Three Essays on Experimental Economics

By

Sookie Xue Zhang

THESIS

Submitted to the University of Adelaide in partial fulfillment of the requirement for the degree of

Doctor of Philosophy in Economics

July 2017

Declaration

I certify that this work contains no material which has been accepted for the award of any

other degree or diploma in any university or other tertiary institution in my name and, to

the best of my knowledge and belief, contains no material previously published or written

by another person, except where due reference has been made in the text. In addition, I

certify that no part of this work will, in the future, be used in a submission in my name,

for any other degree or diploma in any university or other tertiary institution without the

prior approval of the University of Adelaide and where applicable, any partner institution

responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being

made available for loan and photocopying, subject to the provisions of the Copyright Act

1968.

The author acknowledges that copyright of published works contained within this thesis

resides with the copyright holder(s) of those works. I also give permission for the digital

version of my thesis to be made available on the web, via the University's digital research

repository, the Library catalogue and also through web search engines, unless permission

has been granted by the University to restrict access for a period of time.

Signature of Author

ii

Abstract

This thesis consists of three essays using experimental economics to empirically study human behaviors in different economic contexts. Each essay is a self-contained paper.

In the first paper, we try to address a puzzle of an unanticipated stoppage observed during houses auctions in Australia. Although no new information is revealed during the suspension, sellers perhaps intend by suspending the auction to trigger some psychological process which would lead to more aggressive bidding and therefore higher revenues. The stoppage allows bidders the time to imagine how they would live in their future home as if they were owning the house. The feeling of having the house can potentially trigger endowment effects, which generate additional attachment value to the object. In order to test this conjecture, we computerize an English auction for a real good in the laboratory with and without a stoppage. When the auction was stopped, we targeted the highest bidders by placing the object in front of them and informing them that they could keep the good if they won the auction. Unexpectedly, we observe a similar average auction price between the control treatment and the treatment with the stoppage. A deeper exploration shows that the targeted subjects won less frequently in the stop treatment than their counterparts in the control treatment. We conclude that there must be two opposite effects taking place in the stop treatment such that the same average auction price is observed as in the control treatment. A cooling-off effect makes the targeted subjects less aggressive in bidding while a heating-up effect induces the waiting subjects to bid more aggressively.

In the second paper, we study experimentally how informative cheap talk is in a delegation game where information is asymmetric and incentives are misaligned. We are particularly interested in the efficiency of delegation when we alter the cardinality of the message space. This paper contributes to the cheap talk literature by a novel delegation scenario that studies how different forms of messages affect the degree of information transmission. The one-shot

three-person delegation game is based on a repeated real-effort task. Two players can simultaneously send a costless message about their past performance along with their avatar to the delegator of their group. A delegator then can choose a player and delegate. Delegation replaces the delegator's performance in the profit function by the future performance of the chosen person. In order to misalign preferences, the delegator has to pay a fixed bonus to the person she chooses. In the baseline treatment, we adopt a structured massage space which consists of integers to represent how well a player has performed in the addition task (i.e. Precise Message Treatment, PMT). Then, we introduce noise by partitioning the massage space into intervals (i.e. Fuzzy Message Treatment, FMT). Lastly, we implement free text communication to allow subjects any message they want (i.e. Free Communication Treatment, FCT). In line with the lie-aversion literature, truthful reports and moderate lies are observed across all treatments. Surprisingly, information is transmitted in both the FMT and the FCT but not in the PMT. We find that on average delegators ignored messages in the PMT, but increased the frequency of delegation when they received messages indicating better performances in both the FMT and the FCT. Compared to the situation where no delegation options are allowed, the joint channel of cheap talk and delegation improve social welfare to some degree. The highest efficiency is obtained in the FMT, where players can express freely how competent they are. An important reason is that delegators are able to extract information contained in messages of different styles.

In the third paper, we investigate the social welfare enhancing effect of costly contracts used to resolve future distributional conflicts. A recent study by Bayer (2016) shows that subjects still cooperate to a certain extent in social dilemma situations, but welfare losses from competition in distributional contests destroy welfare gains from voluntary cooperation. We extend this study by providing a costly contract option before the two-stage cooperation and contest game. If a mutual agreement is made to implement the contract, the second stage distributional contest is avoided. As the baseline treatment, we adopt a simple equal split sharing rule and calibrate the contract cost to be the average effort incurred in Bayer's

contest game. Interestingly, we find that the costly equal split contract can stabilize individual contributions among those who opt in. Moreover, we find a significant improvement in the average profit compared to the control treatment where no contract option exists. However, the frequency of contracting declines dramatically in early periods. We further vary the type and the cost of a contract in two dimensions. Along the first dimension, we change the sharing rule to a proportional split conditional on individual contributions. This removes the social dilemma dimension of the cooperation game and theoretically allows for the implementation of the first-best. As expected, the majority of subjects opted for the contract with full cooperation following in most cases. Along the second dimension, we decrease the cost of an equal split contract. The lower contracting cost helps to delay the decline of the average contracting frequency. It seems that an equal split contract selects subjects who are more cooperative into signing the contract, which increases average welfare.

Acknowledgments

My PhD journey feels like a confusing long psychological experiment that I have ever expected. Lucky for me, I have met the best life mentor to guide me through this daunting journey and encountered many interesting people who make lonely research activities more fun. I am foremost indebted to my principal supervisor Ralph-Christopher Bayer for his excellent guidance and generous support. Without his feedback and encouragement through numerous inspiring discussions over the past four (plus) years this thesis would not have been possible. Thank you for always being there for me every time I am about to panic. Also, I appreciate delightful conversations and comments on different parts of the thesis from the seminar speakers who have visited our school (Ben Greiner, Andreas Lange, Martin Kocher, David Byrne, Jean-Robert Tyran, Tom Wilkening, Werner Güth, Alan Kirman, Bettina Klaus, Ronald Stauber). My sincere gratitude goes to my two co-supervisors, Paul Pezanis-Christou and Duygu Yengin, as well for their valuable advice and support when I was on the job market.

I have benefited a lot from the courses and workshops taught by Jocob Wong, Nicholas Sim, Seungmoon Choi and Tatyana Chesnokova. In particular, I want to thank Dmitriy Kvasov for enjoyable interactions and his contagious passion in teaching and talking game theory and mathematics. I thank all professional staffs in the School of Economics, especially to Allison Stokes and Sandra Elborough for their warmhearted help. I appreciate the training and support of conducting experiments from Mickey Chan. I also thank my laboratory fellows Kim Wu, David O'Callaghan and Hamish Gamble for running experiments together. Especially, I would like to thank Robert Garrard for his kindness in helping me out along the way.

Last but not the least I am very grateful to my friends for their companionship and comfort, especially during the tough time. I am forever indebted to my father for his unconditional love and support to whom I dedicate this thesis.

Contents

1	Intr	oductio	on	1
2	The	Psychol	ogical Effects During a Suspension in an English Auction	7
	2.1	Introd	uction	7
	2.2	Related	d Literature	10
		2.2.1	English Auctions	10
		2.2.2	Endowment Effect	12
	2.3	Experi	ment Design and Procedure	14
	2.4	Results	S	17
		2.4.1	An overview of group bidding behaviors	18
		2.4.2	Revenue	22
		2.4.3	Individual Bidding Behavior	26
		2.4.4	Discussion	29
	2.5	Conclu	ısion	30
3	Che	ap Talk	x Delegation Experiments	32
	3.1	•	uction	32
	3.2		of Experiments	
		3.2.1	Cheap Talk Delegation Game	
		3 2 2	Gender Effect	38

	3.2.3	Treatme	nts and Parameter Values	39
	3.2.4	Experim	ental Procedure	42
3.3	Results	s		44
	3.3.1	Basic Da	ta Summary	44
		3.3.1.1	Performance in the Adding-up Task	44
		3.3.1.2	Improvements in the Real Effort Task	46
		3.3.1.3	Is There a Gender Gap in Confidence Level?	49
	3.3.2	Delegati	on Frequency and Efficiency of Delegation	52
	3.3.3	Individu	al Behavior of Delegatees	56
		3.3.3.1	How Players Message in the PMT?	57
		3.3.3.2	How Players Message in the FMT?	59
		3.3.3.3	Comparison of Messages between the Two Treatments	63
		3.3.3.4	How Players Message in the FCT?	64
	3.3.4	Behavio	r of Delegators	66
		3.3.4.1	Performance of Delegators	67
		3.3.4.2	Comparison of Messages Received with the Own Performance	68
		3.3.4.3	Revisiting the Role of Initial beliefs	69
		3.3.4.4	Probit Regressions	70
		3.3.4.5	Is There a Gender Gap in Delegation in the PMT and the FMT?	74
		3.3.4.6	How Delegators Delegate in the CFT?	75
3.4	Conclu	ısion		76

Ŀ	Coo	peratio	on and Distributional Conflict with a Costly Contract Option	79
	4.1	Introd	uction	79
	4.2	Experi	imental Design:	84
		4.2.1	Basic Model and Predictions	84
		4.2.2	Parameters of Treatments	88
		4.2.3	Experiment Procedure	91
	4.3	Result	s	92
		4.3.1	Social Welfare	92
		4.3.2	Investment Stage: Contributions	95
		4.3.3	How does an equal split contract affect contributions?	95
		4.3.4	Contest Stage: Efforts	100
		4.3.5	Frequency of Contracting	103
		4.3.6	What drives people into a distributive fight?	104
	11	Conclu	ucion	106

List of Tables

2.4.1	Auction prices across the two treatments	23
3.3.1	Summary of Performance in the Adding-up Task	45
3.3.2	Performance in the Adding-up Task by Roles and Delegation Outcomes	47
3.3.3	OLS Regression of Improvements	48
3.3.4	An OLS Regression of the Elicited Beliefs	51
3.3.5	An OLS Regression of Messaged Individual Performance	58
3.3.6	A Probit Regression of the Propensity for Truthful Reports	62
3.3.7	An OLS Regression of the Size of a Lie	63
3.3.8	A Probit Regression of Text Messages	66
3.3.9	Performance in <i>Task 1</i> of Delegators Conditional on Their Decision	68
3.3.10	OA Probit Model (1) of Delegation Decision	71
3.3.1	1A Probit model (2) of Delegation Decision	72
3.3.12	2A Probit Regression of Delegation Decision in the FCT	75
4.2.1	Session information	91
4.3.1	Average profit and average contribution	94
4.3.2	Pooled OLS regressions for individual contributions	100
4.3.3	An Pooled OLS Regression for Individual Efforts	102
4.3.4	A random-effects Probit model of entering a contest	106

List of Figures

2.4.1	Dynamics of individual bid across groups in the control treatment	19
2.4.2	Dynamics of individual bid across groups in the suspension treatment	21
2.4.3	CDF of winning bids by treatments	24
2.4.4	Box-plot of auction prices by different treatments	26
2.4.5	A summary of the winning proportion by treatments	27
3.2.1	Distribution of potential gain or loss from delegation	40
3.3.1	CDF of Number of Correctly Solved Questions by Gender	46
3.3.2	Cumulative Distribution of Self-reported Percentage Beliefs by Gender	50
3.3.3	Cumulative Distribution of Over-confidence by Gender	52
3.3.4	Comparisons across Treatments	53
3.3.5	Average Efficiency Level in Four Scenarios	55
3.3.6	Scatter-plot of Messages against Actual Performance in <i>Task 1</i>	57
3.3.7	Message Screen in the FMT	60
3.3.8	Discrete Histogram of Lie by Gender in the FMT	61
3.3.9	Histogram of the Size of Lies by Treatments	64
3.3.10	Performance of Delegators by Decision	68
3.3.1	Lowess Graph by Treatments	69
3.3.12	2Cumulative Distribution of Initial Belief of Delegators	70
3.3.13	BDelegation Frequency by Message Categories	73

3.3.14Frequency of Being Chosen for Delegation
4.2.1 Game structure
4.2.2 Average effort in unconstrained low treatment
4.3.1 Average profit by period and treatment
4.3.2 Average contribution by treatments
4.3.3 Average contribution conditional on the outcome of an equal split contract 9
4.3.4 CDF of individual contributions conditional on the outcome of contracting . 9
4.3.5 Actual efforts vs. Nash efforts in the ESC treatments
4.3.6 Frequency of contracting over periods by treatments
4.3.7 CDF of relative uneven degree in contributions by outcome of contracting . 10