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Moments of isovector quark distributions from lattice QCD
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We present a complete analysis of the chiral extrapolation of lattice moments of all twist-2 isovector quark
distributions, including corrections fromNp andDp loops. Even though theD resonance formally gives rise
to higher order non-analytic structure, the coefficients of the higher order terms for the helicity and transversity
moments are large and cancel much of the curvature generated by the wave function renormalization. The net
effect is that, whereas the unpolarized moments exhibit considerable curvature, the polarized moments show
little deviation from linearity as the chiral limit is approached.
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I. INTRODUCTION

Resolving the quark and gluon structure of the nucle
remains one of the central challenges in strong interac
physics@1#. Information about the nucleon’s internal stru
ture is parametrized in the form of leading twist parton d
tribution functions~PDFs!, which are interpreted as probabi
ity distributions for finding specific partons~quarks,
antiquarks, gluons! in the nucleon in the infinite momentum
frame. PDFs have been measured in a variety of high en
processes ranging from deep-inelastic lepton scatterin
Drell-Yan and massive vector boson production in hadr
hadron collisions. A wealth of experimental information no
exists on spin-averaged PDFs, and an increasing amou
data is being accumulated on spin-dependent PDFs@2#.

The fact that such a vast array of high energy data can
analyzed in terms of a universal set of PDFs stems from
factorization property of high energy scattering processes
which the short and long distance components of scatte
amplitudes can be separated according to a well-defined
cedure. Factorization theorems allow a given differen
cross section, or structure function,F, to be written~as a
function of the light-cone momentum fractionx at a scale
Q2) in terms of a convolution of hard, perturbatively calc
lable coefficient functions,Ci , with the PDFs,f i , describing
the soft, non-perturbative physics@3#:

F~x,Q2!5(
i
E dz Ci„x/z,Q2/m2,as~m2!…

3 f i„z,as~m2!…, ~1!

wherem is the factorization scale. The coefficient functio
are scale and process dependent, while the PDFs are pr
independent, and hence can be used to parametrize a
variety of high energy data.
0556-2821/2002/66~5!/054501~14!/$20.00 66 0545
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Because the PDFs cannot be calculated within pertu
tive QCD, the approach commonly used in global analy
of high energy data is to simply parametrize the PDFs, w
out attempting to assess their dynamical origin@4–7#. Once
fitted at a particular scale, they can be evolved to any ot
scale through the Dokshitzer-Gribov-Lipatov-Altarelli-Par
~DGLAP! Q2-evolution equations@8#. The focus in this ap-
proach is not so much on understanding the non-perturba
~confinement! physics responsible for the specific features
the PDFs, but rather on understanding the higher order Q
corrections for high energy processes.

In a more ambitious approach one would like to extra
information about non-perturbative hadron structure from
PDFs. However, without an analytic solution of QCD in th
low energy realm one must rely to varying degrees on m
els of ~or approximations to! QCD within which to interpret
the data. An extensive phenomenology has been develo
over the years within studies of QCD-motivated models, a
in some cases remarkable predictions have been made
the insight gained into the non-perturbative structure of

nucleon. An example is thed̄2ū asymmetry, predicted@9#
on the basis of the nucleon’s pion cloud@10#, which has been
spectacularly confirmed in recent experiments at CERN, F
milab and DESY@11#. Other predictions, such as asymm
tries between strange and anti-strange@12#, and spin-
dependent sea quark distributions,Dū2Dd̄ @13#, still await
definitive experimental confirmation. Note that none of the
could be anticipated without insight into the non-perturbat
structure of QCD.

Despite the phenomenological successes in correla
deep-inelastic and other high energy data with low ene
hadron structure, thead hocnature of some of the assump
tions made in deriving the low energy models from QC
leaves open questions about the ability to reliably assign
tematic errors to the model predictions. One approach
©2002 The American Physical Society01-1



om
t

ee

e
re
ll

py
b
ob
n
gh
-

e
a
p
m
a

r o
on

th
is
cs
nc
se
i-
n

e

t

e
n

lu
ne
a
r

-
e
o
e
b

he
a
n

v-
an
ese
ns
en-

ol-
the
rs,

. In
ur-
of

the
the
ich
ion
m-
ents,
ata
is

d

ele-

W. DETMOLD, W. MELNITCHOUK, AND A. W. THOMAS PHYSICAL REVIEW D 66, 054501 ~2002!
which structure functions can be studied systematically fr
first principles, and which at the same time allows one
search for and identify the relevant low energy QCD degr
of freedom, is lattice QCD.

Lattice QCD is rapidly developing into an extremely us
ful and practical tool with which to study hadronic structu
@14#. There, the equations of motion are solved numerica
by discretizing space-time into a lattice, with quarks occu
ing the lattice sites and gluons represented by the links
tween the sites. Meaningful numerical results can be
tained by Wick rotating the QCD action into Euclidea
space. However, because the leading twist PDFs are li
cone correlation functions@involving currents with space
time separation,z22(ct)2'0], it is, in practice, not possible
to calculate PDFs directly in Euclidean space—in this cas
null vector would require each space-time component to
proach zero. Instead, one uses the operator product ex
sion to formally express the moments of the PDFs in ter
of hadronic matrix elements of local operators, which c
then be calculated numerically.

In relating the lattice moments to experiment, a numbe
extrapolations must be performed. Since lattice calculati
are performed at some finite lattice spacing,a, the results
must be extrapolated to the continuum limit,a→0, which
can be done by calculating at two or more values ofa. Fur-
thermore, finite volume effects associated with the size of
lattice must be controlled—working with a volume that
too small can result in the omission of important physi
arising from the long-range part of the nucleon wave fu
tion. Finally, since current lattice simulations typically u
quark massesmq

latt above 30 MeV, an extrapolation to phys
cal masses,mq

phys'5 MeV, is necessary. Earlier work o
moments of spin-averaged PDFs@15,16# found that whereas
the lattice calculations yielded results typically 50% larg
than experiment when extrapolated linearly tomq

phys, inclu-
sion of the nonlinear, non-analytic dependence onmq arising
from the long range structure of the nucleon removes mos
the discrepancy.

In this paper we extend the analysis to the polarized s
tor, which is important for several reasons. Firstly, for ma
years lattice calculations of the axial vector charge,gA , have
tended to lie 10% or more below the experimental va
determined from neutronb decay. Since this represents o
of the benchmark calculations in lattice QCD, it is vital th
the source of this discrepancy be identified. A prelimina
analysis of the effects of chiral loops found@17,18# that the
inclusion of the leading non-analytic~LNA ! behavior asso-
ciated withpN intermediate states in the extrapolation ofgA

to mq
phys decreased the value ofgA , thereby making the dis

agreement worse. On the other hand, one knows that thD
resonance plays an important role in hadronic physics, s
more thorough investigation of its effects on spin-depend
PDFs is necessary before definitive conclusions can
drawn. Indeed, we find that although theD contributions
formally enter at higher order inmp , the coefficients of
these next-to-leading non-analytic terms are large, and t
effects cannot be ignored in any quantitative analysis. In
dition, since there are currently no data at all on the tra
05450
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versity distribution in the nucleon, lattice calculations of se
eral low transversity moments provide predictions which c
be tested by future measurements. In order to make th
predictions reliable, it is essential that the lattice calculatio
be reanalyzed to take into account the chiral corrections
tering extrapolations tomq

phys.
The remainder of this manuscript is structured in the f

lowing manner. In Sec. II we describe the calculations of
moments of PDFs from matrix elements of local operato
and summarize the details of extant lattice calculations
Sec. III we first examine the constraints from chiral pert
bation theory and the heavy quark limit on the behavior
the moments of the various distributions as a function of
quark mass. The importance of higher order terms in
chiral expansion is then investigated within a model wh
preserves the non-analytic behavior of chiral perturbat
theory. This information is used to construct effective para
etrizations of the quark mass dependence of these mom
which are then used to extrapolate the available lattice d
in Sec. IV. Finally, in Sec. V we discuss the results of th
analysis and draw conclusions.

II. LATTICE MOMENTS OF PARTON DISTRIBUTION
FUNCTIONS

A. Definitions

The moments of the spin-independent,q5q↑1q↓, helic-
ity, Dq5q↑2q↓, and transversity,dq5qÁ2q', distribu-
tions are defined as

^xn&q5E
0

1

dx xn@q~x!2~21!nq̄~x!#, ~2a!

^xn&Dq5E
0

1

dx xn@Dq~x!1~21!nDq̄~x!#, ~2b!

^xn&dq5E
0

1

dx xn@dq~x!2~21!ndq̄~x!#, ~2c!

whereq↑(↓) corresponds to quarks with helicity aligned~anti-
aligned! with that of a longitudinally polarized target, an
qÁ(') corresponds to quarks with spin aligned~anti-aligned!
with that of a transversely polarized target.1 At leading twist,
these moments depend on ground state nucleon matrix
ments of the operators

O q
m1 . . . mn5 i n21c̄g$m1Dm2

•••Dmn%c, ~3a!

O Dq
m1 . . . mn5 i n21c̄g$m1g5Dm2

•••Dmn%c, ~3b!

O dq
am1 . . . mn5 i n21c̄sa$m1g5Dm2

•••Dmn%c, ~3c!

1Note that from their definition, Eqs.~2!, the moments alternate

between the total (q1q̄) and valence (q2q̄) distributions, depend-
ing on whethern is even or odd.
1-2
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respectively. Thus, for a nucleon of massM, momentumP,
and spinS, one has

^P,SuO q
m1 . . . mnuP,S&

52^xn21&qP$m1
•••Pmn%2traces, ~4a!

^P,SuO Dq
m1 . . . mnuP,S&

52^xn21&DqMS$m1Pm2
•••Pmn%2traces, ~4b!

^P,SuO dq
am1 . . . mnuP,S&

52^xn21&dqMS[aP$m1] Pm2
•••Pmn%2traces, ~4c!

where the braces,$•••% (@•••#), imply symmetrization
~anti-symmetrization! of indices, and the ‘‘traces’’~contain-
ing contractionsgm im j , etc.! are subtracted to make the m
trix elements traceless in order that they transform irred
ibly. At higher twist ~suppressed by powers of 1/Q2), more
complicated operators involving both quark and gluon fie
contribute.

B. Lattice operators

The construction of the relations~4! between moments o
PDFs and matrix elements of local operators relies on
symmetry group of the Euclidean space in which one wor
When formulated on a discrete space-time lattice, the s
metry group is reduced and the discretized implementa
of these operators introduces several technical complicati

The discrete nature of the lattice topology means that
symmetry group of the Euclidean continuum, the orthogo
group O~4!, is broken to its hyper-cubic subgroup H~4! ~the
group of 192 discrete rotations which map the lattice o
itself! @19#. Unfortunately, operators in irreducible represe
tations of O~4! may transform reducibly under H~4! and this
may result in mixing with operators from lower dimension
multiplets under renormalization. Consequently, care mus
exercised in the choice of operators on the lattice. For
ample, the continuum operatorO q

mn , which corresponds to
the momentum carried by quarks, can be represented on
lattice by eitherO q

(a)5c̄g$1D4%c ~belonging to a6 represen-

tation! or O q
(b)5c̄g4D4c2 1

3 ( i 51
3 c̄g iDic ~belonging to a3

representation!. This may be regarded as an advantage si
in the a→0 limit these operators are identical and any d
ference at non-zero lattice spacing allows for an estimat
the remaining finite size lattice artifacts to be made. In pr
tice, this is currently somewhat ambitious, as the opera
O q

(a) requires that the hadron source should have non-z
momentum components, which leads to a statistically l
well determined result. Consequently, for the operatorO q

mn

we retain only the data corresponding toO q
(b) . The operators

associated with the unpolarizedn52 and 3 moments are
given by O q

$114%2 1
2 ( i 52

3 O q
$ i i 4% and O q

$1144%1O q
$2233%

2O q
$1133%2O q

$2244% , respectively.
For the spin-dependent moments, the operator co

sponding to the axial charge is given byO Dq
3 5c̄g5g3c.

However, for then51 moment one can have on the latti
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either O Dq
(a)5c̄g5g$1D3%c or O Dq

(b)5c̄g5g$3D4%c. Once
again, since the operatorO Dq

(a) requires non-zero momentum
we shall keep only the data corresponding to the better
terminedO Dq

(b) operator. The operators required to calcula
other moments in Eqs.~2! are described in Ref.@20#.

For spin greater than 3, there are no unique, irreduc
representations in H~4! for the twist-2 operators. This mean
that the operators for momentsn.3 will inevitablymix with
lower dimensional~or lower spin! operators. To unambigu
ously extract information about these moments, one wo
need to consider all representations for a given spin, a
with sufficiently accurate data, deduce the matrix element
the high spin operators from the low spin operators w
which they mix. Because of these difficulties, all lattice c
culations have so far been restricted to moments withn
<3. Nevertheless, some features of the PDFs can be rea
ably reconstructed from just the lowest few moments, as
scribed in Ref.@16#.

Further subtleties arise when we consider the n
perturbative renormalization of these operators and th
matching to other renormalization schemes. An opera
Olatt(a), calculated using the lattice regularization scheme
connected to other schemes, for exampleMS, by a renormal-
ization factor:

OMS~m!5ZO~m,a!Olatt~a!,

wherem is the renormalization scale. To provide results
standard schemes, the renormalization functions,ZO , must
therefore be calculated for each operator used. While thi
done perturbatively in most calculations, non-perturbat
determinations now exist@21#. In what follows, results are
presented in theMS scheme at a renormalization scalem2

'4 GeV2.

C. Lattice calculations

The first calculations of structure functions within lattic
QCD were performed in the late 1980s by Martinelli a
Sachrajda. Their pioneering calculations of quark distrib
tions of the pion@22# and nucleon@23# were ambitious, given
the speed of the computers available at the time. More
cently, various calculations of greater precision have b
performed@19,20,24–37#. In the present analysis we wil
focus mainly on the more recent QCDSF@30–33# and
LHPC-SESAM simulations@19,34,20#. The older data sets
from Gupta et al. @35# have large uncertainties associat
with renormalization, while the statistical precision of Re
@25,26# is comparatively low. In addition, several groups~no-
tably the KEK@27,28#, Riken-BNL-Columbia~RBC! @36,37#
and SESAM@29# Collaborations! have put particular empha
sis on then50 moments of the helicity and transversi
distributions—the axial and tensor charges. The simulati
have been made using various quark and gluon actions
different lattices and at different couplings. They have be
performed primarily in the quenched approximation,
1-3
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TABLE I. Simulation parameters for lattice calculations of the moments of PDFs included in our ana
Q/U corresponds to quenched/unquenched simulations, and NPIC denotes the nonperturbatively im
clover quark action. ‘‘All’’ moments correspond tôxi&q for i 51,2,3, ^xi&Dq for i 50,1,2, and̂ xi&dq for i
50,1. The symbols shown in the final column correspond to those plotted in Figs. 8, 9 and 10.

Reference Q/U Quark action Lattice a ~fm! mp ~GeV! Moments Symbol

QCDSF@30# Q Wilson 163332 0.1 0.6–1.0 All m

QCDSF@31# Q Wilson 243332 0.1 0.35–0.6 All j

QCDSF@32# Q NPIC 163332 0.1 0.6–1.0 All 3

QCDSF@33# Q NPIC 163332 0.1 0.65–1.2 ^1&Dq , ^x2&Dq l

Q NPIC 243348 0.075 0.7–1.2 ^1&Dq , ^x2&Dq d

Q NPIC 323348 0.05 0.6–1.25 ^1&Dq , ^x2&Dq *
MIT @20# Q Wilson 163332 0.1 0.58–0.82 All !

MIT-SESAM @20# U Wilson 163332 0.1 0.63–1.0 All L

MIT-SCRI @20# U Wilson 163332 0.1 0.48–0.67 All h

KEK @27,28# Q Wilson 163320 0.14 0.52–0.97 ^1&Dq , ^1&dq .
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though more recently the LHPC@20# and UKQCD/QCDSF
@33# groups have begun to investigate the effects of
quenching. In Table I we summarize the data used here
which PDF moments and the corresponding pion masses
published.

Before including the data sets in our analysis, we imp
a simple cut to reduce finite volume effects. In lattice calc
lations of any observable, one must ensure that the la
size is large enough for results not to be dependent on
~unphysical! boundary conditions. This applies particular
to calculations involving low energy states such as
nucleon where the effects of the pion cloud are known to
especially important. Being the lightest, and therefore lo
est range, asymptotic correlation of quarks and gluons, p
are most sensitive to the boundary conditions. To avoid th
difficulties, we require that the lattice volume is large enou
that a pion will fit comfortably within it without ‘‘feeling the
edges of the box.’’ A pion of massmp has a corresponding
Compton wavelength of orderlp;1/mp , and, to avoid in-
terference of the pion with its periodic copies, we requ
that the smallest dimension of the lattice box~L! satisfies the
constraint

L.4 lp;
4

mp
. ~5!

The factor of 4 in this formula is popular@19#, although
somewhat arbitrary. This argument indicates that the low
mass data point of Ref.@31# and the lightest unquenche
points from Ref.@20# should be excluded from the analysi
In terms of quark flow, the evaluation of matrix elements
the operators in Eqs.~3! includes both connected and disco
nected diagrams, corresponding to operator insertions
quark lines which are connected or disconnected~except
through gluon lines! with the nucleon source—see Fig.
Since the numerical computation of disconnected diagram
considerably more difficult, only exploratory studies of the
have thus far been completed@29#, and the data analyze
here include only connected contributions. However, beca
the disconnected contributions are flavor independent~for
equalu andd quark masses!, they exactly cancel in thedif-
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ferenceof u andd moments. Therefore, until more comple
lattice simulations become available, one can only comp
lattice moments of the flavor non-singletu2d distribution
with moments of phenomenological PDFs@4–6#.

Whilst the chiral behavior of quenched QCD is differe
from that of full QCD @38#, in the region where current lat
tice data from both quenched and unquenched simulat
are available, the differences are well within the statisti
errors, indicating that internal quark loops do not play a s
nificant role over this mass range. As calculations begin
probe lighter quark masses, the differences should bec
more apparent and it will become necessary to anal
quenched and unquenched data separately@39#. Until the dif-
ferences become statistically distinguishable, however,
shall combine the data from the two sets of simulations.

III. CHIRAL BEHAVIOR OF PDF MOMENTS

To compare the lattice results with the experimenta
measured moments, one must extrapolate the data from
lowest quark mass used (;50 MeV) to the physical value
(;5 MeV). This is commonly done by assuming that t
moments depend linearly on the quark mass. However
discussed in Ref.@15#, such a linear extrapolation overest
mates the experimental values of the unpolarized isove
moments@4–6# by some 50% in all cases. Since the discre
ancy persists in unquenched simulations@19,20,34#, it sug-
gests that important physics is being omitted from either
lattice calculations or their extrapolations. In Refs.@15,16#
the chiral behavior of the moments of the unpolarized
ovector distributions was found to be vital in resolving th

FIG. 1. Connected~a! and disconnected~b! contributions to the
matrix elements of an operator~indicated by the cross!. Such dia-
grams occur in quenched QCD as well as in full QCD.
1-4
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discrepancy. Here we summarize the results of the ea
unpolarized study, and extend the analysis to the momen
the spin-dependent isovector distributions in the nucleon

A. Chiral symmetry and leading non-analytic behavior

The spontaneous breaking of the chiral SUL(Nf)
3SUR(Nf) symmetry of QCD generates the nearly massl
Goldstone bosons~pions!, whose importance in hadro
structure is well documented. At small pion masses, hadro
observables can be systematically expanded in a serie
mp—chiral perturbation theory (xPT) @40#. The expansion
coefficients are generally free parameters, determined f
phenomenology. One of the unique consequences of
loops, however, is the appearance of non-analytic behavio
the quark mass. From the Gell-Mann–Oakes–Renner r
tion one finds thatmp

2 ;mq at smallmp , so that terms in-
volving odd powers or logarithms ofmp are non-analytic
functions of the quark mass. Their presence can lead
highly nonlinear behavior near the chiral limit (mp→0)
@41#. Because the non-analytic terms arise from the infra
behavior of the chiral loops, they are generally model in
pendent.

The leading order~in mp) non-analytic term in the expan
sion of the moments of PDFs was shown in Ref.@42# to have
the generic behaviormp

2 logmp arising frompN intermediate
states. This was later confirmed inxPT @43#, where the co-
efficients of these terms were also calculated. In Ref.@15# a
low order chiral expansion for the moments of the no
singlet distribution,u2d, was developed, incorporating th
LNA behavior of the moments as a function ofmq and also
connecting to the heavy quark limit~in which quark distri-
butions becomed functions centered atx51/3) @16#. For the
moments of the unpolarized isovector distribution, these c
siderations lead to the following functional form for the m
ments@16#:

^xn&u2d5anS 11cLNAmp
2 log

mp
2

mp
2 1m2D

1bn

mp
2

mp
2 1mb,n

2
, ~6!

where ~for n.0) the chiral coefficient cLNA52(1
13gA

2)/(4p f p)2 @43#, and bn is a constant constrained b
the heavy quark limit:

bn5
1

3n
2an~12m2cLNA !. ~7!

The n50 moment, which corresponds to isospin charge
not renormalized by pion loops. The parameterm is intro-
duced to suppress the rapid variation of the logarithm
pion masses away from the chiral limit wherexPT breaks
down. Physically it is related to the size of the nucleon co
which acts as the source of the pion field@41#. Finally, the
fits to the data are quite insensitive to the choice ofmb,n ~as
long as it is large!, and it has been set to 5 GeV for alln @16#.
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A similar analysis leads to analogous lowest order LN
parametrizations of the mass dependence of the s
dependent moments@18#:

^xn&Du2Dd5DanS 11DcLNAmp
2 log

mp
2

mp
2 1m2D

1Dbn

mp
2

mp
2 1mb,n

2
, ~8!

and

^xn&du2dd5danS 11dcLNAmp
2 log

mp
2

mp
2 1m2D

1dbn

mp
2

mp
2 1mb,n

2
, ~9!

where the LNA coefficients are given byDcLNA52(1
12gA

2)/(4p f p)2 and dcLNA52(114gA
2)/@2(4p f p)2#

@43#. In the heavy quark limit, bothDu(x)2Dd(x) and
du(x)2dd(x) are given by5

3 d(x21/3) @44#, which leads to
the constraints

Dbn5
5

3n11
2Dan~12m2DcLNA !, ~10!

and

dbn5
5

3n11
2dan~12m2dcLNA !. ~11!

These are the most general lowest order parametrization
the twist-2 PDF moments consistent with chiral symme
and the heavy quark limits of QCD.

B. Phenomenological constraints

In Refs. @15,16# we presented analyses of unpolariz
data based on Eq.~6!, where it was concluded that curren
lattice data alone do not sufficiently constrain the extrapo
tion of these moments, and more accurate data at sm
quark masses (mq&15220 MeV) are required to determin
the parameterm. In that work, a central value ofm
5500 MeV ~550 MeV when the heavy quark limit was no
included @15#! was chosen as it best reproduced both
lattice data and the phenomenological values at the phys
point. However, the systematic error on this paramete
very large; indeed, the raw lattice data are consistent w
m50 ~a linear extrapolation!.

In order to make the phenomenological constraint ofm
more quantitative, we employ the following measure of t
goodness of fit of the extrapolated values~at mp

phys) of the
first three non-trivial unpolarized moments to the pheno
enological values,̂xi&u2d

expt , as a function ofm:
1-5
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x~m!5(
i 51

3
~^xi~m!&u2d2^xi&u2d

expt !2

~^xi&u2d
expt !2

. ~12!

We assume that both the lattice data for the unpolarized
ments and their extrapolation based on Eq.~6! are correct,
and use the phenomenological values for these moments
constraint.

The behavior of the functionx(m) is shown in Fig. 2, and
the best value ofm is indeed found to be 500 MeV. Thi
value is also comparable to the scale at which the beha
found in other observables, such as magnetic moments
masses, switches from smooth and constituent quark-
~slowly varying with respect to the current quark mass! to
rapidly varying and dominated by Goldstone boson loo
For fits to lattice data on hadron masses, Leinweberet al.
found values in the range 450 to 660 MeV@45# when a sharp
momentum cut-off was used. The similarity of these sca
for the various observables is not coincidental, but sim
reflects the common scale at which the Compton wavelen
of the pion becomes comparable to the size of the b
nucleon. The value ofm is also similar to the scale predicte
by thex2 fits to the model discussed in the following secti
~see also Ref.@15#!.

C. D Intermediate states

When we come to the calculation of polarized PDFs, th
is considerable phenomenological evidence to suggest
the D resonance will play an important role. Within th
cloudy bag model~CBM!, a convergent perturbative expa
sion of the physical nucleon, in terms of the number of v
tual pions, required the explicit inclusion of theD isobar
@46,47#—see also Ref.@48# for a recent, fully relativistic in-
vestigation. Without theD, the ratio of the bare to renorma
ized pion-nucleon coupling constant was found to be v
large ~as in the old Chew-Wick model!. With it, they typi-
cally agree to within 10–15 %. The essential physics is t
the vertex renormalization associated with coupling to theD
or to anN2D transition compensates almost exactly for t
reduction caused by wave function renormalization.
course, the same mechanisms apply to the renormalizatio
the axial charge,gA , as to the pion nucleon coupling,gpNN .

FIG. 2. The goodness of fit of the extrapolated values of the
three non-trivial moments to the phenomenological values a
function of m calculated using Eq.~12!.
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In the limit that theD is degenerate with the nucleon
DM[MD2M→0, the leading non-analytic contributio
from the D is of the same order as that arising from t
nucleon, namelymp

2 logmp
2 . In the limit DM→`, theD con-

tribution can be integrated out, and it formally does not ma
any non-analytic contribution. For a finite, but non-zeroDM ,
the vertex renormalization involving theD is not a leading
non-analytic term, but instead enters asmp

3 /DM . However,
the coefficient of this next-to-leading non-analytic~NLNA !
term is huge@49#—roughly three times bigger than themp

3

term in the expansion of the nucleon mass@45#. Faced with
such a large coefficient, one cannot rely on naive order
arguments alone to identify the important physics.

The solution adopted by Leinweberet al. @45# in the
analysis of the chiral behavior of baryon masses was to
culate corrections arising from those pion loop diagrams
sponsible for the most rapid variation withmq . The finite
spatial extension of the pion source leads naturally to
ultraviolet cutoff at thepNN and pND vertices@50#. The
parameter,L;1/R ~with R the size of the source! associated
with these vertices is constrained phenomenologically. T
approach ensures that the LNA and NLNA behavior ofxPT
is reproduced in themp→0 limit, while the transition to the
heavy quark limit (mp.L), where pion loops are sup
pressed as inverse powers ofmp , is also guaranteed. Alter
natively, one can study the variation of PDF moments w
mp within a model, such as the cloudy bag@47,51#, which
also ensures the full LNA and NLNA behavior ofxPT, and
in addition provides a simple physical interpretation of t
short-distance contributions~in this case through the MIT
bag model!. Rather than rely on a specific model, in th
present analysis we adopt the approach of Ref.@45# and cal-
culate the pion loop integrals with hadronic vertices co
strained phenomenologically.

The overall renormalization of the forward matrix el
ments of the operators of Eqs.~3! in nucleon states is then
given by

^NuO i
m1 . . . mnuN&dressed5

Z2

Zi
^NuO i

m1 . . . mnuN&bare, ~13!

i 5q,Dq,dq, whereZ2 is the wave function renormalizatio
constant,

Z2
21511Z2

N1Z2
D , ~14!

and Zi are the vertex renormalization constants describ
below. The N and D contributions to the wave function
renormalization, illustrated in the first row of Fig. 3, a
given in the heavy baryon limit2 by @51#

2While the heavy baryon limit applies strictly whenmp!M , the
form factor,u(k), strongly suppresses all of these integrals formp

above 400 MeV and thus the heavy baryon expression provide
adequate description of the meson loops in the region where
are large and rapidly varying.

t
a

1-6
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FIG. 3. Contributions to the wave function and vertex renormalization of the nucleon matrix elements of the operatorsO i
m1 . . . mn , i

5q,Dq,dq, in Eq. ~3!. Solid, double and dashed lines denote nucleon,D and pion propagators and the crossed circle and box indicate
insertion of the relevant operators. DiagramsZ2

N andZ2
D denote the contributions to wave function renormalization~a derivative with respect

to the external momentum is implied!.
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Z2
N5

3gA
2

~4p f p!2E0

`k4u2~k!dk

v3~k!
, ~15!

Z2
D5

4

9

gpND
2

gpNN
2

3gA
2

~4p f p!2E0

` k4u2~k!dk

v~k!~v~k!1DM !2
, ~16!

wherev(k)5Ak21mp
2 is the pion energy, andu(k) is the

form factor parametrizing the momentum dependence of
pNN andpND vertices, for which we choose a dipole form

u~k!5
L4

~k21L2!2
. ~17!

The numerical calculations are performed with a charac
istic momentum cut-off scaleL50.8 GeV, just a little softer
than the measured axial form factor of the nucleon@52,53#—
although the results are relatively insensitive to the prec
value of L, as illustrated below. The ratio of thepND to
pNN couplings can be determined from SU~6! symmetry
(gpND /gpNN5A72/25); however, in the numerical calcula
tions we consider a range of values for the ratio. SU~6! sym-
metry is also used to relate matrix elements of the twis
operators in the bareD and N-D transition to those in the
bare nucleon. In the future, lattice calculations ofD or N
2D transition matrix elements will test the reliability of th
approximation.

The renormalization constants for the spin-independ
helicity and transversity operators are given by

Zq
21511Z1,U

NN1Z1,U
DD1Z1,U

tad , ~18a!

ZDq
21511Z1,P

NN1Z1,P
ND1Z1,P

DN1Z1,P
DD1Z1,P

tad

1Z1,P
NWT1Z1,P

DWT , ~18b!
05450
e

r-

e

2

t,

Zdq
21511Z1,P

NN1Z1,P
ND1Z1,P

DN1Z1,P
DD1

1

2
Z1,P

tad

1
1

2
Z1,P

NWT1
1

2
Z1,P

DWT. ~18c!

The contributions from the coupling to nucleon intermedia
states are given by

Z1,U
NN52

gA
2

~4p f p!2E0

`k4u2~k!dk

v3~k!
, ~19!

and

Z1,P
NN5

1

3

gA
2

~4p f p!2E0

`k4u2~k!dk

v3~k!
, ~20!

for the unpolarized and polarized operators, respectiv
One can explicitly verify that the LNA behavior of thes
contributions ismp

2 logmp
2 . TheD contributions to the unpo-

larized and polarized operators are equivalent,

Z1,U
DD5Z1,P

DD5
20

27

gpND
2

gpNN
2

gA
2

~4p f p!2

3E
0

` k4u2~k!dk

v~k!~v~k!1DM !2
, ~21!

while the ND transition contributes only to the spin
dependent operators,

Z1,P
DN5Z1,P

ND5
16

27

gpND
2

gpNN
2

gA
2

~4p f p!2

3E
0

` k4u2~k!dk

v2~k!~v~k!1DM !
. ~22!
1-7
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These contributions are illustrated in the middle row in F
3. Expanding these terms for smallmp , one finds that the
leading non-analytic terms associated with theD andN2D
transition contributions enter at ordersmp

4 logmp
2 and mp

3 ,
respectively. The contributions from the tadpole diagram
which are independent ofgA , are also identical for the un
polarized and polarized cases, and given by

Z1,U
tad 5Z1,P

tad52
2

~4p f p!2E0

`k3u2~k!dk

v2~k!
. ~23!

The tadpole contributions also enter at ordermp
2 logmp

2 @43#,
as can be verified directly from Eq.~23!.

While the inclusion of theD resonance is important fo
quantitative descriptions of baryon structure, we also kn
from phenomenological studies that the higher order~in mp)
Weinberg-Tomozawa contact term@54,55# plays a vital role
in low energyS-wave pion–nucleon scattering@56#. Because
of the Adler-Weisberger relation@57# betweenpN cross sec-
tions andgA , any term which affectspN cross sections
should also have some effect ongA @58#. In fact, within the
CBM Morganet al. @58# found that this term largely resolve
the discrepancy between the bag model value ofgA51.09
and the empirical value of gA for bag radii R
P(0.9,1.1) fm. In the present treatment, since we do not
the CBM explicitly, but rather parametrize the pion sour
via the phenomenological form factoru(k), we determine
the overall strength of the Weinberg-Tomozawa term so a
reproduce the contribution found in the CBM, as outlined
Ref. @58#. The relative contributions of the diagrams withN
andD intermediate states, however, illustrated in the last r
of Fig. 3, can be fixed by SU~6! symmetry. These contribu
tions to the operator renormalization can then be written

Z1,P
NWT5CWTE

0

`k4u2~k!dk

v2~k!
, ~24!

Z1,P
DWT5

CWT

18
~11A2!

gpND
2

gpNN
2 E

0

` k4u2~k!dk

v~k!~v~k!1DM !
,

~25!

for theN andD intermediate states, respectively, whereCWT
is the overall normalization. For the above range ofR, the
physical value ofgA can be reproduced to within a few pe
cent for the corresponding range ofCWTP(0.21,0.30). In the
following numerical analysis, we use this range as an e
mate of the systematic error on the Weinberg-Tomoza
contribution. Even though the non-analytic behavior of t
integrals in Eqs.~24! and ~25! is mp

3 or higher, their contri-
butions are found to be significant. Note, however, that
Weinberg-Tomozawa terms contribute only to sp
dependent matrix elements, and make no contribution to
polarized matrix elements.

With the exception of the matrix elements of the unpol
ized, n50 operator, the renormalization of each moment
the various distributions is independent ofn. The n50 op-
erator, which corresponds to the isospin charge, is
05450
.

,

w

e

to

ti-
a

e

e
-
n-

-
f

ot

renormalized—additional contributions from operator ins
tions on the pion propagator cancel those shown in Fig.

The pion mass dependence of the various contribution
the wave function and operator renormalization is shown
Fig. 4. For the ratio of the couplings,gpND /gpNN , SU~6!
symmetry is assumed. The relative size of the termsZ1

NN and
Z1

DD in the spin-dependent and spin-independent cases
ready makes it clear that intermediate states involvingD
resonances are much more significant in the former case
particular, whereasZ1,P

NN does little to counter the effect of th
wave function renormalization, theD contributionsZ1,P

DD ,
Z1,P

ND , andZ1,P
DN essentially cancel its effect.

To explore the sensitivity of the results to the strength
theD contribution, in Fig. 5 we show the combined effect
the pion dressing on spin-averaged~upper panel! and spin-
dependent~lower panel! nucleon matrix elements in Eq.~13!
for a range of values of the ratiogpND /gpNN . For illustra-
tion we choose values ofgpND /gpNN equal to zero~no D
states!, A72/25~SU~6! coupling! and 2~the phenomenologi-
cal value needed to reproduce the width of the physicaD
resonance!. In the unpolarized case, the effect of this var
tion is relatively small—less than 3% over the entire range
pion masses considered here. In contrast, the effect of thD

FIG. 4. Contributions to the pion loop renormalization of th
matrix elements of the twist-2 operators required to evaluate
moments of the PDFs. The upper panel shows nucleon wave f
tion renormalizations (Z2

N ,Z2
D) and spin-independent operato

renormalizations. The lower panel shows the contributions to
renormalization of spin-dependent operators, and the shaded re
is an estimate of the uncertainty in the Weinberg-Tomozawa te
Z1,P

WT[Z1,P
N WT1Z1,P

DWT . ThegpND /gpNN coupling constant ratio is se
to the SU~6! symmetric value ofA72/25.
1-8
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on the helicity and transversity moments~matrix elements of
the spin-dependent operatorsO Dq

m1 . . . mn andO dq
m1 . . . mn) is far

more significant. If the contribution from theD ~and theN
2D transition matrix elements! is ignored (gpND /gpNN
50), Z2 /ZDqum

p
phys50.90, while including these contribu

tions with SU~6! couplings increases this toZ2 /ZDqum
p
phys

51.01, and toZ2 /ZDqum
p
phys51.04 at the phenomenologica

valuegpND /gpNN52. Consequently, when the effects of th
D are included with a coupling constant which is consist
with phenomenology, one finds that there is almost no c
vature in the extrapolation of the spin-dependent mome
This result is relatively stable against variations@52,53# in
the dipole mass parameter,L, in the range
;0.721.0 GeV—especially for the spin-dependent m
ments, as illustrated in Fig. 6. Matrix elements of the twis
operators~3! in bare nucleon states will necessarily be an
lytic functions of the quark mass (mq;mp

2 ), so the one pion
loop renormalization described above is the only poss
source of LNA contributions. Consequently, the LNA beha
ior of the matrix elements in Eq.~13! will be given by

^O i
m1 . . . mn&LNA5Z2

LNA2Zi
LNA , i 5q,Dq,dq. ~26!

If the N2D mass splitting is artificially reduced to zero,D
intermediate states become degenerate with the corresp

FIG. 5. Pion dressing of the matrix elements of the sp
independent~upper panel! and spin-dependent~lower panel! opera-
tors in Eq.~3! for various values of the ratio of coupling constan
gpND /gpNN . The shading in the lower panel indicates the variat
about the dashed curve (gpND /gpNN5A72/25) caused by the un
certainty in the Weinberg-Tomozawa term. The behavior ofZ2 /Zdq

is similar to that ofZ2 /ZDq .
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ing nucleon intermediate states, and the respectiveD dia-
grams formally give rise to LNA contributions. Leaving th
gpND /gpNN ratio free, the coefficients of the LNA contribu
tions ~themp

2 logmp
2 term! to the various matrix elements ca

then be written

^O q
m1 . . . mn&LNA5Z2

LNA2Zq
LNA

52
1

~4p f p!2 F S 31
16

27

gpND
2

gpNN
2 D gA

211G ,

~27a!

^O Dq
m1 . . . mn&LNA5Z2

LNA2ZDq
LNA

52
1

~4p f p!2 F S 22
4

9

gpND
2

gpNN
2 D gA

211G ,

~27b!

^O dq
m1 . . . mn&LNA5Z2

LNA2Zdq
LNA

52
1

~4p f p!2 F S 22
4

9

gpND
2

gpNN
2 D gA

21
1

2G .

~27c!

This makes it clear that, whereas an increase ingpND /gpNN
from 0 ~no D contributions! tends to increase the effectiv
coefficient of the chiral logarithm in the unpolarized case,
the spin-dependent operators it acts to suppress it. Ind
assuming the bare axial couplinggA51.26, atgpND /gpNN
52.43 the LNA coefficient for the polarized moments
zero, and for larger values it even becomespositive. Whilst
this exact cancellation is an artifact of settingDM50, it
highlights the significant role played by theD resonance.

From this analysis and the numerical results shown e
lier, one can conclude that the inclusion of theD resonance
will cause only a minor quantitative change in the extrap
lation of unpolarized moments, and in practical extrapo
tions of lattice data theD can be neglected with no loss o
accuracy, given the current uncertainties in the data. In c

-

FIG. 6. Dependence of the renormalization of the nucleon m
trix elements in Eq.~13! on the dipole mass parameterL, at the
physical pion mass, for the SU~6! value ofgpND /gpNN .
1-9
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TABLE II. Fits to the dependence onmp
2 of the calculated renormalization factors, obtained by vary

a i , b i andm i in Eq. ~28!. The LNA coefficients and the mass parametersm i are shown for various values o
thegpND /gpNN ratio: 0~no D), A72/25~SU~6!!, 2 ~phenomenological value! and 1.85~average of SU~6! and
phenomenological values!.

Z2 /Zq Z2 /ZDq Z2 /Zdq

gpND /gpNN cLNA m ~GeV! DcLNA m ~GeV! dcLNA m ~GeV!

0 3gA
211 0.45 2gA

211 0.28 2gA
21

1
2 0.32

A 72
25

107
25 gA

211 0.39 18
25gA

211 0.25 18
25gA

21
1
2 0.29

1.85 4.51gA
211 0.38 0.48gA

211 0.25 0.48gA
21

1
2 0.30

2 43
9 gA

211 0.37 2
9 gA

211 0.24 2
9 gA

21
1
2 0.29
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trast, theD leads to a qualitatively different picture for th
extrapolation of the spin-dependent moments andmust be
included there.

There are a number of possible approaches that ca
taken to account for theD contributions. One strategy woul
be to include the one-loop renormalizations numerically
the extrapolations, along the lines of the calculation of s
energies in the hadron mass extrapolations in Refs.@39,45#.
One could also replace the momentum integrals in the
pressions forZ1 and Z2 with discrete sums over momen
which are available on the lattice, *d3k
→(1/V)(2p/a)3(kx ,ky ,kz

, whereV is the spatial volume of

the lattice, as in the analysis of ther meson mass in Ref.@59#
~see also@60#!. Because of the discretization of space-tim
on the lattice, the lattice momenta are restricted to val
km52pnm /aLm , whereLm is the number of lattice sites in
the m direction and the integernm runs between2Lm/2 and
1Lm/2. We have checked that at largemp

2 the differences
between the integrals and discrete sums are only a few
cent or less; however, at smallmp

2 values the momentum ga
betweenkm50 and the minimum momentum allowed,km
562p/aLm , may introduce corrections.

Although this procedure is more accurate in principle,
practical extrapolations of lattice data it is not as straightf
ward to implement as an extrapolation formula based o
simple functional form would be. For this purpose it is mo
useful to preserve the simplicity of a single formula whi
interpolates between the distinct realms of chiral perturba
theory and contemporary lattice simulations, as propose
Refs. @15,16#. In order to test whether one can continue
apply a modified form of the extrapolation formula in Eq.~6!
to lattice data for the spin-dependent moments, as well as
spin independent, we attempt to fit the pion mass depend
of the renormalization factors shown in Fig. 5 using the fo

Z2 /Zi5a i1b imp
2 1

g i ,LNA

~4p f p!2
mp

2 logF mp
2

mp
2 1m i

2G , ~28!

i 5q,Dq,dq, with a i , b i andm i treated as free parameter
but with g i ,LNA fixed to the values obtained analytically
the limit DM→0, as shown in Table II. The fits toZ2 /Zi
( i 5q,Dq,dq) are illustrated in Fig. 7 for the average of th
gpND /gpNN values from SU~6! symmetry (A72/25) and phe-
nomenology~2!. Fits for other values of the coupling ar
05450
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equally good. It is remarkable that the LNA form~28! is
indeed able to reproduce the full calculations ofZ2 /Zi with
such high accuracy, given that the full calculations inclu
higher order effects~in mp) associated with theD and
Weinberg-Tomozawa contributions. The best fit values ofm,
shown in Table II, are only slightly smaller than those fou
in earlier work@15,16#. Note that the functional form in Eq
~28! does not include the modifications designed to ens
the correct heavy quark limit, as in Eqs.~6!–~9!—
incorporating this constraint leads to only marginal chan
in the parameterm @16#.

As discussed above, excluding the isospin charge, all
ments of each operator are renormalized in the same man
Hence, our conclusions regarding the inclusion of theD iso-
bar apply equally well to extrapolations ofgA5^1&Du2Dd

and all other moments of the helicity and transversity dis
butions.

IV. EXTRAPOLATION OF LATTICE DATA

Having established that the LNA formula, Eq.~28!, pro-
vides a good approximation to the full calculation, in th
section we examine the effects of extrapolating the availa

FIG. 7. Fits to the calculated renormalization factorsZ2 /Zi ,i
5q,Dq,dq, in Eq. ~13! using the functional form in Eq.~28! as a
function of mp

2 . The pND to pNN coupling ratio has been set t
the average of the SU~6! and phenomenological value
(gpND /gpNN51.85), andgA to the tree level value, 1.26. The co
responding values ofm are given in the third row of Table II.
1-10



it
a
8,
n

th
in

-

ow
i

o

lli
o
te

on

he
no

e

u-

e

pi
a

MOMENTS OF ISOVECTOR QUARK DISTRIBUTIONS . . . PHYSICAL REVIEW D 66, 054501 ~2002!
lattice data on the twist-2 PDF moments using the forms~6!,
~8! and~9!, with the LNA coefficients determined in the lim
DM→0. Rather than show the moments versus the scale
renormalization scheme-dependent quark mass, Figs.
and 10 give the moments of the unpolarized, helicity a
transversity distributions, respectively, as a function of
pion mass squared. The data have been extrapolated us
naive linear extrapolation~short-dashed lines!, as well as the
improved chiral extrapolations with the LNA chiral coeffi
cients and values ofm given in Table II, withmb,n fixed at 5
GeV @16#.

For the spin-dependent moments, four curves are sh
in Figs. 9 and 10: the long-dashed curves correspond to
noring D intermediate states (gpND50), while the central
solid lines in each panel of the figures include the effects
the D with a coupling ratiogpND /gpNN51.85 ~the average
of SU~6! and phenomenological values! and the central value
for the Weinberg-Tomozawa coefficient,CWT50.255. The
upper and lower solid lines correspond togpND /gpNN52,
CWT50.30 andgpND /gpNN5A72/25, CWT50.21, respec-
tively. Because the effect of theD is almost negligible for the
unpolarized moments, these curves are all essentially co
ear, and for clarity only one is shown in Fig. 8. The extrap
lated values are shown in Table III, along with the associa
errors~which are described in the Appendix! and the experi-

FIG. 8. The lowest three non-trivial moments of the unpolariz
distribution u2d, extrapolated using a naive linear fit~dashed
lines! and the improved chiral extrapolation~solid lines!. The stars
indicate the experimentally measured moments at the physical
mass, and the lattice data are taken from the sources listed in T
I, where the various plotting symbols are defined.
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FIG. 9. The lowest three moments of the helicity distributi
Du2Dd, extrapolated using a naive linear extrapolation~short-
dashed lines! and the improved chiral extrapolation described in t
text. In each panel, the long-dashed lines correspond to fits with
D and the LNA coefficient determined fromxPT, while the solid
lines are fits obtained usinggpND /gpNN52 ~upper solid curves!
andA72/25~lower solid curves!. The lattice data are taken from th
sources listed in Table I.

FIG. 10. The lowest two moments of the transversity distrib
tion du2dd. All curves are as described in Fig. 9.

d

on
ble
1-11



sical
rrors
known

W. DETMOLD, W. MELNITCHOUK, AND A. W. THOMAS PHYSICAL REVIEW D 66, 054501 ~2002!
TABLE III. Values of the unpolarized, helicity and transversity moments, extrapolated to the phy
pion mass using Eqs.~6!, ~8! and~9! and the parameters in Table II. The experimental and systematic e
listed here are described in the Appendix. For comparison, experimental values of the moments where
@unpolarized values from moments of distributions of Refs.@4–6#, helicity moments from Ref.@7# in scenario
I ~NLO!# and the best fit parameters (an ,Dan ,dan) are also listed.

Moment Value Extrapolation errors an ,Dan ,dan

Experimental Extrapolated Statistical D, WT states m

^x&u2d 0.145~4! 0.176 0.012 0.0008 0.022 0.141
^x2&u2d 0.054~1! 0.054 0.015 0.0003 0.007 0.044
^x3&u2d 0.022~1! 0.024 0.008 0.0001 0.003 0.019
^1&Du2Dd 1.267~4! 1.124 0.045 0.020 0.022 1.084
^x&Du2Dd 0.210~25! 0.273 0.015 0.005 0.005 0.262
^x2&Du2Dd 0.070~11! 0.140 0.035 0.003 0.003 0.135
^1&du2dd — 1.224 0.057 0.019 0.025 1.187
^x&du2dd — 0.506 0.089 0.008 0.010 0.490
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iral
mental values for the unpolarized and helicity mome
@4–7# ~there are currently no data for the transversity m
ments!. Note that even though there is no curvature expec
for large mp , the slopes of the linear and LNA fits diffe
slightly at largemp values due to the constraints of the hea
quark limit incorporated into the forms~6!, ~8! and ~9!.

With respect to the moments of the unpolarized PDFs,
analysis confirms our earlier finding that it is essential
incorporate the correct non-analytic behavior into the ch
extrapolation. When this is done, there is good agreem
between the extrapolated moments at the physical pion m
and the corresponding experimental data. On the other h
for the polarized PDFs we have the surprising result t
once theD resonance is included, the effect of the no
analytic behavior is strongly suppressed, and a naive lin
extrapolation of the moments provides quite a good appr
mation to the more accurate form.

In the case of the axial charge~the n50 moment ofDu
2Dd), the extrapolated value lies some 10% below the
perimental value, with an error of around 5%. However,gA
appears to be particularly sensitive to finite volume corr
tions, with larger lattices tending to give larger values ofgA .
Furthermore, there is some sensitivity to the choice
action—simulations with domain wall fermions~DWF!,
which satisfy exact chiral symmetry, are found to give larg
values than those with Wilson fermions@36#. As almost all of
the currently available lattice data are obtained from v
small lattices (L;1.6 fm), we consider the current level o
agreement quite satisfactory.

Additionally, there is some uncertainty arising from th
inclusion of the heavy quark limit in our fits; if this con
straint is omitted, the largemp

2 behavior of our fits coincides
with the linear fits that are shown as one would expect.
^x&du2dd (^x&Du2Dd), a fit ignoring the heavy quark limi
gives a physical value of 0.559~0.257! rather than 0.506
~0.273! as given in Table III~with a smaller effect in the
other moments!.

The uncertainty in the experimental determination of
higher moments of the spin-dependent PDFs is consider
larger, and from the current data one would have to concl
from Fig. 9 that the level of agreement between experim
05450
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and the extrapolated moments is acceptable. Clearly the s
ter in the lattice data for the second moment means tha
present we cannot have much confidence in the predi
value. We do note, in addition, that this is one case wh
there is a tendency for the full QCD points to lie somewh
below the quenched QCD results. It is obviously of som
importance that this issue be resolved in future lattice sim
lations.

V. CONCLUSION

The insights into non-perturbative hadron structure
fered by the study of parton distribution functions makes t
an extremely interesting research challenge. It is made e
more important and timely by the tremendous new exp
mental possibilities opened by facilities such as HERME
COMPASS, RHIC-Spin and Jefferson Lab. Lattice QCD o
fers the only practical method to actually calculate had
properties within non-perturbative QCD, and it is therefo
vital to test how well it describes existing data. Because c
rent limitations on computer speed restrict lattice simulatio
to quark masses that are roughly a factor of 6 too large,
must be able to reliably extrapolate the lattice data to
physical quark~or pion! mass in order to compare with ex
periment.

Traditionally such extrapolations have been made usin
naive linear extrapolation as a function ofmp

2 ~or quark
mass!. In Ref. @15#, Detmoldet al. showed that it was essen
tial to include the leading non-analytic behavior of chir
perturbation theory in this extrapolation procedure. On
then were the existing lattice data for the moments of
unpolarized parton distribution functions in agreement w
the experimental moments. Here we have confirmed
conclusion by calculating the next-to-leading non-analy
behavior within a chiral quark model, including theD-isobar,
and showing that it led to precisely the same conclusion

We have also investigated the variation of the moments
the polarized parton distributions to next-to-leading order.
this case the inclusion of theD-isobar makes a dramati
difference. Indeed, once theD is included, the helicity and
transversity moments show little or no curvature as the ch
1-12
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limit is approached and a naive linear extrapolation form
is reasonably accurate. In case a more accurate extrapol
procedure is desired, we propose convenient formulas w
suitably build in the non-analytic behavior in both the unp
larized and the polarized cases. The value ofgA extracted
from the extrapolation procedure at the physical pion mas
within 10% of the experimental value. Given the sensitiv
of this quantity to lattice volume~current simulations use
quite small lattices! and quark action~domain wall fermions
tend to give a larger value ofgA than Wilson fermions!, we
consider this a very satisfactory result. We look forward w
great anticipation to the next generation of lattice simulatio
of parton distribution functions at smaller quark masses
on larger volumes.

ACKNOWLEDGMENTS

We would like to thank D. Leinweber, M. Oettel, S. Oht
S. Sasaki, G. Schierholz and R. Young for helpful disc
sions. This work was supported by the Australian Resea
Council, the University of Adelaide and the U.S. Departme
of Energy contract DE-AC05-84ER40150, under which t
Southeastern Universities Research Association~SURA! op-
erates the Thomas Jefferson National Accelerator Fac
~Jefferson Lab!.
n

ep

e

ur

.

cl

05450
a
ion
ch
-

is

s
d

-
h
t

e

ty

APPENDIX: STATISTICAL AND SYSTEMATIC ERRORS

In this appendix we describe the estimates of the stat
cal and systematic errors in our fits that are presented
Table III. To determine an estimate of the error associa
with the statistical uncertainty of the lattice data, we use
estimated standard deviation. For data,f i , and weights,v i ,
given at abscissasxi ( i 51, . . . ,n), the estimated standar
deviation of a fitting formf (x;aW ) with parametersaW is

s05A 1

n21 (
i 51

n

v i@ f i2 f ~xi ;aW 0!#2, ~A1!

where aW 0 are the best fit parameters. The statistical err
assigned to the fits are then determined by varying the
parameters (an ,Dan ,dan) from their optimal values~given
in the right-most column of Table III! to obtain an increase o
unity in the standard deviation.

In order to estimate the systematic errors arising from
form of our fits, we first consider the uncertainty in the va
ues ofgpND /gpNN and CWT , taking half the difference be
tween the physical values of the moments obtained w
gpND /gpNN52, CWT50.30 and gpND /gpNN5A72/25,
CWT50.21. We also consider the uncertainty in the fit p
rameterm by taking half the difference between the physic
moments obtained withm 20% above and below the fit
obtained in Table II. The resulting systematic uncertaint
are listed in Table III.
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