FREQUENCY RESPONSE MATCHING METHODS
FOR

THE DESIGN OF DIGITAL CONTROL SYSTEMS

Jianfei Shi, B.E.

Thesis submitted to
Department of Electrical and Electronic Engineering
for the degree of
Master of Engineering Science

The University of Adelaide

This thesis embodies the results of
supervised project work making up
two thirds of the work for the
degree.



| /4'
A
A\ Ao

loN

EXAMINER'S REPORT OF M.ENG.SC. THESIS;

J. SHI, "Frequency response matching methods for the design of digital

p.3-8:

p.3-10:

p3-12:

pA-10:

pA-15 to
PA-28

pA-16:

control systems"

ERRATA OR OMISSIONS

the relation for the zero 2] in terms of other parameters
is omitted. It is

I + tan(«+90°)(I2+R2~R)
I-tan(«x+90°)(1-R)

2y

Fourth line, (correction)
b = (C-A)(D+1)-BC
The term

c? + (p-1)2

T

under the square root sign in both expressions should be positive,
not negative.

Eqn D-16.
The numerator term should be A-B, not A+B.

The omission of values for the normalised parameters tg/T (c/L
step time-response) and w.T (0/L frequency-response) render the
sets of specifications in each of these domains incomplete.

I recommend that the tables for damping ratio £=0.7 be
recalculated to include these values, and the results be
included with an errata sheet in the copies of the thesis.

The variables tg and w. should be defined under the appropriate
heading.



DEDICATED

TO

MY PARENTS



TABLE OF CONTENTS

Abstract . 4 G o 6 6 R E & 5 F F e § 8 & u et & 8 @ w s
Declaration & . s o o s % % o % & ¢ o @ & s/ # s s & & €6 8 ¢ 5 &
Acknowledgement . . . . . . . . . L ... oL Lo o e e
List of igures e o o o « s wvw o 5 o & % wcim & o % 8 woiwis w v e s
Listof tables % s ¢ @ % s e & o @ % & wio o o & w $0o ® & & 0 & 0
Listofsymbols s s 5 5 s 6% & ¥ % 4 & %o & ¢ 38 @®me s o 5 & 5
Chapter
1. INTRODUCTION . . . . . . . . v i it v e e e e e e e
1.1 Digital control systems . . . . . . . . . ... oL
1.2 Advantages of frequency response methods . . . . . . . .
1.3 Classification of frequency response methods . . . . . . .
1.4 Frequency response matching design methods . . . . . .
1.5 Summary of the current frequency matching design methods
1.6 Objectives, approaches and achievements . . . . . . . . .
1.7 Thecontenfs . . o + o e o o s o © o0 o o o 0 ¢ o o »

2. FREQUENCY RESPONSE MATCHING DESIGN METHODS
2.1 Formulation of the design problem . . . . . . . . . ..
2.2 Dominant Data Matching design method (DDM) . . . . .
2.2.1 Description of the design method . . . . . . . . . . .
2.2.2 Deficiencies in and modifications to the DDM method
2.3 Complex-Curve Fitting design method (CCF) . . . . . .
2.3.1 Rattan’sdesign method . . . . . . . . . . . . . ..
2.3.2 Numerical integration . . . . . . . . . . . . oL
2.3.3 Detrimental effect of the weighting factor . . . . . . .

iii

Page

vil

xi
xiv

XV

1-1

1-1
1-2
1-3
1-4
1-6
1-8



Chapter
24
24.1
2.4.2
2.5
2.5.1

2.5.2 Formulation of the non-linear programming problem
2.5.3 Simplex method for function minimization

2.5.4 Application to the design of digital controllers

2.6
2.7

3. DETERMINATION OF FREQUENCY RESPONSE MODELS

3.1
3.1.1

3.1.2 Limitations on using the frequency response of an existing

3.2

3.2.1
3.2.2
3.23

3.24

3.2.5

3.2.6

3.2.7

Description of the ICCF method

Numerical examples

Control system design via non-linear programming

Summary

General description of defining a frequency response model

system as a model

model .
Use of the discrete transfer as the model

Second-order z-transfer function model

Conversion of specifications between the time and complex
z- domains . . . . . .

Frequency response of the open-loop system

Frequency response of the closed-loop system

Numerical studies on relationships of various specifications
for discrete systems . . .

Procedures to define a 2-transfer function as a frequency

response model

Iterative Complex-Curve Fitting design method (ICCF)

SIMplex optimization-based design method (SIM)

Random Searching Optimization-based design method (RSO)

Frequency response models . .

Second-order 2-transfer function as a frequency response

iv

-----

oooooo

Page
2-16
2-16
2-20
2-21
2-21
2-22
2-25
2-30
2-33
2-37

3-1

3-2

3-9
3-12

3-13

3-18



Chapter Page
4. DESIGN OF DIGITAL CONTROLLERS BY MEANS OF
THE FREQUENCY RESPONSE MATCHING METHODS . . . 4-1
4.1 Introduction . . . . . . . . ... o0 e e .. 4-1
4.1.1 Objectives of the design studies . . . . . . . . . . .. 4-2
4.1.2 Dynamic characteristicsof plants . . . . . . . . . .. 4-5
4.1.3 Design specifications . . . . . . . . . ..o ... 4-5
4.1.4 Selection of the sampling period . . . . . . . . . . . 4-6
4.1.5 Frequency responsemodels . . . . . . . . . . . ... 4-9
4.1.6 Order of the discrete transfer function of a digital controller 4-10
4.1.7 Simulation and assessment . . . . . . . . . ... 4-10
4.2 Design studies of Group 1 —
Comparison of the various design methods . . . . . . . . 4-15
421 DesignsforPlant I . . . . . . . . .. ... . ... 4-16
4.2.2 DesignsforPlant II . . . . . . . .. .. oo 4-23
4.2.3 Discussions of the simulationresults . . . . . . . . . . 4-28
4.2.4 Comparison of the design methods . . . . . . . . .. 4-32
425 Conclusions . . . . . . . . . . 000 e e 0. 4-32

4.3 Design studies of Group 2 —
Effect of the discrepancy between the primary frequency

range of the model and that of the closed-loop system

on the frequency matching . . . . . . . . . . . . .. 4-34

4.3.1 Design studies basedon PlantI . . . . . . . . . . . 4-36

4.3.2 Design studies basedon PlantII . . . . . . . . . .. 4-37
4.3.3 Design studies based on matching a continuous frequency

response forPlant I . . . . . . . .. . . . . ... 4-39

4.3.4 Discussions of the simulationresults . . . . . . . . .. 4-42

435 Conclusions . . . . . . . . 4 0 0 e e e e e e 4-44



Chapter Page
44 Design studies of Group 3 —
Evaluation of the optimization-based design methods . . . 4-46
4.4.1 Designs with different initial estimates . . . . . . . . . 4-46
442 Conclusions . . . . . . . . . 0 ot e e e e . 4-51
5. HYBRID FREQUENCY RESPONSE ANALYSIS . . . . . . .. 5-1
5.1 Deficiencies of discrete frequency response analysis . . . . §5-1
5.2 Hybrid frequency response analysis . . . . . . . . . .. 5-2
5.3 Numerical example . . . . . . . . . . . . . . ... 5-5
5.4 Conclusions . . . . . & v & v v v 4 v v e e e e e e 5-10
6. SUMMARY AND CONCLUSIONS . . . . . . . . .. .. .. 6-1
Appendix
A Objective function E as functionof A . . . . . . . . . . .. .. A-1
B  Variation range of the parametera . . . . . . . . . . . . . .. A-3
C Timeresponse analysisof h(2) . . . . . . . . . . . . . . ... A-5
D  Frequency response analysisof g(z) and h(z) . . . . . . . . .. A-8
E  Stability of a second-order discrete system . . . . . . . . . . .. A-13
F Table A-1 —
Relationships between the design specifications in the time, frequency
and complex z- domains for second-order discrete control systems . A-15
Bibliography . . . . . « .« ¢ . 0t e e e e e e e e e e e e e e e B-1

vi



ABSTRACT

The frequency response matching technique for the synthesis of digital control
gystems has been investigated. The basic philosophy of this technique is to design
a digital controller so that the frequency response of the designed closed-loop system
matches a specified frequency response model. The approaches described in the current
literature include Rattan’s complex-curve fitting method and Shieh’s dominant data

matching method.

Two new design methods are proposed in this thesis. The first one is the ster-
ative complez-curve fitting (ICCF) design method based on Rattan’s algorithm. With
its iterative calculations, the new method improves the frequency matching accuracy
significantly by eliminating in Rattan’s algorithm the frequency dependent weighting
factor which severely degrades the matching accuracy at high sampling frequencies.
The second one is the simplez optimization-based (SIM) design method. With the aid
of non-linear constraints on the controller parameters, this method provides a good
compromise between the desired system frequency response and the required controller
characteristics to avoid problems such as an excessively high controller gain or an oscil-

latory control signal.

The non-linearity of the Shieh’s method in the case of the design of a controller
with an integrator is removed by choosing the appropriate controller form and dominant
frequency points. As a result, the relevant computational algorithm is considerably

simplified.

The determination of a frequency response model from design specifications given
in the time, frequency and z- domains is discussed. It is shown that the choice of the
model may be critical to the succcess of the frequency matching, in particular when
there is discrepancy between the primary frequency range of the system under design
and that of the model. To help select an appropriate z-transfer function as a model, an

vil



easy-to-use approach is developed which is based on a comprehensive investigation on

the dynamic performances of second-order discrete systems.

A number of design studies is conducted in order to assess the frequency matching
design methods. The frequency matching accuracies and time responses of the designed
gystems form the basis for the comparative evaluation. The results show that ICCF and
SIM methods proposed in this thesis are superior to current methods. The effect of the
discrepancy between the primary frequency ranges on the matching accuracy and the

convergency of optimization algorithms are illustrated as well.

The hybrid frequency response is defined for the system containing both discrete-
and continuous- time components. Unlike the commonly-used discrete frequency re-
sponse , which is derived from the system z-transfer function and provides no informa-
tion about the time response between sampling instants, the hybrid frequency response

includes the characteristics of the inter-sampling time response.
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CHAPTER 1

INTRODUCTION

§1.1 Digital control systems

With the great advances in digital computers and microprocessors over the last
two decades, significant progress has been made in digital control systems. The applica-
tions of these systems have been found in almost all aspects of industry. Compared with
their conventional analogue counterparts, digital controllers are usually more reliable in
operation, more compact in size, lighter in weight and cheaper in cost. But the most
important advantage of digital controllers is their great flexibility in control functions.
This unique property enables a digital controller to perform different control functions,
in accordance with the latest design changes or adaptive control performances, without

modification of the controller hardware.

§1.2 Advantages of frequency response methods

For digital control system synthesis, there are many methods available, among
which the frequency response design methods have some distinct advantages in compar-
ison with those in the time and complex z- domains. For instance, the application of the
root locus method, a widely used complex z-domain design technique, is limited by the

1-1



requirement that the time response of a system under design can be approximated by a
pair of dominant poles in its transfer function. On the other hand, in frequency domain
analysis, effects of all poles and zeros are taken into account as each of them contributes
its share to form the overall system frequency response. The latter provides the facility
for handling high-order dynamic systems without having to make the approximation in-
herent in the former. Furthermore, designs based on time domain synthesis, such as the
deadbeat response control technique [1, 14] and the state matching methods [24, 25, 26],
are dependent on some specific types of input signals. Their responses to other types
of signals may be poor. In contrast with this shortcoming, frequency domain analysis
describes the linear system response to any periodic input signals. Moreover, some de-
sign methods in the frequency domain allow the designer to characterize the plant of
interest by using the results of frequency response measurements directly, rather than
by forming a transfer function from these measurements. In practice, the derivation
of such a transfer function may be very cumbersome. Finally, it is noteworthy that
specifying control performance criteria in the frequency domain is in some cases more
reasonable and convenient than in the time or complex z- domains, especially in dealing

with high-frequency noises {20].

§1.3 Classification of frequency response methods

Frequency response methods for the digital control system designs can be classi-
fied into two categories. The first category covers those graphical design methodologies
adopted directly from continuous system synthesis techniques. The best known are the
Nyquist plot, Bode plot and Nichols chart methods. In digital control system designs,

they are implemented in the W-plane using the bilinear transformation {1, 19]:

2
T z+1 (1-1)



or

1+ 2L
2= VVZT’ (1_2)
11—

where T is a sampling period. In many cases, the graphic nature and “ cut and try ”
procedures make it difficult for these methods to be employed in the on-line synthesis of
digital controllers, where the simplicity and mathematical formulation of design results
are most desirable. The second category comprises the frequency response matching
methods which are associated with various complex-curve fitting techniques. An early
complex-curve fitting design method was due to Rattan [5], and was followed by the
dominant data matching method proposed by Shieh et al [4]. In addition to common
advantages discussed in section 1.2, their results are formulated in mathematical form
and so are amenable to digital computation. It is this feature which offers potential for

these methods in more sophisticated designs of digital control systems.

§1.4 Frequency response matching methods

The aim of frequency response matching design methods can be stated as follows:

To design the discrete transfer function of a digital controller for
a given discrete or continuous plant so that the frequency response of the
closed-loop system matches the destred frequency response model as closely

as posssble.

To derive a transfer function from a specified complex-curve or a set of known
data is not a new idea. Some fundamental work was done in the late 1950’s and early
1960’s. For instance, Levy [18] proposed the weighted-least-squares complex-curve fit-
ting method in 1959. However, it was not applied to digital control system synthesis
until 1975 when Rattan [5] developed a computer-aided design method. Using Levy’s
complex-curve fitting technique, this method determines the coefficients of the digital
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controller by minimizing the weighted-mean-squared error between the frequency re-
sponse of the closed-loop system under design and that of a continuous model. The
only requisites are the z-transfer function of the plant and the transfer function of the
continuous model. One of the drawbacks in this method is that a frequency depen-
dent weighting factor is introduced in the error function in the process of linearization.
When the sampling period T becomes small, this weighting factor may result in a large

deviation in frequency response matching.

A few years later, in 1981, Shieh et al. [4] proposed another simple but practical
method, called the dominant data matching method. The desired frequency response
is specified at several key frequency points, e.g., the gain cross-over frequency, known
as the dominant data. The coefficients of the digital controller are then determined so
that the frequency response of the system under design will closely match the dominant
data. The method becomes complicated when applied to the design of a “fype I ”
system, which has an integrator in its forward path, as shown in Shieh et al.’s example
[4]. They derived a set of linear and non-linear equations for matching this type of
system. However, the Newton-Raphson method used to solve the non-linear equations,

as pointed out by Shieh et al., has strict requirements on initial estimates.

§1.5 Summary of the current frequency matching design methods

The frequency response matching methods for the design of digital controllers
are recently introduced design approaches. They have been thus far scarcely discussed
in relevant textbooks or papers other than those written by the proposers themselves.
The advantages of these methods are significant; some examples are given below:

(1) These methods do not require an excessively high sampling frequency for the
digital controller.
(2) These methods can be applied to high-order systems without the assumption of
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the existence of a pair of dominant poles.

(3) The results of designs are independent of specific types of input signals and
therefore can be used for a variety of input signals.

(4) No high-order hold is required.

(5) The solution of these design methods is in mathematical formulation and is

amendable to digital computation.

On the other hand, there are also some drawbacks and open questions in the

frequency response matching design methods.

(1) There is no guarantee for the open-loop and closed-loop stability of the control

system under design.

(2) In the matching process, a closed-loop system is only considered as a whole.
Though its realizability is ensured in the design algorithm, the resulting digital
controller may be not practical for reasons such as an highly oscillatory controller
output in an electromechanical system.

(3) In Rattan’s complex-curve fitting method, the matching accuracy may be de-
graded by a frequency dependent weighting factor.

(4) In Shieh’s dominant data matching method, the design of the “type I ” system
results in a set of non-linear equations whose solution depends on initial values.

(5) The determination of the frequency response models has not been discussed in
the literature. In particular, the impact of sampling frequencies on the matching
accuracy is ignored.

(6) Designs are carried out via the z-transfer function. For continuous-time plants,
the resulting frequency response does not carry the information about the time

response between sampling instants.

(7) The relationships between the control specifications of discrete systems given in
the time, frequency and complex z-domains have not been well established. Such
relationships are essential for selecting discrete frequency response models that
satisfy assigned control specifications.

1-5



§1.8 Objectives, approaches and achievements

The objectives of this thesis are to evaluate current frequency response matching
design methods; to modify these methods to overcome the deficiencies summarized
above; and to develop new design methods which improve frequency matching design

techniques.

A number of design studies is conducted for the purpose of assessing various
frequency matching design methods. The two third-order, continuous-time plants used
in the studies possess a sluggish time response and an oscillatory time response, respec-
tively. The plants are compensated according to the same control specifications for a
wide range of sampling frequencies. A comparison of the closed-loop designs is based on
their accuracy in matching the desired frequency response models and on their unit-step

time response performances.

To remove the non-linearity of coefficient equations in Shieh’s dominant data
matching method in the case of the “type I ” system design, this author suggests us-
ing a one-order-higher digital controller and choosing appropriate dominant frequency
points. As a result, the computational algorithm is significantly simplified, compared
with the efforts required by the Newton-Raphson iterative method. More importantly,
the designer no longer needs to worry about the initial estimations and the convergency

of solutions.

In order to minimize the detrimental effect of the weighting factor in Rattan’s
complex-curve fitting design method, the author proposes a new method, called the
iterative complez-curve fitting design method, in which the weighting factor from the
current iteration is effectively eliminated by the one from the previous iteration. In
comparison with the designs by Rattan’s method, as shown in design examples, the
matching error can be reduced by the factor of two or three in only 2 ~ 3 iterations.
The corresponding time responses are also improved significantly.
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Another important contribution of this thesis is the development of the simplez
optimization-based frequency matching design method. In this method, the minimiza-
tion of the frequency matching error is formulated as a non-linear programming problem
with a set of non-linear constraints on controller parameters. The solution is then ob-
tained by means of some standard optimization technique such as the simplex method
of function minimization. The unique feature of this method is that the controller gain,
zeros and poles can be confined to some specified ranges of values. Thus if the plant is
open-loop stable and the Nyquist plot of the closed-loop system does not encircle the
point of (—1, j0) in the D(z)GxrG(z)-plane, the closed-loop stability can be guaranteed
by locating all controller poles on or inside the unit circle. The dynamic characteris-
tics of the controller also can be improved by confining controller poles and zeros into
appropriate regions in the z-plane to avoid, for instance, an oscillatory control signal.

The implementation of the upper limit for the controller gain is straightforward.

As a further contribution of this thesis, a systematic and user-oriented approach
is presented to determine a discrete frequency response model from control specifications
given in one or more of the time, frequency and complex z- domains. The approach
is based on an investigation of the dynamic characteristics of the second-order discrete
system having a pair of complex poles and a zero. In addition, the sufficient and
necessary conditions for an open-loop second-order discrete system to be closed-loop

absolutely stable are derived and proved.

Deriving the frequency response of a digital control system from its z-transfer
function is the most popular technique. The resulting frequency response is sometimes
called the discrete frequency response . The disadvantage lies in the fact that, when a
plant is a continuous-time system, information about the time response between sam-
pling instants is not provided by the z-transfer function nor by the discrete frequency
response. For the frequency response matching design methods, this shortcoming may
become severe if the discrete frequency response gives a poor approximation for an ac-
tual frequency response in a relevant frequency range when a sampling frequency is low
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relative to the closed-loop bandwidth. In this thesis, the hybrid frequency response is
derived which reveals the actual frequency response of a closed-loop system consisting
of both digital and analogue components. Accordingly, the continuous time response
of such a system can be accurately predicted from its hybrid frequency response. This
unique advantage suggests that the frequency response matching design methods be
improved by means of the hybrid frequency response analysis, although lack of time

prevented its implementations.

§1.7 The contents

In Chapter II , the problem of the design of a digital controller is defined and is
followed by descriptions of the various frequency response matching design methods. In
Chapter III the conversion of the control specifications between the time, frequency and
complex 2- domains for discrete systems is discussed. Based on its results, the approach
used for the determination of a desired frequency response model is proposed. Studies
for the evaluation of the design methods are described in Chapter IV . After discussing
the bases for the design studies, three groups of design examples are presented, each
group considering a particular aspect of designs. The time and frequency responses as
well as the matching accuracy of the resulting closed-loop systems are shown, along
with the comparisons and discussions. Chapter V is devoted to the hybrid frequency
response analysis technique. Finally, Chapter VI summarizes the studies and gives
general conclusions and recommendations about the frequency matching design methods

for the design of digital controllers.
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CHAPTER II

FREQUENCY RESPONSE MATCHING DESIGN METHODS

§2.1 Formulation of the design problem

In this study, the control system under design is a linear, time-invariant, single-
input /single-output system. The general configuration for the closed-loop system in-

corporating a digital controller is drawn in Fig. 2-1.

To simplify the synthesis without losing generality, F'(s) is assigned to unity.
Moreover, the system in Fig. 2-1 is hybrid in nature as it contains components operating
with both discrete and continuous signals. The analysis of this system constitutes the
investigation in Chapter V and is of interest because its frequency response provides
the information about the time response between sampling instants. Chapters I -IV of
this thesis, however, will concentrate on the design via the system z-transfer function;
a dummy sampler, drawn in dashed lines in Fig. 2-1, is therefore added at the output of

system to convert the hybrid system into the discrete-time system as shown in Fig. 2-2.

Define the discrete transfer function for a nth-order digital controller as the ratio

of two polynomials:

T0z™ + 212" 4+ Tp12+ T
2+ y12t et Ya1Z + Yn

D(z) = ’ (2-1)

where yo = 1 and m < n to ensure the controller is realizable [14].
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:)_(r..y-(s)

E(s) E*(5) Digital U*(s) Zero-order U(s) | Continuous- .
R(s) o —a—{ controller — hold o time plant Y (9)
= L] D*(s) T Gh(s) G(s)
Feedback
element <
F(s)
Notation:

G(s) — transfer function of a continuous-time plant

Gh(s)— transfer function of a zero-order-hold converting a series of pulses into a
continuous-time signal at the input of plant

D'(s)— transfer function of a digital controller, where the notation X'(s) defines the Laplace
transform of Z(kT'), the sampled form of continuous-time signal z(t)

F(s) — transfer function of a control or measurement element in the feedback loop

R(3) - transfer function of an input signal r(?)

Y(s) — transfer function of the output signal y(t) of the closed-loop system

Y'(s) — transfer function of the sampled output signal y(kT)

U*(s) - transter function of the output signal U (kT of a digital controller

E(s) - transfer function of an error signal e(t)

E‘(s) — discrete transfer function of the sampled error signal e(kT)

T - sampling period

Figure 2-1 Configuration of the closed-loop system incorporating a digital controller
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Digital an
R(Z]—‘ﬁ:%—_’* controller u(z) P! Gl-;(lt;H = Y(2)
- D(z) h z

ZOH - zero-order bold

Figure 2-2 Discrete control system with unity feedback
Similarly G, G(z) is written in the same form:

G G(z)__ a029+a129~1+...+aq_12+aq (2—2)
. T TP b+t bz 4 by

where ¢ < p and by = 1.

For the digital control system defined in Fig. 2-2, the open-loop discrete transfer

function is:
Q(z) = D(z) - GrG(2), (2-3)

and the closed-loop discrete transfer function is:

Q(z) _ D(2)GrG(2)

H(z) = 1+ Q(z) 1+ D(2)GrG(2)

(2-4)

In addition, Mg(jw) and M(jw) are used to denote open-loop and closed-loop
frequency response models, respectively. The formulation and determination of these

frequency response models will be discussed in detail in Chapter IIT .

It is well known that the frequency response of a discrete system operating with
the sampling frequency w, = 27 /T can be obtained by substituting e/“T for z in its
z-transfer function {1]. Moreover, this frequency response repeats for every nw, < w <
(n+ 1)w,,n =0,1,2,... and the frequency response for (n+1)w,/2 <w < (n+ 1w,
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is just the mirror image of that for nw, < w < (n + 1)w/2,n =0,1,2,..., with respect
to the real axis in the complex plane. Hence it is sufficient to consider matching the
frequency response over only 0 < w < wp, where w, is called the primary frequency

range and is defined as wy = w,/2.

Based on the above definitions, the design objective can be explicitly stated as
determining the coefficients of the z-transfer function D(2) for the digital controller (see
Eq.(2-1)), such that H(jw) or Q(jw), the closed-loop or open-loop frequency response,
whichever is required, will match the specified frequency response model M (jw) or

M(jw) as closely as possible.

§2.2 Dominant Data Matching design method (DDM)

2.2.1 Description of the design method

The Dominant Data Matching method, abbreviated to “DDM” for convenience,
was proposed by Shieh et al. in 1981 [4] for matching an open-loop frequency response
Q(jw) to a given set of dominant data. The method was extended before long to mul-
tivariable sampled-data control systems for model simplification and digital controller
design by the same research group [3]. The dominant data is defined as a set of fre-
quency response values for the open-loop model Mg(jw;) at some key frequency points
w;,t = 1,2,..., K. Usually these points are chosen from the gain cross-over frequency,

the phase cross-over frequency and appropriate low frequency points.

The frequency response of the open-loop system can be derived from Eg. (2-3)

Q(jwi) = D(2)GrG(2)|,— T

. . (2-9)
= D(e“T)GrG(e7T), i=1,2,...,K.
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Let R and I represent the real and imaginary part of complex numbers, respec-

tively, then:

Qjw:) = Ro(w;) + 5 Ig(w:); (2 —6)
D(jw;) = Rp(w;) + jIp(wi); (2-7)
GhG(jw,-) S R(;(w,-) + ]'Ig(w{). (2 — 8)

For simplicity, rewrite Rg(w;) as Ry, Ig(w:) as Igi, ..., etc.. Egs. (2-6), (2-7) and (2-8),

respectively, are then simplified to:

Q(jw:) = Roi + 71gi; (2-9)
D(jw;) = Rp; + jIpi; (2 — 10)
GrLG(jw;) = Rei + 1 1ci- (2-11)

Similarly, the open-loop response model is:

My (jwi) = Raggi + 5 IMgi- (2-12)

The design specification now can be expressed as :
Q(jw:) = Mg(jw:)

=RMQ,'+jIMQ;, 1=12,..., K.

(2 —13)

By rearranging Eq. (2-5) and substituting Eqs. (2-10), (2-11) and (2-12) in it, the

required controller response is found to be:

. Ragi + 51y .
Rp; + jIp; = RCG)'+]'IG'Q1’ i=12,...,K. (2 —14)
(] 1

In Eq. (2-14), Ray, and Ip,, are specified, and Rg; and Ig; can be calculated from

Eq. (2-8) for the plant with a ZOH.

Substitution of Eq.(2-10) and z = ¢/*T = coswT + jsinwT into Eq. (2-1) gives:

Simozrcos(m — Dw;T + 7 > gz sin(m — Nw; T

D(ejw‘T) == M . n o
> k=0 Yk cos(n — k)w;T + j 3 j—o Yk sin(n — k)w, T (2 - 15)

= Rp; + jIp;, 1=12,..., K.
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where yo = 1; ¥, k=1,2,...,n and z;, [ = 0,1,...,m are the unknown coefficients to

be determined.

Now multiply both sides of Eq. (2-15) by the common denominator and separate
out their real and imaginary parts; then by equating the respective real and imaginary
parts in the resulting expression the following linear equation matrix can be obtained.
Its solution yields the required coefficients of the discrete transfer function for the digital

controller.

W =U 'V (2 — 16)

where,

W=(230 Ty «o- T Y1 -o- Yn—1 Yn )
and W ' is the transpose of W;
( RpicosnuwyT — Ipysinnw T
Rpisinnw, T + IpycosnwiT

Rp; cosnw;T — Ip,;sinnw;T

V= Rp,;sin nw,T + Ip; cosnw,T ;
Rpg cosnwgT — Ipg sin nwg T
\RDK sinnwgT + Ipg cos nwKTJ

aii aj2 al(m+1) C11 Ci12 Cln \

by bz ... bimy du diz ... din

U= a1 G2 --+ Gi(m+1) Gl €2 .+ Cin

= b bia .er bimen dir diz ..o din |

a1 GaGK2 ... aK(m_H) CK1 CK? +-+ CKn

\bx1 br2 ... bi(m+y dk1 dE2 ... dKn)

and
a;; = cos(m+1— 7w T, _
j=12,...,m+l
bij = sin(m + 1 — 7)w;T,
cij = —Rpicos(n — j)w,T + Ip; sin(n — 7)w; T,
1=12,...,n
di; = —Rpisin(n — j)w;T — Ip; cos(n — j)w;T.
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Suppose the matrix C is an enlargement of U by V, i.e., C = (U : V). According
to the theory of linear algebra, Eq. (2-16) has a unique solution if and only if the number
of unknowns, determined by Eq. (2-1), equals the rank of matrix C, determined by
the selected key frequency points. Because in this method, a frequency response is
represented in terms of complex numbers, the real and imaginary parts of which are
regarded as the dominant data, the number of specified dominant data is always twice
the number of selected frequency points. The order of polynomials of D(z), therefore,

should be taken in such a way that the sum of (n+m+1) is equal to 2K.

In practice, however, this requirement may be eased. Assume that K selected
frequency points are located reasonably evenly over the frequency range concerned and
K is equal to or greater than 4. Then it is conjectured that, for a well-behaved fre-
quency response model, the equation associated with the frequency point which resides
between the other points may be discarded from the set of 2K linear equations in Eq. (2-
16) without significant detriment to the frequency response matching. Unfortunately,
this conjecture can not be proved mathematically; but the results of design examples

examined in this thesis reveal that the conjecture is well satisfied.

The significance of such an approximation is to reduce the order of a digital
controller. The design for 2K equations requires a controller the order of which is
n > K, but the design for (2K —1) equations can be implemented by a controller with
the order n > (K—1).

2.2.2 Deficiencies in and modifications to the DDM method

A problem arises when a “type I ” system, which contains an integrator in its
forward path, is selected as the model of an open-loop system for a plant without integral
characteristics. To fit a “type I ” system, Shieh et al. proposed to match the dominant
data Mg(jw;) at w =0 [4]. However, the infinite value of Ipr,(jw) at w = 0 makes the
calculation of Eq. (2-14) impossible. To solve this problem, Shieh et al. introduced the
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linear transformation 2/ = z — 1 into Eq. (2-3) so that the real part of an open-loop
frequency response at w = 0, R.[Q(2')]|,/=0, can be expressed in terms of coefficients of
the new discrete transfer function Q(z'). Nevertheless, the resulting equation is non-
linear and has to be solved by a method such as Newton-Raphson. Two disadvantages
immediately become apparent. Firstly, the convergency of the Newton-Raphson method
is highly dependent on initial estimates [4]. Secondly, the estimation of better initial
values and the iterative calculations of the Newton-Raphson method increase the overall

computational burden significantly.

In this thesis, the author suggests using a higher order controller to overcome
these deficiencies in the “type I ” system design. The use of a higher order controller
enables a designer to select a pair of points one decade apart in a low-frequency band
instead of a single point at w = 0, as Shieh et al. proposed. The low-frequency band
is considered as w < 0.03wp, where wy, is the desired closed-loop bandwidth (—3db).
Because the frequency responses at these points are of finite values, Eq. (2-16) can be
formulated with no computational difficulty. In matching the “type I ” model response,
featuring the the magnitude “roll-off” of 20 db/decade and phase lag of 90° in the low
frequency band, the algorithm automatically positions an open-loop pole at the point
of (1,50) in the z-plane to form the desired “type I ” system. Unlike Shieh’s method,
no non-linear equation is involved and no initial estimates are required. As a result, the
modification proposed by this author not only saves computational effort significantly
but also avoids the convergency problem; the only cost is the increment in controller

order of one.

Note that in the design of “type I ” system, a controller pole is defined at the

point of (1,50) in the z-plane, so that the z-transfer function of a digital controller is

o2™ + 212" 4+ Tpo12+ T
(z—1D)(z" 1+ 912" 2+ + Yn22 + Yn-1)’

D(z) = (2-17)

where m < n. Thus one can solve the other (m + n) unknown coefficients by means
of the DDM method. Although this approach may be more efficient and accurate, the
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resulting form of linear equations and the associated computer program can not be
applied to the design of a system with other type numbers. Hence the design based on

Eq. (2-17) is not presented in this study.

§2.3 Complex-Curve Fitting design method (CCF)

The complex-curve fitting technique of Levy [18] has been employed in the syn-
thesis of the z-transfer function of a digital controller so that the frequency response
of the closed-loop system will match that of the assigned model. The matching is op-
timized in the sense of minimum weighted-mean-squared-error. Rattan first presented
this elegant method in his doctoral dissertation in 1975 {5]. Since then, he has applied
this technique to various digital control system design problems such as discretization
of single- and multi-loop continuous-time control systems [6, 7, 3] and model simplifi-
cation of digital control systems {27]. The essentials of the complex-curve fitting design

method, abbreviated to “CCF”, are given in this section, and based on Rattan’s method.

2.8.1 Rattan’s design method

The closed-loop frequency response of the control system defined in Fig. 2-2 is

. D(2)GG(2)
H e ; 2—18
(JW) 1+ D(z)GhG(z) z=e¥T ( )
Represent GpG(jw) in its real and imaginary parts as:
GrG(jw) = Rg(w) + jIc(w). (2 -19)

Let N and P be a numerator and denominator, respectively, and note that z = coswT +

jsinwT. Thus H(jw) in Eq. (2-18) can be rewritten as:

. NH(jw) _ @-}-j@.
~ Pr(jw) o +g7’

H(jw) (2 —20)
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where,
o= Z z;[Rg(w) cos(3wT) + Ig(w) sin(iwT)],
=0

0= Z z;|— Re(w) sin(twT) + Ig(w) cos(twT)],

=0

o=1+ Z z;|Rg(w) cos(iwT) + Ig(w) sin(swT')] + Z y; cos(swT),

+=0 =1
T = Z z;[— Re(w) sin(swT') + Ig(w) cos(swT)] — Z y; sin(swT).
=0 i=1

Assume that a desired closed-loop frequency response is

M(jw) = Nu(jw)

—W=RM(W)+11M(W)- (2 —21)

Then the squared-matching-error function to be minimized is defined as:

waf2
B= [ MGo) - Hiw)Pdo

_ /’%/2 Ng(jw)|’
0

Pg(jw)
To remove the non-linearity which results from differentiating E with respect to

(2 —22)
M(jw) -

controller coefficients, z;,t+ = 0,1,...,mand y;, 1 = 1,2,...,n, Eq. (2-22) is modified by
including |Pg(jw)|? in the integrand as a weighting factor. The new weighted-squared-

error function ¢ is

we 2
e= [ IPatio) PIM(iu) - H(jw)Pdo
Ow., /2 (2 —23)
- /0 |Pa (jw)M(jw) — N (jw)[*dw.

The weighting factor |Pg(jw)|? is nonzero for a stable system because for stability all

roots of the characteristic equation must lie inside the unit circle in the z-plane.

Substitution of Eqs. (2-20)and (2-21) into Eq. (2-23) gives

ws /2
€= ./(; [(Rar(w)o — Ing(w)T — @)% + (Rp (W) + Ing(w)o — ©)?]dw. (2 —24)
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The minimum of ¢ can be found by differentiating it with respect to the unknown

controller coefficients z; and y;, and assigning the derivatives to zero, i.e.,

de .

8_13:0’ 1=0,1,...,m; (2—25)
de

— =0 1 =1,2,...,n. 2—26
ay'_ ’ 1 3 &y R ( )

Hence from Eqs. (2-24),(2-25) and (2-26), (m + n + 1) equations can be obtained:

Je we/2 9o gr 02
P — /; 2(RM(w)a — IM(W)T - Q)(RM(W)BZ - IM(w)azi B axi)dw
Ws/2 31’ 60’ 69
+ /0 2(Ry(w)T + Iyg(w)o — 9)(RM(“’)5_3; + I (w) dz; 3Zi)dw
=0’ i.—_—O,l,..o,m;
(2 —27)

ar
dy;

e ws [2 a'
g—w = '/; 2(Ry(w)o — Ing(w)T — (I’)(RM(“’)%; — Ing(w)

wef2 T il
4+ ‘/; Z(RM(W)T + IM(W)O' — e)(RM(w)g_y: + IM(W)agy—z)dw

)dw

(2 - 28)

The solution of these equations for the unknowns z; and y; is shown in matrix

form as following:

T=A T (2 — 29)
where,
T=(zo 71 Z2 .. Z; <. Tm Y1 Y2 oo Yi --- yn)T;
T=(Lo Ly Ly ... Li ... Lm Ji Jo .o i oo Ja)';
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Aoy Aw A ... Ay ... Alm Cun Cpiz ... Ci ... Cu

Ay Ap Aw ... Ay ... Ay, Cn Cnp ... Oy ... Con
Ay Ay Ay ... Aw Aim C;il Coz .. Ci s C:in

X == AOm Alm A2m Aim AOO le CmZ Cma C'mn ’
Co Cu ©Cu ... Cq ... Cui Bu By ... By ... B
Cp Ci Cp ... Ca ... Cu2 Bz Bu ... By ... Bn

Co Ci; Cy ... Cy ... Cni By By ... By ... B;

k COn Cln C2n ona Cin eer Cimn B‘ln B2n see Bin ... By )

and
A= [ P 2 (0) + Byw) — 2Rar() + T(RE (W) + T3(w)) cos((i - T)dw,
B = [ P 3y () + By ()] cos((i — )T,
o= [ B (w) + Blw) — Bae()) Ra(w) — e (@) Io(w)] cos(( — )uT)d
+ [ P ) + Ty () — Bar(w)) o) + Tne(@)Ra(w)] sin((i = 1)uT)d,
L= - /; wa/z[(Rf‘(;(w) + Iy(w) — Ry (w))Re(w) — Ing(w)Ig(w)] cos(iwT) dw
- [ P B(w) + L) - Rae))elw) + Ine(w) Re(w)] sin(iwT)du,

we /2
JE = —/ [R%,(w) + I3(w)] cos(iwT)dw.
0

The choice of the digital controller order mainly rests on the matching accuracy
required and the computation time allowed. Data required for the design include m and
n, the orders of the polynomials of a controller 2-transfer function; M (jw), the desired
frequency response and G,G(z), the z-transfer function of the plant with a zero-order

hold.

2.8.2 Numerical integration

The great number of integrations involved in solving Eq. (2-29) is one of the main
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disadvantages of this method. In this study, these integrations are carried out by means
of DCADRE, a numerical integration subroutine from the IMSL programme library (8].
Suppose F(z) is the integral of f(z) over the interval [a,b]. Then the DCADRE routine
computes F(z) as the sum of estimates for F(z) over suitably chosen subintervals of
[a,b]. Starting with [a,b] as the first such subinterval, the cautious Romberg extrap-
olation calculates an acceptable estimate on it. If the result is not satisfactory, the
subinterval is divided into two parts of equal length, each of which is then considered
as a subinterval for a new estimate. This routine gives fairly accurate results but the
computational burden is heavy. For instance, depending much on the behavior of in-
tegrands, the calculation of the coefficients for a 3rd-order controller transfer function

may require 15 ~ 75 seconds of CPU time on a VAX-11/780 digital computer.

2.8.8 Detrimental effect of the weighting factor

The effect of the weighting factor |Pg(jw)|? in Eq. (2-23) on the matching accu-
racy is ignored in Rattan’s CCF method as he claimed [5] that the weighting factor was
approximately equal to a constant times the absolute value of Pys(jw), the denomina-
tor term in Eq. (2-21). Nevertheless, this assumption is not valid unless the sampling
frequency is low relative to the bandwidth of a closed-loop system. As w, increases, the
value of weighting factor | Pg(jw)|? in the low-frequency band becomes so small that the
consequent deterioration of minimization could bring about considerable deviation in
the frequency response matching. This is demonstrated by a numerical example taken

from this author’s studies.

Assume that the plant under design is

100(s + 0.2)
G(s) = - 5] 2-30
()= GF D +05+76)(s 705 —76) ( )
and the closed-loop frequency response model with T}, = 0.5 s is
M(jw) = 0.103z + 0.028 (2 —31)

22 — 1.424z + 0.555 | 7=¢70.50"
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where T,, denotes the sampling period of a discrete transfer function used as a model.
A digital controller is then synthesized by the CCF method at three sampling periods
T = 0.1,0.3,0.5 s, respectively. The variation of |Pg(jw)|® and the corresponding
closed-loop frequency response in each design are shown in Fig. 2-3, from which it is
clear that the weighting factor |Pg(jw)|? significantly affects the matching accuracy of
designs. In particular, at T = 0.1 s, the value of |Pg(jw)|? reduces to about —200db
when w < 0.5 rad/s, with the result that the closed-loop frequency response does not

match the model at all.

In a later paper [6], Rattan commented further that the effect of | Pg(jw)|? could
be easily eliminated, if desired, by dividing the integrand in Eq. (2-23) by |Pas( jw)|?

from Eq. (2-21), i.e., by minimizing

[P Pr(§w)]? :
e = [0 P g M () — H(ju) Pdo. (2 - 32)

Py (jw)|?
In the above example, however, it is observed that the ratio |—H(J.£2|—2 at T=0.1sis
|Pa(jw)

not a constant but varies from —160 to —100 db. Furthermore, because the matching
Ng(jw)
Py (jw)
Pg(jw) does not necessarily converge to Pys(jw) while minimizing the error |[M(jw) —

H(jw)|.

is conducted in terms of the ratio rather than Ng(jw) and Py (jw) separately,

To overcome this deficiency in Rattan’s CCF method, this author has developed
successfully the iterative complex-curve fitting design method in an attempt to eliminate
the error-producing effect of the weighting factor |Pg(jw)|?. This is presented in the

next section.
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(1) Frequency responses of the closed-loop systems designed by

Rattan’s CCF method for sampling periods T = 0.1,0.3,0.5 s

40. |Pg(jw)[? (db)

0.0
Model
T = 0.5s
— 80. i T =0.3s

— 160.|
T =0.1s

— 240. . . ; 6'38 , w(rad/s)

0.001 0.01 0.1 1.0 10.

(2) Variation of the weighting factor |Py (jw)|* as a function of T

Figure 2-3 Effect of the weighting factor |Py (jw)|? in Rattan's CCF method on the accuracy of

frequency matching
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§2.4 Iterative Complex-Curve Fitting design method (ICCF)

2.4.1 Description of the ICCF method

On the basis of Rattan’s complex-curve fitting design method, this author pro-
poses an iterative algorithm aimed at eliminating the effect of the weighting factor
|Pg(7w)|? in the error function Eq. (2-23) in order to reduce the matching error. The
new method, called the Iterative Complex-Curve Fitting design method and abbrevi-

ated to ICCF, uses the transfer function synthesis technique of Sanathanan and Koerner

[13].
Let e and €' denote the squared-error and the weighted-squared-error of matching,
respectively:
e = [M(jw) — H(jw)[’
.. Ng(jw)| (2 — 33)
= [M(jw) - Na(jv) ;
Pg(jw)

¢ = |Pg(jw)|? e

= |Pg(jw)M(jw) — Ng(jw)[*.
Thus the error function E in Eq. (2-22) and the weighted-error function ¢ in Eq. (2-23)

(2 —34)

may be rewritten as:

ws/2
E= [ M(jw) — H(jw) *dw
0

WS/Z
=/ e dw;
0

ws/2
e= / |Pa(jw)M(jw) — N (jw)|Pdw

wef2
=/ ¢ dw.
0

If Pg(jw) is known, the weighted-error ¢ can be divided by |Pg(jw)|? so that

(2 — 35)

(2 — 36)

¢/ becomes the true error e. But this is impossible because Pg(jw) is unknown until
the computation is completed. By an iterative process, however, the currently unknown
Pg(jw) can be approximated from the previous computation result and hence its effect
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can be eliminated. In this approach, a new squared-error e*®) is defined as:

IP$) (jw) 2

k) —
|PE1 (jw)2

|M(jw) — HO(w) (2-37)

and the corresponding error function e*®) js

wef2
e ®) = / e* ) dw
0

_st/Z |Pg=)(jw)|2
o |PF (w2

(2 —38)
|M(jw) — H® (jw)|*dw;

where the superscript k is the number of the iteration.

Obviously e**) approaches the true error function E when ng ) (jw) closes to
Pg‘ -1 (jw), if Pg(jw) converges. In other words, the minimum of the matching error
function E is reached as the weighting factor ng‘ )(jw)|2 is effectively cancelled by
PYD (Gw) 2.

Based on the new error function e*(*) of Eq. (2-38), a set of linear equations
(Eq. (2-39)) for the controller coefficients at the kth-iteration, :z:'(-k),i =0,1,...,m and
(k)

y; ,4=1,2,...,n, can be derived by following a similar analysis to that carried out in

equations (2-23) to (2-29) of the previous section.

T=A -T; (2 — 39)
where,
To (o o A S P )
T=(Lo Lt Ly «.. Li .. Lpm Ji J2 ... Ji oo Ja)T;
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( A Aox Aoz ... Ay ... A Cor Cp2 ... Cp ... Con \
Ann Ao Az ... Ay ... Ay Ciy Cpp ... O ... Cyp
Az Az Aw ... Ay ... Ayn Cy1 C ... Cy ... C2q

Ay Ay Ay ... A ... Am Cq GCip ... Cy ... G

Aom Aim A ... A ..o Agpo Cmi Cm2 .- Cmi  oes Cinn

4= Co Cn Cun ... Ci ... Ci Bu Bz ... By ... B
Coz Ca2 Cp ... C2 ... Cn2 B2 Buy ... By ... By
Ci Cu Cw ... Ci ... Coi By Bu ... Bu ... B
\Con Cin Cin .. Gu . Cun Bin Bom ... B ... Bu)
and

A= /ws/Z ;(Rz (w) + I3 (w) — 2Rp(w) + 1)
T PG

(RE(w) + 1&(w)) cos((§ — f)wT)dw,

Bg= f Lm0 4 Byw)] cos((i — §)wT)dw
! PEDGwp ’

Cim [ (Bh(w) + Belw) — Raew))R(w) - Ine(w)]
5= o ) + )~ R Role) = () o)

1

o we/2
cos((s — j)wT)dw + /(; M
[(R3s(w) + Ly(w) — Rag(w))Ia(w) + Ing(w) Rg(w)] sin((s — j)wT)dw,

1

we/2
L;= _/0 W[(Rﬁl(w) + Iy(w) — Ry(w)) Ra(w) — Ing(w)Ig(w)]

(- T)d /%/2 1
COS{tWw W — e —
o [PV (jw)?

(B3 (w) + I3;(w) — Ra(w))g(w) + Ing(w) Rg(w))] sin(iwT)dw,

[ 1 2 2 T duw:
Ji = ‘/; |P§k_l)(jw)|2[RM(w) + Iy (w)] cos(swT)dw;

the superscript k for all A, B,C, L and J is left out for simplicity.
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Note that, except for the factor |P£(I’c _1)( jw)|? in the denominator of every in-
tegrand, Eq. (2-39) is very similar to Eq. (2-29). Let Ng(jw) be the numerator of

G1,G(jw) and Pg(jw) the denominator, i.e.,

: Ng(jw)
G G(jw) = ——. 2-40
h (J ) fﬂg(}o&) ( )
p= (. ]
'y (jw) can be then expressed as:
ch_l)(jw) =(z((,k_l)z’" + zgk_l)z'"_l + -0 x,(,:::)z + zf,’fﬁ”] - Ng(jw)
_ N s (2 —41)
+ (2" +y§k 1) n-1 +'“+yf,'°_1”z+y,(f 1)) - Pg(jw) -y
where, z‘(k_l), 1=0,1,...,m and y‘(k_l), 1=1,2,...,n are the known controller coeffi-

cients obtained from the (k — 1)th-iteration.

The initial estimate of Pl(f ) (jw), namely Pg) ) (jw), is assigned to unity. From
Eq. (2-38), the error function e*®*) at k=1 is

we /2
&) = /' 1P (jw) 2| M (jw) — HY (jw)|?dw
OW/Z (2 — 42)
= [ 1P Gu) M) - NP () P,
0

which is the same as the weighted-squared-error function € in Eq. (2-23). Hence the

result of the first iteration is identical to that of Rattan’s CCF method.

The number of iterations is determined by the desired matching accuracy and
the convergency of Pg‘ )( jw) to ch _l)( jw). In this study, WIAE, a weighted integral
absolute error criterion, defined in Eq. (4-5) of section 4.1, is used to assess the matching
performance. At kth-iteration, WIAE® is calculated and compared with a specified
value for the matching error criterion, say ¢ = 0.01. If WIAE® < ¢, the values of

NC

s ?

of the controller transfer function; if WIAE®) > ¢, then compare WIAE® with the

t =0,1,...,m and y‘(k),i = 1,2,...,n are an ideal solution for the coefficients

previous result WIAE*—1), When the kth-iteration makes some improvement, i.e.,
WIAE® < WIAE—) the values of :z:'(-k) and y‘(k) are used to evaluate Pl(rk)(jw) for
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(k)

$

the next iteration. Otherwise Pg(jw) fails to converge and the values of z;"” and yfk)
should be taken as the most accurate results available. Note that in any case the result

of the ICCF method will not be less accurate than that of Rattan’s CCF method.

2.4.2 Numerical ezamples

The iterative complex-curve fitting design method has been tested for a number
of design studies in Chapter IV and proved to be one of the most accurate methods. In
particular, the examples considered in section 2.3.3 are redesigned by this new method.
After just two iterations, the matching errors of the closed-loop systems designed by
Rattan’s CCF method at T = 0.1 and 0.3 s (see Fig. 2-3 ) are considerably reduced.
For T = 0.5 s, at which the matching error of CCF’s design is insignificant, the result of
the ICCF method is close to that of the CCF method. Figure 2-4 shows the frequency
responses of the closed-loop systems designed by the ICCF method, together with that

of the model M(jw).

0.3 Im complex plane

—-1.2L
Figure 2-4 Frequency responses of the closed-loop systems designed by the ICCF method

_ _ 100(s+0.2) _ _ N 0.103z+0.028 ,
(Prast: G(s) = frrarossiaros=g Medek M(jw) = 58T cmernsw)
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§2.6 SIMplex optimization-based design method (SIM)

2.5.1 Control system design via non-linear programming

Non-linear programming is an optimization technique. It has been applied exten-
sively to solve the problem of determining a set of parameters such that the objective
function is minimized or maximized, possibly subject to a set of constraints. This
objective function and the constraints may be non-linear with respect to the set of

parameters.

It is interesting to note that the crux of the frequency matching design methods,
such as CCF and ICCF, is the determination of a set of discrete transfer function coef-
ficients, which are optimal in the sense that the matching error function is minimized.
These coefficients, namely z; and y; in Eq. (2-1), may be subject to constraints that
ensure, e.g.,

a) the designed controller is open-loop stable;
b) there is an upper limit on the controller gain;

¢) there is no severe oscillation in the controller output signal; etc.

Furthermore, both the error function and constraints are non-linear functions of the con-
troller coefficients. These considerations therefore suggest the possibility of formulating

the digital controller design problem as a non-linear programming with constraints.

This approach has been developed in this thesis. The author formulated the
non-linear programming problem for the design of z-transfer function of a digital con-
troller, devised the solutions using two optimization algorithms, and assessed these new
design methods with the aid of a number of numerical examples. The optimization
algorithms used are the simplex method for function minimization and the random

searching optimization method.

The new optimization-based methods for the design of digital controllers have
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some unique advantages. The significant one compared with the previously discussed
methods is that the open-loop stability of a designed controller is guaranteed. More-
over, they offer the facility of including design specifications additional to the frequency
response model in the design. These features are implemented by incorporating the

appropriate non-linear constraints into the non-linear programming problem.

Of the two optimization algorithms, the simplex method has been proved exper-
imentally to be feasible for and capable of coping with some typical digital controller
design tasks (see Chapter IV ). It shows superiority over the other methods especially
when constraints on a controller output are required. The associated computation time
is longer than DDM’s, comparable with CCF’s and shorter than ICCF’s. In contrast
with the simplex method, for the same design examples, the random searching optimiza-
tion method gives inferior accuracy, fails to converge to the minimum in most cases, and
imposes a very heavy computational load. Therefore, this method is not recommended
for design purposes. It is considered, however, in the next section for sake of complete-
ness because it has been discussed frequently in the literature over the last two years,
mainly in the application of time and frequency response matching technique to model

simplification problems.

In the remainder of this section, the non-linear programming for the design of
a digital controller is formulated first. Then a description of the simplex optimization

method will be given, followed by its application to the design of digital controllers.

2.5.2 Formulation of the non-linear programming problem

Suppose that a frequency response Mg(jw) is defined at a set of frequency points
w;, = 1,2,..., N, as a desired system open-loop frequency response. The frequency

response of an open-loop control system is

Q(jw) = D(2)GrG(2)
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Instead of the polynomial form of Eq. {(2-1), the controller transfer function D(z) is

expressed in terms of zeros and poles:

_zo(z—21)(2 —22) - (2 — 2m)
PO = o) )

, (2 - 44)

where, z;, 4 = 1,2,...,m are zeros and p;, 1 = 1,2,...,n are poles.

Before the objective function is defined, an obstacle in scaling has to be removed
for the reason that complex numbers are represented in terms of their magnitudes and
phase angles (in degrees). In general, for frequency response of control systems, the
range of the magnitude variation is much larger than that of the phase angle variation.
Consequently the value of magnitude may be either too heavily weighted or insignificant
when included with the value of phase angle in the summation in the error function.
The decibel value of the magnitude of a complex number, therefore, is used to replace

its normal value. For Q(jw), the scaled magnitude is ¥g(w), defined as:

9o(w) = 20logyo |Q(5w)]- (2 —45)

Similarly the scaled magnitude of Mg(jw) is

agq (w) = 20logyo | Mg(jw)|- (2 —46)

Based on the above definitions, the error function, or the objective function, E,

can be defined over all N selected frequency points as:

N
E =3 \/[(w:) — 9aig (wi)]2 + [W(wi) — ¥arg (w12, (2 - 47)
t=1

where, ¥ and ¥, are the phase angle of Q(jw) and Mp(jw) in degrees, respectively.

Next, consider appropriate constraints to ensure that the closed-loop system is
stable. In this analysis, it is assumed that the plant under design is open-loop stable
and the Nyquist plot does not encircle the (—1,50) point in the D(z)G,rG(2)-plane.
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Thus, according to the Nyquist stability criterion for digital control systems (1], the

closed-loop system is stable if the poles of D(z) satisfy:

lp:| <1, i=12,...,n (2 — 48)

In other words, none of p;, 1 = 1,2,...,n is outside the unit circle in the z-plane.

The combination of equations from (2-43) to (2-48) formulates the desired non-

linear programming problem for the design of digital controllers as follows:

Minimize

N
E=3"\/0(w:) — Parg (@i)]? + W) — gy (i)
=1

(2 — 49)
= f(zO;zlsz%---;zm;Plip%""pn)

subject to the non—linear constraints

Iptlsly ‘.=1,2,-..,n.

It is rather difficult to solve this non-linear programming problem directly be-
cause of the constraints imposed. Fortunately, these constraints may be removed by

means of the following transformations in which A is an auxiliary optimization variable.

For poles:
Pig+1 = ﬂpe_l’\‘l . eij"""_mﬂl, for a pair of complex conjugate poles;
(2 — 50)
pi = I“pe_ll\il — Vp, for a real pole.
Similarly, zeros are formed as follows:
Zii+l = poe~ Nl eij""'e_lh"ﬂl, for a pair of complex conjugate zeros;
(2 - 51)
z; = uze‘p"'l — v, for a real zero.
For a gain zg, which is always a positive real number,
Ty = uge_|’\°|. (2 —52)
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In the transformations (2-50), (2-51) and (2-52), the parameters pp, ., pg and vy, v,
are real numbers which enable a designer to impose the desired constraints on the gain,
poles and zeros of D(z). The constraints in Eq. (2-49), for example, can be implemented
by setting p, = v, = 1 for a pair of complex poles, or p, =2, v, =1 for a pole on the
real axis. Thus when ) assumes values from —oo to +o0, p;, 1 = 1,2,...,n, lie on or

within the unit circle in the z-plane.

For m zeros, n poles and a gain, there is a total of (m+n+1) auxiliary variables
Xi,3=0,1,...,m+n. Hence, with the aid of the above transformations, the non-linear
programming problem with constraints defined in Eq. (2-49) can be transformed into

one free of constraints:

Minimize

N
E =" \/[90(w) — g (wi)]? + [¥o(w:) — ¥asg (wi)]? (2 - 53)
i=1
= F(/\O) ’\l) Tt Am+n))
where —00 < A; < 400, 7 =0,1,...,m+n.

The optimal values A}, ¢ = 0,1,...,m+n indirectly determine the required con-
troller coefficients. The formulation of the objective function F(XoyA1y--- 5 Am4n) 18

described in Appendix A.

2.5.8 Simplex method for function minimization

The simplex method, abbreviated to “SIM” for short, is a standard optimization
algorithm for solving a variety of non-linear programming problems. Nelder and Mead
first proposed this method in 1964 [12] based on the original idea of Spendley et.al
[15]. Since then it has been widely used. Unlike the gradient optimization techniques,
which require the derivatives of an objective function, there is no need for any such
mathematical derivations in the SIM method. This is a significant advantage because
often the analytic derivative of an objective function is very tedious, if not unavailable.
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Since the simplex method has been explained in many standard textbooks on the subject
of optimization [28, 29], only a brief description of SIM is presented. For simplicity, a
two-dimensional (2-D) non-linear programming problem is used to illustrate the concept;
the extension to higher-dimensional problems is straightforward. A flow chart for the

simplex method for n-D problem is shown in Fig. 2-5.

In optimization techniques, the simplez in n-D space is defined as the figure
formed by n + 1 vertices; the vectors connecting each pair of the vertices are linearly

independent. In 2-D space, for instance, the simplex is a triangle.

The most important information for solving a minimization problem is the vari-
ation of objective function values in a space. If the directions of such variation can be
approximated from comparison of function values at different vertices of a simplex, then
the better solution may be obtained along the direction which leads to a reduction in

the value of the objective function. This is the essence of the simplex method.
Suppose that the objective functin E in 2-D space is to be minimized, i.e.,
Minimize
E= f(X)1 X € R2.

Take three vertices in R%Z, V,Vy, Vs, to define the current simplex, which is a triangle

(2 —54)

as described in Fig. 2-6. Calculate the values of E at these points and compare the
results. Call the maximum value, say E3, E,.q, and the minimum value, say Eg, Epin-
Denote the corresponding vertices as Vy,qr and V,,;,, respectively. Furthermore, Vis
defined as the centroid of the vertices excluding V,,,, and WV: as the vector from V; to

V.

g

Three operations, reflection, ezpansion and contraction , are introduced to find a
new vertex to replace the “worst” vertex V,,4.. Usually, there is good reason to assume
that a “better” point lies opposite Vjuq2. Such a point, denoted by V,, can be obtained
by the reflection defined as:

V, = (14 )V — aViar, (2 —55)

2-26



Initializing V;,
$ = l,...,n+l.

Calculating E;,
i=1,...,n+ 1L

Determining Viin,
Vmaz, V) Eml’n; Ema:

Operation of reflection
V,:(l + a)V — aVmaz

E, = f(vr)
S
Yes
Operation of expansion Y
Vo=V, + (1= 1)V Yes | _ feplacing
E. = f(V.) Vimaz by V¢
Operation of contraction
No Vo= (1= 87+ Ve
E ——
E. <E, . E. = f(vﬂ)
Yes
Y
Replacing V,,,,, by V, Replacing Vinax by Vi
o @ No Replacing
Vimaz by Ve
— Yes
Vi . (V. +Vmin)/2

Is the
minimization criterion
satisfied?

( sor )

Figure 225 Flow chart for the simplex optimization method

i=12...,n+1.
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Figure 2-6 Illustration of the simplex method in the 2-dimensional case

where, « is the reflection coefficient, o > 0.

Fig. 2-6 shows V, lying on the extension line of the vector VinazV - The distance

of V'V, is dependent on the value of a.
The function value at V;, namely E., will fall into three possible ranges:
(1) Epin < E; L E; for any 1 # { 2;’;
Replace Vpqz by V; so that Vi, V) and V, will form a new simplex for subsequent
calculations.
(2) E, < Epin-
Since V, gives the “best” point, it may be beneficial to search further in this

direction by “expanding” V, to V,:
Ve=V + (1 - '7)?) (2 - 56)

where, 7 is the ezpanston coefficient, v > 1.
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V. is on the extended line of V'V, as illustrated in Fig 2-6; v is the ratio of [V.V|
to |?V—,| Calculate E, and form a new simplex of Viuin, V1 and V. if E, is smaller than

E.. Otherwise the expansion fails and Vipey is replaced by V, for the next iteration.
(3) E; > E; for all 1 # maxz.

Assign a new V4, to be either the original Vinax 0T V;, whichever has the smaller

value of E. Then the contraction coefficient 3 is used to find the new vertex Ve:
Ve = BVimas + (1 — B)V, (2 - 57)

with0< g < 1.

It is apparent from Fig. 2-6 that V. is on the straight line between V4, and V.
If the contraction is successful, i.e., E; < Emaz, Vinax 18 replaced by V; in a new simplex.
On the other hand, if E. > Eyqz, the size of the searching region has to be reduced by
replacing all the vertices V; by (Vi + Vinin)/2. The next iteration will start with this

new simplex.

The criterion to terminate the process can be one of the followings:
a) a limit on the number of iterations;
b) a limit on the computation time;

c) a desired minimum value,

n

Y (Bi — Bmin)® <6 (2 — 58)
=0

where, ¢ is some specified small number;

d) a lower limit on the size of searching region,
Vi = Vinin| < Sinin, forallt=0,1,...,n, (2 — 59)

where S,,;n is a specified value.
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There is no unique formula for the determination of values of , § and . The
author suggests using @ = 1.0, § = 1.2 and y = 0.8 at the beginning of the experiment.

These values may be adjusted later, depending on the optimization process.

Note that at the beginning of optimization, only one vertex Vo in n-D space
needs to be specified by the user. To form a simplex, the other n vertices V-V, are

determined from:

rij = Tojs if 1 # j;
_ (2 — 60)
rij =ro; + 4, ifi=7;
t,7=1,2,...,n—1,nm;
where, r;;, 7 = 1,2,...,n, are the dimensional values of the i1th-vertex; A is a constant

which decides the initial size of simplex and has more significant effect on the conver-
gency and accuracy of optimization than &, 8 and  do. From the author’s experience,

the appropriate value of A may vary from 0.7 to 4.5.

Usually as optimization proceeds, the size of a simplex reduces very quickly.
Consequently the simplex may become too small before the optimum is found. To
avoid this problem, the computer programme in this thesis is designed such that after
a number of iterations, say 300, the optimization process will automatically start all
over again, with a new simplex in which Vj is Vj,;, in the last iteration and the other n
vertices determined by Eq.(2-60). By keeping the simplex under search to a reasonable

size, both the convergency and efficiency of the SIM method are remarkably improved.

2.5.4 Application to the design of digital controllers

The simplex method is an optimization algorithm suitable for minimizing a func-
tion of n variables without constraints. Note that objective function in Eq. (2-53) for-
mulated for the design of a digital controller is just this type of function. The simplex
method, therefore, is applied to solving Eq. (2-53) for the parameters of the digital
controller. Since the optimization process is accomplished by a digital computer, the
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task of a designer mainly rests on the initialization of design problems, which is to be

explained in this section.

Assume that a frequency response model Mg(jw) and the open-loop frequency
response G, G(jw) of a plant with a ZOH are given. The formulation of the objective
function E = F(X) in Eq. (2-53) is dependent on the pole-zero configuration of D(z),
the discrete transfer function of a digital controller. In Eq. (2-44), there is no constraint
imposed on the type of poles and zeros of D(z). For instance, for a 3rd-order controller,
D(z) may possess 3 real zeros, 1 real pole and a pair of complex conjugate poles; or 1
real zero, a pair of complex zeros and 3 real poles; etc. In this thesis, the configuration
of D(z) with 3 real poles and 3 real zeros is adopted for simplicity. Bear it in mind
that the poles and zeros of D(z) are the open-loop poles and zeros of the system under

design. Thus, in terms of auxiliary variable A, D(z) may be written as:

_ zo(z — 21)(2 — 2)(z — z3)
D) = o0 —m)(z = po)

_ gDz — (uae P = w)fz — (el — vz = (el = v,)]

[z — (upe eIl — vp)llz — (mpe™ sl — vp)llz — (ppe™ ol — )l
(2 —-61)

To start the optimization process, one needs to provide 3 sets of initial values and
parameters. They are: (1) initial estimates for the gain, poles and zeros of D(z); (2)
the constraints imposed on the gain and pole-zero locations; (3) the selected frequency

points w;, ¢t = 1,2,..., N.

Choosing the initial gain, poles and zeros of D(z) closer to the optimum is always
desirable, as they enable an objective function to converge to the minimum quickly and
accurately. The better estimates can be achieved based on the designer’s experience and
knowledge of plant dynamics. Nevertheless, it is increasingly difficult when the order of
a system becomes high. Hence the author suggests an alternative in which the designer
may use the DDM method to compensate the plant, and then supply the resulting gain,
poles and zeros of D(z) to the optimization process as initial estimates. Because the
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computational load of the DDM method is negligible relative to that of optimization-
based methods, this combination of the analytic and optimization methods is faster and
more accurate. If the DDM method results in some gain or poles or zeros outside the
constraints imposed, reassignment is needed to return those parameters to positions

within the required regions.

Furthermore, if the optimization algorithm has no strict requirements on initial
estimates, one may simply start the optimization process with some arbitrarily-assigned
initial estimates. In this thesis, for example, the SIM method is assessed in a number
of designs (see sections 4.2 and 4.4) with arbitrarily-assigned 3 poles and 3 zeros, which
are all at the same point of (0.5,50) in the z-plane. All the results of these designs are

satisfactory as far as the optimization process is concerned.

Finally it should be pointed out that the computer programme developed in this
thesis only requires the values of initial gain, poles and zeros. These values are then
converted to the corresponding auxiliary variables ); in Eq. (2-53) at the beginning of

optimizing iterations.

The parameters for setting the constraints on the gain, poles and zeros of D(=z)
are fig, fbp, Bz and vp, v,. In addition to the system stability, which requires that the
poles of D(z) locate within the unit circle, the system dynamic performance may be
improved also by further constraining the poles and zeros within some specified areas in
the z-plane. Moreover, the upper limit on a controller gain can be readily implemented
in a design by selecting an appropriate value of p;. More details about the selection of

constraints are given in section 4.2.1 with the aid of a numerical example.

Let I; and L, be the lower limit and upper limit of real poles and zeros, respec-
tively, the values of u and v are then calculated from:

{ﬂ=Lu—L1

v=-I

(2 —62)

The number of selected frequency points is related to the smoothness of a complex
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curve within the frequency range of interest. Experience has shown that 30 ~ 40 points
are necessary to ensure the accuracy of the frequency response matching. The frequency
points are not evenly distributed, rather, they are selected in the weighted manner in
which more points are chosen from the frequency range where the gradients change

rapidly.

§2.6 Random Searching Optimization-based design method (RSO)

Suppose that, in n-D space, there is a point V,,;, at which the objective function
E has its minimum value E,;,, or a value close to E,,;. One can search a region
) € R"™ assumably large enough to include V,,;, by randomly selecting points within
the region and evaluating their function values. The greater the number of random
points evaluated, the greater the likelyhood of V,,;;, being selected. As the number of
evaluations continues to grow, V,.;» will eventually be found. This is the philosophy of

the random searching optimization method, abbreviated to “RSO” for short.

In 1973, Luus and Jaakola [11] developed this simple optimization algorithm for
solving various non-linear programming problems. In addition to the random searching,
they also proposed a systematic reduction of the size of searching region {1 so that the

process would proceed more efficiently.

Since 1982, a number of papers |10, 16, 17} has been published by Luus and his
colleagues reporting on the applications of this method to the model simplification of
discrete and continuous systems. The parameters of a lower-order model are determined
in such a way that its time or frequency response will match the corresponding part of
the original higher-order system as closely as possible. Successful numerical examples

presented in these papers are impressive.

Inspired by the above achievements, this author attempted to extend the RSO
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method to the design of digital controllers. In section 2.5.2, non-linear programming is
described as a means of designing digital controllers based on the frequency response

matching technique, that is,

Minimize

N
E=" \/19a(w:) — Sarg(wi)l? + [b(wi) — ¥rg (wi)? (2 - 53)repeated
=1

= F(X0, M,y Amtn)-

Note that A;, 2 =0,1,...,m + n are not subject to any constraints. If the mini-
mum of the objective function E can be found by the random searching, the resulting

optimal variables A} will give the required gain, poles and zeros of a digital controller.

The formulation of non-linear programming and the initialization of a design
problem have been discussed in section 2.5. The essential computational steps of the

RSO method are given below and illustrated in the flow chart of Fig. 2-7.
(1) Initialize the iteration, the index j = 0.

Firstly, set up the initial values )\;(0) for variables A\;,7=0,1,...,m+n following
the same method described in section 2.5.4. Secondly, assign initial sizes to the searching

. ©
regions, ri

), for each variable );. The choice of r is much dependent on experience and
knowledge of a dynamic plant. If r is too small, the minimum point may be excluded
from the searching region; if too large, the computation time increases significantly. The

final action in step 1 is the calculation of the function value A*® from Eq. (2-53), i.e.,

Et(O) — F(/\;(O),A;(O), ,\*(0) )

“r1fmin

(2) Determine the values of A at the jth-iteration.
Increase the index j by one, 5 =37 + 1.

Take K x (m+ n+ 1) random numbers o) uniformly distributed between —0.5
and +0.5. Put them into K sets a,(gj), k=12,...,K, each set containing m+n + 1
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Initialization j=0
setting up A:(O); ".(0); Jmaz;
E°® = PO,

i=0,1,....m+n.

J=Js+1 -

)

Taking K sets of random numbers
—05< a‘(‘{) < 0.5
i=01,....m+n;
k=12,.. K.

D) = X0UY 4 g0 =)

i=01,...,m+n;
k=12...,K.

Y

B = FO{)
E*U) = Min(EY, E*U-D)
Denoting the corresponding X as A*(9)

Reducing the searching region
r‘gj) — "rs.f—l)

i=01,...,m+n.

A

k=1,2,...,K.
S No
J 2 Jmaz
Yes

(oo )

Figure 227 Flow chart for the random searching optimization method
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numbers a,(c’-)

7,1=0,1,...,m+ n. These random numbers are assigned to variables A;

as determined by

/\g) = ,\;(J'_l) + ag) rt(j_l), (2 —63)
i=01,...,m+n, k=12,...,K.
In this thesis, random numbers are generated by the GGUBFS subroutine of the
IMSL programme library [9]. The number of sets at each iteration, K, is taken as 100.
(3) Find the minimum function value E* at the jth-iteration.

Calculate function values E,(cj) from

El(cj) = F( A\ 0)

DAL, W0 k=12 (2 — 64)

Determine the minimum value over all sets including E*U~Y and call it E*U). Also let
the corresponding variables )\g) be denoted by A+0),
(4) Reduce the size of the searching region {1.

The size of the searching region at (j + 1)th-iteration is reduced by
r}jﬂ):nr}j), $1=0,1,...,m+n, (2 —65)

where 7 is a contraction factor and 0 < g < 1.
Usually 5 is chosen from 0.9 to 0.99. In this thesis, the author uses n = 0.95.
(5) Start a new iteration.

Go to step (2) and repeat the whole procedure. Continue until the iteration
number j exceeds the limit jnqz. Then halt the process and substitute the optimized
variables A*Umas) into Eqs. (2-50), (2-51) and (2-52) to obtain the desired poles, zeros
and gain of the digital controller. The criterion jmq. relates to the complexity of the
problem, in particular the number of variables. In this thesis, jmqz is 150 for the problem
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in 7-D space. This implies that, over the entire process, 15,000 points are selected and
15,000 function values are calculated. If the number of selected frequency points N in

Eq. (2-53) is large, say 30, the computational burden may become extremely heavy.

§2.7 Summary

In this chapter, five methods for the design of digital controllers based on the
frequency response matching technique have been presented. Both the theoretical back-
ground and operational procedures were discussed. First the dominant data matching
method was reviewed as a simple and efficient method. Some modification was suggested
in the application of the DDM method to the design of the controller which possesses
a pole at the point of (1,70) in the z-plane. The more elegant method, namely Rat-
tan’s complex-curve fitting design method, was then presented. By minimizing the
weighted-squred-error function of the matching with the derivative techniques, the de-
sign of Rattan’s CCF method may reach the optimum. However, it was demonstrated
that the detrimental effect of the weighting factor in the error function to be minimized
became unacceptable when the sampling frequency w, was high relative to the closed-
loop bandwidth wy,. To overcome this deficiency, the iterative complex-curve fitting de-
sign method was proposed. The new method eliminates effectively the error-producing
weighting factor from the error function by iterative computations. The author also
formulated the non-linear programming problem for the design of digital controllers,
and devised the solutions using the simplex and the random searching optimization al-
gorithms. These optimization-based design methods feature the facility to incorporate
various non-linear constraints in the design in order to ensure the system stability and
to improve the system dynamic response. All of these methods will be demonstrated

and assessed in Chapter IV .
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CHAPTER III

DETERMINATION OF FREQUENCY RESPONSE MODELS

One of fundamental considerations in frequency response matching design tech-
niques is the determination of a frequency response model M(jw) from the given per-
formance specifications for a closed-loop control system. This topic, neglected in the
previous papers, forms this independent chapter not only because it directly relates to
the dynamic performance of a system under design, but also because it has a strong

influence upon the effectiveness of the frequency response matching process itself.

In section 3.1, a general description of sources and applications of frequency
response models is given; followed by an explanation of using the frequency domain
specifications. Section 3.2 deals with the problem of converting specifications between
different domains when design goals are assigned in the time or complex 2-domain. In
order to provide a reliable and easy-to-use solution, a thorough investigation is con-

ducted on a typical second-order discrete system M(z) with:

Az+ B

ME) = ieavD

(3-1)
As a result, systematic procedures to determine the parameters A, B, C and D are
developed so that the frequency response model M(jw) = M(2)|,_ jor can be readily
derived for the design specifications given in the time or complex 2- domains.
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§3.1 Frequency response models

3.1.1 General description of defining a frequency response model

Fig. 3-1 depicts the general relationships between design specifications in dif-
ferent domains, various types of frequency response models and several forms of data

presentation.

Though design specifications may be given in many different terms, they are

generally classified in three domains: (1) time domain specifications, e.g., the maxi-
mazimum peak value — steady state value

mum overshoot Mp, defined as the ratio, ;

steady state value
expressed in percent; and the time to the first peak, ¢,, at which the response of a system
to a step change reaches its first peak value; (2) complex 2-plane variables, including
the system damping ratio £, the undamped natural frequency wy, etc.; (3) frequency
domain specifications such as the phase margin PM and the gain margin GM obtained

from an open-loop response, or the resonant frequency w, and the resonance peak value

M, obtained from a closed-loop response.

Obviously, for frequency domain synthesis, the specifications in the first two
domains have to be converted into the equivalent frequency specifications. Such a

conversion will be considered in the next section.

In the third case, the frequency domain specifications may come from two sources.
One source is a set of dominant data such as the phase margin, gain margin and closed-
loop bandwidth, etc., which define the desired frequency response explicitly at few key
frequency points. The second source uses the frequency response of a previously designed
system having a desired dynamic performance. This is common in the problem of
discretizing an operating continuous-time control system, in which an equivalent digital
controller is required to replace an existing analogue controller. A previously designed
system, therefore, is often refered to as an existing system in the control literature,

though it may not exist physically.
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Choice of data presentation depends on the design method for which the model
is employed. For example, the dominant data matching method requires frequency
response data at only few (4 ~ 5) key points; while the optimization-based methods
(SIM or RSO) need data at a number (30 ~ 40) of selected points over an appropri-
ate frequency range to ensure matching accuracy. Furthermore, because of analytical
derivatives required in the complex-curve fitting methods for the calculation of the

matching error, the frequency response model has to be in transfer function form.

From Fig. 3-1, it can be observed that the frequency responses in transfer function
form can be converted to any forms for data presentation. On the other hand, those
specified as dominant data type have to be synthesized into a transfer function form
before they can be presented in other data forms. This task can be fulfilled by the

method proposed in section 3.2.

8.1.2 Limitations on using the frequency response of an extsting system as a model

In the problem such as discretizing an existing continuous-time control system, or
redesigning an existing digital control system for a new sampling period, it is desirable
to retain the original closed-loop frequency response because of its satisfactory dynamic
performance. Consequently using this frequency response as the model is logical and
convenient. However, some limitations should be borne in mind. The basic consideration
is that the effective frequency matching for a digital control system can be conducted
only over the primary frequency range wp, where w, = w,/2 (see section 2.1). Suppose
that the sampling period of a digital control system H(2) is adjusted from T; to T2 and
a new digital controller is required for a new system H,(z) with the similar frequency
response to that of Hy(2). If Hi(z) with Ty is used as the frequency response model,
ie, M(jw) = Hy(2)|,_,ur, it is impossible for Hy(jw) = H(2)|__ oty to match
M(jw) very closely because of the discrepancy in their primary frequency ranges. The
distortion in the high frequency band, especially when Ty < T2, may severely degrade
the dynamic performance of Ha(2). In particular, a continuous system can be considered
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as a special case in which the sampling period tends to zero and the primary frequency
range becomes infinite. Such distortion-producing effects will be carefully examined in

the simulation studies of section 4.3.

§3.2 Second-order z-transfer function as a frequency response model

8.2.1 Use of the discrete transfer function as the model

As pointed out by the preceding section, there are mainly two reasons for this
part of the discussion. Firstly, the design specifications for digital control systems
in the time and complex z-domain need to be converted into the frequency domain.
Secondly, in the frequency domain, the specifications assigned in dominant data form
have to be converted into a transfer function form, if required by design methods. Such
transfer function form is preferably the discrete transfer function to avoid the matching

distortion in the high-frequency band as described in section 3.1.2.

For a discrete system having a order higher than two, relations between the
specifications in the time, frequency and complex 2- domains can be very complicated.
In general, however, the dynamic characteristics of most high-order control systems can
be well approximated by that of appropriate second-order systems the analysis of which
is much simpler than that of the former. Therefore, the second-order discrete transfer
function is considered as the most appropriate vehicle to carry the desired performance

specifications as a frequency response model.

It is well known that, for continuous second-order systems, the relationships be-
tween specifications in the time, frequency and complex s- domains have been expressed
accurately in mathematical formulae [20, 21]. In a similar manner, some selected second-
order discrete systems in transfer function form are investigated by a number of authors
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Figure 32 Location of the zero Zy of h(z) in terms of the parameter a, h(z) = (—'}gﬁzt%
as well. Jury [22] in his pioneering book showed the relationships between a system fre-
quency response and its unit-step time response. But the second-order discrete system
that he used was derived from a continuous counterpart so that its zero was closely
bounded to the locations of poles. In another elegant representation introduced by Kuo
[1], the zero is arbitrarily assigned along the real axis by varying the parameter « as
defined graphically in Fig. 3-2, where « is positive if Z; > z* or negative otherwise.
Using this model, Kuo derived the unit-step time response in terms of complex z-plane
variables. Unfortunately he did not use this model consistently in his later frequency
domain analysis, and hence did not fill the gap between the specifications in the time
domain and those in the frequency domain. For the purpose of seeking a frequency
response model, there is also lack of tools to determine the parameters of a discrete

transfer function from required design specifications.

These deficiencies are overcome by a thorough investigation carried out on a
second-order discrete system having a pair of complex conjugate poles and one zero
that can be arbitrarily assigned from —oo to 1. Specifications and variables from all
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three domains are closely linked together. The results of analysis, including coefficients
of transfer function, are arranged in mathematical, graphical and tabular forms, which
grant a designer the flexibility to choose the better frequency response model in each

specific case.

3.2.2 Second-order z-transfer function model

The second-order discrete system with unity feedback, introduced by Kuo (1], is
adopted in this analysis. Its open-loop transfer function is g(2) and closed-loop transfer

function is h(z), ”
g(z
h(z) = 1+ g(2)
_ A(z e Zl)
~ (z-P)z-P) (3-1)
= A(z— 7)) ‘
o (z . e—fwnT+jon)(z — e—Equ—jwaT) )

where, A is a closed-loop gain; Z; is a real zero; P and P are a pair of complex conjugate
poles; ¢ is the system damping ratio; wy is the undamped natural frequency and w, is

the system oscillatory frequency (see Fig. 3-2).

Note that w, is related to w, by

Wo = wpV/1 — €2 (3-2)

Denote the real and imaginary part of P as R and I, respectively, so the poles may be
expressed as:

P=R+31, and P=R-jI

For short, rewrite (—AZ)) as B, (—2cosw,Te ¢“»T) as C, and (e~%*T) as D. Thus
Eq. (3-1) becomes:

A(Z - Zl)
(z — g*fwnT+J'on)(z — e“‘*EWnT—].WOT)
— Az — AZ1 (3 3 3)
22 — 2cosw,Te—€wnT z 4 g=2€wnT
Az+ B

224+Cz+ D’
3-7

h(z) =




As mentioned before, the zero Z; is determined by the parameter a. When o
varies from af,; to 90°, Z; will be set within the range (—o0, 1], where oy, is the lower

limit of variation and is derived by this author as:
a1 I
=t % (3-4)

The derivation of Eq. (3-4) is in Appendix B.

As far as a closed-loop system with certain poles and zeros is concerned, the
variation of gain A in Eq. (3-3) does not affect the system transient characteristics
but its steady-state response, e.g., the steady-state error e,, which is defined as the
difference between the system steady-state output signal and the steady-state input
signal. Because ¢,, is required normally to be as small as possible, the gain of h(z) to a
constant signal is assigned to unity. Thus from Eq. (3-1), the system open-loop transfer

function is hz)
g(2) = T=A(3)
Az+ B
224+ (C — A)z+ (D — B)’

(3-5)

with A is determined by:

1+C+ D
A= ——.
1-2,

8.2.8 Conversion of specifications between the time and complez z- domains

The investigation embarks with the study of the system time response y(t) to a
unit-step input signal. This is based on Kuo’s result 1] and the detailed derivations
are included in Appendix C. Assume that the maximum value of y(¢) occurs at its first
response peak. The peak time t, and the maximum overshoot M, are expressed in

terms of o (in rad  here), € and wy, respectively, as follows:

_ 1 1 ¢
v AT vie
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M, = y(t)]e=e, — 1
=% _[tg~! — =5 —atn]
=1/1— €2 |seca| eV1-¢ Vi-¢ ;

8-17)

Apparently from Eq. (3-7), the overshoot M, is only dependent upon a and
€. Eq. (3-6) shows that ¢, is inversely proportional to the system undamped natural
frequency wy,, and that the value of ¢, decreases if the zero Z; shifts towards the point

of (1, 70) in the z-plane and increases otherwise.

8.2.4 Frequency response of the open-loop system

The analysis in the frequency domain is covered in this and the next sections.
Again, all tedious derivations are left in Appendix D and only the important results are

presented here.

From Eq. (3-5), the open-loop frequency response g(jw) can be obtained as:

g(jW) . g(z)|z=ej"’T
Az+ B
22+ (C — A)z+ (D — B) lz=eivT (3-8)
B Ae“T + B
~ 9T 4 (C - A)et“T + (D — B)’

There are two commonly used specifications calculated from open-loop frequency
responses, i.e., the phase margin PM and the gain margin GM. In this thesis, the
definition of PM is

PM = ()|, — (~180), (3-9)

where, t4(w) is the phase angle of g(jw) and w, is the gain cross-over frequency at which

the magnitude of g(jw) equals unity, or 0 db.

In terms of coefficients A, B, C and D, PM and w, can be calculated respectively

from:

sinw.T(AD — BC — A — 2B cosw,T) } (3 10)
2B cos? w.T + (AD —2AB + BC + A)cosw.T + ul’

PM = 180+tg—1[
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We = %cos_l(—g:tl\/bz—ad ); (3-—11)
a

where,

a = 4(D — B),
b= (C— A)(D+1)+C,
d=1+C?+ D*-2AC —2DB - 2(D - B),

uw=BD+ AC — A2 — B2 — B.

It is reasonable to assume that the magnitude of g(jw) crosses the level of 0 db
only once as w varies from zero to w,/2. This implies that Eq. (3-11) has one and only
one solution. Therefore, the sign of the second term inside the parentheses of Eq. (3-11)

b 1
should be chosen in such a way that —1 < - + E b2 —ad <1.

The gain margin GM is usually defined in decibels as:
GM = —20log;y[7g(w)]w=w,), (3—12)

where, 74(w) is the magnitude of g(jw) and wy is the frequency at which ¢, is —180°.

In case of an open-loop stable system, The greater the GM is, the larger is the
stability margin of the closed-loop system. If the value of GM is negative, the closed-loop

system is unstable.

It should be emphasized that, unlike its continuous counterpart, the second-
order discrete system is not instability-free even when it is open-loop stable. In fact,
the closed-loop stability of a second-order discrete system, as proved by the author in
Appendix E, is affected by the open-loop gain, unless the open-loop z-transfer function
satisfies all the following conditions:

(1) there are two zeros, and
(2) none of zeros and poles is outside the unit circle in the 2z-plane, and
(3) there is at least one zero or pole inside the unit circle in the z-plane.

3-10



Only in the latter case, the system closed-loop stability is independent of the open-loop

gain and is guaranteed.

For the purpose of this thesis, the open-loop systems of interest are confined to
those having one zero lying in the range (—oo, 1 |, one pole inside the unit circle and
the other inside or on the unit circle. Thus from the proof in Appendix E and the

derivation in Appendix D, the following conclusions can be drawn:

(1) When the open-loop zero and poles are located as specified above, there
exists a threshhold for the open-loop gain at and over which the closed-loop system is

unstable.

(2) Consequently, for any such system, the gain margin GM has a finite valuet

which can be determined by (3) or (4) below.

(3) If |1-D—2,C| < 2|2, the plot of the phase angle $y(w) of g(jw) crosses

—180° at the frequency wy, 0 < wy < wW,/2,

Wy = 75 Co8 (T), (3-13)
GM = —20log;g Tg(w)|=u,
5ol [ A? + B? + 2AB cosw,T ]
B B10 acos? wgT + 2(C — A)(D — B+ 1) coswyT +d + A2+ B2 I
(3—14)

where, a and d are defined in Eq. (3-11);
(4) If |1—-D—Z2,C| > 2|Z,|, ¥4(w) will not equal —180° until w reaches w,/2,

Wy = =

T
GM = —20log;, 74(w)|,

— T
_WQ_T

A—-B ]

VAD-B)-2(C—-A)(D-B+1)+(C—- A2+ (D-B-1)?
(3 —15)

= -20 logm [

1 1t is well known that the gain margin for an open-loop stable continuous 2nd-order system is

infinite.
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8.2.5 Frequency response of the closed-loop system

Still another way of evaluating a system frequency characteristics is via its closed-
loop response h(jw). Specifications, which have been widely used in practice, are the
resonance peak value M, expressed in decibels, the resonant frequency w, at which M;
occurs, and the closed-loop bandwidth wy at which the magnitude of A(jw) equals 0.707,
or —3 db.

Refering to Appendix D, these quantities are related to system coefficients 4, B,

C, D and Z; as shown in the following equations:

M. = A2 + B2 4+ 2ABcosw,T . (3-16)
"=\ 4Dcos? w,T + 2C(1 + D) cosw,T + (D —1)2 + C¥’
1 7 A’+B?
wy = o cos - 5+ SIGN(4B).
\/(A2+‘Bz » C(+D)(A*+B?) C2+(D-1)? ]
2AB 4ABD 4D
(3—17)
1 _r11+2;
= 7 e [5 G~ SIGN(Z1).

?

1+ 22 Cl+D)1+2%) C?+(D-1)?
\/( 7 Z:D -]

1 _,[2AB-C-CD
Wb-:TCOS [ aD

+ 4LD\/(C+ CD - 24B) —4D(1 + C? + D? — 242 — 2B? - 2D) |.
(3 —18)
If the magnitude of A(jw) does not fall to or below the level of —3 db, Eq. (3-18)
has no solution. If it crosses the —3 db line once, the sign in front of the squared-root in
Eq. (3-18) should be taken such that the absolute value of expression in square braces
is<1.
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Eq. (3-17) reveals clearly that w, is only the function of the zero and pole positions
and is independent of the system gain. M, and w, are important specifications as they

directly reflect the system transient time response such as M, and t,, respectively.

8.2.6 Numerical studies on relationships of various spectfications for discrete systems

Equations from (3-6) to (3-18) give for discrete systems a set of mathematical
relations between the complex z-domain parameters £, w, and o, the time response
specifications M, and t,, and frequency response specifications PM, w., GM, wg, w;, wp
and M,. They are rather complicated even in such a simple second-order case. Instead
of using a cumbersome analytical approach, a set of numerical studies for analysis has

been carried out; their results are summarized in this section and in Appendix F.

Table A-1 in Appendix F lists a basic set of numerical data which form the

relationships between M,, ¢, wy, wy, M;, PM, GM as function of ¢, w,T and o.

To cover typical design specifications for electromechanical control systems, the
closed-loop damping ratio £ is chosen to lie in the range 0.4 to 0.9, a from —80° to
80° and w,T from 0.1 to 1.3. In consequence, the closed-loop poles are confined to
the shaded area shown in Fig. 3-3. Also given in the table are the parameters of the
corresponding discrete systems, including the positions of closed-loop poles and zeros
as well as polynomial coefficients A, B, C and D defined in Eq. (3-3). These provide
for the designer a z-transfer function for frequency response model after selecting the

system performance specifications.

As matter of convenience, normalized variables are used in the table. For ex-
ample, the peak time t, is expressed in terms of ¢,/T, which approximates the number
of samples needed for the system output to reach its first peak value. Moreover, all
frequency variables are presented in wT so that the primary frequency range 0 ~ w,/2

will be normalized to 0 ~ .

To help understand the relationships discussed so far, five diagrams are drawn
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Figure 3-3 Location of the closed-loop poles for the numerical studies. The shaded area is

determined by parameter ranges —80° < a < 80°,0.4 < £ <0.9, 0.1 <w,T <1.3.

which are based on the data in Table A-1. The first three are devoted to demonstrate
the relationships between the specifications in the time and frequency domains. Fig. 3-4
shows the maximum overshoot M, vs the phase margin PM. M, against the resonance
peak value M, is plotted in Fig. 3-5 (The curve represents the average value. The
deviation is relatively large when M,<0.6db). The peak time as a ratio t,/T vs the
normalized closed-loop bandwidth w,T is illustrated in Fig. 3-6. A few observations can
be drawn from these graphs. Firstly, to design a system at w,T=0.7 with M, < 30%,
the phase margin must be greater than 40° and the resonance peak value M, less than
3 db. Secondly, the hyperbolic relations between w,T and t,/T differ slightly from the
average curve t,w;~4.8 when a and £ vary over a wide range. The curves in Fig. 3-
6 help the designer reach a compromise between speed of response and the required

bandwidth wy.

Two further diagrams illustrate the time domain specifications as function of the
complex z-domain variables ¢, o and w,. The relationships shown are the peak time
t, vs £, @ and w, in Fig. 3-7, and the maximum overshoot M), vs a and ¢ in Fig. 3-8.
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It is interesting to note that for any fixed value of £, the normalized variable wyt, is a
linear function of the parameter a. Furthermore, the effect of the zero Z; on the system
transient response can be clearly observed by the fact that ¢, is reduced at the expense
of increasing M, as a tends to 90°, i.e., the Z; shifts closer to the point of (1, j0) in

the z-plane.

50. | Mp(%)

20.}
10.}

501

20}

1.0 . L L t L P M (degree)
20. 30. 40. 50. 60. 70.

Figure 3-4 Relationship between the maximum overshoot M, and the phase margin PM at w,T = 0.7
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Figure 35 Relationship between the maximum overshoot M, and the resonance peak value M,
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Figure 3-6 Relationship between the peak time ratio :1% and the normalized closed-loop bandwidth

wpT as a function of a and §
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8.2.7 Procedures to define a z-transfer function as a frequency response model

So far the dynamic characteristics of second-order discrete systems have been
extensively studied. The results of this investigation are used to establish a frequency
response model M(jw) from specified control criteria. The form of M(jw) based on a
discrete second-order transfer function M(2) is

M(]w) = M(z)|z=ej“T

A2+ B (3-19)
T 22 +Cz+D Y

Hence the specific task is to determine the coefficients A, B, C and D in accordance
with desired control specifications. Two cases considered here are:
case 1 — control criteria mainly specified in the complex 2-plane;

case 2 — control criteria mainly specified in the time domain.

The recommended procedures are explained with aid of two numerical examples in the

remainder of this section.

Case 1

Assume that the desired specifications are: w, = 0.84 rad/s, £ =0.7, T =05 s

and t;, ~ 5.0 s.

First consider only the specification given in the z-plane. From known w, and

¢, the oscillatory frequency w, can be calculated by Eq. (3-2):

Wo = WpV/1— €2 =0.6.

Then

woT = 0.3.

Once w,T and ¢ are known, the explicit positions of the closed-loop poles can be readily
found from Table A-1, i.e., P,P = 0.712 % j0.22. However, they do not characterize
the system performance completely as the zero has a strong influence on the system
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transient response. Table A-1 shows, for instance, that as « varies from —40° to +80°,
the ratio ¢,/T decreases from 10.2 to 3.2 and M, increases from 4.6% up to 159%.
Therefore, an additional specification is needed to determine the location of zero. In
this example, such a requirement is fulfilled by setting t, ~ 5.0 s. Notice that w,l,
equals 3.0, then « is found to be —40° from Fig. 3-7 (Fig. 3-8 will be useful if the
additional specification is the maximum overshoot M,). Now look up Table A-1 again,
the required M(2) with ¢ = 0.7, w,T = 0.3 and a = ~40° is

0.103z + 0.028

M(z) = :
(2) = 714245 1 0.555°

and M(jw) is
M(jw) = M(2)|,- 050
_0.103¢7%%“ +0.028
T elv — 1.424¢90-5¢ 4 0.555°

Case 2

Assume that the desired specifications are: ¢, ~ 5 s; M, ~ 5%; T = 1.0 s and

wp 5 0.9 rad/s.

Firstly, under the condition M, =~ 5%, a number of feasible solutions regarding
parameters o and & may be derived from Fig. 3-8. For further considerations, four sets
of @ and ¢ are taken as listed below:

gset I : £€=0.7, o=-60%
set II : €£€=0.7, o=-30%
set IIl: £€=08, oa=19%
set IV: £=0.9 o=45°.

Secondly, check up these parameters with the required w; by means of Fig. 3-6.
It is found that only when ¢ is 0.7 and a around —40°, wy is about 0.9. Hence the

parameters set III and IV can be discarded.

Next the values of w,t, corresponding to parameters of set I and set II are
determined from Fig. 3-7 and converted to w,T as values of t, and T' are given. This
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leads to two discrete transfer function M;(z) and My(z). M;(2) is defined by £ = 0.7,
a = —60° and w,T = 0.7, and My(2) by £ = 0.7, « = —30° and w,T = 0.6. Because both
of them satisfy all specified criteria, the final decision lies on some minor considerations.
Look up Table A-1 to compare the dynamic characteristics and pole-zero locations of
M;(z) and My(z). It can be observed that the zero of M;(2) at (—8.1, jO) is too far
away from the point of (1, 70). On the other hand, the zero of My(z) resides near the
origin. The direct impact of such a difference is the slower transient step response of
M, (2) comparing with that of M;(z), as demonstrated in Fig. 3-9. Therefore, finally

M;(z) is chosen as the desired 2-transfer function for the frequency response model

M(jw) :
My(z) = 0.361z +0.031
2= 22 20917z + 0.308’
M(]W) = Mz(z)lzzef“
_ 0.361e7 +0.031
T 2% — 0.917e7% + 0.308
1.25, y(KT)
- T T T T
E |
Mz(Z) | ‘ r
0.75 | SRR i | |
'| Il I
|| Mi(2) ‘ | Co
0.50 1 I |r ! | :I I sampling instants I
; | [
I I |
! [ : ] l
2 Y L T N |
. | IS
' : | I 1 | |
ool | R O A K9
0.0 3.0 6.0 9.0 12. 15.

Figure 39 Unit-step responses of M,(z) and M,(z2)
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CHAPTER 1V

DESIGN OF DIGITAL CONTROLLERS BY MEANS OF THE

FREQUENCY RESPONSE MATCHING METHODS

§4.1 Introduction

In Chapter II , five frequency response matching design methods have been dis-
cussed. They are the dominant data matching method (DDM), the complex-curve
fitting method (CCF), the iterative complex-curve fitting method (ICCF), the simplex
optimization-based design method (SIM) and the random searching optimization-based
design method (RSO). In order to evaluate their effectiveness and practical efficacy,
these methods are applied to compensations of various dynamic plants under different
conditions. The digital control systems thus designed are then assessed in terms of their

performances both in the frequency domain and in the time domain.

In Fig. 4-1 is the block diagram of a closed-loop digital control system to be syn-
thesized in this chapter. It consists of a continuous plant G(s), a zero-order hold G n(8)
and a digital controller with transfer function D*(s), or 2-transfer function D(z), where
the notation X*(s) defines the Laplace transform of z(kT), the sampled or impulse-
modulated continuous signal z(¢). The system has unity feedback and operates at
sampling period T. The problem is to design a controller transfer function D(z) in such
a way that the frequency and time responses of the closed-loop system will match those
of the desired model as closely as possible.
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Figure 4-1 Closed-loop digital control system with unity feedback

In addition to the various design studies and discussions in the following sections,
some basic information is presented in this section to define the design problem, e.g., the
dynamics of the plants, the design specifications, the desired frequency response models,
etc.. In particular, section 4.1.1 discusses certain assumptions and the conditions under

which the design studies are carried out.

Being sophisticated computer-aided design tools, all frequency response matching
design methods have been programmed and run on a VAX-11 /780 digital computer.
The associated analytical and simulation studies are conducted with the aid of the

same computer.

4.1.1 Objectives of the design studies

After having reviewed a number of frequency response matching design methods,
an assessment is required to establish the merits and deficiencies of each. In particular,
the following set of points may be of interest to a designer:

e To what type of plants can the methods be applied?

e How does the choice of sampling frequency affect the matching accuracy?

e What happens if the control system under design and the model have different
primary frequency ranges due to the different sampling frequencies?

e Are there strict requirements on the initial estimates for the optimization-based
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design methods?

In order to evaluate the design methods, a comprehensive investigation has been
carried out based on over thirty designs. These illustrative designs are organized into
three groups as shown in Table 4-1. Each group covers one particular aspect. The
purpose of the design studies of Group 1 is to assess the suitability of the design methods
for two different types of dynamic plants at various sampling frequencies ranging from
2 to 27 times the desired closed-loop bandwidth w. Note that in this group, specific
frequency response models are chosen for each sampling frequency so that the control
system being designed always has the same primary frequency range as that of the

corresponding model.

In Group 1, all design techniques discussed in Chapter II are evaluated ex-
cept for the random searching optimization-based design method. Because of its poor

convergency properties, the latter is included in a separate set of studies in Group 3.

The design studies of Group 2 consider in Section 4.3 how frequency matching
is affected if a control system under design is sampled at period T and the frequency
response model of the system is sampled at T, with T # Ty, where T,n denotes the
sampling period for the model used through out this chapter. A discrete model with
a fixed sampling period T;,=0.5 s is employed in five design studies in which sampling
periods vary from 0.1 to 2.0 seconds, i.e., some of the periods are shorter than Tr, and
some longer. In addition, a continuous transfer function is used as a frequency response
model for discrete controller designs at sampling frequencies of 4 and 16 times wg. This
is a common problem which is experienced when an equivalent digital controller is

required to replace a continuous unit.

The design method used in the studies of Group 2 is the ICCF method because
it is shown in Group 1 to yield results with higher matching accuracy in terms of
the matching performance index WIAE, which is the Weighted Integral Absolute-Error

criterion defined later in section 4.1.7.



Table 4-1 Objectives of The Design Studies

o ob Plant ' t Methods
roup jectives
) under Design = Tm  |under Study
0.5 0.5
I (sluggish DDM
To demonstrate the applications of ) 2.0 2.0
time response) 40 4.0 CCF
1 four design methods for two types of
ICCF
plant with various sampling frequencies. | 11 (oscillatory | 0.3 0.3 -
time response)| 0.5 0.5
0.1
. 1 0.5
To assess the effect of the discrepancy
2.0
0.5
between T and Ty, on the frequency res-
0.1
2 ponse matching and the dynamic charact- 11 ICCF
0.5
eristic of closed-loop systems.
0.5
1 o}
2.0
To evaluate the optimization-based
SIM
design methods with respect to their
3 I 0.5 0.5
convergency, speed of convergency and RSO
dependence on initial estimates.

t+ T-Sampling period of the closed-loop system under design.
Tm—-Sampling period of the model to be matched.
1 A continuous transfer function is used as a model in this subgroup where Ty, is assumed zeroin the

sense that its “sampling frequency” is infinitely fast.
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Finally, in the studies of Group 3, two optimization-based design methods,
namely SIM and RSO, are assessed with respect to their convergency and speed of
convergency. The evaluation is based on the design of a discrete controller for Plant
I at T=T,,=0.5 s. The optimization operations for the design start with two sets of

different initial values; one is close to the optimum and the other far from the optimum.

4.1.2 Dynamic characteristics of plants

Two third-order continuous dynamic plants have been employed in design studies.

The transfer function selected for Plant I is

(s+1)
(1.5 +1)(3.5s + 1)(5s + 1)

Gi(s) = (4-1)

It features an overdamped and sluggish step response which is shown in Fig. 4-2. This

response is typical of that of a chemical or thermal process.

Plant II is chosen to be underdamped representing the dynamic performance
of an electromechanical system. The following equation gives its transfer function and
Fig. 4-3 depicts its oscillatory response for a unit-step input signal.

100(s + 0.2)

G2(8) = G 2)(s £ 0.5+ j6)(s + 0.5 — 76)

(4-2)

Note that its frequency of oscillation is w,; = 6 rad/s.

The open-loop frequency responses of Plants I and II are drawn in Figs. 4-4
and 4-5, respectively. Since the two plants will be compensated in accordance with the
same control specifications, very distinct digital controllers can be expected in the light

of significant differences in the plant characteristics shown in these figures.

4.1.8 Design specifications

The specifications for the dynamic performance of the closed-loop control systems
incorporating Plant I and those of the systems incorporating Plant II are identical.
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Figure 4-2 Unit-step response of Plant 1 Figure 4-3 Unit-step response of Plant I1

They are assigned in terms of closed-loop time responses to a step input signal, as follows:
1. Peak time, t, < 6 s,
2. Settling time, t, < 10 s,
3. Maximum overshoot, M, < 10%,
4. Steady state error, e, =0 ;
where the settling time ¢, is the time for the response to approach within 5% of its final

value.

From the studies of Chapter III (see Fig. 3-6), for t, < 6 5, the —3 db bandwidth

of the desired closed-loop system, wy, is about 0.78 rad/s.

4.1.4 Selection of the sampling period

Shannon sampling theorem|[19)] states that, in order to recover an unknown band-
limited signal from its samples, one must sample at a frequency at least equal to twice
the highest frequency component in the signal. Accordingly, as far as the design of servo
control systems is concerned, the lower bound to the sampling frequency w, is twice the
required bandwidth wy. Also there are many other factors which need to be considered
in a practical design. Isermann|[14] gives a list of considerations as follows:
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Figure 4-5 Open-loop frequency response of Plant Il
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the frequency spectrum of the disturbances;

the dead time and sum of real time constants of a plant;

the computational load per control function;

the control hardware cost;

the measurement equipment.

Some of these considerations are conflicting. For instance, the control perfor-
mance deteriorates if the sampling frequency w, is too low relative to wy, while the
computational load and hardware cost increase rapidly if w, is too high. Hence a
selection of sampling period is basically a compromise among these requirements. Gen-
erally speaking, the factor of considerable interest to an engineer is the slowest possible
sampling frequency at which the resulting closed-loop system satisfies all performance

specifications .

In addition to the considerations pointed out by Isermann, Franklin and Powell
[19] show that, for an underdamped plant (like Plant II ), its oscillatory response may
have a strong influence on the system inter-sample behaviour. This is due to the fact
that a digital control system operates effectively in an open-loop mode during the period
between sampling instants, hence in this interval the system output may oscillate at the
plant damped oscillatory frequency w,. From this author’s experience, if w, < 3w,,
the magnitude of the oscillations can be significant and severe ripples on the system
output may occur. As an example, in section 4.2 the design of a controller for Plant
II at T = 0.5 g, ie., wy & 2w,2, demonstrates this phenomenon. Furthermore, it
should be remembered that the controller synthesis is based on G} G(2), the z-transfer
function of the plant with a ZOH, rather than the continuous plant G(s) itself. In
accordance with the Shannon sampling theorem, w, should be greater than twice the
resonant frequency of plant, which equals w,, in order to prevent the plant dynamic
characteristics from distortion due to the sample effect. In the case of Plant II , the
frequency of oscillation, wyz, is given in Eq. (4-2) as 6 rad/s; therefore, an appropriate
sampling frequency should be, at least, 3w,; = 18 rad/s, which is far greater than the
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closed-loop bandwidth wy, = 0.78 rad/s.

Based on the above discussion, a set of sampling periods has been selected for
design studies and is given in Table 4-2. The associated range of sampling frequencies
is wide; wp, the primary frequency range of the closed-loop system, varies about from 1

to 40 times the desired bandwidth wy.

Table 4-2 Sampling period T selected for the design studies

T wp (=w,/2) wp/wp W [Wo2 Plant under Study
0.1 31.42 40.3 10.47 I,1I
0.3 10.47 13.4 3.49 II
0.5 6.28 7.8 2.09 1,11
2.0 1.57 2.0 0.52 I
4.0 0.78 1.0 0.26 I
T is in seconds and w in rad/s.
Note that wy =2 0.78 and w,2 = 6. B

4.1.5 Frequency response models

It has been demonstrated by numerical examples in section 3.2.7 that the desired
second-order discrete frequency response model can readily be derived by the method
developed in Chapter III . By using this method, four second-order z-transfer functions
M ~ My, each corresponding to a given sampling period, are determined for illustrative
designs based on the specifications provided in section 4.1.3. These models are given
in Table 4-3 in the order of increasing sampling period, together with the performance
parameters of their time responses and the complex z-plane parameters. As explained in
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Table 4-3 Frequency response models and their time domain performance
parameters for comparison with the control specifications
Model | T;, | z-Transfer Function | t, M,(%) | € | ts a woT | €

0.0572+0.007
My |03 | QUT00T 46 | 46 (00 |30 |—40 | 0.2 |07

0.1032+0.028
M, |05 T o P 5.1 4.6 00 |33 | —-40 | 0.3 |0.7
0.5912+0.216 _
M; |20 ol 0218 5.6 4.7 0.0 | 3.6 40 | 11 |07
M, |40 —1:082-0.113 4.8 3.7 00 |35 | 40 | 1.1 |0.9

22—0.0942+0.011

T and ¢ are in seconds and w in rad/s.

Design specifications: t, < 6s; t, < 10s; M, < 10%; e, = 0.

Appendix C, the peak time t, and the maximum overshoot M, in Table 4-3 are derived

from the corresponding continuous time responses of these discrete transfer functions.

4.1.6 Order of the discrete transfer function of a digital controller

The various design methods make differing requirements on the order of the
controller transfer function. The complex-curve fitting methods, for instance, allow a
designer to start his design with a first-order controller. However, in the dominant data
matching method, the controller must, at least, be second-order because a minimum of

three points is needed to define a well-behaved complex-curve.

In general, the higher the order of the controller, the more accurate is the match-
ing of frequency responses. But this is achieved at the expense of the complexity of the
control function and longer computing time both in design and implementation. As a
compromise among these factors, third-order controllers are chosen for all design studies

in this chapter.

4.1.7 Simulation and assessment

Following the design of a controller, the performance of a closed-loop system,
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which incorporates the digital controller, is simulated on a VAX-11/780 digital com-
puter. Its closed-loop frequency and unit-step responses are calculated for evaluation
and comparison. In first part of this section, the formula for the simulation of frequency
responses and the methods used for comparison are given. In particular a quantitative
figure of merit for the matching accuracy, WIAE, is defined. In the second part, the
digital simulation of time responses is described, including the continuous-time output
of a closed-loop system and the discrete-time output of a digital controller. Their as-
sessment is based on the performance specifications given in section 4.1.3. Finally the

computational burden is pointed out as an important feature in the evaluation.

(a) Simulation and assessment of frequency responses

The discrete frequency response of closed-loop digital control system defined in

Fig. 4-1 is

) D(Z)GhG(z)

H = . 4-3
U%) = T D@)GrG() | s (4-3)
The frequency matching accuracies of different designs to the assigned model are com-

pared qualitatively through the Bode plots of H(jw) and M(jw) in the complex plane.

In addition to the direct observation of frequency response plots, a quantitative
measurement of the matching error is desirable to indicate the “ goodness ” of matching
performances of various design methods. The commonly-used criterion is the integral
absolute error which integrates the error between the frequency response of a closed-loop
system and that of a model over a relevant frequency band. The shortcoming of this
criterion lies on the fact that the integral over the linear frequency inherently neglects
the errors in the low frequency band, the response of which is usually as important as
that in the high frequency band. The problem is solved in this thesis by introducing
the logarithm frequency in the error integral so that the errors in the low frequency
band will be weighted more heavily and the errors in the high frequency band less. This
is equivalent to integrating the error between two magnitude curves in the Bode plot
except for that, in order to take phase-shift into account, the difference between the two
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magnitudes is replaced by the magnitude of the vector difference between two complex

functions.

Assume that ' is a weighted frequency given by:
w' = logyo w- (4—4)

Then WIAE, the weighted integral absolute error criterion, is defined by this author as:

WiAB = o [ B () - MW, (4-5)

]
Winat — Wy

w
LI

where, H (jw') and M(jw') are the weighted frequency response of a closed-loop system

and a model, and can be calculated from H(jw) and M(jw), respectively:
H(j“)’) - H(jw)|w=1ow'r (4 —6,)

M(jw') . M(j‘”)lw-_—mw" (4 —6)

The upper limit w},,, is derived from the frequency range wmq; over which the matching
of H(jw) to M(jw) is conducted. The lower limit is zero frequency which can not
be converted to a meaningful weighted frequency and therefore a more practical lower
frequency limit w;; is chosen for the integral. In the various design examples of this
chapter, there is no significant deviation of the frequency response matching when w <

10~* rad/s. Thus wy,. is assigned to 1074 and the corresponding wy, is —4.

The integral absolute error is divided by w},,, — w;, so that the matching errors

of designs with different sampling frequencies can be compared.

Ideally, the design of a digital controller is optimal if the WIAE of the closed-loop
system is minimum. However, some exceptions should be borne in mind. Firstly, the
design studies in this chapter are based on the discrete frequency response that does not
carry the information about the inter-sampling performance of the closed-loop system.
Secondly, when the design involves very low sampling frequencies, the high accuracy
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of matching may not guarantee the closed-loop stability though the model is stable.
Furthermore, the practical implementation of the resulting digital controller and all
aspects of the closed-loop performance need to be considered. It is therefore necessary

to check the continuous time responses as well.
(b) Simulation and assessment of time responses

The time responses at and between sampling instants are simulated by means of
the method proposed by Franklin and Powell [19]. According to their derivation, the
Laplace transform of the time response of the closed-loop digital control system defined

in Fig. 4-1 is
D*(s)

Y(s)=R'(s) 1 D*(s)GrG*(s)

. GA(5)G(s) . (4-7)

The following are the transforms for a unit-step input signal and a zero-order

hold, respectively:
1

R*(S) = m ’ (4 — 8)
1— e—Tu
Gi(s) = —= =« (4-9)
Substitution of Egs. (4-8) and (4-9) into Eq. (4-7) yields
_ D*(s) G(s)
YO = 1D G)eee) s (4-10)
The first term in Eq. (4-10) corresponds to a train of impulses, i.e.
D* (3) _ —Ts —2T's —nTs
1+D*(S)GhG*(8)—k0+kle + kae + -+ kqe + e
(4-11)

co

— Z k_e—iTa

= : .
1=0

The values of k;,i = 0,1,2,..., can be determined by a long division. Thus, Eq. (4-10)

may be rewritten as

G G

= Z(kie—iTU G_g‘ﬂ) ]
t=0

Y(s) = ko
(4-12)
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Let y4(t) be the inverse Laplace transform of G(s) /s, i.e.,
—1[ G(s
wt) =1 €97 (4-13)

Then y(t), the continuous unit-step response of the closed-loop system, can readily be

obtained by taking the inverse Laplace transform of ¥ (s) in Eq. (4-12), as follows:

y(t) = _I[Y(S)]
_ZL— [ . G(s) —zTc]
(8 -1
=0

=) kiyy(t —iT).
=0

The value of y(t) at any time instant ¢4, at or between sampling instants, is

n
y(ta) = Y _ kiyg(ta — iT) , (4 — 15)
1=0
where n is an integer that satisfies

n< < (nt1). (4 — 16)

The unit-step response y(t) is evaluated in accordance with the performance spec-
ifications in section 4.1.3. A good design should give a smooth time response between

sampling instants.

Consideration also has to be given to U(kT), the output signal of the digital
controller, because its performance is an important feature in assessing the practical

feasibility of the design.

From Fig. 4-1, the z-transfer function of U{kT) is

D(=z)
1+ D(2)G,G(z)
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Expanded in power series of z~! , U(z) can be expressed as

U(Z)=uo+u.lz_l+uzz_2+---+u,,z_”+-~-

[o o]
4—18
= Eukz_k i ( )
k=0

Taking the inverse z-transform of both sides of Eq. (4-18) yields

UKT) =) wb(t — kT) ; (4 — 19)
k=0
where,
_f1, ¥ t—kT=0;
5(t —kT) = { 0, otherwise. ’

(c) Computational burden

The last factor to be considered in evaluation of the various methods is the
computational burden. In addition to CPU time consumed in each design study, the

preliminary work involved should be taken into account as well.

§4.2 Design studies of Group 1 —

Comparison of the various design methods

In this section, the design studies of Group 1 are presented. The studies are based
on the design of a digital controller for plants I and II at sampling periods of 0.3, 0.5,
2.0 and 4.0 seconds recommended in Table 4-2. In order to minimize the influence of
the difference between T and T}, in these studies, specific frequency response models
from Table 4-3 are assigned for each sampling period so that T}, is the same as T in
each design. As a result, a comparison of various design methods is made and given at
the end of section.
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4.2.1 Destgns for Plant I

(a) Choice of the sampling frequency and the models

As described in section 4.1.2, Plant I is an overdamped system. Thus theoret-
ically the choice of sampling frequency is mainly the consideration of wj, the desired

closed-loop bandwidth.

Design studies start with a sampling period T = 0.5 s for which w, is about 16
times wp; model Ms(jw) is used as the ideal closed-loop frequency response model. The
next design is based on a sampling period T' = 2.0 s and on the model M3(jw). The
final study is for the sampling frequency w, = 1.57 rad/s (T = 4.0 8), which is just

twice wy, and is based on model My(jw).
(b) Choice of the dominant data for the DDM method

For the DDM method, the dominant data points are determined from the ideal
open-loop frequency response Mg (jw) which in turn, is derived from the closed-loop
frequency response model My (jw),

M;(jw)

Mgi(jw) = ﬁm )

k=1,2,3,4. (4 — 20)

Key frequency points w;,t = 1, 2, 3, 4, tabulated in Table 4-4, are selected as w; and w;
from the low frequency band (w; < 0.03w;), ws from the gain cross-over frequency and

wy from the high frequency band (0.9wp < w; < wp).
(c) Choice of the constraints and initial estimates for the SIM method

There are a few requirements on the initialization of the SIM method. The first
step is to set out additional constraints imposed on the gain and pole-zero locations
of a controller transfer function D(z), if necessary. In the case of Plant I , the wider
closed-loop bandwidth is required for a faster system transient response. This implies
that the digital controller under design possesses a frequency response with high gain in
the high frequency band near w,/2 and so likely yields oscillatory output signal. From
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Table 4-4 Dominant data point w; (rad/s) used in the design studies
based on the DDM method

Plant T (s) Wy wa w3 wg
0.5 0.002 0,0_2 0.6 2.6
I 2.0 0.002 0.02 0.3 1.3
4.0 0.0005 0.005 0.275 0.7
II 0.3 0.00033 0.0033 0.666 5.33
0.5 0.002 0.02 0.6 2.6

the time domain analysis of discrete systems [1], such an oscillation can be avoided
if the closed-loop poles are remote to the point (—1,50) in the z-plane. Therefore,
constraints on the poles and zeros of D(z) are needed to position the closed-loop poles
away from the (—1,50) point. Unfortunately, no simple formula is available to choose
these constraints. On the basis of the root-locus analysis, the use of “cut and try”

procedures may be found helpful and rely on the designer’s experience.

The choice of the constraints in this section is explained with one of the de-
sign studies, namely the design for Plant I with T' = 2.0 s. The poles and zeros of
D(2)G1,G(2) are drawn in Fig. 4-6, where the plant zero zp; is very close to (—1,70).
Without additional constraints, the optimization process places a pole slightly to the
left of 2,1 to cancel its influence as shown in Fig. 4-6(a). Consequently on the root
locus from this pole to the infinite zero will be a closed-loop pole that is very close to
(—1,70) and causes the oscillation. On the other hand, if two poles of D(z), remote
from (—1,70), are located between 2,; and another zero, then the shape of the root
locus is changed and a pair of desired complex closed-loop poles can be obtained as
shown in Fig. 4-6(b), which is done by the simplex optimization with constraints on the

real pole-zero locations, —0.5 < p; < 1.0 and 0 < 2; < 1.0, i=1, 2, 3.

Constraints for designs at other sampling periods are determined following the
same philosophy. They are all included in Table 4-5.
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Figure 4-6 Root loci of the control systems designed by the SIM method with and without constraints

(Plant I, T=2.0s )

Table 4-5 Constraints on the gain and pole-zero locations of D(z) in the

designs for Plant I based on the SIM method

T(s) | Pole p; Zero z; Gain zg
0.5 —0.7<p; <10 —04<2z <10 0.0 < 7o

2.0 —-05<p; <10 00<2 <10 0.0 < zo

4.0 —08<p; <10 —-04<2, <10 0.0 < 79 < 4.0

The second task in the initialization of SIM is to give initial estimates for optimal

poles and zeros of D(2). To assess the convergency of the simplex optimization algo-

rithm, all design studies start with a set of arbitrarily-assigned initial values, in which

all 3 poles and 3 zeros of D(z) are located at the same point (0.5,70) in the z-plane.

The initial gain zq is 10 for T = 0.5 s and 2.0 s. For T = 4.0 s, 20 = 3 is chosen to

satisfy the constraints employed.
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(d) Results

Table 4-6 gives the coefficients of the controller transfer functions determined
by the various frequency matching design methods (Table 4-6 also includes the design
results for Plant II obtained from the following section 4.2.2.). The performance of
the resulting closed-loop systems is then assessed by frequency and unit-step response
simulation studies. The results of these studies are presented in Fig. 4-7 and 4-8. The

values of the performance index WIAE for the various designs are compared in Fig. 4-9.

For the DDM, CCF and ICCF methods, the results reveal that the error in the
frequency response matching decreases when the sampling frequency w, is reduced. In
fact, for the designs based on DDM, CCF and ICCF methods with T' = 2.0 and 4.0 s,
all frequency response curves match the model response very closely. Consequently
the ICCF gives the same result as the CCF does. As predicted by these excellent
frequency response matching performances, the unit-step time responses of the designs
based on the DDM, CCF and ICCF methods match those of the discrete models at
sampling instants as if they were just direct copies. However, ripples on y(t) between
those sampling instants become increasingly large as w, decreases, until eventually the
designs become unacceptable. These ripples are attributed to the oscillation of control

signal U(kT) at the input of plant (via a ZOH) as shown in Fig. 4-8.

Because of the constraints imposed on the pole-zero locations of D(z), the designs
based on the SIM method for T'=2.0 and 4.0 s do not give close matching to the ideal
frequency response. But the oscillation of the controller output is effectively minimized.

As a result, the magnitude of ripples on y(t) is reduced significantly.

In terms of the time response specification, all designs at T = 0.5 s are good.
At T=2.0 s, only the design based on SIM meets all requirements of the specification
except for peak time t, being 1.5 s longer than the specified value 6 s. At T=4.0 s,
none of the designs completely satisfy the specifications, though the design based on
SIM gives a considerably better performance than the others do.
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Table 4-6 Coeflicients of the controiler transfer functions in the design

studies of Group 1

Plant | T |Design D(z) = x‘;;:“;f:j:;:;i’;:’

(8) Method | =9 z D) T3 Yi Jp) Y3
DDM [18.9879 |—40.2125 [25.7410 | —4.3852 (—1.3251 | 0.1248 | 0.2003
0.5| CCF |22.2743 |—33.5546 | 6.1884 5.4462 |—0.4498 |-0.9733 | 0.4231
ICCF [22.2743 |—33.5546 | 6.1884 5.4462 |—0.4498 |—0.9733 | 0.4231
SIM [20.2325 |—35.0593 |14.0921 | 0.9635 |—0.7748 |—0.5576 | 0.3324
DDM | 9.0752 | —6.9073 |—2.2502 | 1.9217 | 0.2163 | —0.9252 |-0.2911
I [2.0| CCF |9.0565 | —7.2672 |—-1.8042 | 1.8340 | 0.1651 |—0.9113 |—-0.2538
ICCF | 9.0565 | —7.2672 |—1.8042 | 1.8340 | 0.1651 |—0.9113 —0.2538
SIM | 8.8567 (—10.2338 | 2.7490 0.0 —0.2185 | —0.6408 |—0.1407
DDM | 4.8825 | —4.0124 | 0.9039 | —0.0394 |-0.3382 |—0.6667 | 0.0049
40| CCF | 4.8822 | —3.9794 | 0.8772 | —0.0338 |—0.3315 |—0.6689 | 0.0004
ICCF | 4.8822 | —3.9794 | 0.8772 | —0.0338 |—0.3315 |—0.6689 | 0.0004
SIM 4.0 —2.6288 | 0.4009 | —0.0141 |—0.2020 | —0.6388 |—0.1592
DDM | 0.0187 | —0.0092 | 0.0092 | —0.0084 |—2.6874| 2.3896 |—0.7022
0.3| CCF |0.0222 | 0.0140 | 0.0187 | 0.0043 |—1.1675|—0.6393 | 0.8068
ICCF | 0.0176 | —0.0065 | 0.0104 | —0.0078 |—2.5827 | 2.1848 [—0.6021
II SIM |0.0165| 0.0013 |—0.0003 [2.8 x 10~° |—2.4760 | 1.9772 |—0.5012
DDM | 0.0319 | 0.0218 |—0.0054 | —0.0027 [—2.4333 | 1.9120 |—0.4787
0.5| CCF |0.0318| 0.0212 (—0.0063 | —0.0036 |—2.4536 | 1.9479 |—0.4943
ICCF |(0.0317| 0.0206 |—0.0070 | —0.0043 |—2.4839 | 2.0088 [—0.5249
SIM |0.0312| 0.0263 | 0.0011 | —0.0007 |-2.2702 | 1.5969 (—0.3267

4-20




12-v

10. _ |H| (db)

5.0, |H| (db) 5.0 , |H| (db)
DDM
a0 CCF
0.0 / ICCF
Model Model DDM
oCF ICCF
-18. S -50bL 0.0
SIM
-40. | -15 SIM -5.01
-65. A .25, i i s , W -10. 4 0.78, , A
0.0} ol 0.01 0.1 1.0 1.57 10, 0.01 0.1 1.0 10.
40. . LH (degree) o2 H (degree) 40 _ ¢ H (degree)
0.0| 0.0
70| -0 DDM
Nodel
-180. - 180
-290. R i faw -290. . _— ol - 2% i 0.78, , e
0.01 0.1 1.0 6.28" 10. 0.01 0.1 1.0 1.57 10. 0.01 0.1 1.0 10
() T=054 (b) T =20, (c) T=404
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Figure 4-9 Values of WIAE of the closed-loop systems in the design studies of Group 1 for Plant I

4.2.2 Designs for Plant II

(a) Choice of the sampling frequency and the model

Plant II exhibits an underdamped response, the frequency of oscillations being
w,=6 rad/s; this is a value well above the closed-loop bandwidth wp = 0.78 rad/s. Thus
w, Teplaces wy, as the dominant factor determining the sampling period T. According
to the conditions outlined in section 4.1.4 and Table 4-2(p.4-9), T=0.3 s (w,=21 rad/s)
is the longest sampling period from the appropriate choices because the corresponding
w, is merely 3.5 times w, (but 28 times wp). However, for the purpose of comparison,
controller designs are carried out for T' = 0.5 s (w, = 2w,) as well. The closed-loop
frequency response models used in this part studies of Group 1 are therefore restricted

to M;(jw) for T = 0.3 s, and My(jw) for T =0.5 s, as defined in Table 4-3(p.4-10).
(b) Choice of the dominant data for the DDM method

The key frequency points are selected from the open-loop response Mgi(jw) of
Eq. (4-17) to provide the dominant data for DDM design; they are summarized in Table
4-4(p.4-16).
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(c) Consideration of the constraints and the initial estimates for the SIM method

Fig. 4-10 shows the magnitudes of Mp,;(jw), the open-loop frequency response
model, and G,G(jw) for T = 0.3 s, as well as that of desired controller frequency
response D(jw), which is derived from

_ Mg (jw)

Digw) = GrG(jw)

(4-21)

From these curves, it is clear that within the frequency band 0.1w, < w < w,/2, the gain
of the controller is below —20 db, and so an overdamped control signal can be expected.
For the designs based on the SIM method, therefore, no additional constraints are
required on the gain and pole-zero locations of D(z). Initial estimates for these poles
and zeros are identical with those arbitrarily-assigned to the designs for Plant I, i.e.,

all at the point (0.5,70) in the z-plane. The initial value of gain z, is set to 0.02.

60. - Magnitude(dd)

|D(jw))
1GWG(jw)|

|Mq:(jw)l

0.0}

|GG (jw)|
- 30 |[Mgi{yw)|
— 60. L i “’:7/2 4 U(rﬂd/‘)
0.01 0.1 1.0 10. 100.

Figure 4-10 Magnitude of frequency responses of Plant II , the model MQI and the desired digital

controller D(z) with T=0.3s



(d) Results

Once the preparatory work is done, the coefficients of the discrete controller
transfer function (see Table 4-6, p.4-20) are readily obtained by running the appro-
priate computer-aided design programs. The frequency and unit-step time response
simulations are presented in Fig. 4-11 and 4-12, respectively. The results based on the
ICCF method at T=0.3 s and 0.5 s are from the second iteration. Fig. 4-13 compares

the values of WIAE of various designs.

For the DDM, ICCF and SIM methods, it can be seen from Fig. 4-11(a) that,
at T=0.3 s, the closed-loop frequency responses of designs agree closely with the model
within the frequency band w < 2.0 rad/s. From w=2.0 to w=w,=6.28, the closed-
loop responses diverge from the model in different degrees. However, because their
magnitudes in this band are lower than —20 db, the divergences have no significant
impact on the corresponding time responses as shown in Fig. 4-12(a). Moreover, as
expected, output signals of the resulting controllers are overdamped and follow an almost

identical trajectory.

On the other hand, the CCF method yields a closed-loop frequency response with
a 2db resonant peak at w = 0.4 rad/s (~ 0.02w,). Its step response correspondingly
presents an excessive overshoot of 18% and a retarded settling time of 12 seconds.
The poor performance of CCF at T=0.3 s is due to the error-producing effect of the
weighting factor | Pg(jw)|? contained in the objective function E (see section 2.3.3). The
weighting factor by which E is multiplied becomes extremely small when w < 0.03w,. A
large matching error is thus introduced in as a resonant peak appears in this frequency
band shown in Fig. 4-11(a). By means of the ICCF method, the distortion due to
the weighting factor is compensated and the matching error is reduced to nearly the

minimum after just one iteration.

At T=0.5 s, each design method works well as all closed-loop frequency responses
closely match that of the model in Fig. 4-11(b). Occurrence of ripples on y(¢) in Fig. 4-
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Figure 4-13 Values of WIAE of the closed-loop systems in the design studies of Group 1 for Plant II

12(b) for all designs results from a slow sampling frequency relative to w, (wy & 2w,).

This verifies the analysis made in section 4.1.4.

It is important to note that, with 7=0.5s, the ripples on y(t) of Plant II in
Fig. 4-12(b) look like those on y(t) of Plant I in Fig. 4-8(a) but come for different
reasons. The former is due to the oscillatory nature of Plant II and the latter the

oscillatory nature of control signals.

4.2.8 Discussions of the simulation results

On the basis of the results from 20 various design studies, this section will discuss
some important factors in the application of the frequency response matching design
methods. Those of interest include the sampling frequency w,, the dynamic character-

istic of plant, the feasibility of resulting controllers and the computational burden.

It must be understood that the results are obtained from studies only of the
two types of plant specified in section 4.1.2. Thus their validity may be restricted to

application to similar types of plant.
(a) Influence of the sampling frequency w,

A set of sampling frequencies from 2 to 27 times the closed-loop bandwidth wp
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has been studied. It is obvious from the comparison of WIAE values in Fig. 4-9 and 4-13
that the matching error of a closed-loop frequency response to a model decreases as w,
becomes lower, provided no constraints are imposed on controller parameters. This is
mainly because the frequency response models tend to be flatter as w, decreases. In fact
in the time domain, a response resulting from a lower w, needs to match fewer specified
points than that from a higher w, does within a certain time interval. However, such
success in frequency matching with a low sampling frequency is achieved at the risk
of deterioration of time responses. Ripples on the time response are generally larger
for wider sampling intervals as shown in Fig. 4-8 and 4-12, though the responses at

sampling instants are accurately matched to the models.

The discrepancy between the frequency and time response matching is a major
disadvantage of the technique in which a dummy discrete plant is used instead of the
continuous one. An alternative is therefore suggested in Chapter V on the basis of the

hybrid frequency response analysis.

(b) Influence of the dynamic characteristic of plants

The comparison of Fig. 4-9 with Fig. 4-13 reveals that the dynamic characteristics
of the two types of plants used in the assessment of design methods do not affect the
accuracy of frequency response matching significantly. This results from the ability
of the mathematical algorithms in these methods to derive various types of controller
transfer functions according to given specifications and plants. However, the dynamic
characteristic of a plant does have a strong influence on the quality of time response of
both closed-loop system and digital controller. Though the closed-loop system may have
a satisfactory frequency response obtained from appropriate pole-zero compensations,
the distribution of these poles and zeros between the plant and controller can yield
unsatisfatory time responses. For instance, when designing a digital controller for an
overdamped plant, attention should be paid to the output signal of a controller. On the
other hand, in the design for an underdamped plant, the frequency of plant oscillation
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w, may require a sampling frequency w, much higher than that based on the closed-loop
bandwidth. Otherwise the ripples on the system output may become unavoidable and

intolerable.

(c) constraints on the controller parameters

In the previous frequency matching design methods such as DDM and CCPF, the
only objective in the design process is to minimize the frequency matching error be-
tween the model and closed-loop system. No constraints are imposed on the parameters
of resulting controllers. This simplifies the synthesis, but the results may be unsatis-
factory for practical applications. A control engineer may have to redesign a resulting
control function because of either an excessively high signal amplitude or an oscillatory
response at the controller output. Fig. 4-7(a) and Fig. 4-8(a) furnish a convincing ex-
ample in which the frequency response of a closed-loop system, which incorporates a
digital controller designed by the ICCF method, accurately match the model response.
However the large magnitude and oscillatory nature of U(KT) are usually found quite
unsatisfactory. This example is not exceptional as similar performances can be observed
in case of T=2.0 and 4.0 s for the designs by the DDM, CCF and ICCF methods. It can
be concluded, therefore, that the design methods only using frequency response match-
ing criteria are unsuitable if they result in controllers with large amplitude oscillatory

responses. The controller characteristic should also be considered in the design process.

The contribution of this author is the development of a new design method SIM
for overcoming the above deficiencies. SIM enables the designer to confine the gain, poles
and zeros of the controller, and indirectly the closed-loop poles and zeros, into some
appropriate region in the complex z-plane so that a trade off between the accuracy of
frequency matching and the characteristic of a required control signal can be achieved.
The designs by SIM shown in Fig. 4-7 and 4-8 successfully demonstrate this unique

advantage.
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(d) Computational burden

The CPU time (for VAX-11/780) consumed in the design studies is used to
estimate the computational burden. For the various design methods, Table 4-7 lists
the CPU time taken in a set of design studies for a digital controller for Plant I with
T=0.5 second. These values, however, can only serve as rough estimation because the
computational burden of the CCF, ICCF and SIM methods depends on the problem
under study in various degrees. For example, in the CCF and ICCF method the time

required by numerical integrations is highly dependent of the amplitude of integrands.

In general, the DDM method needs the minimal computation as the parameters
of the linear equations (see Eq. (2-16)) to be solved can be readily determined. The
CCF method with integral operations consumes tens of CPU seconds and is comparable
with the SIM method that involves iterative calculations. A heavy burden is imposed

by the ICCF method which may take over one hundred CPU seconds.

Except for the SIM method, all frequency matching design methods are thor-
oughly computerized, and need the minimal preparatory work. When applied to an
overdamped plant, the SIM method employs some constraints that may require addi-

tional analytical work.

Table 4-7 CPU time consumption of the various design methods in the

design studies for Plant I with T = 0.5 s of Group 1

Design Method Number of Iterations CPU Time(s)
DDM = 03~0.4
CCF — 22
ICCF 2 97
ICCF 3 | 150
SIM 300 ~ 1000 10 ~ 30
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4.2.4 Comparison of the design methods

A comparison is made based on the performances of the DDM, CCF, ICCF and
SIM methods in the design studies of Group 1. Table 4-8 summarizes the results in
a qualitative manner. Since the examples are chosen to represent some typical appli-
cations, the author hopes that the table would provide a useful guideline in practice,
though the types of plants and the performance specifications from which the results

are derived should be borne in mind when refering to a particular case.

4.2.5 Conclustons

In this section, a comparative study has been presented. Four frequency matching
design methods were assessed by means of the design of a digital controller for two types
of plants with the sampling frequencies chosen from 2 to 27 times w;. Some important
factors regarding the implementation of the methods were discussed. The result of
comparison was given in a tabular form that provides a guideline for the application of

these methods.

The frequency response matching design methods can be applied to different
types of plants, e.g., an overdamped or underdamped plant. The decrease of sampling
frequency may reduce the frequency matching error but increase the ripples between
sampling instants. The simplicity and the light computation load of the DDM method
distinguish it from the others. The new ICCF method proves its superiority over the
CCF method by improving the matching accuracy at high sampling frequencies. An-
other new method SIM can be employed for designs at low sampling frequencies at

which the results of the other methods fail to meet the performance specifications.
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Table 4-8 Comparison of the frequency matching design methods

Frequency Response Matching Design Methods

if w, > 25w

Feature
DDM CCF ICCF SIM
high but high but
Matching Accuracy high dependent high dependent
on Ws on constraints
L%
Lower Limit on the
Sampling Frequency ~ 15 2 15 ~ 15 ~ 4
(ws/ws)

Capability to Impose pole/zero
Constraints on none none none locations &
Controllers value of gain

Type of Plantst underdamped underdamped underdamped overdamped
additional analysis
Initialization simple simple simple needed if const~
raints are required
Computational ‘
light medium heavy medium
Burden
not suitable
Comments

$These are plants to which the method can be MOST suitably applied.

* with the design specifications being satisfied.
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§4.3 Design studies of Group 2 — Effect of the
discrepancy between the primary frequency range of the model

and that of the closed-loop system on the frequency matching

The primary frequency range w, of a discrete system, as defined in section 2.1, is
the frequency band from 0 to w,/2, one half of the sampling frequency. The term primary
refers to the fact that any part of the frequency response of a discrete system can be
constructed from the frequency response for the primary range because the response for
w,/2 € w < w, in the complex plane is the mirror image of that for 0 < w < w, /2 about

the real axis, and the response repeats itself every nw, < w < (n+1)ws,n =0,1,2,... [1].

It has been pointed out in section 3.1 that one way to define a frequency response
model is to use the frequency response of a previously designed closed-loop system which
possesses the desired dynamic performance. Such a system may be equipped with a
discrete or continuous controller. The most common example is converting an existing

analogue controller into an equivalent digital controller.

The case of the sampling period of an existing discrete system, represented by
T.., being the same as that of the system under design, represented by T, has been
discussed in section 4.2. If, however, T' # T}, then there is a discrepancy between the
primary frequency range of the existing system, i.e., the frequency response model, and
that of the system under design. In particular, this is always true when an existing
controller is analogue because its primary frequency range is infinite in the sense that

its “sampling frequency” is infinitely fast.

Fig. 4-14 shows the magnitude of frequency responses of three arbitrarily-selected
discrete systems I , II and III , with different sampling periods Ty < T2 < Tj; the
corresponding primary frequency ranges are wp1 > wp2 > Wp3, respectively, where wy; =
Wei/2 = m/T;. Suppose that system II with T = 0.5 s is the model for the closed-
loop system. Digital controllers are to be designed for the systems I and III with
T, = 0.1 s and T3 = 2.0 s respectively so that their closed-loop frequency responses
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Figure 4-14 Magnitudes of the frequency responses of arbitrarily-selected discrete systems with

different primary frequency ranges due to the selection of different sampling periods

will match that of system II . It is evident that system III can only match a part of
the frequency response of the model; for system I , the section of primary frequency
response from wyz to wp is not defined by the model. In other words, no matter
how sophisticated the digital controller is, there must be some degree of distortion in
matching. Thus the design studies of Group 2 is devoted to the investigation of the
effect of the above-mentioned distortion on the dynamic characteristics of closed-loop

systems under design.

In the following section 4.3.1, Plant I is compensated at different sampling
periods of 0.1,0.5 and 2.0 s to match the frequency response given by the model M;
with T, = 0.5 s (see Table 4-3, p. 4-10). Section 4.3.2 deals with the compensation
of Plant II , the designs of which are also based on M, with T}, = 0.5 s; the sampling
periods tested are T = 0.1 and 0.5 s which, as discussed in section 4.1.4, are determined
by w,, the frequency of oscillation of the open-loop plant. The use of a continuous system
frequency response as a model for designing a discrete system is treated in section 4.3.3,

followed by discussions and conclusions drawn from the results of these design studies.

Because the purpose of these studies is to assess the effect of differences in the
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primary frequency ranges upon the matching accuracy and system performances, only
the ICCF method is used in the studies for its relatively high accuracy, and its consistent
result without intervention of other factors such as the selection of key points in the

DDM method and the initial conditions in the SIM method.

4.8.1 Design studies based on Plant I

Three digital controllers are synthesized for Plant I at three sampling periods
so that the frequency responses of the closed-loop systems match the desired frequency
response derived from model M, with T, = 0.5 s. These sampling periods are sum-

marized in Table 4-9, where wpy, is defined as wym = 7/Ty,. The ratio o, defined as

T
o= w_“’g_ = ?m, decreases from 5 to 0.25 when the sampling period increases from 0.1
pm
to 2.0 s.

Table 4-9 Sampling period T selected for the design studies of Group 2

T T Wp Wpm o
0.1 0.5 31.4 6.28 5.0
0.5 0.5 6.28 6.28 1.0
2.0 0.5 1.57 6.28 0.25

T is in seconds and w in rad/s.

The design studies, based on the ICCF method, yield the values for the coef-
ficients of the discrete transfer function of the digital controller given in Table 4-10.
In Fig. 4-15(a), the frequency responses of resulting closed-loop systems are shown,
together with that of the model. The unit-step time response y(t) and controller out-
put U(KT) are drawn in Fig. 4-15(b). The performance index of frequency matching,
WIAE, is shown in Fig. 4-16.

From the simulation results, it is clear that the closest matching is achieved with
T = 0.5 s and o = 1.0, that is, when the model and the system under design have
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Table 4-10 Coeflicients of the controller transfer functions in the design

studies of Group 2

Plant | T [Model D(z) = B tugtnsin
(s) Zo z1 z2 z3 Y1 Y2 Y3
0.1 15.2127 |—45.0907 | 44.5527 |—14.6747 |—2.8725 | 2.7454 |—0.8729
I |05 22.2743 |—33.5546 | 6.1884 5.4462 |—0.4498 |—0.9733 | 0.4231

2.0| M,* (25.5931 | 16.6836 |—51.4077 | 19.1605 | 3.8819 |—1.3233 |-3.5586

I |01 0.0060 | —0.0134 | 0.0117 | —0.0037 |—2.8379 | 2.6786 |—0.8407

0.5 0.0317 | 0.0206 | —0.0070 | —0.0043 |—2.4839 | 2.0088 |—0.5249

I |0.5| M.t |25.8380 |—34.1643 | —1.0566 | 9.7831 |—0.2980 |—0.9724 | 0.2704

2.0 31.8623 | 21.3322 |—66.7114 | 24.9364 | 4.3297 |—1.1729 |—4.1568

* My—discrete transfer function with T,,, = 0.5s.

t M_—continuous transfer function.

the identical primary frequency range. With o = 5.0 (T' = 0.1 s), the matching error
becomes larger but is still acceptable. Note that the undefined section of the frequency
response from wp, = 6.28 to w, = 31.4 has the magnitude well below —30 db and
thus does not affect the system dynamic performance significantly. On the other hand,
when 0 = 0.25 (T = 2.0 s), the closed-loop frequency response H(jw) matches the
ideal frequency response Mp(jw) very closely from 0 to 0.85w, & 1.3; only within the
range 0.85w,3 < w < wp = 1.57, H(jw) slightly diverges from Ms(jw), as is shown in
Fig. 4-15(a). Unfortunately, it is this narrow frequency band in which the frequency
response proves critical to the system performance; in fact, the design at T = 2.0 s

results in an unstable system.

4.8.2 Design studies based on Plant II

The same discrete frequency response model, My(jw) with T}, = 0.5 s, is adopted
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(w inrad/) controller output U(KT)

Figure 4-15 Frequency and time responses of the closed-loop systems in the design studies of Group 2

for Plant I designed by the ICCF method (Note that U(KT) is a series of pulse signals

connecting lines between which are drawn only for purposes of observation.)
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Figure 4-16 Values of WIAE of the closed-loop systems in the design studies of Group 2 for Plant I ,

designed by the ICCF method

for compensation of Plant II . Two sampling periods used in the studies are T = 0.1

and 0.5 s with 0 = 0.5 and 1.0, respectively.

Again by using the ICCF method, two discrete transfer functions are obtained for
the digital controller and are shown in Table 4-10. The frequency and time responses of
the closed-loop systems in which they are incorporated are drawn in Fig. 4-17. Fig. 4-18

shows the values of matching performance index WIAE of these designs.

As the primary frequency ranges of the systems under design are either larger
than or equal to that of the model, the matching performances in both domains are
excellent. The only exception is ripples that exist in the time response of the design

with T = 0.5 s for the reason discussed in section 4.1.4.

4.8.8 Design studies based on matching a continuous frequency response for Plant I

A continuous frequency response in transfer function form M,(s) is used as a
model for designs based on the frequency response matching method. The purpose
for this choice is to show how the inevitable difference between the primary frequency
range of the closed-loop system under design and that of the continuous model affects

the matching performance.

4-39



5.0 I_|H| (db) 1.25 Fy(t)

T=05¢
(with ripples)
1.0
-20.1
0.75|
0.5
—45.]
0.25
ke 70. A 6'281 A I 0.0
0.1 1.0 10. 3814 100 0.0
w(rad/s)
30,0 £H (degree) 5.0, UKT)
0.0}

4.0}

— 180,

- 270,
0.1 . . 100.

w(rad/s)

(a) Frequency response H(jw) {b) Unit-step response y(t) and
controller output U(KT)
Figure 4-17 Frequency and time responses of the closed-loop systems in the design studies of Group 2
for Plant II , designed by the ICCF method (Note that U(KT) is a series of pulse signals

connecting lines between which are drawn only for purposes of observation. )
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Figure 4-18 Values of WIAE of the closed-loop systems in the design studies of Group 2 for Plant II ,

designed by the ICCF method

Assume for purposes of comparison that a closed-loop continuous model M.(s)
has the same bandwidth (wy = 0.78 rad/s) as that specified for the discrete model
M;(jw), and has a similar unit-step time response to that for the model M,(z) (with
T, = 0.5 s). Fig. 4-19 shows the similarity of unit-step responses of both discrete
and continuous models M,(z) and M,(s) at sampling instants. The open-loop transfer

function of M,(s) is

1505% + 21652 + 73.02s + 7.02

M, e . 4 —22
Qc(s) 26.2555 + 216.6255% 4- 547.655% + 444.0755% + 130.1s2 + 12.3s ( )
Thus the closed-loop continuous frequency response of the model is
‘ Mqc(s)
M.(jw) = Mc(8)smju = Qc (4 —23)

1+ MQC(S) o=juw

Based on the continuous model M, (jw), design studies for Plant I are carried out
for sampling periods of 0.5 and 2.0 s by means of the ICCF method. The coefficients of
the discrete transfer functions of the digital controller are calculated and given in Table
4-10, p. 4-37. Simulation results for these designs are presented in Fig. 4-20, together
with those of the continuous model. Fig. 4-21 shows the values of WIAE of the resulting
closed-loop systems.
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Figure 4-19 Unit-step responses of the continuous model M.(s) and the discrete model Ms(z)
with Ty, = 0.5 s

At T = 0.5s, the primary frequency range w, of the discrete system is 6.28 rad/s,
at which the magnitude of M,(jw) is as low as —34 db. Consequently an excellent match-
ing has been achieved by the ICCF method in both the time and frequency domains.
When a longer sampling period T' = 2.0s is applied, the primary frequency range reduces
to w, = 1.57 rad/s, which is about twice the desired frequency bandwidth, w, = 0.78.
The magnitude of M (jw) at w, is about —10 db. Fig 4-20(a) shows that the frequency
response of closed-loop system closely matches that of the model until w reaches the
vicinity of wp, = 1.57, where a sharp divergence occurs in both the magpitude and
phase. Nevertheless, such a close matching to the model over almost the whole primary

frequency range does not prevent the system from losing stability.

4.8.4 Discusstons of the simulation results

The effect of discrepancy between the primary frequency range of a model and
that of a system under design has been demonstrated by the results of eight design
studies shown in Table 4-10 and figures from 4-15 to 4-21. By analysing these results,
the effect of the discrepancy on similar systems to those evaluated in the above studies

. . . _ w _ T
can be summarized in Table 4-11 in terms of o (0 = B ).

There are two points worthy of emphasis here. First, when w, < wym, the
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Figure 420 Frequency and time responses of the closed-loop systemsin the design studies of Group 2
for Plant I, designed by the ICCF method, matching the continuous frequency response

M_(jw)_ (Note that U(KT) is a series of pulse signals conpecting lines between which are

drawn only for purposes of observation.)

4-43



0.007 . WIAE

0.006 |

0.005}

0.004

T =10.5s T =12.0s
Set of design studies
Figure 4-21 Values of WIAE of the closed-loop systems in the design studies of Group 2 for Plant I ,

designed by the IGCF method, matching the continuous frequency response model Mc(jw)

distortion in frequency response matching always occurs within a frequency band near
to w = wp. The band is so narrow that WIAE is unable to reflect the impact of the
distortion properly, as shown in Figs. 4-16 and 4-21, unless a heavy weighting factor is
added to the error in that band. Second, comparison of Figs. 4-15 and 4-20 to Figs. 4-7
and 4-8 with respect to the designs for Plant I at T = 2.0 s reveals that, when a
low sampling frequency is required, the discrete model with T, = T is vital for the
success of designs as the designs based on the other models with wpm > wp failed with

instability, no matter whether those models are discrete or continuous.

4.8.5 Conclusions

An investigation on the effect of discrepancy between the primary frequency
range of a model and that of a system under design upon the synthesis of a digital
controller is presented in this section. The design studies were carried out on Plant I

and II . Table 4-11 summarized the results in the order of decreasing o (= 72).

Wpm

The results of this investigation show that, when w, < wpm, or T > T,., and
wp < (3 ~ 6)ws, the discrepancy strongly affects the dynamic characteristic of resulting
closed-loop systems. It is suggested, therefore, that a sampling frequency w, higher
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Table 4-11 Effect of the discrepancy between the primary frequency
range of a model and that of a closed-loop system on the

design of a digital controller

Value of @ Value of wp Effects of the discrepancy

The matching error increases but its effect is
g > 1 w, > w,;m
negligible. Satisfactory results can be expected.

The discrepancy is nil. The minimum of the

matching error can be achieved.

wp is narrower than wpm but is still much
wider than wy. Because the failure of the match-
ing occurs at frequencies where the magnitude of
wp > (3~ 6wy : b ]
response is small, it does not affect the design
significantly.  (This may occur as T takes some

value greater than 0.5 and smaller than 2.0.)

o<l wp < Wpm

wp is narrower than wy., and is very close to
wy. The distortion of frequency response near wy
wp < (3 ~ 6)wy at which the magnitude is high degrades the dyna-
mic characteristic of the resulting closed-loop syst-
em considerably. (At t=2.0s (w, = 2ws), the result-

ing closed-loop system is unstable.)

than (6 ~ 12)wy be used for the design of a digital controller, if the frequency response
model is derived from a continuous transfer function or a discrete transfer function with
T,. < T. On the other hand, if w, has to be chosen lower than (6 ~ 12)ws, the frequency
response model should be specified from an appropriate discrete transfer function with

Tm=T.
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§4.4 Design studies of Group 3 —

Evaluation of the optimization-based design methods

In Chapter II , two optimization-based frequency response matching design meth-
ods, SIM and RSO, have been discussed. SIM is developed from the simplex optimiza-
tion algorithm and RSO from the random searching optimization algorithm. Like other
optimization methods, the efficacy of these algorithms is highly related to their conver-
gency and speed of convergency, and to their dependence on choices of initial estimates.
These aspects of the performances of the SIM and RSO algorithms are therefore the

subject of studies described in this section.

4.4.1 Designs with different snitial estimates

Design examples are divided into two sets according to the initial estimates for
the gain and real pole-zero locations of a controller transfer function D(z). In set A,
the optimization operations of SIM and RSO start from a set of arbitrarily-assigned
values. They are 0.5,0.5,0.5 for the real poles, 0.5,0.5,0.5 for the zeros and 10 for the
gain. Initial values in set B are derived from the controller transfer function obtained
using the DDM method so that these values are fairly close to the optimum. In both
sets, the designs are carried out for Plant I at T = 0.5 s to match the model M, with

T.. = 0.5 s (see Table 4-3, p. 4-10).

Suppose the optimal parameters of D(z) are those obtained from the more an-
alytical design method ICCF, which gives fairly accurate results in terms of WIAE as

shown earlier in section 4.2.

Because the assessment concentrates on the convergency of the optimization
algorithms and because the optimal parameters are obtained from the ICCF method
without bounds on the pole-zero locations, no constraints are imposed on the designs in
this section except for that the controller poles are located on or inside the unit circle
of the z-plane for the sake of stability.
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Two figures of merits are used for assessing the convergency of the optimization
algorithms. One is the frequency matching error E calculated from Eq. (2-47) over
40 frequency points listed in Table 4-12. The other is the consumption of CPU time
(for VAX-11/780 digital computer). Moreover, the resulting closed-loop systems are
evaluated on the basis of their unit-step time responses with respect to the specifications

given in section 4.1.3 (p. 4-5).

Table 4-12 Values of the frequency points (rad/s) used in the calculation

of the error F

0.0001 0.002 0.004 0.02 0.04 0.08 0.12 0.16
0.20 0.24 0.28 0.32 0.36 0.40 0.80 1.20
1.60 2.0 2.40 2.60 2.80 3.20 3.60 3.80
4.0 4.20 4.40 4.60 4.80 5.20 5.60 5.72
5.88 6.0 6.08 6.12 6.16 6.20 6.24 6.28

The values of the parameters of the discrete transfer functions for the digital
controllers from design studies for Plant I are given in Table 4-13 with their matching
errors. Also the table shows the result from the ICCF method. The time and frequemcy

response simulations for set A and set B are drawn in Figs. 4-22 and 4-23, respectively.

Fig. 4-22(b) shows the matching error E of the designs based on SIM and RSO
in set A as a function of CPU time consumption. It can be observed that SIM brings
the matching error E down to the minimum even though the initial estimates are far
from optimum. After about 25 s, E is minimized from 2089 to 26. In contrast with
SIM, RSO reduces the error E very slowly, and eventually the design of RSO fails to
converge to the optimum. This failure results in the sharp differences in the frequency

and time responses of the corresponding closed-loop systems, as shown in Fig. 4-22(a)

and (c).

In set B, SIM and RSO are used to optimize the controller transfer function,
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Table 4-13 Parameters of the z-transfer functions of the digital cont-

rollers for the design studies of Group 3 (Plant I , T=0.5s)

Set |Method | E D(z) = lemllma)on)
Zo 2] 22 23 P D2 p3
Init.* | 2089 | 10.0 0.5 0.5 0.5 0.5 0.5 0.5
A SIM 26 |22.3022 |—0.2895 | 0.8933 |0.8063 | —0.9751 | 0.4168 |1.0
RSO 688 |27.8182 | —1.0 0.9807 |0.4769 | —1.0 -1.0 1.0
ICCF 52 |22.2743 | 0.9014 |—0.2990 |0.9041 |—0.9813 | 0.4311 | 1.0
Init. 524 |18.9879 | 0.2691 0.9240 |0.9240 |—0.3136 | 0.6388 | 1.0
B SIM 24 |22.3006 {—0.2901 | 0.89043 |0.8951 | —0.9751 | 0.4157 | 1.0
RSO 208 |21.2804 | —0.2020 | 0.9118 |0.8565 | —0.9545 | 0.4042 | 1.0
ICCF 52 [22.2743 | 0.9014 | —0.2990 |0.9014 | —0.9813 | 0.4311 |1.0

E — Frequency matching error defined in Eq. (2-47).
*Init. — Initial estimates.

say D'(z), obtained from the DDM method. The parameters of D'(z), which give the
matching error E = 525, are assigned as the initial values to the optimization operations.
As shown in Fig. 4-23(b), after 350 iterations (11 seconds CPU time), E is minimized to
24 by SIM. The optimal parameters of D(z) are almost identical to those obtained from
the design of set A. On the other hand, RSO even can not find any solution better than
the initial values until 90 seconds CPU time elapses. The performances of the resulting
closed-loop systems in the time and frequency domains, as illustrated in Fig. 4-23(a)
and (c), are consistent with these optimization results. In order to demonstrate the
improvement gained from the optimization operation, the performances of the closed-

loop system incorporated with D'(z), based on DDM, are also included in Fig. 4-23.
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Figure 422 Results of design studies set A in Group 3, based on the SIM and RSO methods with the

arbitrarily-assigned initial values(Plant I , T=0.5s)
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Figure 4-23 Results of design studies set B in Group 3, based
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on the SIM and RSO methods with the

initial values obtained from the design based on the DDM method(Plant I, T=0.5s)
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4.4.2 Conclussons

Two optimization-based design methods, namely SIM and RSO, have been eval-
nated in this section with respect to their convergency and speed of convergency as
well as dependence on initial estimates. It is demonstrated that the SIM method is
an effective design method which can bring parameters to the optimal values without
strict requirements on initial conditions. This is strongly supported by its successful
applications in the design studies of Group 1, in which the controller transfer functions
for both Plants I and II are designed by the SIM method with different initial values
and sampling periods. The computational burden of SIM much depends on the quality
of initial estimates. It is rather heavy but is still comparable with the CCF method and
faster than the ICCF method (see Table 4-7, p. 4-31).

It is of interest to note that, in comparison to set A, the combination of DDM
and SIM methods, as illustrated in the design studies of set B, has saved CPU timet
significantly and also improved the matching accuracy. This suggests that the DDM
method be used for the initial design of a controller transfer function, then SIM be
employed to optimize the design, if its matching error is not satisfactory. By means
of this two-stage design strategy, it is possible that a compromise between speed of

computation and high matching accuracy is achieved.

The convergency of the RSO method is so poor that no recommendation can be
made on its practical utilization. For this reason RSO is not assessed in section 4.2
together with the other design methods. Because the possibility of the random search
striking an optimum becomes extremely small when the number of variables is large, the
random searching optimization algorithm seems unable to cope with high-dimensional

non-linear programming problems.

1t The CPU time required by DDM for matching dominant data at 4 frequency points is only
0.3 ~ 0.5 s, which is negligible compared to that required by SIM.
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CHAPTER V

HYBRID FREQUENCY RESPONSE ANALYSIS

§6.1 Deficiencies of discrete frequency response analysis

In most digital control systems, plants under control are continuous-time systems
as described in Fig. 2-1. A digital controller samples a continuous-time signal and
generates a sequence of impulse control signals determined by some control algorithm.
The control signal is then converted into a continuous-time signal by a ZOH and fed
to the input of a continuous-time power amplifier or plant. Because such a system
incorporates both the continuous- and discrete- time signals, it is refered to as a hybrid
digital control system. Despite its hybrid nature, the technique commonly used to
analyze such a hybrid digital control system is based on its 2-transfer function, which is
obtained by adding a dummy sampler at the output of the continuous plant as shown by
dashed lines in Fig. 2-1. The discretization of the plant makes the task of analysis easier

but discards the information about system inter-sampling time response characteristics.

The frequency response derived from the above discretized model of the hybrid
system is called the discrete frequency response and written as:
H(]b)) - H(z)lzzej“T

_ D(2)GnG(2) (5-1)
" 1+ D(2)GRG(2) lz=ervT’

The frequency response of this transfer function has been used for analysis and synthesis
in the earlier part of this thesis. The design of the hybrid digital control system based
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on its discrete frequency response yields the time response only at sampling instants
1. As shown in the design studies of Group 1 of Chapter IV , the designs with very
low sampling frequencies were not satisfactory. Though the system discrete frequency
responses matched the models very closely, significant ripples between sampling instants

rendered the designs unacceptable.

§5.2 Hybrid frequency response analysis

In view of the shortcomings of the discrete frequency response, the hybrid fre-

quency response is derived for improving the analysis of hybrid digital control systems.

Fig. 5-1 shows a closed-loop hybrid digital control system that is equivalent to
the one defined in Fig. 2-1 and uses the same notation. Then the hybrid frequency
response of the closed-loop system is defined as:

Y(jw)
R*(jw)

_ D*(jw)
1+ D*(jw)GrG*(jw)

H(jw) =
(5—12)

Gh(jw)G(jw).

Eq. (5-2) is derived from the closed-loop transfer function of the hybrid system
with the aid of the block diagram analysis technique [19]. From Fig. 5-1, the transfer
functions Y (s), V(s), U*(s) and E*(s) can be written as the following:

Y (s) = Ga(s)G(s)U"(s); (5-3)
V(s) = F(s)Y(s); (5-4)
U*(s) = D*(s)E"(s); (5-5)
E*(s) = R*(s) = V7(s). (5-6)

1 Unlike the others, the SIM design method indirectly restrains the system inter-sampling be-

haviour by imposing some constraints on controller pole-zero locations.
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Figure 5-1 Block diagram of a closed-loop bybrid digital control system

According to the relation for the block diagram analysis of sampled-data systems,

Y*(s) = U(s)GnG™(5); (5-7)
V*(s) = FY*(s)
= FGLG*(s)U*(s). (5—8)
Thus Y (s) in Eq. (5-3) can be rewritten as:
Y (s) = Gr(s)G(s)U"(s)
= Gi(s)G(s) D" (s) E*(s)
= Gn(s)G(s)D"(s)[R"(s) — V7 (s)] (5—9)
= Gr(s)G(s)D*(s)[R™(s) — FGRG*(s)U" (s)]
= G1(S)G(s)D*(s)R*(s) — FGLG*(s)D*(s)[Gr(3)G(s)U*(9)]
= Gx(S)G(s)D*(s)R*(s) — FGrG*(s)D*(s)Y (s).
Y(s) can be then solved from Eq. (5-9):
Y(S) _ D‘(S)Gh(s)c(s) R’(S). (5 _ 10)

14 D*(s)FGLG*(s)
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Therefore, the closed-loop transfer function of the hybrid system is:

I\'I(s) = ;‘((33)
D‘(S) (5 - 11)

" 1+ D*(s)FG,rG*(s)

Gr(s)G(s).
Substitution of s by jw in Eq. (5-11) yields the hybrid frequency response:
: Y(jw)
H(w) = %
U9 = Be(ju)
_ D(jw)
1+ D*(jw)FGLG*(jw)

(5 —12)

Gr(jw)G(jw).

The frequency responses of sampled-signals in Eg. (5-12), e.g., D*(jw), FG,LG*(jw), etc.,
may be obtained by substituting e?“T for z in their corresponding z-transfer functions.
For instance,

D*(]'W) = D(z)|z=ef"’r' (5 - 13)

In the above derivation, there is no approximation or dummy discretization in-
volved and therefore, the hybrid frequency response H (jw) represents the actual fre-
quency response characteristics of the closed-loop system. In particular, it carries the

information about the system inter-sampling behaviour.

After having defined the hybrid frequency response for a hybrid control system,
the difference between its discrete and actual frequency responses can be readily deter-

mined. Let Dy (jw) be

D*(jw)

Dir(19) = {3 5 Ga)Gr G i)

(5 — 14)
Then from Eqgs. (5-1) and (5-13), the system discrete frequency response H(jw) is

H(jw) = Dy (jw)GhG" (jw). (5 —15)
The system hybrid frequency response H(jw) in Eq. (5-12) can be rewritten as

H(jw) = Dg(jw)Gh(jw)G(jw). (5 - 16)
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The difference between the magnitude of H(jw) and that of H (jw) is thus given by
|H(jw)| — |H(jw)| = |DE (jw)l[|GAG* (jw)] — |Gr(jw) G(3w)]- (5-17)
Correspondingly the phase shift of H(jw) with respect to H (jw) is
LH(jw) - LH(jw) = LG}yG*(jw) — LGh(jw)G(jw). (5 —18)

Equation (5-17) reveals that, if the system discrete frequency response agree with a
model very closely, i.e., H(jw)sM(jw), the matching error of the system actual fre-
quency response to the model in magnitude is directly proportional to the discrepancy

between the magnitudes of the plant discrete and continuous frequency responses.

§5.3 Numerical example

Three design examples are extracted from the design studies of Group 1 in section
4.2 for comparison between the discrete and hybrid frequency responses. These are
designed for Plant I by the ICCF method with 7' = 0.5, 2.0 and 4.0 s. The frequency
response models are M,(jw), M3(jw) and My(jw) (see Table 4-3, p. 4-10) with T, =
0.5, 2.0, 4.0 s, respectively. The coefficients for the digital controllers resulting from

the design studies are given in Table 4-6(p. 4-20).

The hybrid and discrete frequency responses of the resulting closed-loop systems
with T = 0.5, 2.0, 4.0 s are plotted in Fig. 5-2 (a), (b) and (c), respectively, together
with the corresponding models. Since the hybrid frequency response from w,/2 to w,
is of interest (and since it cannot be obtained by taking mirror image of that from 0 to
w,/2 in the complex plane), the frequency responses are plotted from 0.1 to w,. Fig. 5-3

shows the time responses of both the models and the closed-loop systems.

From Fig. 5-2 and 5-3, the following observations can be made.
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(1) The discrete frequency responses of all designs match the corresponding fre-

quency response models very closely.

(2) The continuous time responses of all designs agree closely with the time responses

of the discrete models at sampling instants.

(3) The magnitudes of hybrid frequency responses in all cases possess a resonant
peak at w, = w,/2. The gradients of their phase curves vary rapidly in the

frequency band near w, where the value of phase shift tends to —360°.

(4) Ripples on the system continuous time response y(t) emerge after y(t) reaches
its first peak. These ripples oscillate at w, at which the resonant peak occurs.
Their magnitude becomes increasingly large as the sampling frequency decreases

and the resonance peak value of the hybrid frequency responses grows.

(5) The relationship between the maximum overshoot M, of the continuous time
responses and the resonance peak value My of the hybrid frequency responses is
approximately consistent with the analysis in Chapter III , where Fig. 3-5 shows
the relationship between the maximum overshoot and the resonance peak value
for second-order systems. For instance at T'=2.0 s, Mx~0.9 db, the maximum
overshoot is 10%. Furthermore, when T is 4.0 s, My reaches 3 db and the
maximum overshoot jumps to 35%. However, in the case of T=0.5 s, the value
of My is —3.4 db and the overshoot is 6%. This last set of values is not covered
by Fig. 3-5 because the order of the system under study is higher than second
and the value of My is lower than 0.6 db(see p.3-14).

It should be pointed out that Plant I (with a ZOH) is an overdamped system with
a zero near the point (—1, j0) in the 2-plane. To match the model, the ICCF method
tends to cancel the effect of this zero on the system response by placing a closed-loop
pole on the real axis near to —1 point as well. In the frequency domain, this real pole
contributes a high resonant peak at wp; in the time domain, it yields a controller output
containing a slowly decaying “oscillatory” mode whose amplitude changes its sign each
sampling instant. The ripples on y(t) therefore oscillate at w,.
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The resonant peaks on the hybrid frequency responses shown in Fig. 5-2 are
mainly due to the deviation of G, G*(jw), the discrete frequency response of a plant,
from Gj(jw)G(jw), the continuous frequency response of the plant. As an example,
in Fig. 5-4 are drawn the magnitudes of G,G*(jw), G(jw)G(jw) and Dy (jw) as well
as H(jw), ﬁ(jw) and M(jw) for the case of T'=0.5s. With the frequency shifting to
we/2, G1G*(jw) diverges from G;(jw)G(jw) and reaches its lowest point at w,/2. To
compensate G}, G*(jw), the resulting digital controller yields gain peak at w,/2 so that
H(jw) matches the model M(jw). However, because the magnitude of Gx(jw)G(jw) is
higher than G, G*(jw) near w,/2, the frequency response of the closed-loop system is

over-compensated with an excessively high resonant peak at w,/2.

Magnitude {db)

GL(jw)G(jw)

w(rad/s)

-100. s 1 s
0.1 1.0 U,/2 10, w,

Figure 54 Magnitudes of the frequency responses H(jw), H(jw), M(jw), D} (jw), GnG*(jw)

and G),(jw)G(jw) of the hybrid control system for Plant I, designed by ICCF with T=0.5s
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§6.4 Conclusions

The hybrid frequency response has been derived in this chapter for closed-loop
hybrid control systems consisting of both digital and analogue components. The com-
parison between the hybrid and discrete frequency responses was demonstrated in the
numerical example. Owing to its continuous nature, the hybrid frequency response
fully characterizes the true nature of the dynamic performance of the hybrid control
system. Consequently the continuous time response can be predicted more accurately
by the hybrid frequency response analysis than by the discrete one, which suffers when
used for designs with low sampling frequencies due to the lack of information about the
system inter-sampling response. Moreover, the investigation shows that, if the discrete
frequency response of the resulting closed-loop system matches the model closely, the
matching error of the closed-loop actual frequency response to the model is proportional

to the difference between the discrete and continuous frequency responses of the plant.

The potential for improvement of frequency response matching design methods
based on hybrid frequency response analysis appears promising. For instance, one may
match the hybrid frequency response, instead of the discrete response, of a closed-loop
control system under design to a specified model so that ripples between sampling
instants can be minimized. It is suggested that such a model be a continuous frequency
response over a frequency band of interest. The investigation of the hybrid frequency

response matching design method is thus a subject worthy of future research work.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The frequency response matching technique for the design of digital controllers
has been investigated. The aim of this technique is to design a digital controller so that
the frequency response of the resulting closed-loop system matches a specified frequency
response model. In addition to the discussion and evaluation of Shieh’s dominant data
matching design method (DDM) and Rattan’s complex-curve fitling design method
(CCF), both of which were reported in the literature, the main contributions of this

thesis are:

o the development of the iterative complex-curve fitting design method (ICCF)

that improves the frequency matching accuracy of the CCF method;

e the development of the simplex optimization-based design method (SIM) which
improves the suitability of the frequency response matching design technique for

the overdamped plant at low sampling frequencies;

e the assessment of the detrimental effect of the discrepancy between the primary
frequency range of a system under design and that of a model upon the matching

accuracy and dynamic performance of the resulting system;

e the development of a systematic method for selection of an appropriate discrete
frequency response model from performance specifications given in the time,
frequency or complex z- domains;
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e the definition of the hybrid frequency response which fully characterize a closed-

loop system containing both discrete- and continuous- time components.

The initial step in the design by the frequency response matching method is to
determine an appropriate frequency response model from a set of performance specifica-
tions for the closed-loop control system. This model may be a set of dominant frequency
response data, or a discrete or continuous transfer function, depending on the method to
be employed. Then the parameters of a digital controller can be determined by means of
a number of techniques so that the error, defined in different senses for different meth-
ods, between the frequency response of the closed-loop system and that of the model is

minimized for frequencies from zero to one-half the sampling frequency.

These methods are analytic in nature and hence are amenable to solutions using
general purpose digital computers. For higher order control systems, these methods
yield more accurate designs than does the root locus method based on the assumption
of the existence of a pair of dominant poles. Moreover, unlike design methods based
on the time domain synthesis, the design is independent of the type of input signals
and therefore the performance of a resulting closed-loop system is not subject to any
restriction on the type of input signal, as in the case, for example, for the design of

deadbeat controllers.

Comparative studies are conducted based on the two third-order, continuous-time
plants, one being overdamped and the other underdamped. The studies are organized

into three groups in order to:

1. evaluate the features of the existing DDM and CCF methods as well as the new
ICCF and SIM methods;

2. investigate the effect of discrepancy between the primary frequency range of a

closed-loop system and that of a model on the matching accuracy;

3. assess the convergency and speed of convergency of the optimization-based design
methods.
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The comparative study in Group 1 shows the suitability of the frequency re-
sponse matching design methods when applied to two different types of plants, i.e., an
overdamped plant and an underdamped plant. The decrease in sampling frequency may
reduce the error in discrete frequency matching but may increase the ripples between
sampling instants. In fact the matching error between the hybrid(actual) frequency
response of the closed-loop system and that of the model becomes larger when T grows,

as shown in chapter V.

Shieh’s DDM method determines the z-transfer function of a controller by match-
ing the system frequency response to a specified model at few dominant frequency points
and therefore is the simplest method. The high matching accuracy can be achieved with
very light computational burden. But the direct relation between the number of domi-
nant frequency points to be matched and the order of controller may force the designer
to choose a very high order controller if more frequency points are required to specify the
model. It is shown by this author that the non-linearity of results in Shieh’s example[4]
for the design of a controller with an integrator can be removed by choosing appropri-
ate dominant frequency points. As a result, the relevant computational algorithm is

considerably simplified and the convergency problem is avoided.

Rattan’s CCF method minimizes the weighted mean squared error between two
frequency responses in transfer function form. At low sampling frequencies, the accuracy
of matching is high. On the other hand, at high sampling frequencies, typically w, >
25wy, the error increases rapidly because the value of the weighting factor becomes

extremely small. The numerical integration involved imposes a heavy computational

burden on CCF.

The ICCF method proposed in this thesis is based on CCF and is able to eliminate
the weighting factor in Rattan’s algorithm by using iterative calculations. The matching
accuracy at high sampling frequencies can be significantly improved in 2 ~ 3 iterations.

The disadvantage of this method is its heavy computational load.

The DDM, CCF and ICCF methods employ no constraints on the location of
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controller poles and zeros in the z-plane. Such constraints might be desirable when
controller poles and zeros are required to reside in some specified regions for the sake

of system stability and dynamic performance.

The new method SIM enables a designer to confine the controller poles and
zeros to desired regions in the z-plane. SIM then searches the optimal poles and zeros
within the desired regions by means of the simplex optimization algorithm so that the
squared matching error is minimized. When dealing with an overdamped plant with
a gero near to (—1,50) point in the z-plane, SIM yields satisfactory results at low
sampling frequencies while the others fail with highly oscillatory control signals and
consequent ripples on the system output. The design examples in Group 1 and 3 show
that arbitrarily-assigned initial estimates for controller poles and zeros do not affect the
convergency of optimization but the speed of convergency. To achieve a compromise
between speed of computation and matching accuracy, a two-stage design strategy is
suggested in which DDM is employed for the initial design that is then optimized by
SIM. Unfortunately there is no simple method to select appropriate constraints and
optimization operation parameters in each design case. Therefore a successful selection

may be subject to the designer’s experience and skill.

RSO is another optimization-based design method formulated by this author.
The random searching optimization algorithm employed in RSO is initiated by Luus and
is reported to be successful in solving model simplification problems. RSO is evaluated
in the design studies of Group 3 and compared with SIM. The performance of RSO is so
poor that it could not converge to the optimum after thousands iterations. The failure
of RSO is attributed to its dependence on the initial estimates. With a large number
of optimization variables, the possibility of the random search striking an optimum
becomes extremely small if the initial estimates are not close to the optimum and the

size of searching region is large.

Although mathematically the type of plant has little influence on the accuracy of
discrete frequency response matching, it does affect the design in terms of time response
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characteristics. In particular, in both the overdamped and underdamped plants, ripples
between sampling instants are present on the time response of the closed-loop systems.
However, the ripples arise for different reasons in each case. For the overdamped plant,
the resulting controller frequency characteristic usually possesses high gain in the high
frequency band so that its time response is likely to be oscillatory. Such an oscillatory
control signal renders the design impractical in many electromechanical control systems.
For the underdamped plant, its oscillatory nature may yield ripples because the system
is effectively in open-loop mode between sampling instants, typically when w, < 3w,,
w, being the frequency of oscillation of an open-loop plant. Therefore the dynamic
characteristics of a plant should be carefully considered when choosing a design method

and selecting a sampling frequency.

It must be emphasized that one plant under study possesses a heavily overdamped
characteristic and the other a highly underdamped characteristic. Consequently the
application of results of these studies may be restricted to similar types of plants only.
However, these results provide useful clues to the design of plants the characteristics of

which are not as extreme; further studies are required on such plants.

Because of the limited primary frequency range w, of discrete systems, the fre-
quency response of a closed-loop system cannot match that of a model very closely if
they have different values of w, due to different sampling periods. The effect of such
discrepancies between the frequency response of the system under design and that of
the model has been investigated by design studies for various types of plants. It is
demonstrated that, when wp < wpm(T > Tm) and w, < (3 ~ 6)ws, the discrepancy
degrades the performance of the resulting closed-loop systems significantly. The analy-
sis of results suggests that a sampling frequency w, higher than (6 ~ 12)wy, should be
used if the frequency response model is derived from a continuous transfer function or a
discrete transfer function with T,, < T. On the other hand, if w, has to be chosen lower
than (6 ~ 12)wy, the frequency response model should be specified from an appropriate
z-transfer function with T, = T.
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To help determine a meaningful frequency response model, which is derived from
a second-order 2-transfer function and is based on performance specifications framed
in one or more of the time, frequency and complex 2- domains, a systematic and user-
oriented approach is developed and applied to the design studies. The approach is
based on a thorough investigation of the dynamic characteristics of second-order discrete
systems having a pair of complex poles and a zero. The results are presented in equation,
graphical and tabular forms. In addition, the sufficient and necessary conditions for an

open-loop second-order discrete system to be closed-loop stable are derived and proved.

As shown in the design studies of Chapter IV , the frequency response match-
ing design method yields a digital controller design for which the discrete frequency
response of the closed-loop system perfectly matches the specified discrete frequency re-
sponse model. However, for the hybrid digital control system containing both discrete
and analogue components, it should be borne in mind that there are two fundamental
deficiencies in the design based on the discrete frequency response. First, the design
derived from discrete frequency response yields the time response only at sampling
instants. Second, the discrete frequency response of a plant with a ZOH is an approx-
imation for its continuous counterpart within the primary frequency range 0 ~ w,/2.
The accuracy of the approximation deteriorates when the frequency increases close to
ws/2. As a result, the closed-loop system may be either over-compensated or under-
compensated. One of the usefull contributions in this thesis is therefore the derivation of
the actual frequency response of hybrid control systems, refered to as hybrid frequency
response. Its application to the analysis of closed-loop dynamic systems is illustrated
in an example. It is shown that the system continuous time response can be predicted
more accurately by the hybrid frequency response than by the discrete response, es-
pecially when the sampling frequency is low. Although lack of time prevented further
investigations, the potential for improvement of the frequency response matching design
technique based on hybrid frequency response analysis appears promising. Its imple-
mentation is worthy of future research work.
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In addition to the deficiencies pointed out above, the major disadvantage of the
frequency response matching design technique is its uncertainty about the stability of
resulting closed-loop systems. Furthermore, the SIM method requires user’s experience
and skill to determine suitable constraints. If these deficiencies can be overcome, this

powerful computer-aided design technique will be widely applicable.



APPENDIX A

Objective function E as function of A

The objective function E of the non-linear programming problem for the design

of a digital controller is defined in Eq. (2-47) as:

N
E=)" \/[*9@(%-) — Ing (Wi + [¥o(wi) — ¥arg (wi)]?
=1 (A B 1)

e f(zO;zI; 2250y Zmy P14P2y- - - 1pn)7
where, _
Pq(w;) = 20logye |Q(jwi)l,
Ono(wi) = 201log o | Mg(jw:)l,

Yo(w:) = arg[ Q(jw;) |,

¢MQ(“)¢') = arg( MQ(J'wi) I
and arg| e ] represents the argument or phase angle of | @ ] in degrees.
The system open-loop frequency response is defined in Eq. (2-5) and repeated

here:
Q(jwi) = D(2)GrG(2)|,_ juiT

= D(jw;)GyG(jw;), 1=1,2,...,N.
If Egs. (2-50), (2-51) and (2-52) are substituted into Eq. (2-44) for D(z), Eq. (A-2)

(4-2)

becomes

(“ge—iAOI)[eJ'wiT — (uze_IAII - Vz)] 3
[eJ-WiT — (ﬂpe—lf\m+1| — Vp)] R

Q(jw:) = GrG(jw;) -

.- (ejwl'T _— e_l'\m—lle]."e_lxml)(e]'wiT i e_IAm—lle—j"e—p\ml)

e (ejwiT — g—lz\m+n—1|e]-1re—|/\m+nI)(CJ-wiT _ g—ll\m+n—1|e—jﬂ'e_l)‘"‘+"l)’

(A-3)

with i =1,2,..., N.



Note that G,G(jw;) is known and Mg(jw;) is specified. The objective function

E is therefore a function of A;, s =0,1,...,m+n,

N
E =Y \/ (2010810 |Qjw:)| — 201ogso [ Mo(iuwi) [*+larglQ(sw)] - arg[Mo(juwi)]l

=1

= F(’\O; AI’A2"""\m+”)’ (A )
—4

where Q(jw;) is defined in Eq. (A-3) and N is the number of selected frequency points.
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APPENDIX B

Variation range of the parameter o

The parameter a, defined in Fig. 3-2 and redrawn in Fig. A-1, is introduced by
Kuo [1] to describe the position of a real zero Z; of h(2) of Eq. (3-1) relative to a pair
of complex conjugate poles P and P. The value of a is positive if Z; is to the right of
2*, the vertex of the right triangle AP2*Q, and is negative otherwise. In an attempt to
investigate the dynamic response of k(z), this author derives the bounds on the value

of a.

Figure A-1 Position of the zero Z; relative to the poles P and P in terms of
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It is apparent from the definition that the upper limit on the value of o is +90°
as Z; approaches the point of (1, j0). On the other hand, the lower limit ¢y, is not
a constant but a function of the position of the complex poles. Fig. A-1 illustrates the
relation between the zero and the poles in terms of o, where R and I represents the

real and imaginary part of the complex pole P, respectively.

It is shown in Fig. A-1 that, when Z; lies to the left of the point 2* (a < 0),

|a| =90 — 6y — 6.

Note that I
b1 = tg‘ll—_—ﬁ;
by = tg~! R _I 70
and §2 — 0 when Z; — —oo. Thus
oy, = lein_loo —la]
= leixgoo(tg-lﬁ + tg~! =7, 90)
= tg"ll—_I—R — 90.

In summary, for a pair of complex conjugate poles R + jI, the range of the
parameter a is

I
tg~l—— —90)° 90°.
(tg TR 90)° < a<
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APPENDIX C

Time response analysis of h(z)

The derivation in this section basically follows the work of Kuo [1]. The closed-

loop transfer function of the second-order discrete system is defined as:

A(z - Z})
A=) = (z— P)(z - P)
_ A(z — Zl) (C _ 1)
(Z - e—(wnT+jon)(z _ e—fw,.T—jon)
_ Az+B
224+ Cz+ D’

The time response of h(2z) to a unit-step input signal R(2) = z i is given by

z —
applying the inverse z-transformation on Y (2), the product of h(2) and R(z2),

Y(nT) = E;—jﬁY(z)z”—ldz

1 Az(z — 7)) 1y
©2mg f; (z—1)(z — P)(z— P) 4z,

(C -2)

where T is a closed contour that encloses all singularities of the integrand.

Solving of the contour integration (C-2) by Cauchy’s residue theorem yields

A(P - 7))

Y(nT)=1+2 P_1)(P-P)

| P|" - cos(nwoT + @), (C - 3)

where
¢ = L(P—Zl)—l(P—l)—g.

A-5



From Fig. 3-1, it can be readily observed that
a:[(P—Zl)—L(P—l)+g. (C - 1)

Hence

p=a—m. (C -5)

Further inspection on Fig. 3-1 reveals another important property of a, namely

|sec a] = 2 A(P_Zl)_ : (C —6)
(P-1)(P-P)
Substitution of Eqs. (C-5) and (C-6) into Eq. (C-3) leads to:
Y(nT) =1+ |seca|-|P|" cos(nw,T + a — ). (C-7)
Assume ¢t = nT, then
|P|" = |P|T = e~§unt, (C —8)
and
nwoT = wp /1 — €2-¢. (C -9)

Thus the discrete unit-step response Y (nT') can be approximated by a continuous func-

tion y(t) that passes through all points of Y (nT'),

y(t) = 1+ |secal- e 5t . cos(wa\/1 — €2 -t + a — ). (C —10)

The peak values t;, of y(t) can be found by taking first derivative of y(¢) with

respect to ¢ and setting y/(¢) to zero. This results in

tg(wn\/l—fz-t;,-*—a—mr):l_—ggz, (C —11)
and

r_ 1 -1 —¢€

tp—wnm[tg lm—a+n'n‘] (C —12)



with n =1,2,.... The time ¢, for the peak of y(t) corresponds to n =1, i.e.,

tp=;[tg_l(_—€) —a+n. (C - 13)

Assume that the maximum value of y(t) occurs at its first peak. Then the

maximum overshoot M, is

M, = y(t)|e=r, — 1
(C — 14)

=€ [e—1(—=£ y_
= [secal\/1 = £2 . eV1-¢€2 e (\/l—fz) aﬂl.
Remember that the continuous-time function y(t) represents the discrete function
Y(nT) only at the sampling pointst = nT, n =0,1,2,.... Because ¢, is not necessarily
a multiple of T, the actual maximum overshoot of the discrete system may be not equal

to but may be smaller than M,,.
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APPENDIX D

Frequency response analysis of g(z) and h(2)

The specifications of the open-loop frequency response g(jw), such as PM and
GM, and those of the closed-loop frequency response h(jw), such as w,, M, and ws,
are derived in this section as functions of the system coefficients A, B, C' and D, or
functions of £, w, and a indirectly (see Egs. (C-1) and (C-4)). The derivations of w,

and M, are refered to Jury’s work (22].

The frequency response of the open-loop transfer function g(2) of Eq. (3-5) is

g(jw) = 9(2)| ;= ¢iur
_ AeT + B (D -1)
~ e2T 4 (C — A)e*T + (D — B)’

Substitution of e/“T by coswT + j sin wT gives

(AcoswT + B) + jAsinwT

9(jw) = [cos 2wT + (C — A) coswT + (D — B)] + j[sin 2wT + (C — A) sin wT]
(D-2)
The magnitude 7,(w) is
19(w) = l9(jw)|
B A? + B? + 2ABcoswT
[ 2(D - B)cos2wT + 2(C — A)(D — B+ 1)coswT + (D — B)2+ (C— A2 +1
(D-3)

At the gain cross-over frequency we,

Tg(wc) =1,
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so that
A%+ B* + 2AB cosw.T = 2(D — B) cos 2w.T + 2(C — A)(D — B + 1) cos w.T

+ (D - B)?+(C— A4)? +1;
(D-4)

or

acos?w.T + 2bcosw,T +d = 0; (D —5)

where,

a = 4(D — B),
b=C(D-B+1)—- A(D+1),

d=C?*+D?*—-2AC -2DB—-2(D - B) + 1.

The solution for cos w T from Eq. (D-5) yields the gain cross-over frequency w,:

cos:ucT:—g:i:l b2 —ad; (D-—6)
a
or

1 [t 1 :

We = 7 CO8 [—E:i:; b—ad], (D-17)

1
where, the sign in front of the term ;\/ b2 — ad should be chosen in such a way that the

absolute value of —g- + %\/ b2 — ad be not greater than unity.
From Eq. (D-2), the phase angle of g(jw) can be written as:

(AD — BC ~ A—2BcoswT) sinwT

_ =il
Yo(w) = tg 2B cos? wT + (AD — 2AB + BC + A)coswT + u

(D-8)

with u = BD + AC — A% — B2 — B. The commonly-used definition of the phase margin
is
PM = Yy(w)|w=u, — (—180). (D -9)

Thus, PM can be determined by substituting Eqs. (D-7) and (D-8) into Eq. (D-9),

(AD — BC — A —2Bcosw.T)sinw,T
2B cos?w.T + (AD — 2AB + BC + A)cosw.T + u’

PM =180 + tg~! (D - 10)

where w, is defined in Egs. (D-7) and (D-5) and u in Eq. (D-8).
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Let wy be the frequency at which t)4(w) reaches —180° for the first time, i.e.,

te[thy(wy)] = tg(~180) = 0.

From Eq. (D-8), the above conditions will be satisfied if:

sinwy,T =0, (D —11)
or
AD-BC-4A
= . D-12
cosw,T B ( )

If |AD — BC — A| < |2B|, the solution of Eq. (D-12) is given by:

AD-BC- A

Wg = -%,—cos_l( 2B )- (D —13)
So the gain margin is
GM = —20log;p[7s(wy)]
— _2010gy, \/ A% + B2 + 2ABcosw,T (D - 14)
4(D — B) cos? w,T + 2(C — A)(D — B+ 1) coswyT + v

with v = (C — A)2 + (D — B — 1)2. However, if |[AD — BC — A| > |2B|, the phase angle

of g(jw) will not approach —180° until wT reaches 7 as sin 7 = 0. In this case,

wg = (D —15)

'1_1,
A+ B
VAD-B)—2(C-A)D-B+1)+(C—A)?+(D-B-1)?

GM = —20log;,

(D - 16)

The analysis of the closed-loop frequency response h(jw) is conducted in a similar
manner. From Eq. (3-3),
h(jw) = h(2)|,_qur

_ (AcoswT + B) + jAsinwT
" (cos2wT + C coswT + D) + j(sin 2wT + C'sinwT) (D -17)

=1, (w)ej¢’h(w) .
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The magnitude 7,(w) is
mh(w) = [h(jw)|

B p+ pcoswT (D —18)
~\/| B+ 2CycoswT + 2D cos 2wT ’

where,
p= A+ B,
p=2AB,
B=C*+D?+1,
y=D+1.

To determine the resonant frequency w, and the resonance peak value M,, the first

derivative of 7, with respect to wT is taken as:

drp(w) _ 1 (B +2CycoswT + 2D cos 2wT
p+ pcoswT

[ (p+ pcoswT)(2CysinwT + 4D sin 2wT) (D — 19)
(B + 2CycoswT + 2D cos 2wT)?

psinwT (B + 2CycoswT + 2D cos 2wT) ]
(B +2CycoswT + 2D cos 2wT)?

At w,, the derivative of 7,(w) is zero and Eq. (D-19) can be simplified to:
4Dy cos? w,T + 8pD cosw, T + (2pCvy — fu + 2Dyp) = 0. (D - 20)

The solution of Eq. (D-20) is

pCy — 5P+ Dp

15 (D - 21)

cosw,T = - + SIGN(p)\/(ﬂ)Z .
I M
Here the choice of the sign of the second term on the right side of Eq. (D-21) is based

_ pCy—3Pp+ Dp
2Du

on the fact that the absolute value of —ﬁ + S’IGN(;L)\/(E]2

not greater than unity, if w, exists. Accordingly,

I T ) Py, PCY—3Bp+ Dy _
wy = 7 c08 [ “+SIGN(;A)\/(“) o |- (D — 22)
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Substitution of A, B, C and D into Eq. (D-18) for p, u, # and v produces

2 2

Wy =% cos™! [ - A—zﬁf— + SIGN(AB)-

(D — 23)
\/(Az + 32)2 1 _C(D+1)(42+B?%) — AB(C*+ D +1) ]
2AB 2 4ABD '

The magnitude of h(jw) at w, is called the resonance peak value,

M, = Th(“)lw:wr
(D — 24)

_ A2 4+ B? 4+ 2ABcosw,T
~ \/ 4Dcos? w, T+ 2C(1 + D) cosw,T + (D —1)24+ C? ~

Finally, the closed-loop frequency bandwidth wy is defined as the frequency at
which the magnitude of h(jw) equals 0.707 (—3 db), that is,

() = A? 4+ B2 4+ 2ABcosw,T
M=\ 2D cos 2w, T + 2C(1 + D) cosw T + (1 + C% + D?) (D — 25)

= 0.707.

Rearrange Eq. (D-25) as a second-order equation in terms of cosw;T,

1+C? + D?

2D cos? wyT + (C+CD —2AB) coswyT + 5

— (A +B*+ D)=0. (D-26)

Its solution provides the required wp,

1 _I[ZAB—C—CD
Wp = 7 COB aD

ié\/(ZAB—C—-CD)z—4D(1+02+D2—2A2—232—2D) ];
(D —27)

where, the sign of \/(2AB —~C —~CD)?—4D(1+C? + D? —2A? — 2B? — 2D) is se-
lected so that the absolute value of the sum in the square brackets is not greater than

unity, provided that wy exists.
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APPENDIX E

Stability of a second-order discrete system

Let g(2) be the open-loop transfer function of a general second-order discrete
system and h(z) the transfer function of the corresponding closed-loop system with

unity feedback. The forms of these transfer functions are given as follows:

k(2™ + a12™ ! +ag)

g9(z) = P R SO (E-1)
9(2)
") = 1@
_ k(z”‘ + alz'"‘l + a2) (E _ 2)

22 + diz+ ds

with m = 0,1,2 . Then the closed-loop system is absolutely stable with respect to the
open-loop gain k, if and only if:

(1) m = 2, and

(2) none of open-loop zeros and poles is outside the unit circle in the z-plane, and

(3) there is at least one open-loop zero or pole inside the unit circle in the 2-plane.

proof

From the root locus method, it is well known that for the system which has less
zeros than poles, or m < 2, there must be at least one zero at infinity in the z-plane.
Accordingly, as the open-loop gain k increases, at least one closed-loop pole will move
to the zero at infinity, i.e., out of the unit circle so that the closed-loop system becomes
unstable.
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When m = 2, the system characteristic equation is

a1k + b a2k + by

— 2 .
[(z) =2+ EOh =0 Eny (E-3)
Thus the closed-loop poles are
a1k+b1 \/ a1k+b1 _ 4(azk + b2)
P, = % E—-4
2= "ok © o1 k+1 (£5-4)
If P, and P; are a pair of complex conjugate poles, their magnitude is
a1k+bl \/ ask + by ark + b 9
|Pr2| = \/( 2(k+l) (2 1 Tk ))
(E—35)

. azk + by
“Vky1
Suppose that none of the zeros and poles is outside the unit circle, i.e.,

laz] < 1; |62} < 1.

Also assume that there is at least one zero or pole inside the unit circle, which means
that either |az| or |by|, at least, must be less than unity, thus the magnitudes of P; 2 are

less than unity to any positive k as:

kas + by .
= s 1 k>0.
[Pz =1/ ki1 < if k>

This reveals that the closed-loop poles keep inside the unit circle no matter what the

value of the gain k is , and the closed-loop system, therefore, is stable.

If Py, P; are real poles, they must lie between a pair of the zeros or of the open-
loop poles, or pairs of the zeros and open-loop poles, hence they are still inside the unit

circle and the closed-loop system is stable.

On the other hand, because the closed-loop poles travel from the open-loop poles
to zeros as k varies from 0 to +o00, Py, P» may locate on or outside the unit circle if any

open-loop zero or pole is outside the unit circle.

Hence the stability criteria is proved.
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APPENDIX F

TABLE A-1

Relationships between the design specifications in
the time, frequency and complex z- domains

for second-order discrete control systems

This is a numerical table that covers the dynamic characteristics of second-order
discrete control systems, and serves as a useful tool for discrete system analysis and
design. The table is arranged in the order of the complex 2-plane variables £, o and
woT. The ranges covered are 0.4 ~ 0.9 for ¢, —80° ~ +80° for a and 0.1 ~ 1.3 for w,T.
All symbols used in this table are defined originally in Chapter III . For convenience,
they are summarized below, together with an explanation of remarks in the table. An

example of the use of this table is given in section 3.2.7, p. 3-17.

System Definitions

Open-loop system (2) = e
EEESORPASY 9B =2 (C-A)z+(D-B)
Az+ B
Closed-loop system : h(2) = 21 Cst D
Frequency responses g(jw) = 9(2)| ;= iur
of g(2) and h(z): h(jw) = h(2)|,= ot
Symbols
General

T - Sampling period in seconds.
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Complez z-plane varsables

¢ - Damping ratio of closed-loop poles.
w, — Oscillatory frequency of closed-loop system response in rad/s.

a — Angle in degrees to define the relative location of a zero

to a pair of closed-loop poles.

Unit-step time response

tp — Peak time in seconds.

M- Maximum overshoot in percent.

Open-loop frequency response

PM - Phase margin in degrees.

GM - Gain margin in decibels.

Closed-loop frequency response

wp — System bandwidth in rad/s.
w, — Resonant frequency in rad/s.

M,— Resonance peak value in decibels.

Remarks and Abbreviations

C/L — Closed-loop.
O/L — Open-loop.
Out of Range — Shown when « is out of the effective range (ay;., 90°),

where ;. is defined in Eq. (3-4).

Mono Increasing — Shown when the magnitude of the closed-loop frequency
response increases monotonically.

Mono Decreasing — Shown when the magnitude of the closed-loop frequency
response decreases monotonically.

O/L Unstable — Shown when an open-loop system is unstable.
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LI-V

C/L SYSTEM IN COMPLEX Z-PLAIN I C/L. STEP RES. | C/L FREQUENCY RES. | 0/L FREQUENCY RES.| SYSTEM COEFFICIENTS
—————————————————————————————————— il B e ekt B et e |
a woT | POLES IERO | tp/T Mo(%) | WbT WeT Mr(db) | PM GM(db) | A B C D |
=:================================:=======’—‘:::::=====================:============================================================]
€ =0.4
-80 0.1 | 0.953+j0.0%& Out of Range 1 I |
-80 0.2 | D.898+30.182 Out of Range I I |
-0 0.3 | 0.838+j0.259 Out of Ranae 1 ! !
-80 D.6 | D.635+jD.435 Out of Range l | 1
-80 0.7 | 0.563+j0,475 Out of Range | | |
-80 0.9 | 0.420+j0.529 Out of Range ! I |
-80 1.1 | 0.281+30.551 Out of Range | | |
-80 1.3 | D.152+j0.546 Qut of Range I | I
| | | I 1
-60 0.1 | 0.953+j0.0%é Out of Range i 1 l
-60 0.2 | 0.898+3j0.182 Out of Range 1 I I
-60 0.3 | D.838+j0.259 Qut of Range | | !
-60 0.6 | 0.635+j0.435 Out of Range | ! |
-60 0.7 | 0.563+j0.475 Out of Range | ! 1
-60 0.9 | 0.420+3j0.529 Out of Range | I I
-40 1.1 | 0.281+30.551 Out of Range | 1 I
-60 1.3 1| 0.1582+30.546 Out of Range I | 1
| | | I |
-40 0.1 i 0.953+30.096 Out of Range | | l
-40 0.2 | 0.898+j0.182 Out of Range i | I
-40 0.3 | 0.838+3j0.259 Out of Range I | !
-40 0.6 | 0.635+j0.435-1903.597 | 5.71 26.80 | 0.929 0.548 2.912 | 54,98 7.11 | 0.000 0.322 -1.270 0.592
~540 0.7 | 0.563+j0.475 -9.873 | &.90 26.80 | 1.074% 0.638 2.849 | 45,463 5.89 | 0.038 0.378 -1.127 0.543
-40 0.9 | 0.420+j 0,529 -3.515 | 3.81 26.80 | 1.351 0.810 2.697 | 465.97 5.58 I 0.137 0.480 -0.83%9 0.456
-40 1.1 1 0.281+j0.551 -2.201 | 3.12 26.80 | 1.405 0.9756 2.513 | £8.32 6.61 I 0.2587 0.565 -0.561 0.383
-40 1.3 | D.152+j0.546 -1.611 1 2.64 26.80 | 1.830 1.133 2.306 | 4%.61 6.36 | 0.3%0 0.628 -0.303 0.322
| I ! | |
-30 0.1 | 0.953+3j0.09é6 Out of Range | I I
-30 0.2 | 0.898+3j0.182 Out of Range 1 | |
-30 0.3 | 0.838+30.259 -6.643 | 10.85 25.58 | 0.451 0.270 2.713 | 43.33 11.68 I 0.012 0.081 -1.676 D.770
-30 0.6 | 0.635+3j0.435 -1.826 | 5.42 25.58 | 0.8%90 0.537 2.618 | 44,55 9.43 I 0.114 0.208 -1.270 0.592
-30 0.7 | D0.563+30,.475 ~-1.559 | &4.65 25.58 | 1.031 0.624 2.574 | 45.05 8.96 I 0D.162 0.253 -1.127 0.543
-30 0.9 | 0.420+j0.529 -1.242 | 3.62 25.58 | 1.304 0.796 2.470 | 46.16 8.28 I 0.27% 0.342 -0.839 D.456
-30 1.1 | 0.281+30.551 ~1.049 | 2.96 25.58 1 1.561 0.963 2.347 | 47.32 7.85 I 0.401 0.421 -D.561 0.383
=30 1.3 | 0.152+3j0.546 -0-211 | 2.50 =25.58 | 1.801 1.12¢4 2.216 | 48.47 7.60 | 0.533 0.485 -0.303 0.322
I I I 1 |
-20 0.1 | 0.953+3j0.09é 0.103 | 30.79 25.44 | 0.150 0.0%90 2.714 | 43.11 48.74 | 0.013 -0.001 -1.905 0.916
-20 0.2 | 0.898+j0.182 -0.223 | 15.40 25.44 | 0.300 0.180 2.697 | 43.03 26.52 I 0.036 0.008 -1.7%6 0.840
-20 0.3 | 0.838+3j0.259 -0.383 | 10.26 25.44 | Q.449 0.270 2.685 | £3.06 19.91 | 0.068 0.026 -1.476 0.770
-20 0.6 | D.635+3)0.435 -0.558 | S5.13 25.44 | 0.890 D.537 2.617 | £3.568 13.13 I 0.207 0.145 -1.270 0.592
-20 0.7 | 0.563+30.475 -0.577 | 4.40 25.44 | 1.033 0.625 2.585 | 44,02 12.06 I 0.264 0.152 -~1.127 0.543
-20 0.9 | 0.420+30.529 -D.590 1| 3.42 25.44 1 1.313 0.799 2.512 | 44.86 10.58 I 0.388 D.229 -0.839 0.456
-20 1.1 | 0.281+3j0.551 -0.584 | 2.80 2S5.44 I 1.582 0.970 2.428 | 45.83 9.45 I 0.519 0.303 -0.541 0.383
-20 1.3 | 0.152+j0.546 -0.568 | 2.37 25.44 | 1,842 1.137 2,343 | 46.86 ?.07 I 0.649 0.369 -0.303 0.322
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81-V

C/L SYSTEM IN COMPLEX Z-PLAIN | C/L STEP RES. | C/L FREQUENCY RES. | O/L FREQUENCY RES.| SYSTEM COEFFICIENTS
fmm = Jmmmmmmm e Jmmmm e | mmmmmmmmmmmmmmmm e Jmmmmmm e i

@ w,T | POLES ZERO | tp/T Mp(%) | WbT WeT M (db) | PM GM(db) | A 8 c )
€ =0.4
0 0.1 | 0.953+30.096 0.760 | 27.30 27.84 | 0.140 0.092 3.182 | 42,82 33.39 | 0.047 -0.036 -1.905 D.91é
0 0.2 | D.898+j0.182 0.573 | 13.45 27.84 | 0.319 0.185 3.149 | 42,21 27.49 | 0.102 -0.058 -1.796 0.84D
0O 0.3 | 0.838+30.259 9.423 | 9.10 27.8% | 0.479 0.277 3.142 |  41.74 26.06 | 0.162 -0.068 -1.676 0.770
0 0.6 | D.635+jD.435 0.118 | 4.55 27.84 | 0.955 0.554 3,103 | 41,07 18.09 | 0.365 -0.043 -1.270 0.592
0 0.7 | 0.563+30.475 0.047 | 3.90 27.84 1 1.113 0.646 3.085 |  41.06 16.70 1| 0.437 -0.021 =-1.127 0.543
0 D.9 | D.520+j0.529 -D.062 | 3.03 27.84 1 1.427 0.829 2.045 | 41.28 14.35 | 0.580 0.036 -0.839 0.456
0 1.1 | 0.28B1+j0.551 -D.142 | 2.48 27.84 1 1.742 1.011 3.00&4 | 41.80 12.36 | 0.719 0.102 -0.561 0.383
D 4.3 | 0.152+j0.546 -0.200 | 2.10 27.84 | 2.066 1.194 2.968 | 42,55 10.62 | 0.848 0.170 -D.303 0.322
I I I I I
20 0.1 | D.953+j0.096 0.862 | 23.81 34.50 | D.182 0.097 4.147 |  41.76 28.28 | 0.082 -0.071 -1.905 0.91é
20 0.2 | 0.898+3j0.182 0.741 | 11.91 34.50 | 0.345 0.193 4.132 | 40.52 22.56 | 0,168 -0.125 =-1.796 0.840
20 D.3 | 0.838+j0.259 0.635 | 7.94 34.50 | 0.548 0.290 4.128 |  39.49 19.30 | 0.256 =-0.163 -1.676 0.770
20 0.6 | 0.635+j0.435 0.384 | 3.97 34.50 | 1.103 0.580 4.100 | 37.46 13.90 | 0.523 -0.201 -1.270 0.592
20 0.7 | 0.563+j0.475 0.318 | 3.40 34,50 | 1.293 0.677 4.087 | 37.06 12.72 | 0.609 -0.193 -1.127 0.543
20 0.9 | 0.420+j0.529 0.202 | 2.65 34.50 | 1.483 0.871 &4.061 | 3&.63 10.81 | 0.773 -0.156 -0.839 0.45&
20 1.1 | D.281+30.551% 0.107 | 2.16 34.50 | 2,111 1.066 4.037 |  36.62 9.27 | 0,920 -0.099 -0.561 D.383
20 1.3 1 D.152+j0.546 0.028 | 1.83 34.50 | 2.682 1.264 4.021 |  36.98 7.99 | 1.047 -0.029 -0.303 0.322
I I I I I
40 0.1 | 0.953+j0.096 0.911 | 20.32 49.29 | 0.227 0.101 5.838 | 0/L Unstable | 0.128 -0.116 -1.905 0.91é
40 0.2 | 0.898+j0D.182 0.829 | 10.16 &%.29 | 0.455 0,202 5.812 | 0/L Unstable | ©0.255 -0.211 -1,796 0.340
40 0.3 | 0.838+30.259 0.754 | &6.77 49.29 | 0.486 0.304 5.806 | 0/L Unstable | 0.379 -0.286 -1.476 0.770
40 0.6 | D.635+j0.435 0.559 | 3.39 49,29 | 1.416 0.408 5.777 |  32.50 10.93 | ©0.729 -0.407 ~-1.270 0.592
%40 0.7 | 0.563+j0.475 0.502 | 2.90 49.29 | 1.485 0.7i0 S5.765 |  31.75 9.9¢ | 0.835 -0.419 -1.127 0.543
40 0.9 | D.420+3j0.529 0.398 | 2.26 49.29 | 2.344 0.916 5.738 |  30.70 8.31 | 1.024 <-D,408 -0.839 0.456
40 1.1 | 0.281+j0.551 0.305 | 1.85 49.29 | 9.990 1.124 S.712 |  30.17 7.08 | 1.182 -0.341 -0.561 0.383
40 1.3 | D.152+jD.546 0.221 | 1.56 49,29 | 9.990 1.336 5.694 |  30.10 6.10 | 1.307 -0.289 -0.303 0.322
I I 1 I I
60 0.1 | 0.953+3j0.096 D.947 | 16.83 87.94 | D0.335 0,105 8.910 | 0/L Unstable | 0,213 -0.202 ~1.905 0.916
40 0.2 | 0.898+30.182 0.896 | 8.41 87.94 | 0.477 0.211 8.906 | 0/L Unstable | 0.417 -0.374 =-1.796 0.840
60 0.3 | 0,838+j0.259 0.847 | 5.61 87.94 | 1.035 0.317 8.89% | 0/L Unstable | D.611 -0.518 -1.676 0.770
60 0.6 | 0.635+j0.435 0.742 | 2.80 87.94 | 2.528 0.635 8.854 | 0/L Unstable | 1.117 -0.796 =-1.270 0.592
60 0.7 | 0.563+j0.475 0.670 | 2.40 87.94 | 9.990 0.742 8.834 | 0/L Unstable | 1.259 -0.843 =~1,127 0.543
60 0.9 | 0.420+j0.529 0.588 | 1.87 87.94 | 9.990 0.959 8.787 | 0/L Unstable | 1.496 -0.880 -0.839 0.456
60 1.1 | 0.281+j0.551 0.509 | 1.53 87.94 | 9.990 1.179 8.736 | 0/L Unstable | 1.674 -0.853 -0.561 0.383
60 1.3 | 0.152+30.546 0.433 | 1.29 87.94 | 9.990 1.405 8.487 | 0/L Unstable | 1.795 -0.776 =-0.303 0,322
I I 1 I |
80 0.1 | 0.953+30.09& 0.981 | 13.34 294.89 | 0.902 0.108 17.040 | 0/L Unstable | D.589 -0.578 -1.905 0.916
80 0.2 | 0D.898+j0.182 D.962 | 6.67 294.89 | 2.102 0.217 17.023 | 0/L Unstable | 1.134 -1.091 =-1.796 0.84D
80 0.3 | 0.838+j0.259 0.943 | 4.45 294.89 | 9.990 0.326 17.008 | 0/L Unstable | 1.4632 -1.539 -1.476 0.770
BO 0.6 | 0.635+j0.435 0.886 | 2.22 294,89 | 9.990 0.655 16.923 | 0/L Unstable | 2.829 -2.507 =-1.270 0.592
80 0.7 | 0.563+j0.475 0.867 | 1.91 294.89 | 9.990 0.766 16.88% | 0/L Unstable | 3.128 -2.712 -1.127 0.543
80 0.9 | D.420+j0.529 0.828 | 1.48 294.89 | 9.990 0.990 16.787 | 0/L Unstable | 3.580 -2.963 -0.839 0.456
80 1.1 | 0.281+30.551 0.786 | 1.21 294.89 1 9.990 1.220 16.670 | 0/L Unstable | 3.847 -3.025 -0.541 0.383
80 1.3 | 0.152+j0.546 0.742 | 1.03 294.89 | 9.990 1.458 16.537 | 0/L Unstable | 3.947 -2.929 -0.303 0.322
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C/L SYSTEM IN COMPLEX ZI-PLAIN
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0.939+j0.094
0.873+30.177
0,803+ 30,249
D.584+30.399
0.511+3j0.430
0.370+30.466
0.240+30.472
0.126+3j0. 455

D.939+3j0.094
0.873+3j0.177
0.803+30.249
0.584+j0.399
0.511+3j0.430
0.370+30.466
D.240+3j0.472
0.126+30.455

0.939+j0.094
0.873+3j0.177
0.803+30.249
0.584+j0.399
0.511+j0.430
0.370+30.466
0.240+10.472
D.126+30.455

0.939+j0.094
0.873+j0.177
D.803+j0.249
0.584+3j0.399
0.511+30.430
0.370+3j0.466
0.240+3j0.472
0.126+3j0.455

0.939+30.094
D.873+30.177
0.803+j0.249
0.584+30.399
0.511+10.430
0.370+30.466
0.240+30.472
0.126+§0.455

Out of
Out ot
Out of
Out of
Out of
Out of
Out of
-10.309

Qut of

|
I

C/L STEP RES.

Range
Range
Range
Range

Range
Range
Range
Range
Range
Range
Range
2.82

Range

Out of Range
Qut of Range

-3.0%97
-2.301
-1.566
-1.202
-0.972

~0.962
-0.926
-0.891
-0.791
~0.760
-0.700
-0.663
-0.588

0.526
0.240
0.054
-0.228
-0.275
-0.333
-0.361
-0.370

5.53
4.74
3.68
3.01
2.55

31.42
15.71
10.47
S5.24
4.49
3.49
2.86
2.42

29.467
14.84
2.89
4.95
k.24
3.30
2.70
2.28

20.87

16.66
16.66
16.66
16.44
16.66

16.30
16.30
16.30
16.30
16.30
16.30
16.30
16.30

16.62
16.62
16.62
16.62
146.62
16.62
16.62
16.62

C/L FREQUENCY RES.

8]
5]
7]
[+

.378
. 015
.275
.514
. 732

[ =

147
. 293
. 439
866
.004
.271
527
1.773

e s 0o00

0.149
0.298
0.446
0.885
1.029
1.312
1.589
1.867

1.156

D.488
0.565
0.712
0.849
D.973

0.082
0.163
0.244
0.483
0.560
0.711
0.856
0.995

0.083
0.16S
0.247
0.492
0.572
0.730
0.885
1.03%9

1.789

1.233
1.189
1.08%9
0.973
0.868

1.240
1.239
1.228
1.167
1.140
1.078
1.013
0.951

1.32¢4
1.317
1.309
1.268
1.250
1.211
1.171
1.138

0/L FREQUENCY RES.!

PM GM(db) 1 A 2] c D

|

|

|

[

|

I

|

|

I

|

1

I

!

|

!
54.23 5.48 | 0.086& 0.885 -D0.263 0.223

|

|

|

I
51.99 7.50 | 0.081 D.252 -1.167 0.500
52.37 9.17 I 0.129 0.296 -1.021 0.446
53.18 8.70 I 0.23%9 D.375 -0.739 0.354
53.98 8.46 I 0.363 0.437 -0.481 0.281
54.73 8.38 I 0.4%92 0.478 -0.253 0.223

|
51.60 25,43 | D.006 0.006 -1.878 0.3891
51.50 20.04 I 0.025 0.023 -1.74¢% 0.794
51.49 17.13 | 0.053 D.D&7 -1.407 0.707
51.88 12.87 I 0.18% 0.147 -~-1.167 0.500
52.11 12.09 I 0.241 0.183 -1.021 0.4456
52.67 11.02 I 0.361 0.253 -0.739 0.354
53.27 10.36 I 0.487 0.313 -0.481 0.281
53.86 10.00 I 0.611 0.359 -0.253 0.223

|
52.0% 39.48 | 0.027 -0.014 -1.878 0.891
51.68 33.40 I 0.062 -0.015 -1.746 0.794
51.42 29.72 I 0.106 -0.006 -1.607 0.707
51.22 19.17 I 0.271 0.062 -1.167 0.500
51.31 16.97 I 0.333 0.092 -1.021 0.446
51.62 14.33 I 0.461 0.154 -0.739 0.354
52.06 12.84 | 0.588 0.212 -0.481 0.281
52.54 11.986 I 0.708 0.262 -0.253 0.223

AR ER SR T R T S S S S TSNS S SR ESITSIREIIRNIIEIREIRNSTXZ

SYSTEM COEFFICIENTS
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I C/L SYSTEM IN COMPLEX Z-PLAIN | C/L STEP RES. ! C/L FREQUENCY RES. I 0/L FREQUENCY RES.| SYSTEM COEFFICIENTS |
e T fmmmmmmmm e fmmm o Jmmmmmmmmmm e T {

| a w,T | POLES IERO | tp/T Mp(®) | WbT WeT M- (db) | PM GM(db) | A B c b

| =======z=x===F==== S-S -=SFSEI=FSSSCSSESSXESSSSSSSSSSSSE =S SSSSS=S=ESSSS=SSSSSSSS=SSSSSSSSSSSSSSSSSSSS=S=SS=S=SScSS=S=SSsS=S=S=====S===SS=======|
i ¢ =0.5 I
[ STty I
1 0 0.1 1 0.939+3j0.094 0.793 | 26.18 19.10 | 0.163 0.088 1.809 | 51.92 31.02 I 0.061 -0.048 -1.878 0.891 I
I 0 0.2 | D0.873+j0.177 0.626 | 13.09 19.10 | 0.327 0.176 1.797 | 50.%4 25.19 I 0.127 -0.079 -1.746 0.794

I 0 0.3 1 0.803+3j0.249 0.489 | 8.73 19.10 | 0.490 0.264 1.793 | 50.14 21.81 I 0.197 -0.096 -~-1.607 0.707 |
I 0 0.6 1| B.584+30.399 0.201 | 4.36 19.10 | 0.981 0.528 1.773 | 48.68 16.04 I 0.416 -0.084 -1.167 0.s00 |
1 0 0.7 1 0.511+3j0.430 0.133 1 3.74 19.10 | 1.145 0.616 1.765 | 48,45 14.73 I 0.489 -0.0&85 -1.021 0.446

| 0 0.9 | 0.370+j0.466 0.025 | 2.91 19.10 | 1.478 0.792 1.749 | 48.27 12.54 | 0.630 -0.016 -0.739 0.35¢4

| 0 1.1 | 0.240+j0.472 -0.053 | 2.38 19.10 | 1.82% 0.969 1.737 | 48.40 10.75 | D0.760 0.040 -0.481 0.281 |
I 0 1.3 | 0.126+j0.455 -0.111 | 2.01 19.10 | 2.204 1.148 1.738 | 48.76 .24 I D.874 0.097 -0.253 0.223

I | 1 I | I |
I 20 0.1 | 0.939+30.0%94 D.868 | 22.69 264.87 | 0.190 0.095 2.677 1 50.55 26.93 I 0.095 -0.083 -1.878 0.891 |
! 20 0.2 | 0.873+3j0.177 0.752 | 11.34 24.87 | 0.380 0.190 2.682 | 48.87 21.26 I 0.191 -0.1%4 -1.744 0.794

I 20 0.3 | 0.803+j0.24% 0.650 | 7.56 24.87 | 0.571 0.286 2.680 | 47.48 18.06 | 0.287 -0.187 -1.607 0.707

I 20 0.6 | 0.584+30,399 0.408 | 3.78 24.87 1 1.1%58 0.572 2.669 | Lo 867 12.82 I 0.562 -0.229 -1.167 0.500

| 20 0.7 | 0.511+jD.430 0.343 | 3.24 24.87 | 1.362 0.669 2.664 | 44.10 11.70 I 0.6466 -~0.221 -1.021 D.446

i 20 0.9 | D0.370+j0.45664 0.232 | 2.52 24.87 | 1.79& D0.862 2.658 | 43.39 9.89 |\ 0.800 -0.186 -0.73% 0.354

I 20 1.1 | D.240+3j0.472 0.141 | 2.06 24.87 | 2.317 1.060 2.660 | 43.20 8.49 I 0.932 -0.131 -0.481 D.281

I 20 1.3 | 0.126+30.455 0.066 | 1.75 24.87 | 9.990 1.263 2.676 | 6£3.63 7.35 I 1.039 -0.069 -0.253 0.223

| | I | I | I
| 40 0.1 | 0.939+j0.094 0.910 | 19.20 37.32 | 0.238 0.102 4.188 | 0/L Unstable I 0.140 -0.127 -1.878 0.891 |
| 40 0.2 | 0.873+430.177 0.828 | 9.60 37.32 | 0D.478 0.20S5 4.187 | 0/L Unstable I 0.275 -0.228 -1.746 D.794

I &40 0.3 | 0.803+30.249 0.752 | 6.40 37.32 | 0.722 0.308 4.184 | 0/L Unstable I 0.405 -0.305 -1.4&07 0.707

| 40 0.6 | D.584+30.399 0.557 | 3.20 37.32 | 1.508 0.618 4.170 | 38.82 10.32 I 0.751 -0.41% -1.147 0.500 |
I 40 0.7 1 0.511+30.430 0.501 | 2.7¢ 37.32 | 1.811 0.722 4.165 | 37.92 9.35 | 0.850 -0.426 -1.021 0.446 |
I 40 0.9 1 0.370+j0.466 0.398 | 2.13 37.32 | 2.691 0.934 4,157 | 36.70 7.84 | 1,021 -0.407 -0.739 0.354 |
I 40 1.1 | 0.2450+j0.472 0.308 | 1.75 37.32 | 9.990 1.151 4,156 | 36.14 65.71 | 1.156 -0.356 ~0.481 0.281 |
I 40 1.3 | 0.126+3j0.455 0.227 | 1.48 37.32 | 9.990 1.377 4,169 | 36.17 5.84 I 1,255 -0.285 -0.253 0.223 |
| | | I 1 | |
I 60 0.1 | 0.939+30.0%94 D.944 | 15.71 569.94 | 0.350 0.109 7.031 | 0/L Unstable I D.224 -0.211 -1.878 0.891 |
I &0 0.2 | 0.873+30.177 0.891 | 7.85 69.94 | 0.708 0.219 7.031 | 0/L Unstable I D.433 -0.386 -1.746 0.794

I 60 0.3 1 0.803+3j0.24%9 0.840 | 5.24 69.94 | 1.086 0.328 7.025 | 0/L Unstable | 0.627 -0.527 -1.607 0.707

I &0 0.6 | 0.584+30.399 0.700 | 2.62 69.9¢ 1 3.034 0.661 6.993 | 0/L Unstable I 1.108 -0.775% -1.167 0.500

I 60 0.7 1 0.511+50.430 0.656 | 2.26 69.94 | 9.990 0.773 6.978 | 0/L Unstable I 1.234 -0.810 -1.021 0.446

I &0 0.9 | 0.370+3j0.666 0.573 | 1.75% 49.96¢ | 9.990 1.002 6.948 | 0/L Unstable I 1.437 -0.823 -0.739 0.354

I 60 1.1 | D0.250+30.472 0.493 1 1.43 69.94 | 9.990 1.239 6.919 | 0/L Unstable I 1.578 -0.778 -0.481 0.281 |
I 480 1.3 1 0.126+3j0.455 0.416 1 1.21 69.9¢ | 9.990 1.487 6.899 | 26.11 £.23 I 1.662 -0.691 -0.253 0.223

1 1 I | I | |
| 80 0.1 | 0.939+j0.09% 0.979 | 12.22 246.33 | 0.922 0.115 14.803 | 0/L Unstable | 0.595 -D0.583 -1.878 0.38%91 |
| 80 0.2 | 0.873+30.177 0.958 | 6.11 246.33 | 2.178 0.229 14.801 | 0/L Unstable I 1.131 -1.083 -1.748 0.794 |
I 80 0.3 1 0.803+j0.249 0.937 | 4.07 246.33 | 9.990 0.344 14.785 | 0/L Unstable I 1.606 -1.506 -1.6407 0.707 1
| 80 0.6 | 0.534+j0.399 0.876 | 2.04 246.33 | 9.9%90 0.694 14.701 | 0/L Unstable I 2,681 -2.348 -1.167 0.500

! 80 0.7 | 0.511+30.430 0.855 | 1.75 246.33 | 9.990 0.813 14&4.662 | 0/L Unstable I 2.928 -2.504 -1.021 0.446 |
| 80 0.9 | D.370+30.466 0.812 | 1.36 246.33 | 9.990 1.056 14.567 | 0/L Unstable I 3.272 -2.658 -0.739 0.354 |
I 80 1.1 | 0.240+j0.472 0.767 | 1.11 246.33 | 9.990 1.309 14.455 | 0/L Unstable I 3.438 -2.638 -0.481 0.281 |
I 80 1.3 | 0.126+j0.455 0.719 | 0.94 266.33 | 9.990 1.579 14.330 | 0/L Unstable I 3.454 -2,483 -0.253 0.223 |
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>4 woT | POLES ZERO I tp/T Mp(%) | WbT HrT Mr (db) | PM GM(db) | A B c D
==================================================================================================================================
£€=0.6
-80 0.1 | 0.923+30.093 Out of Range I i |
~-80 0.2 | 0.844+3D0.171 Out of Range | | 1
-80 0.3 | 0.763+30.2356 Out of Range | | |
-80 0.6 | D0.,526+30.360 Out of Range | | |
-80 0.7 | 0.452+30.381 Out of Range I | |
-80 0.9 | 0.316+3j0.399 Qut of Range 1 | I
-80 1.1 | 0.199+30.391 Out of Range | | I
-80 1.3 | 0.101+jD.3463 Out of Range I I |
1 | I H |
-60 0.1 | 0.923+3j0.093 Qut of Range | | |
-60 D0.2 | 0.8%44+j0.171 Out of Range I 1 |
-60 0.3 | 0.763+30.236 Out of Range I I |
-60 0.6 | 0.526+3j0.360 Out of Range I ! 1
-60 0.7 | 0.452+j0.381 Out of Range I | I
-60 0.9 | 0.3146+3j0.399 OQut of Range [ ! |
-60 1.1 | 0.199+30.391 -5.36% | 3.22 11.20 | 1,658 0.774 0.452 | 57.47 5.87 I 0.125 0.670 -D.398 0.192
-60 1.3 | 0.101+30.363 ~2.489 | 2.73 11.20 | 1.779 0.788 0.250 | 58.38 7.15 I 0.270 0.6471 -0.202 0.142
| I I | I
=40 0.1 | 0.923+30.093 Out of Range I | |
=640 0.2 | D.844+j0.171 -3.143 | 15.98 9.50 | 0.287 0.132 D.354 | 58.09 17.34 I 0.013 D.041 -1.6487 D.741
-40 0.3 | 0.763+30.23% -1.860 | 10.65 9.50 | 0,429 0.197 0.344 | 57.96 15.53 I 0.039 0.073 -1.526 0.638
-40 0.6 | 0.526+3j0.360 -1.063 | 5.33 9.50 1 0.841 0.381 0.300 | 57.97 12,57 I D.172 0D.182 -1.053 0.407
-40 0.7 | 0.452+30.381 ~0.954 | 4.57 ?.50 1 0.973 0.437 0.281 | 58.05 12.02 | 0.228 0.217 -D.905 0.350
-40 0.9 | 0.316+30,.399 -0.795 | 3.5%5 9.50 | 1,225 0.541 0.262 | 58.28 11.29 I 0.34%9 0.277 -0.633 0.259
~40 1.1 | 0.199+j0.391 ~0.678 | 2.91 9.50 1 1.465 0.634 0.204 | 58.82 10.92 I 0.47% 0.321 -0.398 0.192
-40 1.3 | 0.101+j0.363 ~0.583 | 2.46 ?.50 1 1.6%96 D.71%9 0.175 | 58.72 10.82 I 0.594 0.346 -0.202 0.142
| I ! | I
-30 0.1 | 0.923+j0.093 0.381 | 30.22 9.58 | 0.145 0.067 0.375 | 5%.54 &1.26 I 0.023 -0.009 -1.846 0.861
-30 D.2 | 0.844+3j0.171 0.069 | 15.11 9.58 | 0.289 0.13¢% 0.37&¢ | 59.04 35.08 | 0.058 -0.004 -1.687 0.761
=30 0.3 | 0.763+30.236 -0.10%9 | 10.07 9.58 | 0.433 0.200 D.368 | 58.66 30.60 | 0.101 0.011 -1.52¢6 0.4638
-30 0.6 | D.526+30.360 -0.332 | 5.04 9.58 |1 0.857 0.393 0.342 | 58.04 17.76 I 0.266 0.088 -1.053 0.407
~30 0.7 | D.452+3j0.381 -0.359 | 4,32 %.58 | 0.995 0.455 0.331 | 57.96 16.30 I 0.328 0.118 -0.905 0.350
-30 0.9 | 0.316+3j0,399 -0.382 | 3.36 9.58 | 1.,26é& 0.575 0.308 | 57.91 14.46 I D.453 0.173 -0.633 0.25¢9
-30 1.1 | 0.199+3j0.391 ~0.380 | 2.75 .58 | 1.534% D.691 D.288 | 57.93 13.43 I 0.576 0.219 -D.398 0.192
-30 1.3 | N.101+3j0,363 -0.364 | 2.32 9.58 1 1.806 0.809 0.276 | 57.95 12.19 I 0.689 0.251 -0.202 0.142
! I | | !
-20 0.1 | 0.923+3j0.093 0.644 | 28.47 10.06 | 0.150 0.071 0.480 | 60.19 34,42 | 0.043 -0.029 -1.84% 0.861
=20 0.2 | 0.844+30.171 0.430 | 14.24 10.06 | 0,300 0.142 0.475 | 59.40 28.45 I 0.096 -0.040 -1.687 0.741
=20 0.3 | 0.763+j0.23% 0.260 | 9.49 10.06 | 0.450 0.212 0.471 | 58.76 24,91 I 0.151 -0.039 -1.526 0.638
-20. 0.6 | 0.526+j0.360 -0.033 | 4.75 10.06 | 0.8%96 0.422 0.455 | 57.54 18.51 I 0.343 0.011 -1.083 0.407
-20:- 0.7 | 0.452+30.381 -0.089 | 4.07 10.06 | 1.044% 0.490 0.448 | 57.31 16.96 I 0.409 0.036 -0.90S 0.350
-20 0.9 | 0.316+30.399 -0.163 | 3.16 10.06 | 1.340 0.627 0.436 | 57.02 14.32 1 0.538 0.088 -0.633 0.259
=20 1.1 | 0.199+30.391 -0.205 | 2.59 10.06 | 1.440 0.744 0.428 | 56.89 12.12 I 0.459 0.135 -0.398 0.192
-20 1.3 | 0.101+30.363 -0.226 1| 2.1%9 10.06 | 1.961 0.906 0.431 | 56.82 10.28 I 0.767 0.174 -0.,202 0.142
===-'"ﬁl‘tlI-lﬂ===.==l".“l¢"l==-===-'lﬂ:ﬂ‘.ﬂ‘ﬂ"3:-2:::-l====’ﬂ,‘-’3========ﬂIIS‘JZ:S-ISS‘::llIﬂﬂ::ﬂ:l:‘a:ﬂl'-:::ﬂ'l‘ﬂ”'--===="ﬂl
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a wT | POLES ZIERO | tp/T Mp(% |  WbT WeT Mr (db) | PM GM(db) | A B ¢ 0
=======================================================:============================:=============================================
£ =0.6
0 0.1 | 0.923+3j0.093 0.812 | 24.98 12.29 | 0.169 0.082 0.877 | &0.19 28.82 | 0.077 -D.062 -1.846 0.861
0 0.2 | D.B44+3j0.171 0.657 | 12.49 12.29 | 0.338 0,163 0.874 | 58,75 23.06 | D.156 -0.103 -1.687 D.741
0 0.3 | 0.763+j0.236 0.528 | 8.33 12.29 | 0.508 0.245 0.873 | 57.5&6 19.76 | 0.237 -0.125 -1.526 0.b538
G 0.6 | D.526+30.360 0.253 | 4.16 12.29 | 1.023 0.491 0.869 | 55,15 14.23 | D.474 -D.120 -1.053 0.407
0 0.7 | 0.452+j0.381 0.187 | 3.57 12.29 | 1.199 0.574 0.868 | 54.66 13.00 | 0.548 -0.103 -0.905 0.350
0 0.9 | 0.316+j0.399 0.084 | 2.78 12.29 | 1.565 0.741 D.874 | 54,00 11.02 | 0.6B4 -0.057 -~0.633 0.259
0 t.1 | 0.199+j0.391 0.008 | 2.27 12.29 | 1.948 0.913 0.883 | 53.70 9.45 | 0.801 -0.007 -0.398 0.19%
D 1.3 | 0.101+j0.363 ~0.046 | 1.92 12.29 | 2.489 1.095 0.910 | 53.b64 8.19 | 0.899 0.041 -0.202 0.142
| ! I I I
20 0.1 | D0.923+3j0.093 0.869 | 21.49 16.99 | 0.199 0,093 1.598 | 58.57 25.54 | D.111 -0.096 -1.846 0.861
20 D.2 | 0.B44+3j0D.171 0.754 | 10.75 16.99 | 0.400 0.18 1.598 |  S&6.41 19,94 | 0.219 -0.145 -1.687 0.741
20 0.3 | D.763+30.236 0.654 | 7.16 16.99 | 0.402 0.280 1.598 | 654,62 146.80 | D.323 -0.211 -1.526 D.638
20 0.6 | 0.526+3j0.340 0.415 | 3.8 16.99 | 1,232 0.563 1.601 | 51.01 11.76 | 0.4605 -0.251 -1.053 0.407
20 0.7 | 0.452+30.381 0.351 1 3.07 16.99 | 1.458 0.4658 1,604 | 50.26 10,71 | D.686 ~-0.241 -0.905 0.350
20 0.9 | 0.316+3j0.399 0.244 | 2.39 16.99 | 1,964 0.854 1.616 | 49,29 9.0 | 0.829 -0.202 -D.633 0.259
20 1.1 | D.199+30.391 0.158 | 1.95 16.99 | 2.7S0 1.057 1.640 |  48.90 7.80 | 0.943 -0.149 -0.398 0.192
20 1.3 | 0.101+j0.363 0.088 | 1.65 16.99 | 9,990 1.273 1.684 |  49.00 .84 | 1.031 -0.091 -0.202 0.142
I I I | I
40 0.1 | D.923+j0.093 D.906 | 18.00 27.07 | 0.252 D.104 2.875 | 0/L Unstable | ©0.155 -0.140 -1,846 0.861
40 0.2 | D.844+3j0.171 0.829 | 9.00 27.07 | 0.506 0.209 2.880 | 51.89 17,24 | D.300 -0.246 -1.687 0.741
40 0.2 | 0.763+3j0.236 0.743 | .00 27.07 | 0.745 0.314 2.880 | 49.46 14.27 | 0.435 =-0.323 -1.526 0.638
40 0.6 1 0.526+3j0.360 0.544 | 3,00 27.07 | 1.628 0.632 2.881 | 44.62 9.70 | 0.776 -D.422 -1.053 0.407
40 0.7 | 0.452+3j0.381 0.487 | 2.57 27.07 | 1.985 0.741 2.883 |  43.63 8.78 | 0.867 -0.422 -0.905 0.350
40 D.9 | D.316+j0.399 0.385 | 2.00 27.07 | 9.990 0.963 2.894 | 42,34 7.39 1 1.018 -~0.392 -0.433 0.259
40 1.1 | 0.199+3j0.391 0.296 1 1.64 27.07 | 9.990 1.196 2.919 |  41.87 6.39 1 1.129 -0.334 -0.398 0.192
40 1.3 | D.101+j0.3563 0.219 | 1.38 27.07 | 9.990 1.447 2.964 |  42.10 5.65 | 1.204 -0.264 -0.202 0.142
I I I i I
60 0.1 | 0.923+3j0.093 0.939 | 14.51 53.89 | D0.367 0.115 5,428 | 0/L Unstable | 0.237 -0.223 -1.846 0.861
60 0.2 | D.844+30.171 0.881 | 7.25 53.89 | 0.745 0.230 5.4256 | 0/L Unstable | 0.453 -0.399 -1.487 0.741
60 0.3 | D.763+j0.236 0.827 | 4.84 53.89 | 1.148 D.346 5,422 | 0/L Unstable | D0D.646 -0.534 -1.526 0.638
60 0.6 | 0.524+3j0.360 0.677 | 2.42 53.89 | 9.990 0.499 5.403 | 0/L Unstable | 1.097 -0.743 -1.053 0.407
60 0.7 | D.452+3D.381 0.631 | 2.07 53.89 | 9,990 0.819 5.395 | 0/L Unstable | 1.208 -D.763 -0,905 0.350
60 0.9 | D.316+3j0.399 0.544 | 1.61 53.89 | 9.990 1.068 5.383 | 0/L Unstable | 1.374 -0.748 -0.4633 0.259
40 1.1 | D.199+j0.391 0.462 | 1.32 53.89 | 9.990 1.332 5,379 |  31.24 4,79 | 1.478 -D.683 -0.398 0.192
60 1.3 | D0.101+j0.343 0.385 | 1.12 53.89 | 9.990 1.622 5.393 |  31.45 £,27 | 1.529 -D.588 -0.202 0.142
I I I I I
80 0.1 | 0.923+30.093 0.976 | 11.02 201.62 | 0.947 0.123 12.790 | 0/L Unstable | 0.602 -0.588 -1.846 0.861
80 0.2 | 0.844+30.174 0.952 | 5.51 201.62 | 2,277 0.2+7 12.781 | 0/L Unstable | 1.126 ~1.073 -1.687 0.741
80 0.3 | 0.763+30.236 0.929 | 3.47 201.482 | 9.990 0.371 12.745 | 0/L Unstable | 1.575 =-1.466 =-1.526 0.638
80 0.5 | D.526+j0.3560 0.859 | 1.84 201.62 | 9.990 0.753 12.681 | 0/L Unstable | 2,516 =-2.162 -1.053 0.407
80° 0.7 | 0.452+3j0,381 0.836 | 1.57 201.62 | 9.990 0.884 12.641 | 0/L Unstable | 2,709 -2.264 -0.905 0.350
80 0.9 | 0.316+30.399 0.787 | 1.22 201.62 | 9.990 1.157 12.549 | O/L Unstable | 2.945 -2.319 -0.633 0.259
80 1.1 | 0.199+30.391 0.737 | 1.00 201.62 | 9.990 1.4%1 12.442 | 0/L Unstable | 3,014 -2.222 -0.398 0.192
80 1.3 | 0.101+30.343 0.682 | 0.85 201.62 | 9.990 1.782 12.328 | 0/L Unstable | 2.980 -2,020 -0.202 0.142
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I C/L SYSTEM IN COMPLEX Z-PLAIN | C/L STEP RES.
i fmmmmmmmemmmmeee

-20 1.3 | 0.075+30.269 -0.123 | 2.09 5.31 | 2.225 0.677 0.077 | 59.77 8.60 I 0.827 0.10¢ -D.150 0.078
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| a weT POLES IERO | tp/T Mp(%)

[ ==-========================================================= ————————————————————————————

| |
| i
I -80 0.1 | 0.902+30.091 Qut of Range ! | i |
I -80 0.2 | 0.806+3j0.163 Out of Range | 1 I I
| -80 0.3 | D.712+3j0.220 Out of Range ! | I j
I -80 0.6 | 0.458+30.314 Out of Range ) I | |
| -80 0.7 | 0.385+j0.324 Out of Range 1 | | I
I -80 0.9 | 0.257+j0.324% Out of Range | | 1 I
I -80 1.1 1| 0.15%4+3j0.303 Out of Range ! | I |
I -80 1.3 | 0.075+30.269 Out of Range 1 | | |
1 | ! ! I ! |
| =60 0.1 | D.902+j0.091 Out of Range | I | I
I =60 0.2 | D.806+j0.143 Out of Range I | I I
I =60 0.3 | D0.712+30,220 Out of Range | ! | [
I =60 0.6 | 0.458+j0.314% Out of Range ! | I |
I ~60 0.7 | 0.385+j0.324 -8.110 | 4.88 5.03 + 1.027 0.226 D.012 | 60.41 8.74 | 0.053 0.430 -0.770 0.254 |
I =60 0.9 | 0.257+j0.32¢% -2.625 | 3.79 5.03 1 1.238 Mono Decreasing | &0.94 8.76 I 0.181 0.476 -0.515 0.171 |
I -60 1.1 | 0.154+30.303 -1.518 1 3.10 5.03 | 1.410 Mono Decreasing | 61.43 .00 I 0.321 0.487 -D.309 0.116

I -60 1.3 | 0.075+j0.2469 -1.025 | 2.63 5.03 | 1.563 Mono Decreasing | &61.81 9.43 I 0.458 0.470 -0.150 0.078

I | I I I | 1
| -40 0.1 | 0.902+3j0.091 0.190 | 30.&% 4,62 | 0.142 0.022 0.000 | 65.38 42.91 I 0.022 -0.004 ~-1.804 0.822

| -40 0.2 | 0.806+j0.163 -0.123 | 15.32 4.62 | 0.28% 0.042 0.003 | 64.68 33.40 I 0.057 0.007 -1.614 0.676

i =40 0.3 | 0.712+30.220 -0.273 | 10.21 £.62 | 0.424 0.059 0.002 | 64,12 24.48 I 0.103 0.028 -1.424 0.555 |
| -40 0.6 | 0.458+j0.314% -0.406 | S5.11 4.62 | D.837 0.067 0.000 | 62.97 17.04 I 0.279 0.113 -0.917 0.308

I -40 0.7 | 0,385+3j0.324 ~0.410 | 4.38 £4.62 | 0.971 0.029 0.000 | 62.71 16.00 I 0.343 0.141 -0.770 0.254

I -40 0.9 | D.257+j0.324 -0.395 1 3.40 4,62 | 1.234 Mono Decreasing | 62.28 14.73 I D.471 D.186 -0.515 0.171 |
I -40 1.1 | 0.154+30.303 -0.365 | 2.79 4.62 | 1.498 Mono Decreasing | 61.90 132.61 I 0.591 0.216 -0.309 0.116 |
I ~40 1.3 | 0.075+3j0.26%9 -0.328 | 2.36 4.62 1 1.777 Mono Decreasing | 61.52 11.14 I D.699 0.229 -0.150 0.078 |
I | | | 1 | I
I -30 0.1 | 0.902+jD.0%1 0.611 | 28.90 4£.85 | 0.147 0.035 D.017 | 66.76 34.04 I 0.046 -0.028 -1.804 0.822

| -30 0.2 | D.80&+j0.1463 0.356 | 14.45 £4.85 | 0.295 0.0&9 0.016 | 65.74 28.03 I 0.100 -0.03&6 -1.611 0.676

I =30 0.3 | 0.712+j0.220 0.183 | 9.63: 4.85 | 0.441 0.102 0.015 | 64,88 24.43 I 0.161 -0.029 -1.42¢ D.555 |
| =30 0.4 | 0.458+j0.314 -D.086 | %£.82 £.85 | 0.879 0.194 0.012 | 63.04 17.79 I 0.361 0.031 -0.917 0.308 |
| =30 0.7 | 0.385+30.32% -0.130 | 4.13 4.85 | 1,025 0.222 0.011 | 62.59 16.18 I 0.428 0.056 -0.770 0.254 |
| =30 0.9 | 0.257+30.324 -0.182 | 3.21 &.85 | 1.319 0.279 0.010 1| 61.87 13.46 I 0.556 0.101 -0.51% 0.171 !
I =30 1.1 | DB.154+j0.303 -0.203 | 2.63 4.85 1 1.626 0.345 0.011 | 561.28 11.29 I 0.671 0.136 -0.309 0.146

I =30 1.3 | 0.075+3j0.2569 -0.207 | 2.22 4.85 I 1.970 0.438 0.014 1 60.75 9.57 I 0.770 0.159 -0.150 0.078 |
! I | 1 I | |
! =20 0.1 | 0.902+3j0.091 0.726 | 27.45% 5.31 | 0.15%% 0.048 0.0s5 | 67.52 30.46 I 0.065 -0.047 -1.804 0.822

| -20 0.2 | 0.806+j0.163 0.522 | 13,58 5.31 | 0.3114 0.0%9% 0.058 | 66.17 24.61 I 0.135 -0.071 -1.611 0.676

I =20 0.3 | 0.712+3j0.220 0.368 | 9.05 5.31 | 0.447 D.142 0.058 | 65.03 21.20 I 0.208 -0.076 -1.424 0.5585

| -20 0.6 | D.458+3j0.314 0.084 | 4,53 5.31 | 0.939 0.284 0.056 | 62.57 15,27 | 0.427 -0.036 -0.917 0.308 |
I =20 0.7 | 0.385+j0.324% 0.027 | 3.88 5.3 | 1.098 0.332 0.05&6 | 61.99 13.92 I 0.497 -0.014 -0.770 0.256 |
I -20 0.9 | 0.257+30.324 -0.051 | 3.02 5.31 | 1.428 0.431 0.058 | 61.05 11.70 I 0.625 0.032 -0.51S 0.171 |
1 <20 1.1 | 0.154+3j0.303 -0.098 | 2.47 5.31 F 1.787 0.543 0.064 | 60.3% 9.98 I 0.735 0.072 -0.309 0.114

| |
| |
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I C/L SYSTEM IN COMPLEX Z-PLAIN I C/L STEP RES. | C/L FREQUENCY RES. | 0/L FREQUENCY RES.| SYSTEM COEFFLCIENTS |
R et LSRR fmmmm o Jmmm o R TR, R e i

1 oa w,T | POLES ZERO | tp/T Mp(% |  WbT WeT Mc(db) | PM GM(db) | A 8 c D I
}===============================:===================:==:===========================================================================|
I € =0.7 1
I =SsS==s==ss |
| 0 0.1 | 0.902+j0.091 0.818 | 23.66 7.02 | 0.179 0.070 0.280 | 67.56 24.60 I 0.098 -0.080 -1.804 0.822 |
| 0 0.2 | 0.806+30.163 0.668 | 11.83 7.02 | 0.35%9 0.140 0.280 | 65.55 20.93 I 0.194 -0.130 -1.611 0.676 |
| 0 0.3 | 0.712+j0.220 0.564 | 7.89 7.02 | 0.540 D.211 0.281 | 63.88 17.73 I 0.288 -0.157 -1.424 0.555 |
I 0 0.6 | D.458+3j0.314 0.277 | 3.94 7.02 | 1.100 0.426 0.288 | 60.37 12.50 I 0.542 -0.150 -0D.917 D.308 |
I 0 0.7 | 0.385+3j0.324 0.214 | 3.38 7.02 | 1,298 0.500 0.293 | 59.58 11.39 I 0.615 -0.132 -0.770 0.25&4 |
| 0 0.9 | 0.257+j0.32¢ 0.116 | 2.63 7.02 1 1.72% 0.655 0.307 | 58,43 9.64 I D0.743 -0.086 -0.515 0.171 |
| 0 1.1 | 0.154+j0.303 0.046 | 2.15 7.02 | 2.276 0.825 0.331 | 57.69 8.34 I D0.846 -0.039 -0.309 0.116 |
I 0 1.3 | D.D75+30.269 -0.004 | 1.82 7.02 1 9.990 1.018 0.371 I 57.25 7.35 I 0.925 0.003 -0.150 0.078 |
1 | | | 1 | |
I 20 0.1 | 0.902+j0.091 0.864 | 20.17 10.52 | 0.213 0.089 0.776 | 65,81 24.01 i 0.131 -0.113 -1.804 0.822 |
I 20 0.2 | 0.806+j0.163 0.746 | 10.09 10.52 | 0.428 0.179 0.781 1| 63.09 18.50 I 0.254 -0.189 -1.611 0.676 1
I 20 0.3 | 0.712+30.220 0.643 | 6.72 10.52 | D.646 0.268 0.783 | 60.87 15.45 I 0.368 -0.237 -1.424 0.555 1|
I 20 0.6 1 0.458+3j0.314 0.403 | 3.36 10.52 1 1.346 0.544 0.799 | S&.42 10.48 I D0.65%6 -0.26k -0.917 0.308 |
I 20 0.7 | 0.385+j0.324 0.341 | 2.88 10.52 | 1.610 0.640 0.808 | 55.50 ?.71 | 0.733 -0.250 -D.770 0.254 |
I 20 0.9 | 0.257+3j0.324 0.237 | 2.24 10.52 | 2.275 0.839 0.835 | 54.29 8.24 | 0.861 -0.204 -0.515 0.171 |
I 20 1.1 | 0.154+30.303 0.156 | 1.83 10.52 | 9.990 1.056 D.878 | 53.73 7.19 I 0.956 -0.14%9 -0.309 0.116 |
I 20 1.3 | 0.075+30.269 0.093 | 1.55 10.52 | 9.990 1.301 0.943 | 53.67 6.44 ! 1.023 -0.095 -0.150 0.078 |
I I i I | | I
I 40 0.1 | 0.902+30.091 0.898 | 16.68 18.17 | 0.269 0.107 1.782 | 61.74 21.58 I 0.174 -0.156 -1.804 0.822 |
I 40 0.2 | 0.806+j0.163 0.806 | 8.34 18.17 | 0.543 0.214 1.783 | 58.21 16.25 i 0.331 -0.267 -1.6114 0.676 |
| 40 0.3 1 0.712+j0.220 0.722 | 5.56 18.17 | 0.82%4 0.321 1.786 | 55.40 13.37 I 0.473 -~0.3%41 -1.624 0.555 |
I 40 0.6 | 0.458+3j0.314 0.513 I 2.78 18.17 | 1.807 0.653 1.806 | 50.02 ?.03 ! 0.805 -0.413 -D.917 0.308 |
I 40 0.7 | 0.385+j0.324 0.455 | 2.38 18.17 | 2.276 0.748 1.815 | 48.99 8.19 I 0.887 -0.404 -0.770 0.254 |
I 40 0.9 | 0.257+30.324 0.353 | 1.85 18.17 | 9.990 1.009 1.847 | 47.78 6.96 I 1.045 -0.358 -0.515 0.171 |
I 40 1.1 | 0.1564+370.303 0.266 | 1.52 18.17 | 9.990 1.272 1.898 | £7.52 6.12 I 1.100 -0.293 -0.309 0.116 |
I 40 1.3 | 0.075+30.249 0.193 | 1.28 18.17 | <9.9%0 1.575 1.978 | 48.01 5.55 I 1.151 -0.223 -0.150 0.078 |
| 1 I I | | I
I &0 0.1 | D.902+;0.091 0.930 | 13.19 39.20 | 0.390 0.123 3.959 | 0/L Unstable | 0.255 -0.237 -1.804 0.822 |
I 60 0.2 | 0.806+30.163 0.845 I 6.59 39.20 | 0.794 0.247 3.960 | 0/L Unstable I D.477 -0.413 -1.611 0.676 |
I 60 0.3 | D.712+30.220 0.804 | 4.40 39.20 | 1,231 0.372 3.959 | 0/L Unstable I 0.670 -0.538 -1.42% 0.555 |
I 60 0.6 | 0.458+30.314 0.639 | 2.20 39.20 | 9.990 0.756 3.958 | 0/L Unstable I 1.085 -0.693 -0.917 0.308 |
I 60 0.7 | D.385+j0.324 0.58%9 | 1.88 39.20 | 9.990 0.891 3.960 | 38.20 6.37 I 1.177 -0.693 -0.770 0.254 |
I &0 0.9 | 0.257+30.324 0.496 | 1.47 39.20 | 9.990 1.175 3.972 | 37.00 5.41 I 1.304 -0.448 -0.515 0.171 |
I 60 1.1 | 0.154+3j0.303 D.411 | 1.20 39.20 | 9.990 1.4691 4.002 | 36.95 4£.79 I 1.371 -0.564 -0.309 0.116 |
I 60 1.3 | 0.075+j0.269 0.333 1 1.01 39.20 | 9.998 1.869 4.059 | 37.91 4. 51 I 1.392 -0.463 -0.150 0.078 i
I I | | I 1 |
I 80 0.1 | 0.902+j0.091 0.971 | 9.70 158.94 | 0.979 0.137 10.800 | 0/L Unstable I 0.611 -0.593 -1.804 0.822 |
I 80 0.2 | 0.806+30.163 0.942 | 4.85 158.94 | 2.426 0.275 10.790 | 0/L Unstable I 1.121 -1.056 -1.611% 0.676 |
I 80 0.3 | 0.712+30.220 0.914 | 3.23 158.94 | 9.990 0.414 10.774 | 0/L Unstable I 1.837 -=1.406 -1.42% 0.555 |
| 80 0.6 | 0.458+j0.314 0.831 | 1.62 158.94 | 9.990 D.846 10.688 | 0/L Unstable I 2.320 -1.928 -0.917 D.308 |
I 80 0.7 | 0.385+j0.324 0.803 | 1.39 158.94 | 9.990 0.999 10.669 | 0/L Unstable I 2,455 -1.97t -0.770 0.256¢ |
| 80" 0.9 | 0.257+30.324 0.746 | 1.08 158.94 | 9.990 1.326 10.560 | 0/L Unstable I 2.581 -1,925 -0.515 0.171 |
I 80 1.1 | 0.154+30.303 0.685 | 0.88 158.94 1 9.990 1.703 10.4864 | 0/L Unstabdle | 2.565 -1.758 -0.30%9 0.116 |
{ 80 1.3 | 0.075+30.26%9 0.621 | 0.75 158.94 | 9.990 2.192 10.37¢ | 0/L Unstable | 2,453 -1,525 -0.150 0.078 |
I I
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POLES

0.871+3j0.087
D.751+30.152
0.640+j0.198
0.371+30.254%
0.301+30.253
0.187+3j0.236
0.105+j0.206
D.047+30.170

D.871+3j0.087
0.751+30.152
0.640+3j0,198
0.371+j0.254%
0.301+j0.253
0.187+j0.236
0.105+30.206
0.047+3j0.170

0.871+3j0.087
0.751+3j0.152
0.640+3j0.198
0.371+3j0.254
0.301+3j0.253
0.187+3j0.236
0.105+j0.206
0.047+30.170

0.871+3j0.087
0.751+3j0.152
0.640+jD.198
0.371+3j0.25%
0.301+ 30,253
0.187+j0.236
0.105+30.206
0.047+3j0.170

0.871+3j0.087
0.751+j0.152
0.540+j0.198
D.371+j0.254
0.301+j0.253
0.187+30.236
0.105+3j0.2056
0.047+30.170

C/L STEP RES.

ZERO | tp/T Mp(%
Qut of Range
Out of Range
OQut of Range
Qut of Range
OQut of Range
Out of Range
Out of Range
Out of Range
I
Out of Range
Out of Range
-9.209 | 10.87 1.55%
~1.426 | S.44 1.55
-1.124 | 4,66 t1.55
-0.772 | 3.62 1.55
-0.565 | 2.96 1.55
-0.424 | 2.51 1.85
I
0.5465 1 29.12 1.61
0.2992 | 14.56 1.61
0.128 | 9.71 1.61
-0.106 | 4.85 1.61
-0.137 | 4.16 1.61
-0.165 | 3.24 1.61
-0.168 | 2.4% 1.61
=0.457 | 2.24 1.61
1
0.691 | 27.38 1.80
0.472 | 13.69 1.80
0.313 | 9.13 1.80
0.047 | 4,54 1.80
0.000 I 3.91 1.80
~0.059 | 3.04 1.80
-0.087 | 2.49 1.80
-0.096 | 2.11 1.80
|
0.750 | 25.63 2.09
0.560 | 12.82 2.09
0.414 | 8.54 2.09
0.143 | 4,27 2,09
0.089 | 3.56 2.09
0.015 | 2.85 2,09
-0.029 | 2.33 2.09
-0.052 1 1.97 2.0%9

0.440
0.838
0.958
1.185
1.407
1.649

0.152
0.303
0.45%
0.907
1.061
1.37%9
1.734
2.195

0.161
0.322
0.483
0.977
1.149
1.517
1.957
2.679

0.172
0.344
0.518
1.059
1.252
1.680
2.247
9.990

Mono
Mano
Mono
Maono
Mono
Mono

Mono
Mono
Mono
Mono
Mono
Mono
Mono
Mono

Mono
Mono
Mono
Mono
Mono
Mono
Mono
Mono

Mono
Mono
Mono
Mono
Mono
Mono
Mono
Mono

Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing

Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing

Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing

Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing
Decreasing

-1.281
-0.7¢62
-0.602
-0.374
-0.209
-0.095

=1.74&2
-1.501
-1.281
=0.742
-0.602
-0.374
-0.209
~0.09S

-1.742
-1.501
-1.281
~0.742
-0.602
-0.374
-0.209
-0.09%

-1.742
-1.501
-1.281
-0.742
-0.602
-D.374
-0.209

0.449
0.202
0.155
0.091
0.053
0.031

0.766
0.587
0.449
0.202
0.155
0.091
0.053
0.031

0.766
0.587
D.449
0.202
0.155
0.091
0.083
0.031

0.766
0.587
D.449
0.202
0.155
0.091
0.053

0/L FREQUENCY RES.
l ___________________

PM GM(db) | A B
=__———========================================== l

|

|

|

I

|

1

|

|

|

|

|
65.45 13.30 I 0.017 0.152
64.90 11.93 I 0.190 0.270
56.79 11.80 I 0.260 0.293
64.60 11.85 I 0.404 0.312
64,34 12.27 I 0.539 0.30s
63.95 11.98 I 0.658 0.279

I
71.99 32.28 I 0.056 -0.032
70.59 26.25 I 0.122 -0.036
69.40 22.61 I 0.193 -0.0C2%
66.71 15.88 I D.416 0.044
66.01 14.29 I 0.487 0.0&6
64.80 11.72 I 0.615 0.101
63.75 9.82 I 0.723 0.121
62.80 8.46 | 0.810 0.127

|
73.28 28.73 I 0.079 ~0.054
71.49 22.92 I 0.161 -0.076
69,97 19.54 | 0.245 -0.077
66.58 13.71 | 0.483 -0.022
65.68 12.42 I 0.553 0.000
64,23 10.37 1 0.677 0.040
63.0¢6 8.88 I 0.777 0.067
62.08 7.81 I 0.85% 0.082

|
73.95 26.68 I 0.097 -0.073
71.81 20.99 I 0.194 -0.109
70.00 17.75 I 0.288 -0.119
66.01 12.40 { 0.537 -0.077
65.03 11.26 I 0.607 -0.05%4
63.44 ?.50 | 0.727 -0.011
62,22 8.25 | 0.821 0.023
61.27 7.36 ! 0.891 0.046

-0.09s

0.031
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a w,T POLES ZIERO | tp/T Mp(% | WbT HWeT Mr(db) 1 PM GM(db) | A B C D
==================================================================================================================================I
§ =0.8 |
======s==== 1
0 0.1 | 0.871+j0.087 0.812 | 22.14 3.13 | 0.199 0.033 0.006 | 73.93 24 .07 i 0.129 -0.105 -1.742 0.766 |
0 0.2 1 0.751+j0.152 0.658 | 11.07 3.13 | 0,400 0.067 0.007 | 71.14 18.56 | 0.249 -0.164 -1.501 0.587 |
0 0.3 | 0.640+j0.198 0.531 | 7.38 3.13 | 0.404 0.104 0.008 | 68.83 15.50 i 0.360 -0.191 -1.2381 0.469 |
0 0.6 1 D.371+j0.254% 0.269 | 3.69 3,13 1 1.262 0.235 0.012 | 64.03 10.72 I 0.629 -0.169 -0.742 0.20z2 |
0 0.7 | 0.301+30.253 0.209 I 3.16 3.13 1 1.512 0.290 0.015 | 62.95 ?.76 I 0.699 -0.146 -0.602 0.155 |
0 0.9 | 0.187+j0.236 0.119 | 2.46 3.13 | 2.135 0.6426 0D.025 | 61,32 8.34 | 0.813 -0.097 -0.37% 0.091
0 1.1 | 0.105+j0.206 0.057 1 2.01 3.13 | 9.990 0.607 0.042 1§ 60.23 7.34 | 0.895 -0.051 -0.209 0.053 |
0D 1.3 | 0.047+3j0.170 0.017 1 1.70 3.13 | 9.990 0.850 0.072 | 59.53 6.70 | 0.953 -0.016 -D.095 0.031 |
I | I I | [
20 0.1 | 0.871+j0.087 0.849 | 18.65 5.31 | 0.237 0.077 0.203 | 72.22 22.13 I 0.161 -0.137 -1.742 0.766
20 0.2 | 0.751+3j0.152 0.720 1 9.33 5.31 | 0.477 0.155 0.208 | &68.79 16.77 | 0.305 -0.219 -1.504 0.587
20 0.3 | D.640+3j0.198 0.610 1 6.22 5.31 I 0.723 0.235 0.212 | 66.04 13.886 I D.432 -0.263 -1.281 0.449 |
20 0.6 | 0.371+j0.254 0.362 1 3.11 5.31 I 1.562 0.489 0.234 | 60.70 9.48 I 0.7219 -0.261 -0.742 0.202 i
20 0.7 | 0.301+30.253 0.301 | 2.6&6 5.31 I 1.920 0.583 0.247 | 59.63 8.64 | 0.791 -0.238 -0.602 0.155 i
20 0.9 | 0.187+30.236 0.203 1 2.07  S5.31 I 2.990 0.792 0.281 | 58.22 7.44 | 0.899 -0.182 -0.374 0.091
20 1.1 | D0.105+j0.206 0,130 | 1.70 5.31 I 2.990 1.044 0.334 57.52 6.65 I 0.970 -0.126 -0.20% 0.053
20 1.3 | 0.047+30.170 0.077 | 1.43 5.31 1 9.990 1.365% D.411 | 57.28 6.15 | 1,018 -~0.078 -0.095 0.031
| I I | I I
40 0.1 | 0.871+30.087 0.880 | 15.16 10.37 | 0.297 0.108 0.841 | 68,22 20.18 I 0.203 -0.178 ~-1.742 0.746 1
40 0.2 | 0.751+j0.152 0.774 | 7.58 10.37 | 0.601 B0.217 0.847 | 64,05 14.99 I 0.377 -0.292 -1.501 0.587
40 0.3 | 0.640+j0.198 0.479 | 5.05 10.37 | 0.918 0.327 0.853 | 60.83 12.24 I 0.526 -0.357 -1.281 0.449 |
40 0.6 | 0.371+3j0.254 0.453 | 2.53 10.37 | 2.158 0.677 0.890 | 55.08 8.26 I 0.842 -0.382 -0.742 0.202 i
40 0.7 | 0.301+j0.253 0.393 | 2.17 10.37 | 9.990 0.804 0.911 | 54.11 7.54 I 0.912 -0.359 -0.602 0.155 |
40 0.9 | 0.187+j0.236 D.2914 | 1.68 10.37 | 9.990 1.083 B.966 | 63.14 6.54 I 1.011 -0.294 -0.374 0.091 |
40 1.1 | 0.105+j0.206 0.210 | 1.38 10.37 | 9.9%90 1.417 1.048 | 5§3.13 5.92 | 1.068 -0.224 -0.209 0.083 |
40 1.3 | D0.047+30.170 D.145 1 1.17 10.37 | 9.9%0 1.860 1.165 | 53.71 5.56 I 1.096 -0.159 -0.095 0.031 |
| I | I | 1
60 0.1 | 0.871+30.087 B0.913 | 11.67 25.31 I 0.423 0.136 2.531 | 0/L Unstable | 0.281 -0.256 -1.742 D.766
60 0.2 | 0.751+j0.152 0.834 | 5.84 25.31 | 0.866 0.273 2.533 | 0/L Unstable | 0.513 -0.428 -1.501 D.587 |
60 0.3 | 0.640+30.198 0.760 1 3.89 25.31 I 1.359 0.412 2.538 | 50.79 10.12 | 0.703 -0.534 -1.281 0.44%
60 0.6 | 0.371+j0.254% 0.569 | 1.9% 25.31 | 9.990 0.853 2.566 | 46.73 5.68 1 1.069 -0.608 -0.742 0.202
60 0.7 | D.301+j0.253 0.514 1| 1.67 25.31% I 9.990 1.013 2.583 | 43,89 6.10 I 1,138 -0.585 -0.602 0.455 |
60 0.9 | 0.187+30.23% 0.414 | 1.30 25.31 I 9.990 1.371 2.633 | 43,44 5.34 I 1.224 -0.505 -0.374% 0.091 |
60 1.1 | 0.105+30.206 D.326 | 1.06 25.31 I 9.990 1.820 2. 714 | L4 .37 4,92 { 1,251 -0.408 -0.209 0.053 |
60 1.3 | 0.047+j0.170 0.249 1 0.90 25.31 1| 9.990 2.560 2.837 | bb .24 4,72 I 1.248 -0.311 -0.095 0.031 |
[ I | | i I
80 0.1 | 0.871+j0.087 0.961 | 8.18 116.09 | 1.027 0.161 8.632 | 0/L Unstable I 0.625 -0.600 -1.742 0.766 1
80 0.2 | 0.751+50.152 0.923 | 4,09 116.09 | 2.735 0.323 8.622 | O0/L Unstable I 1.112 -1.027 -1.501 0.587 |
80 0.3 | 0.440+30.198 0.886 1| 2.73 116.09 | 9.990 0.488 8.606 | 0/L Unstable I 1.483 -1.314 -1.281 0.449 |
80 0.6 | 0.371+30.254 0.777 1| 1.36 116.09 | 9.990 1.018 8.522 | 0/L Unstable I 2.068 -1.608 -0.742 0.202 |
80. 0.7 | 0.301+30.253 0.741 1 1.17 116.09 | 9.990 1.215 8.487 | 0/L Unstable I 2.136 -1.583 -0.402 0.155 |
80. 0.9 | 0.187+30.236 0.667 | 0.91 116.09 | 9.990 1.671 8.412 | 0/L Unstable I 2.151 -1.435 -0.374 0.091 |
80 1.1 1 0.105+30.206 0.591 1 0.74 116.09 | 9.990 2.332 8.346 | 0/L Unstable I 2.061 -1.217 -0.209 0.053 |
80 1.3 |1 0.047+30.170 0.512 | 0.463 116.09 | 9.990 Mono Increasing | 0/L Unstable I 1.948 -0.982 -0.09S 0.031 |
EEEIEEEREsssESCESSSEEEASEIESISESEECCCN SIS EESSCEEEEEEEYASSCSCNESEESEESSXESEEIEEESESEEEEEIEISCXIIAIESCEEESsRsEIAZZSSasEsESsSSaEss|
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I C/L SYSTEM IN COMPLEX Z-PLAIN | C/L STEP RES., | £/t FREQUENCY RES. ! D7/L FREQUENCY RES.! SYSTEM COEFFICIENTS

= e e e e e e = e SR [EE=-EEaEEE = = =t R = o = = = [ e L T R et e e L L
| a wT POLES IERO |  tp/T Mp(% | WbT WeT Mr (db) | PM GM(db) | A B c D

1 Rt 2t s s i ittt i it it it P s A P T 2 8 k22 2 - -+ -2 2 32 2 2 F 23 5 o & 2 F 3 S 12 a3t b2 T
i £.=0.9

| =SS oEoron

| -80 0.1 | 0.809+j0.081 Qut of Range 1 1 !

| -80 0.2 | 0.649+j0.131 Out of Range | | |

| -80 0.3 | 0.514+3j0.159 Out of Range | | 1

| -80 0.6 | D.239+j0.164% Out of Range | | 1

| -80 0.7 | 0.180+j0.152 Out of Range 1 I |

| -80 0.9 | 0.097+30.122 -2.949 | 3.80 0.22 | 1.4Z24 Mono Decreasing | 63.25 8.21 I 0.210 D0.620 -0.194 0.024
| -80 1.1 | D.047+30.092 -1.124 1 3.11 0.22 1 1.430 Mono Decreasing | 64,31 9.465 | 0.432 0.485 -0.094 0.011
I -80 1.3 | 0.018+30.066 -0.591 | 2.63 0.22 | 1.578 Mono Decreasing | b4.66 11.52 I 0.609 0.360 -0.037 0.005S
| I | | I I

| -60 ©0.1 | 0.809+3j0.081 D.141 | 30.69 0.15 | 0.173 Mono Decreasing | 73.77 35.35 I 0.050 -0.007 -1.619 0.662
| =60 0.2 | 0.649+30.131 ~0.138 | 15.35 0.15 | 0.344 Mono Decreasing | 72.23 28.50 I D.12%4 0.017 -1.297 0.438
| -60 0.3 | 0.514+j0.15% -0.243 | 10.23 0.15 | 0.514 Mono Decreasing | 70.94 23.48 I 0.210 0.051 -1.D28 0.290
I =60 0.6 | 0.239+jD.16% -0.268 1 5.12 0.15 1 1.020 Mono Decreasing | 68.02 14.76 I 0,478 0.128 -0.4738 0.084
| -60 0.7 | 0.180+4j0.152 -0.248 | 4.38 D.15 | 1.193 Mono Decreasing | 67.22 12.84 I 0.557 0.138 -0.361 D.056
| -60 0.9 | 0.097+j0.122 -0.201 | 3.41 0.15 | 1.578 Mono Decreasing | 65.74 10.12 1 0.691 0.139 -0.194% 0.024
| -60 1.1 | 0.047+j0.0%92 -0.155 | 2.79 D.15 | 2.099? Mono Decreasing | 64,37 8.45 I 0.794 0.123 -0.094 0.011
| -60 1.3 | 0.018+3j0.066 -0.116 | 2.38 0.15 | 9.990 Mono Decreasing | 63.1¢6 7.645 I 0.8548 0.100 -0.037 0.005%
I I I | | I

| -40 0.1 | 0.809+3j0.081 D.649 | 27.20 0.21¢ 1| D.195 Mono Decreasing | 77.94% 24.73 | 0.122 -0.080 -1.619 0.662
| -40 0.2 | 0.649+jD,.131 0.416 | 13.60 0.21 | 0.391 Mono Decreasing | 75.17 19.09 | 0.241 -0.100 -1.297 0.438
I =40 0.3 1 0.514+30.15%9 0.258 | 9.07 0.21 | 0.591 Mono Decreasing | 72.85 15.89 | 0.3%52 -0.091 -1.028 0.290
| -40 0.6 | 0.239+j0.164 0.029 | 4.53 0.21 | 1.236 Mono Decreasing | 67.80 10.72 I 0.624 -0.018 -~0.478 0.084
| -0 0.7 | 0.180+j0.152 -0.004 | 3.89 0.21 | 1.486 Mono Decreasing | 66.56 9.70 I 0.692 0.003 -0.361 0.056
| =40 0.9 | D.097+30.122 -0.037 | 3.02 0.21 | 2,140 Mono Decreasing | 64.54 8.23 | D.801 0.030 -0.194 0.024
| -40 1.1 | 0.047+30.092 -0.047 | 2.47 0.29 | 9.990 Mono Decreasing | 63.02 7.32 I 0.876 0.041 -0.094 0.011
I -40 1.3 | 0.018+3j0.066 -0.065 | 2.09 D.214 | 9.990 Mono Decreasing | 61.%0 6.76 I 0.927 0.042 -0.037 0.005
i | I i I I

|1 -30 0.1 | D.809+j0.081 0.701 |1 25.45 0.26 | 0.208 Mono Decreasing | 78.71 23.18 I D.144 -0.,101 -1.619 0.662
| =30 0.2 | 0.649+30.131 0.489 | 12.73 0.26 | 0.419 Mono Decreasing | 75.51 17.69 I 0.276 --0.135 -1.297 D.438
I =30 0.3 | D.514+30.15%9 D.337 | 8.48 0.26 | 0.634 Mono Decreasing | 72.87 14.65 I 0.394 -0.,133 -1.028 0.290
I =30 0.6 | 0.239+30.164% 0.091 | 4.24 0.26 1 1,355 Mano Decreasing | &7.29 9.94 I D.666 =-0.061 -0.478 0.08%¢
| -30 0.7 | 0.180+3j0.152 0.051 | 3.64 0.26 | 1,650 Mono Decreasing | 65.97 ?.07 | 0.732 -0.037 -0.361 0.056
| -30 0.9 | 0.097+jD.122 0.003 | 2.83 0.26 | 2.569 Mono Decreasing | 63.92 7.82 | 0.833 -0.002 -0.19% 0.024
I -30 1.1 | 0.067+j0.092 -0.019 | 2.31 0.26 | 9.990 Mono Decreasing | 62.486 7.04 | 0.900 0.017 -0.094 B.011
I =30 1.3 | 0.018+j0.06&6 -0.026 1| 1.96 0.26 | 9.990 Mono Decreasing | 61.45 6£.58 I 0.944 0.024 -0.037 0.005
| I I I | |

|l -20 0.1 | 0.809+j0.081 0.733 | 23.71 0.3 | 0.222 Mono Decreasing | 79.03 22.11 | 0.161 -0.118 -1.619 0.662
I =20 0.2 | 0.649+30.131 0.536 | 11.85 0.35 | D0.447 Mono Decreasing | 75.48 16.73 | 0.304 -0.163 -1.297 0.438
1 -20 0.3 | 0.514+30.159 0.382 | 7.90 0.35 | 0.680 Mono Decreasing | 72.60 13.80 | 0.6428 -0.167 -1.028 0.290
I =20 0.6 | D0.239+j0.164 0.136 I 3.95 0.35 | 1.482 Mono Decreasing | 66.66 F.43 I 0.701 -0.096 -0.478 0.084
| -20- 0.7 | 0.180+30.152 0.091 | 3.39 0.35 | 1.832 Mono Decreasing | 65.33 8.62 I 0.764 -0.069 -0.361 0.056
| -20-,. 0.9 | 0.097+30.122 0.033 | 2.63 0.35 | 9.990 Mono Decreasing | 63.31 7.51 i 0.859 -0.028 -0.1%9%4 0.024
| -20 1.1 | 0.0&7+30.092 g0.003 | 2.1& 0.35 | 9.990 Mono Decreasing | 61.95 6.84& I 0.920 -0.003 -0.09% 0.011
I =20 1.3 | 0,018+30.066 -0.011 1 1.82 0.35 | 9.990 Mono Decreasing | 61.05 b.44 I 0.958 0.010 -0.037 0,005
I
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C/L SYSTEM IN COMPLEX 2-PLANE
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a ' POLES
on
[}
-50 0.1 | 0.902+j0.091
-40 0.2 | 0.806+j0.143
-60 0.3 | 0.712+30.220
-60 0.6 | 0.458+30.314
-0 0.7 | 0.385¢30.324
-60 0.9 | 0.257+30.324
-60 1.1 | D.154+30.303
~60 1.3 | 0.075+30.249
l
-40 0.1 | 0.902+j0.091
-40 0.2 | 0.806+)0.163
-40 0.3 | 0.712+30.220
-40 0.4 | 0.458+j0.314
-40 0.7 | 0.385+i0.324
-40 0.9 | 0.257+30.324
=40 1.1 | 0.154+30.303
-40 1.3 | 0.075+30.269
]
-30 0.1 | 0.902+10.091
~30 0.2 | 0.804+30.163
-30 0.3 | D.712+30.220
-30 0.6 | 0.458+30.31¢4
-30 0.7 1 D.385+30.324
-30 0.9 | 0.257+30.324
-30 1.1 | 0.154+30.303
-30 1.3 | D.075+30.249
]
-20 0.1 | 0.902+30.091
-20 0.2 | 0.804+)0.163
-20 0.3 | 0.712+30.220
-20 0.8 | 0.458+)0.314
-20 0.7 | 0.385+30.324
-20 0.9 | 0.257+30.324
=20 1.1 | 0.154+30.303
-20 1.3 | 0.075+)0.26%
I
0 0.1 | 0.902+10.091
0 0.2 | 0.806+10.163
O 0.3 | 0.712+30.220
O 0.6 | D.458+jD.314
O 0.7 | 0.385+30.324
0 0.9 | 0.257+30.324
O 1.1 | 0.154+30.303
0 1,3 | 0.075+)0.2&69
1
20 0.1 | 0.902+0.091
20 0.2 | 0.806+)0.143
20 0.3 | 0.712+30.220
20 0.6 © 0.458+310.314
20 0.7 | 0.385+30.326
20 0.9 | 0.257+10.324
20 1.1 | 0.154+)0.303
20 1.3 | 0.075+)0.289
i
40 0.1 | 0.902+30.094
40 0.2 | 0.806+30.143
40 0.3 | 0.712430.220
40 0.6 | 0.458+10.314
40 0.7 | D.385+j0.324
40 0.9 | 0.257+j0.324
40 1.1 | 0.156+30.303
40 1.3 | 0.075+10.269
]
80 0.1 | 0.902+j0.091
60 0.2 | 0.804+30.163
50 0.3 | 0.712+30.220
50 0.6 | 0.458+10.314
60 0.7 | 0.385+)0.324
60 0.9 | 0.257+30.326
80 1.1 | 0.154+30.303
40 1.3 | 0.075+30.269
|
80 0.1 | 0.902+30.091
80 0.2 | 0.806+j0.163
80 0.3 | 0.712+30.220
80 0.6 | 0.458+30.314
40 0.7 | 0.385+3j0.324
80 0.9 | 0.257+30.324
80 1.1 | 0.1564+30.303
80 1.3 | 0.075+30.269
.

1ERO

c/L

STEP RES

Lt /T Moow t /T

EEEREEANSEREAREE

Out of Range
Out of Range
Out of Range
Qut of Range

-8.110
-2.4628
-1.518
-1.02%

0.170
-0.123
-0.273
-0.406
-0.410
-0.395
-0.365
~-D.328

0.611
0.358
0.183
-0.084
-0.130
-0.182
-D.203
-0.207

0.72&6
0.522
0,348
0.084
0.027
-0.051
-0.098
-0.123

g.a18
D.468
0.544
0.277

0.864

0.403

0.093

0.898&
0.80&
0.722
0.513
0.455
0.353
0.268
0.193

0.930
0.845

0.639

0.621

+ no resonance

4£.88
3.79
3.10
2.863

30.64
15.32
10.21
.11
4,38
3.40
2.79
2,36

28.90
14.45
?.63
4.82
4.13
3.21
2.83
2.22

27.1%
13.58
9.05
4,53
3.88
3.02
2.47
2.09

23.466
11.83
7.89
3.94
3.38
2.83
2.15
1.82

20.17
1a.09
6.72
3.34
2.88
2,24
1.83
1.55

16.48
8.34
§.56
2.78
2.38
1.85
1.52
1.28

13.19
&6.59
4.40
2.20
1.88
1.47
1.20
1.01

?.70
4,85
3.23
1.62
1.39
1.08
Q.88
0.75

5.03
5.03
5.03
5.03

4.62
4.82
4.62
.62
h.42
4.862
h.62
h.b62

prpra
NWW SN0 NWsWn

VOO WNOD CONBNSOW D&M

4.85
4 .85
4.85
4.85
4 .85
4 .85
& .85
4.89

-

NRHsVaAe N

.31 31.2
5.3t 15.4
5.31 10.4
5.31
5.31
5.31
5.3
5.31

7.02
7.02
7.02
7.02
7.02
7.02
7.02
7.02

-
NNGWLArUNOWO NDNWs®

rEEreNHO

10.52
10.52
10.52
10.52
10.52
10.52
10.52
10,52

-

roNONSCN

18.17
18,17
18.17
18.17
18.17
18.17
18.17
18.17

-

D ErNFEND CcONDNSD> N

39.20
39,20
39.20
39.20
39.20
39.20
39.20
39.20

-

158.94
158.94
158.94
158.94
158.94
158.94
158.94%
158.94

-N e
WrUPEO,rBdE NWIPrNENGY NRWUFINSC W NRNESVIDWN S

NPLrORAN S

€/L FREQUENCY RES.

w, T

ssxss PrassseScnannnaDansx

1.027
1.238
1.410
1.583

0.142
0.284
0.424
0.837
Q.971
1.234
1.498
1.7717

0.147
g.295
0.441
a.a79
1.025
1.319
1.626
1.970

0.158
0.311
0.467
0.939
1.098
1.428
1.787
2,225

0.179
0.359
0.540
1.100
1.298
1.729
2.274
.

0.213
0.428
0.646
1.346
1.610
2.275

0.2569
0.543
g.824
1.807
2.276

0.390
Q.79%
1.231

S

0.97%9
2.4626

w. T

0.224

0.022
0.042
0.0s9
0,067
a.02¢9

0.035
0.069
0.102
0.1%4
0.222
0.27%9
0.345
0.438

0.048
0.095
0.142
0.284
a.332
0.431
0.543
0.677

0.070
0.140
0.211
0.428
0.500
0.655
0.825
1.018

0.08%9
0.179
0.268
0.544
0.640
0.839
1.056
1.301

0.107
0.214
0.321
0.653
0.7s8
1.009
1.272
1.57§

0.123

+4+ 4

+ 4+

M (db

0.012

g.00aQ
0.003
0.002
0.000
0.000

0.017
0.01&
0.015
0.0t2
0.011
0.010
0.01%
0.01%

a.ass
0.058
D.0s8
0.05é6
0.054
0.058
0.064
0.077

0.280
0.280
0.281
0.288
0.293
o.307
0.321
0.371

0.776
0.781
0.783
a.799
0.808
0.835
0.878
0.943

1.782
1.783
1.786
1.804
1.815
1.847
1.898
1.978

3,959

3.958
3.960

b

0/L FREQUENCY RES.

PH

60,41
40.94
61.43
61.81

&5.38
46,68
&46.12
62,97
&2.71
62.28
61.90
61.52

66,76
65.74
64.88
&3.04
62,59
&1.87
61.28
40.7%

67.52
66.17
65.03
62.57
61.99
&61.05
40.34
59.77

47.56
645,55
&3.88
60.37
59.58
58.43
§7.69
§7.25

65.81
63.09
60.87
54.42
§5.50
54.29
§3.73
§3.67

61.74
58.21
55.40
50.02
48.99
47.78
47.52
48.01

a/L
o/t
o/L
o/L
38.20
37.00
36.95
37.91

o/L
osL
o/L
o/L
o/L
a/L
o/L
o/L

GHwd) oy T
8.74 D.41
8.76 0.51
%.00 0.5%9
9.43 0.87

42.91 0.09

33.40 0.18

24.48 0.246

17.04 0.47

16.00 0.53

14.73 0.63

13.41 0.73

11.16 0.81

34.04 D0.10

28.03 0.20

24.43 0.28

17.79 0.51

16.18 0.57

13.46 0.49

11.29 0.78
9.57 0.8s

30.46 0.11

24.861 0.22

21.20 0.1

15.27 0.55

13.92 0.62

11.70 0.74
9.96 0.a3
8.40 0.91

26.40 0.13

20.93 0.25

17.73 0.3&

12.50 0.64

11.39 0.71
9.64 0.83
8.34 0.93
7.35 1.01
24.01 0.18

18.50 0.30

15.45 0.43
10.48 0.73
9.71 0.81
8.24 0.94
7.19 1.04
.56 1.1%

21.58 0.19
16.25 0.36

13.37 0.50
9.03 0.84
8.19 0.93
6.9 1.07
4.12 1.18
5.55 1.24

Unstable

Unstable

Unstable

Unstable
6,37 1.10
S.41 1.28
4,79 1.38
4.41 1,43

Unstable

Unstable

Unstable

Unatable

Unstable

Unstable

Unstable

Unstable

8YSTEM COEFFICLENTS

A

0.053
0.181
0.321
0.458

0.022
0.0s7
0.103
0.279
0.343
D.471
0.591
0.6%9

0.046
0,100
0.181
0,361
0.428
0.556
0.471
Q.77a

0.065
D.135
0.208
0.427
0.497
0.625
0.735
0.827

0.098
D.194
0.288
0,542
0.615
0.743
0.866
0.925

0.131
0.254
0.368
0.4654
0.733
0.841
0.956
1.023

0.174
0.334
0.473
0.805
0.887
1.01%
1.100
1.1514

D.255
0.477
0.670
1.085
1.177
1.304
1.374
1.392

0.811
1.121
1.537
2.320
2.458
2.581
2.548
2,453

0.430
0.478
0.487
0.470

=0.004
0.007
0.028
0.113
0.141
0.18&
0.216
a.229

-0.028
-0.03s
-0.02%
0.031
D.0S6
0.101
0.13¢6
0.15%9

-0.047
-0.071
-0.074
-0.036
-0.014
0.032
a.072
0.101

-0.080
-0.130
-0.157
-0.150
-0.132
-0.086
-0.039

0.003

-0.113
-0.18%9
-0.237
-0.2b64
~0.250
-0.204
-0.149
-0.095

-0.156
-0.267
-0.341
-0.413
-0.404
-0.358
-0.293
-0.223

-0.237
-0.413
-0.538
-0.693
-0.693
-0.5648
-0.564
-0.463

-0.593
-1.056
-1.406
-1.928
-1.971
-1.925
-1.758
-1.52%

* no solution

[

-0.770
-0.515
-0.30%9
-0.1s50

-1.804
-1.611
~1.424
-0.917
-0.770
-0.515
-0.309
-0.150

-1.804
-1.611
-1.424
-0.917
-0.770
-0.51%
-0.309
-0.150

-1.804
~1.611
-1.424
-0.917
~-0.770
-0.51%
-0.309
-0.150

-1.804
-1.611
~1.424
-0.917
-0.770
-0.515
-0.309
-0.150

-1.804
-1.611
-1.424
-0.917
-0.770
-0.515
-0.309
-0.150

-1.80%
-1.611
=1.4624
-0.917
-0.770
-0.515
-0.30%9
-0.150

-1.804
~1.611
-1.424
-0.917
-0.770
-0.515
-0.309
-0.150

-1.804
-1.611
~1.424
-0.917
-0.770
-0.515
-0.309
-0.150

aal'2azcec rassczananssonsesusnnslessscranunssnseranannnanansnsasas

0,254
0.171
0.116
o.078

0.822
0,676
0.555
0.308
0.254
0,171
0.116
0.078

0.822
0.676
0.55%
0.308
0.254
0.171
0.116
0.078

0.822
0.676
0.555
0.308
0.254
0.171
0.114
o.o078

0.822
0.4876
0.555
0.308
0.2594
0.171
0.11¢6
0.078

0.822
0.476
0.555
G.308
0.254
a.171
0.118
0.078

0.822
D.6786
0.55%
0.308
0.254
0,171
0.116
D.078

0.822
0.47¢
0.555
0.308
0.254
0.171
0.116
0.078

0.822
0.676
0.555%
0.308
0.254
0.171
0.116
0.078

SENm s SN RS e RN
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I C/L SYSTEM IN COMPLEX Z-PLAIN | C/L STEP RES. | C/L FREQUENCY RES. | O/L FREQUENCY RES.I SYSTEM COEFFICIENTS
| e e mmm e fmm R T T T —— e e {

| a  w,T | POLES IERO | tp/T Mp(%) ! WbT WeT Mr(db) | PM GM(db) i A B c D
i===============================================:==================================================================================
I £ =0.9

] SRR

! 0 0.1 | 0.809+j0.081 0.775 | 20.22 0.67 | 0.253 Mono Decceasing | 78.75 20.59 I 0.191 -0.148 -1.619 0.662
| 0 0.2 | D.649+3j0.131 0.599 1 10.11 0.67 | 0.511 Mono Decreasing | 74.65 15.37 | 0.3%51 -0.211 -1.297 0.438
| 0 0.3 | 0.514+j0.15%9 0.462 | &6.74 0.67 1 0.782 Mono Decreasing | 71.40 12.60 I 0.486 -0.224 -1.028 0.290
I 0 0.6 | D0.239+j0.164 0.204 1 3.37 0.67 | 1.789 Mono Decreasing | 65.14 8.64 I 0.761 -0.155 -0.478 0.084
I 0 0.7 | 0.180+j0.152 0.152 | 2.89 0.67 | 2.341 Mono Decreasing | 63,85 7.96 | 0.820 -0.125 -0.3541 0.0564
I 0 0.9 | 0.097+3j0.122 0.080 | 2.25 0.67 | 9.990 Mono Decreasing | 62.04 7.04 I 0.%03 -0.073 -0D.194 0.024
| 0 1.1 | D0.047+j0.0%92 0.038 | 1.84 0.67 | 9.990 Mono Decreasing | 60.94 6.51 I 0.953 -0.036 -0.0%94 0.011
I 0D 1.3 1| 0.018+3j0.066& 0.014 1 1.56 0.67 | 9.990 Mono Decreasing | 60.30 6.22 | 0.982 -0.014 -0.037 0.005
I | I 1 | 1

I 20 0.1 | 0.809+j0.081 0.805 | 16.73 1.47 | 0.293 Mono Decreasing | 77.36 19.33 I 0.220 -0.177 -1.61% 0.662
I 20 0.2 | 0.649+3j0.131 0.647 | 8.36 1.47 1 0.595 Mono Decreasing | 72.76 14,25 I 0.399 -0.259 -1.297 0.438
I 20 0.3 | 0.514+30.15¢9 0.519 | 5.58 1.47 | 0.916 Mono Decreasing | 69.25 11.61 | 0.564 -0.282 -1.028 0.290
I 20 0.6 1 0.239+j0.164% 0.262 1 2.79 1.47 | 2.300 Mono Decreasing | 63.03 7.99 | 0.820 -0.215 -D.478 0.084
I 20 0.7 | 0.180+3j0.152 0.206 | 2.39 1.47 | 9.990 Mono Decreasing | 61.920 7.3%9 I 0.87%5 -0.180 -0.361 0.056
I 20 0.9 | 0.097+j0.122 0.124 1 1.8& 1.47 | 9.990 D.445 0.006 | 60.47 6.63 I 0.948 -0.117 -0.194% 0.024
I 20 1:1 | 0.047+j0.092 0.071 I 1.52 1.47 | 9.990 0.902 0.032 | 59.77 6,22 | 0.987 -0.070 -0.094 0.011
I 20 1.3 | 0.018+30.06% 0.037 1 1.29 1.47 | 9.990 1.586 g0.090 1| 59.48 &.01 I 1.006 -0.038 -0.037 0.005
| | | | | |

I 40 0.1 | 0.809+j0.081 0.834 | 13.24 3.70 | 0.357 0.092 0.115 | 74.20 17.97 i 0.259 -0.216 -1.619 0.662
I 40 0.2 | D.649+j0.131 0.695 | b6.62 3.70 | 0.728 0.187 0.119 | 6%.05 13.05 I 0.462 -0.321 -1.297 D.438
I 40 0.3 | 0.514+3j0.159 0.578 1| 4.41 3.70 1 1.135 0.288 0.127 | 65.32 10.56 I 0.619 -0.358 -1.028 0.290
I 40 0.6 | 0.239+j0.164 0.326 | 2.21 3.70 | 9.990 0.656 0.175 I 59.52 7.28 I 0.898 -0.292 -0.478 0.084
I 40 0.7 | 0.180+j0.152 0.266 | 1.89 3.70 | 9.990 0.814% 0.201 ! 58.72 6.77 I 0.947 -0.252 -0.361 0.056
| 40 0.9 | D.097+30.122 0.174 | 1.47 3.70 1 9.990 1.222 0.274 | 58,03 b6.16 | 1.006 -D.175 -0.194 D.024
I 40 1.1 | 0.047+30.092 0.110 I 1.20 3.70 1 9.990 1.864 0.382 | 58.02 S.87 I 1.030 -0.113 -D.09% 0.011
I 40 1.3 | 0.018+3j0.066 0.066 1 1.02 3.70 | 9.990 Mono Increasing | c8.28 5.76 I 1.037 -0.06%9 -0.037 0.005
1 1 I | | 1

I 60 0.1 | 0.809+3j0.081 0.870 I 9.75 11.65 | 0.4%0 0.156 1.035 | 06.77 15.98 I D0.331 -0.288 -1.619 0.662
P60 0.2 | 0.649+3j0.131 0.75%7 | &.87 11.45 1 1.017 0.315 1.043 | &60.85 11.34 | 0.579 -0.438 -1.297 0.438
I 60 0.3 | 0.514+3j0.159 0.657 | 3.25 11,65 | 1.650 0.480 1.058 | 56.88 ?.06 I 0.761 -0.500 -1.028 0.290
I 60 0.6 | 0.239+j0.164 0.420 1 1.62 11.65 | 9.990 1.051 1.146 | 51.99 6.25 I 1.04&% -0.439 -0.478 0.084
I 60 0.7 | 0.180+3j0.152 0.358 | 1.39 11.465 | 9.%%0 1.290 1.193 | 51.82 5.86 | 1.083 -0.388 -0.361 0.056
i 60 0.9 | 0.097+30.122 0.255 | 1.08 11.65 | §.9%90 1.942 1.318 | 52.64 S.44 I 1.115 -D0.284 -0.19% 0.024
I 60 1.1 | 0.047+30.092 0.176 | 0.89 11.65 | 9.990 Mono Increasing | 54,15 5.32 I 1.112 -0.195 -0.0%4 0.011
I 60 1.3 | 0.018+30.046 0.116 | 0.75 11.45 | 9.990 Mono Increasing | 55.69 5.35% I 1.096 -0.128 -2.037 0.005
I | | | | |

| &80 0.1 | 0.809+j0.081 0.934 | b.26 68.99 | 1.123 0.213 S5.842 | 0/L Unstable I 0.651 -0.608 -1.619 0.662
| 80 0.2 | 0.649+3jD.131 0.872 | 3.13 68.99 | 9.990 0.431 S.834 | 0/L Unstable I 1,097 -0.956 -1.297 D.438
I 80 0.3 | 0.514+3j0.159 0.812 | 2.09 63.99 | 9.990 0.658 5.822 | 0/L Unstable I 1.388 -1.127 -1.028 0.290
I 80 0.6 | 0.239+j0.164% 0.661 | 1.04 68.99 | 9.990 1.467 5.776 | 0/L Unstable I 1.689 -1.083 -0.478 0.084
| 80 0.7 | 0.180+j0.152 0.586 | 0.89 68.99 | 9.990 1.838 5.766 | 0/L Unstable I 1.681 -0.986 -0.361 0.05¢&
| 80 0.9 | 0.097+30.122 0.480 | 0.70 48.99 | 9.990 Mono Inoreasing | 32.83 3.61 I 1.596 -0.765 -0.1%94 0.024
I 380 1.1 | 9.047+3j0.092 0.378 | 0.57 &8.99 | 9.990 Mono Increasing | 37.20 3.77 I 1.475 -0.558 -0.09% 0.011
| 80 1.3 1| 0.018+3j0.D66 D.285 | 0.48 648.99 | 9.990 Mono Increasing | £2.66 4,07 1 1.355 -0.3387 -0.037 0.005
|
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