaIe))

L1111 <- array(O, c(m, r))
L1111 [i] <- 11111

Dinv <- ginv(tnp$hessian)

totl <- dJ-ag(Dinv)^Z * c(tapply(f 1111, Sal$Fena1e, sum),

tapply(11111, SaI$MaIe, sum))

Dn <- rep(diag(Dinv) [1:n], r)
Dr <- rep(diag(Dinv) [(n + t):n], rep(m, r))
D3 <- as.vector(Oinv[1:n, (¡ + 1) :nJ )

D2 <-4 t Dn * D3 + 4 * Dr * D3 + 2 * (Dm x Dt + 2* D3^2)

tot2 <- su.m(tot1) + sr:m(as.vector(L1111) x D2)

v <- tnp$objective + tog(det(tnp$hessían))/2 + (n x log(

sigmalsD)/2 + (r x log(signa[6])) /2 - tot2/a

v

)
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Logitmax<-function(Est, signa = ST) {
# on.exit(cat("Logitmax =", v, "\n"))

a <- Est[1:20]

b <- Est l2I:a0)
eta (- Sal$X 7.*% sigma[1:4] + a[Sal$Female] + b[Sal$MaIe]

s2a (- signa[5J

s2b <- signa[6J

v (- sum(a^2)/(2 * s2a) + su-m(b^2)/Q * szt) - sum(Sal$Y x

eta-1og(1aexp(eta)))
v)

Glogitnax(-function(Est, sigma = ST) {
a <- Est [1:20]

b <- Est l2L:401

eta <- as.vector(Sa1$X %x7" sigpa[l:4] + a[Sa1$Fenale] + bI

SaI$MaIel )

s2a (- sigma[51

s2b <- sigma[6J

p <- 1 - L/(7 a exP(eta))

H (- crossprod(p * (1 - p) * Sal$Xab, Sal$Xab)

diag(H) <- diag(H) a rep(l/signa[5:6] , c(length(a), length(

b)))

Iist(gradient = c(a/s2a, b/s2b) - crossprod(Sal$Xab, Sal$Y -
p), hessian = H[!lower.tri(H)]) ]
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