

A BIOGEOGRAPHICAL ANALYSIS OF BIRD COMMUNITIES IN THE EVERARD RANGES, SOUTH AUSTRALIA

by

Kathleen Sharon Shurcliff
B.A.(Hons.)

A thesis submitted in fulfilIment of the requirements for the degree of *Master of Arts* in the Department of Geography.

The University of Adelaide May, 1978

annue prist 1929

TABLE OF CONTENTS

TITLE	PAC	GE .	•	•	*	(.)(•);		•	*	•	1000	0.00	٠	*				•	i
TABLE	E OF	CONT	TENTS	5	٠		•	•			¥		(. .	٠			•	•		ii
LIST	OF 7	ΓABLE	ES		•	•	•	•	•	•	•	•	•		٠		•	•		iii
LIST	OF I	FIGUE	RES				(:•).		(•):				•				; · • :	(.•))		iv
LIST	OF I	PLATE	ES		÷		•		•	•	. *	· •	•		•	•	•		•	υ
SUMMA	ARY .						•								•	3		•		vi
DECLA	ARAT :	ION												io.			((●)			viii
A CVNO	NAT EI	OCEME	יייוג:																	ix
ACKNO)W LEI	JGEME	ENIS		•	•	•		•	•	•	·	•	•	•	*		•	•	Lil
I,	INT	RODUC	CTIO	1									:4:					٠		_× 1
	1.	The	oret	ica	1 C	ons	ide	rati	ion	s				•		•		0.00	S•33	2
	2.	The	Stu	dy .	Area	1	•		•			•		×		•	٠	٠	٠	7
II.	THE	BIO	GEOC)EN	OSES	3								21 . 0						15
	1.		etat:				ubs	trat	te	Sam	o1i:	ng								17
	2.	The	Biog	geo	coei	ıos	e A	SSO	cia	tio										19
	7	-	_								•	•	•	•	•	•	•	((●):	•	15
	3.		Bio; etat:						·	•	.15			(*)				((•)	•	27
		(i)	Flo	ori	stic	e c	omp	osi	tio	n po	ara	met	ers	•	•	<u>.</u>	•			27
		(ii)) Ph	ysi	ogno	omi	с р	ara	net	ers		•	•	•	8		*	•	•	36
III.	THE	BIRI	D CO	MMU	NIT	IES				•										41
	1.	Sam	olin	g P	roc	edu	res							198011			×	ě		41
	2.		d Coi	_					eri	sti	cs							•		43
	3.		d Spe											•						56
	4.	Feed	ding	Pr	ofi	les	an	d S	pec	tra				296	•	•		•	•	67
IV.	DIS	CUSS	ION .	AND	COI	NCL	USI	ONS						٠	٠	ě		ě		78
V.	APP	ENDI(CES						•		; • €0			3.00	***					88
VT.	REF	EREN	CES						1					1:41					19.1	99

		LIST OF TABLES	P	age
TABLE	_1	Monthly averages for meteorological data from Ernabella, 1938-73	٠	13
TABLE	2	Areas and sample plot numbers for the eight biogeocoenoses in the two study sites		18
TABLE	3	The eight biogeocoenose associations classified according to Fosberg's physiognomic system		22
TABLE	4	Cover predominant species of each biogeocoenose association	•	26
TABLE	5	Plant species similarity matrix	•	33
TABLE	6	Number of plant species and plant species diversity for the biogeocoenose associations	940	35
TABLE	7	Life form spectra and life form diversity (L.F.D.) for the biogeocoenose associations	•	37
TABLE	8	Foliage height diversity values for the MacArthurs' and Austin's vegetation layers	٠	40
TABLE	9	Values of bird community characteristics for standardized mist net data and transect data	\$: •0	45
TABLE	10	Variation in transect bird community characteristic over a nine-month period	s	46
TABLE	11	Spearman correlation coefficient matrix between bird community characteristics and vegetation parameters	J. 6 7	49
TABLE	12	Bird species similarity matrix based on mist net data	٠	58
TABLE	13	Bird species similarity matrix based on transect data	Л	59
TABLE	14	Discriminating power of the functions for the transect data discriminant function analysis	j. * /	63
TABLE	15	List of bird species as entered on the step-wise discriminant function analysis	±1 • 5	66
TABLE	16	Feeding spectra diversity values for the biogeocoenoses	0.€0	72
TABLE	17	Feeding spectra of Grey-headed Honeyeater and		76

LIST OF FIGURES

		Page
FIGURE	1	Map of South Australia showing location of the Everard Ranges with respect to major physical and cultural features
FIGURE	2	Generalized cross-section of the study area showing the eight landform types and their substrates
FIGURE	3	Summary table of the first two levels, primary structural group and formation class, in Fosberg's physiognomic classification system . 21
FIGURE	4	Average foliage cover profiles of each biogeocoenose association
FIGURE	a b c	Life form diversity (L.F.D.) graphed against the four transect bird community characteristics: Number of species
FIGURE	6	Plot of the positions of the 48 transect cases against the first two discriminat functions 65
FIGURE	7	Feeding profiles and spectra represented by relative frequencies per height interval/feeding position category, as plotted against relative foliage cover per height interval 69
FIGURE	8	Transect abundance distributions of Grey-headed and White-plumed Honeyeaters

LIST OF PLATES

the biogeocoenoses and their boundaries ba	б
the biogeocoenoses and their boundaries at Victory Creek	
	nside ack over
	8
PLATE 4a-b Example of Basin Creek and Basin biogeocoenoses	9
PLATE 5a-b Example of Base and Creek biogeocoenoses 3	0
PLATE 6a-b Example of Ridge and Gully biogeocoenoses . 3	1

SUMMARY

The relationship between the vegetation and avian components of the biogeocoenoses within a South Australian arid mountain range was investigated. Eight biogeocoenoses, based on landform types and vegetation associations, were delimited in two study areas. Each biogeocoenose was characterized by its plant species composition, foliage cover profile, plant species diversity, plant life form diversity, foliage height diversity, bird species composition, and several bird community characteristics including total number of individuals, number of species, species diversity, and a dominance index. In addition, bird feeding profiles and spectra were constructed for the biogeocoenoses.

Bird species composition was sampled using both mist net captures and transect counts. Since a comparison of the two sets of data indicated that the mist net captures underestimated the total number of individuals and number of species in those biogeocoenoses with a tree layer (>8 m), most analyses were based on the transect data.

Three of the bird community characteristics measured were significantly correlated with life form diversity. However, life form diversity did not accurately predict the total number of individuals for those units in which White-plumed Honeyeaters accounted for over half of the total population sampled. Total number of individuals was predicted by a foliage height diversity index, which is also an index of total foliage cover. These results support those of other arid area bird studies and indicate the difficulties of extending principles developed by extensive work in one vegetation type to other vegetation types.

Although vegetation physiognomy successfully predicted the bird community characteristics, geographic proximity was the main factor affecting the similarity of bird species composition, as indicated by both a discriminant function analysis and a Motyka similarity matrix. Investigation of the pattern of feeding profiles and spectra indicated that they were not closely related to the foliage cover profiles. Thus, foliage cover does not appear to be a very accurate index of resource availability in the vegetation types sampled. This helps to explain why foliage height diversity is not significantly related to the bird community characteristics. Also, life form diversity was not significantly correlated with feeding spectra diversity. Inadequacies of the procedures used to determine feeding behavior could be largely responsible for these results.

The results of this study indicate that biogeocoenoses, as determined by plant associations, are useful organizing units for detailed investigations of bird communities in a limited geographic area.

I hereby declare that none of the material contained within this thesis has been submitted for a degree at any other university and that, to the best of my knowledge and belief, none of the material has been previously published or written by another person, except where due reference has been made in the text.

ACKNOWLEDGEMENTS

I wish to thank the Mimili Aboriginal Community who, as guardians of the Everard Ranges, generously shared with me their time, interest, and knowledge of the area. I would also like to thank J. and L. Lester, T. and M. Brown, and J. and A. McClelland for their warm hospitality and assistance.

No field study can be completed without the enthusiastic support of willing field workers. In this case they were D. Close, E. Close, R. Davies, J. Job, B. Riceman, L. Riceman, and M. Whesson. A very special note of gratitude must be paid to A. Shurcliff, who was my invaluable assistant and companion throughout most of the field work.

The following individuals and bodies gave assistance or permits in several stages of the work: Australian Department of Aboriginal Affairs, Australian C.S.I.R.O. Bird Banding Scheme, South Australian Branch of the Bureau of Meteorology, South Australian Institute of Technology and in particular K. McCloy, South Australian National Parks and Wildlife Division, and South Australian State Herbarium, especially D. Whitley.

Financial assistance was received from the Department of Geography at the University of Adelaide, and the author held an Australian Commonwealth Postgraduate Research Award.

Further thanks are due to B. Gepp and J. Kikkawa for helpful discussions on the study; and to M. Andrew, C. Barrington, M. Foale, J. Nolan, W. Sulda, and V. Upton for assistance with the preparation of the manuscript. A very special debt of gratitude is owed to S.G. Taylor, Lecturer in Biogeography at the University of Adelaide, for her thorough supervision of this study in all its aspects.