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Numerical study of the lattice index theorem using improved cooling and overlap fermions
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Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics,
University of Adelaide, Adelaide, South Australia 5005, Australia
(Received 30 November 2001; published 27 March 2002

We investigate the topological charge and the index theorem on finite lattices numerically. Using mean field
improved gauge-field configurations we calculate the topological cl@ugeng the gluon field definition with
O(a*)-improved cooling and a®(a*)-improved field strength tenséi,, . We also calculate the index of the
massless overlap fermion operator by directly measuring the differences between the numbers of zero modes
with left- and right—handed chiralities. For sufficiently smooth field configurations we find that the gluon field
definition of the topological charge is an integer to better than 1%, and furthermore that this agrees with the
index of the overlap Dirac operator, i.e., the Atiyah-Singer index theorem is satisfied. This establishes a
benchmark for reliability when calculating lattice quantities that are very sensitive to topology.
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[. INTRODUCTION handed and negative(left-handedl chiralities respectively,
i.e.,D¢=0 with +/— chiralities such thays= = . These

The connection between the topology of a backgroundesults apply to QCD defined on a continuum four-torus,
gauge field and fermion zero modes is related to the axialvhere ultimately we wish to take the size of the four-torus to
anomaly and the largg-»' mass splitting in QCD. Lattice infinity, i.e., the infinite-volume limit.
gauge theory is the tool best suited to the study of these However, in the lattice formulation one has ambiguities
nonperturbative issues. We study this connection in QClassociated with the discretization and in general one can ex-
formulated on a periodic lattice, i.e., on a four-dimensionalpect the index theorem of E(L.1) to be satisfied only on a
toroidal mesh. For a fine enough lattice and/or a sufficientlysufficiently fine lattice and/or after sufficient smoothing of
smooth gauge-field configuration we should recover the rethe gauge fields. The use of improved operators and actions
sults for continuum QCD on a four-torus. In particular, we will lead to the index theorem being satisfied for less strin-
should recover the Atiyah-Singer index theorghh gent conditions on lattice spacing and/or smoothness. There

In the continuum the Dirac operat@=vy,(d,+igA,) are different ways to calculat® for a given gauge field
of massless fermions in a smooth background gauge fieldonfiguration, e.g., using the gauge-field tensor definit&n
with a nontrivial topology has eigenmodes with zero eigen-of Eq. (1.2) or using the geometrical definitiof8]. In this
value (i.e., “zero modes which are also chiral eigenstates study we focus on the definition in E€L..2). On a continuum
of positive or negative chirality. The Atiyah-Singer index four-torus the two definitions of topological charge for the
theorem[1] gives the result gauge field are necessarily identical. However, in the calcu-

_ lation of hadronic observables using typical lattices, the con-
Q=index D), (1) figurations in the ensembles are too coarse for the lattice
definitions of Eq.(1.2) to lead to integer topological charge
where and so the index theorem is not satisfied.

In an arbitrary gauge field, the Wilson fermion operator
does not have exact zero modes due to the Wilson term,
which removes fermion doublers and breaks chiral symme-
try. Attempts to study the index theorem with such an action

is the topological charge of the background gauge field angequire one to estimate the number of “zero modes” by look-

3272

Q f d*X €, p0 tr(F 1, F o) (1.2

where ing at low lying real eigenvaludgg]. Because of the difficul-
ties in estimating the index of the Wilson fermion operator in
indexD)=n_—n, 1.3 a precise manner, it is difficult to reach a definite conclusion
concerning the validity of the index theorem on a finite lat-
is the chirality index of the Dirac operator. Heme andn_ tice with Wilson fermions. In the case of Ginsparg-Wilson

are the number of zero eigenmodes with positivight-  (GW) Dirac fermions[5—7] there is an exact lattice realiza-
tion of chiral symmetny8] and the GW Dirac operator pos-
sesses exact zero modes. Hence the ambiguity associated

*Email address: jzhang@physics.adelaide.edu.au with the need to subjectively estimate the number of “zero
"Email address: sbilson@physics.adelaide.edu.au modes” of the Wilson fermions is absent. A good review and
*Email address: fbonnet@physics.adelaide.edu.au introduction to many of these issues can be found in Fgf.
SEmail address: dleinweb@physics.adelaide.edu.au There are several numerical studj@®—-15 of the index
'Email address: awiliam@physics.adelaide.edu.au theorem on a finite lattice. In Ref10] the overlap fermion
TEmail address: jzanotti@physics.adelaide.edu.au formalism is used to estimate the probability distribution of
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topological charge(Q) in pure SU2) gauge theory by ex- range topological structure of typical link configurations is to
amining the spectral flow dfi(n), whereH(u) is the Her-  cool them sufficiently that they become approximately
mitian Wilson-Dirac operator. The study in Rdfll] ex- smooth at the scale of the lattice spac[ig]. Cooling in-
plores the real eigenvalues of the Wilson-Dirac operatoryolves recursively modifying the link values to locally mini-
which are identified as the lattice counterparts of the conmize the action. As we sweep repeatedly over the whole
tinuum zero modes. These authors studied topology by eXattice we reduce the total action, smoothing out fluctuations
amining the complete spectrum of the fermion matrix inon successively larger scalgg0]. This quickly eliminates
SU(2) gauge theory on small lattices. Refereft®] uses the the high-frequency, rough components of the fields, leaving
spectral flow method to perform a comprehensive study ofelatively smooth topological structures. Once the link con-
both quenched S@3) and dynamical fermion configurations. figuration has been cooled sufficiently, we can expect the
There the role of the Sheikholeslami-Wohlert term is alsocooling process to preserve the global topological ch&@ge
examined. If we cool indefinitely a link configuration on a sufficiently
We focus here on Neuberger's overlap Dirac operatorfine lattice such that we preserve the global topological
which is an explicit solution of the Ginsparg-Wilson relation, charge Q, then we should converge toward the minimum
and investigate the Atiyah-Singer index theorem on a finiteaction solutions with charg®, i.e., we should converge to

lattice by numerical methods. In a recent paf#8], Adams  self-dual configurationsH,,,=F ,,). The resulting self-dual
performed an analytical study which showed that the indexonfigurations on the four-torus should contain of®} in-
theorem was satisfied by the overlap operator in the constantongif Q>0) or anti-instantongif Q<0). The action of
tinuum limit. We calculate the index of the overlap fermion an instanton or anti-instanton in infinite space-time is known
operator directly by measuring the number of left minus rightanalytically and is given byS,=82/g2. Instantons and
zero modes of the overlap Dirac operafr anti-instantons have the property that they are scale invari-
In measuring the gauge-field definition of the topologicalant, i.e., they can have any scale in the infinite four-volume
charge,Q, we use arO(a®)-improved definition of the field  continuum and their actio8, is unaffected. In infinite space-
strength tensor leading to an improved topological charggime in the continuum, aelf-dualgluon configuration with
operator. We also use a mean-field-improved Symanzilgction S will necessarily have topological charg@|=S/'S,
gluon action in the quenched approximation to generate OUind contain only instantor{sr anti-instantors To the extent
ensemble of configurations. Where we have employed cookhat the finite volume of a four-torus is sufficiently large
ing to smooth our configurations, we have used arcompared with the size of the instantons on it, one can ex-
O(a*-improved gluon action in the cooling algorithm. The pect the above results to hold.
resulting Q approaches integer values after a few cooling However, it is well established that cooling with the stan-
sweeps and has been verified to be stable for hundreds #rd Wilson action eventually destroganti-Jinstanton con-
thousands of cooling sweeps. figurations, due to the discretization errors inherent in the
The paper is organized as follows. In Sec. Il we introducejilson action[21]. The Wilson gluon(i.e., Yang-Milly ac-
the details of our calculation of the improved gauge-fieldtion at each lattice site is calculated from the plaquette, a

t0p0|Ogica| Chal’g@. In SeC. I we reVieW the OVerIap quark C|osed product Of four ||nk Operators
propagator and describe our calculation of ind&x( Our

results are described in Sec. IV and finally our summary and 1
4 Y Swm=B8> > —

discussion are presented in Sec. V. 2 NRet1-U,,) 291

where the plaquette operator,, is

U,,=U,(0U,(x+wUL(x+nUlx). (2.2

II. IMPROVED COOLING AND TOPOLOGY

To investigate the topology of gauge fields on the lattice
we first construct an ensemble of gauge-field configurationsThis Wilson plaquette action contains deviations from the
In lattice QCD, the gluon fields are represented by(BU continuum Yang-Mills action o®(a?) wherea is the lattice
matrices on each link connecting adjacent lattice sites. Thesgpacing. This problem may be remedied by improving the
links are parallel transport operators between the lattice siteaction. Tree-level improvement of the classical lattice action
We use a parallel Cabibbo-Marindrl7] pseudo-heat-bath combined with mean-field.e., tadpolé nonperturbative im-
algorithm with three diagonal SB) subgroups looped over provemen{22] provides a simple and very effective means
twice and appropriate link partitionind.g]. of eliminating lowest-order discretization errors. The sim-

For typical lattice spacings used in simulations of QCDplest improvement of the classical gauge action on the lattice
the link configurations in the ensemble have fluctuations oris achieved by taking a linear combination of the Wilson
many scales. In particular, such typical link configurationsplaquette and am X 2a rectangle, i.e., Symanzik improve-
are not smooth at the scale of the lattice spacing. Howevement. Since the plaquette and rectangle have diffef¢at)
the Boltzmann factoe™ sauge with Sy, 4 1/g® will ensure  errors they can be added in a linear combination in such a
that link configurations become increasingly smooth as thevay that these?(a?) errors cancel, leaving only errors of
continuum limit is approachedy(~0, a—0). But the cost O(a*) in the classicali.e., tree-level gauge action. One can
is that the volumes that one can afford to simulate also bepreserve this improvement at the nonperturbative level by
come correspondingly smaller. combining this with mean-field improvement of the links

One common approach to probing the medium to longd23]. More recently, DeForcrandt al. [24] have used tree-
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level improvement to construct a lattice action which elimi- 16 . .
nates@(a*) errors and leaves onl@®(a®) errors, by using 14 i
combinations of up to five different closed-loop products of
link operatorgWilson loops. From these five loops, particu- 2 12 .
lar linear combinations were studied in detail and were re- 10 A
ferred to as three-loop, four-loop, and five-loop improved .
actions. The difference is the number of nonzero contribu- § 8 .
tions in the linear combination of the five planar loops. They 6
represent the improved action as &
= 4 .
5
Smp=2, €S, 23 :
i=1 0 1 1 1 1 1 1

o

40 80 120 160 200 240 280
where theS; are the actions calculated as per E2), but Sweeps

_usmg five different WIISO_n I_oops, andzthe are thf weight- FIG. 1. An example plot of how improved cooling stabilizes the
ing constants tuned to eliminate tti§a“) andO(a”) errors. action(circles and topological chargériangles at consistent val-

Additional details may be found in Reff24]. o ues. The action has been rescaled by dividing iSpythe action of
In our work we construct improved actions utilizing the 5 single instanton.

results of DeForcranct al. However, we have chosen to

improve the topological charge via an improved field checking mechanism to ensure that the two different ap-

strength tensor. In particular, we employ @ta*)-improved  proaches to tree-level improvement removifiga®) errors

definition of F,, in which the standard clover sum of four yie|d consistent results.

1X1 Wilson loops lying in theu, v plane is combined with The principal criteria by which we may judge the value of
2X 2 and 3x3 Wilson loop clovers. Bilson-Thompsa@t al.  an improvement scheme are how quickly and how closely
[25] find the results for the topological char@eapproach integer val-
ues, and the stability with which they remain at that integer.
=3 1 3 On a lattice, the discretization errors prevent us from obtain-
gFuv:? 2 n zTqu ing exactly integer results. However, the more successful the

improvement program, the more rapidly we can expect cool-
ing to lead us to a stabl®, and the closer this will be to an
integer. Figure 1 shows how both the action and topological
charge approach the same integer value as a function of the
number of cooling sweeps. This is exactly as we would ex-
pect forQ. As we approach self-duality on the four-torus we
appear to recover S/S;=|Q| just as in the
continuum infinite-volume limit. Recall that the positivity

of (FL,=F.)? ensures that &[d*x(F},=F},)?
=2[d*x[(F},)**F3,F3,] and hence

nv v

, (2.9

traceless

1
+ —=W33| —H.c.
9 gW ) H.c

where W™" is the clover sum of founxn Wilson loops
and whereF ,, is made traceless by subtracting 1/3 of the
trace from each diagonal element of th& 3 color matrix.
This definition reproduces the continuum limit with(a®)
errors. We employ the plaquette measure of the mean lin

up=(3RetrU, ), (2.5

2
s= [ aeny= 5| [ o - 2 lol=slal,
which is updated after each sweep through the lattice. The 4 4 B g2
mean linku, rapidly tends to 1 under cooling, thus repro- (2.6)
ducing the classical limit. However, early in the cooling pro- . ] ]
cedure, the fields are not classical angdserves to tadpole Where we have define®,=87%/g. Self-dual configurations
improve the definition of,,,. F,=*F:, saturate this identity, i.e|Q|=S/S;. This result
This improved field-strength tensor can be used directly impplies independent of the shape of the space-time manifold
Eqg. (1.2), resulting in a topological charge that is automati-and so applies on the continuum four-torus as well as for
cally free of discretization errors to the same order as thénfinite space-time. However, note that Nahm's theof&6j
field-strength tensor. On self-dual configurations, this operaimplies that there is no self-du@Q|=1 configuration pos-
tor produces integer topological charge to better than 4 partsible on the four-torus. In infinite space-tirSg is the single
in 10*. Furthermore, since the gludhe., Yang-Mill§ action  instanton or anti-instanton action.
is also based upon the field-strength tensor, it is possible to While an in-depth comparison of the various cooling
create what we refer to asreconstructed actiobased upon schemes is beyond the scope of this report, we summarize by
the improved field-strength tensor. The value of the actiomoting that it has been determing2b] that three-loop im-
calculated with the reconstructed action operator can be conproved cooling with a three-loop topological charge operator
pared with the value calculated with the standard improvedjives excellent results in terms of how close the calculated
action operator Eg2.3) at each cooling sweep as a double- values ofS/S; and Q come to integer values, the stability
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TABLE |. Parameters of generated lattices.

Action Volume Ntherm Nsep B a (fm) Ug Physical volumefm)
Improved $x16 5000 500 4.80 0.093 0.89625 0*¥%41.50
Improved &x16 5000 500 4.38 0.165 0.87821 1332.64
Improved 13x24 5000 500 4.60 0.125 0.88888 135(8.0

with which they remain at that integer, and the speed withHts spectral properties are as follows.

which cooling can be performed. The modulus of the eigenvalue bf,(0) lies in the range
[0,2]. It has exact zero eigenvalues which are associated with
IIl. OVERLAP FERMIONS AND ZERO MODES topology. The corresponding eigenvectors are also eigenvec-

) ] ) tors of ys. They need not occur in pairs. There canrbe
The overlap fermion formalisni27] provides a way of  ,arg modes with eigenvalues ¢f equal to 1 anch_ zero

realizing exact chiral symmetry on the lattice. The masslesg,gges with eigenvalues ofs equal to—1. It also has ei-
overlap-Dirac operator can be written as genvalues equal ta-2 which also have definite chirality.

Dy(0)=[1+ yse(Hy)], (3.1) Their diﬁerenpe 6.—n")isequalto _—n,). . _
Nonzero eigenvalues @ ,(0) are complex, their moduli
wheree(H,,) is the matrix sign function are less than 2, they come as pairs, and they are conjugate to
each other. The associated eigenvectors are not eigenvectors
Hw of Ys.
M =1 1+ Hw=75Dw, 3.2 In practice, we calculate a small number of low-lying ei-

genvalues and eigenvectors dijg(O)Do(O). Note that
Dy, is the usual Wilson-Dirac operator D!(0)D4(0) commutes wittD ,(0) and it is Hermitian and
positive definite. It also commutes witfy and can be simul-
taneously diagonalized. Hendg/(0)D(0) has zero eigen-
modes of definite chirality which are also the zero eigen-

D= Maam,bﬁn
4

= 8200 gOmn— Kk 2 [(1=¥,)ap modes ofD(0).
wot We compute low-lying eigenmodes ng(O)DO(O) using
XU (M) apSmnnt (1+ ¥, up the Ritz functional algorithni28]. In the computation of the
R overlap operator, the time consuming part is the calculation
X UL(m—M)abém,n+;L], (3.3 of the matrix sign functiore(H,,). There are several numeri-
. . cal approaches by which to approximate the sign function
and « is the hopping parameter, €(z) [29-31]. We adopt the optimal rational approximation

1 [30] with a ratio of polynomials of degree 12 in the Remez
S— (3.4 algorithm. We find the error to the approximation«ffz) to

—2m+38 be within 10 ¢ in the rangg0.04,1.5 of the argument. To
improve the accuracy as well as efficiency of computation of
the matrix sign functione(H,,), a number of low-lying ei-
genvalues oH,, whose absolute values are less than 0.04 are
LBrojected out. Since

K

The bare mass parameter for the Wilson kernel in the overla
formalismm has to be in the rang®,2) for D,(0) to de-
scribe a single massless Dirac fermion. Note thatnthesed

in this context is the negative of the bare mass used in sim
lations With'the Wilson quark action itself.. In principle, any DE(O)DO(O)=DE(0)+DO(O), D$(0)= ¥5Do(0) s,

value of min the above range should give the same con- (3.6)
tinuum theory. But on a finite lattice, where volume and lat-

tice spacing are finite, the results for the overlap action camve use chiral states in the Ritz functional algorithm, and
depend on the value chosen for For the purposes of using hence can save one matrix multiplicatit82] per iteration.
overlap fermions to be most sensitive to the topology of the

background gauge field§12], m has to be chosemm IV. RESULTS AND COMPARISON
>m,(g?) for somem,(g?) going to zero in the continuum . . .
limit. For typical gauge configuratioms, (g?) is slightly less Configurations have been generated on &r 86 lattice

thanm,, wherem, is the critical value ofm at which the @t both3=4.80 and3=4.38 as well as on a ¥ 24 lattice
pion mass extrapolates to zero in a simulation with ordinan@t 8=4.60. Configurations are selected afféferm=5000
Wilson fermions. In the hopping parameter formalism, the thermalization sweeps from a cold start and evély,
should be in the rangéx,, 0.29 at tree level. The massless =500 sweeps thereafter with the average ligiixed at the
overlap operatoD,(0) has been showfi7] to satisfy the time of the first sample configuration being taken. Lattice

Ginsparg-Wilson relation parameters are summarized in Table |I.
We first use the gluon field definition to calculate the to-
{v5,D(0)}=Dy(0)y5D(0). (3.5  pological chargeQ by using the three-loop improved field
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strengthF ,, as described in Sec. Il. For each configuration TABLE II. Results for3=4.80 improved gauge configurations
we measure the topological charge by cooling with the threeon an &X 16 lattice with spacing=0.093 fm: Qg s calculated
loop improved action for just enough cooling sweeps fat from the zero mc_Jdes of_ the oyerlap operator on the original un-
is integer to within 1%. This typically requires from one to ¢0led configurationg is obtained using the improved topologi-
30 cooling sweeps depending on the lattice spacing and ﬂfeal charge operator for thehJ.USt cooled col_nflguratuome., con-
articular configuration. We retain both the original uncoole 'qurations after JUSF enoug improved cooling sweeps to b@ng
Eonfigurations as well as these “just cooled” configurations. ithin 1% of intege; Qg coolis also calculated from the zero modes

: . " =-of the overlap operator, but on the “just cooled” configurations.
We denote the topological charge obtained from the “just

cooled” gluon field configurations aQ. Configuration No. Qq4(x=0.19) Q4(x=0.2499) Qg Qucool

Secondly, we use the overlap formalism to calculate the
index of the gauge configurations at twovalues, i.e.,x
=0.19 corresponding tan=1.36 and x=0.2499 corre-
sponding tom=1.999. The second value approaches the?
largest allowed value ofn to describe a single massless 4
Dirac fermion. We extract the overlap index for both the°
original uncooled and the “just cooled” cooled configura- 6
tions and denote the results Ry andQq coolea F€SPECtively.

The results for the small-volume*& 16, B=4.80 lattice
are collected in Table Il. We see that since the physical vol?
ume of our lattice is rather small, only a few configurations
have nontrivial topology. The indeQ of the overlap opera-
tor calculated at the two differemt values is the same for all
30 configurations. The range of cooling sweeps needed to g
Q to within 1% of integer was between 1 and 7 with an
average of approximately 3. The index for these “just15
cooled” configurations differs from these for only one of the 16
30 configurations, i.e., configuration 26. For all of the con-17
figurations the gluon topological char@, is identical to the 18
index of the overlap operator extracted from “just cooled” 19
configurations 4 cooe¢ These results indicate that on such a20
fine lattice @=0.093 fm) topology is relatively well repre- 21
sented and the index theorem is “almost” valid for uncooled22
configurations. We see also that for “just cooled” configura- 23
tions the index theorem appears to be perfectly satisfied. Fiz4
ture investigations should explore the possible volume de25
pendence of these results. 26

We next turn to the coarseraE&0.165 fm), larger- 27
volume &x 16, B=4.38 lattice. The results for this lattice 28
are shown in Table Ill. Since the physical volume of theog
lattice is larger there is more nontrivial topology than before,3q
which is reflected in the larg® values. We find tha®4 now
differs in 30% of cases depending on which valuexofs

used in the overlap kernel. In some cases, e.g., for configu- . . .
ration 14, the disagreement is very significant indeed. The. These differences may be interpreted by considering the

range of cooling sweeps needed for this coarse lattice wad>c of the topological objects giving rise to exact zero
g 9 P odes[33]. At k=0.19, the overlap operator will typically

between 4 and 28 with an average of approximately 12.5. In; d iated with I logical obi
addition to measuring the gluon topological charge on thes8!1SS Z€10 MOCES a_ssouatg W't_ small topological objects.
Indeed, for the six configurations wher®,(«x=0.19)

“just cooled” configurationsQ, on this lattice we have also -
attempted to identify the gluon topological charge after just” Qu(x=0.2499), Qq(«x=0.2499) agrees better witlg;
three cooling sweeps, i.6Q43. This was done by identifying th_an withQq. This is as one might expect, as furthe_r cooll_ng
the nearest integer to the gluon topological charge after juswlll remove topological objects smaller than the dislocation
three cooling sweeps and was motivated by the observatiofireshold of the improved cooling algorithm, which is typi-
that the action density and the reconstructed action densitgally two lattice spacings.

matched within 10% after three sweeps. We see @gatis These results all suggest that for uncooled configurations
reasonably consistent with the rob@@y, but there are sig- on this coarser lattice topology is not well represented and
nificant differencesQg; also has significant differences from the index theorem is badly violated. However, from the per-
the Q4 values. The disagreement betwegpandQg is more  fect agreement betwedd, andQg ¢.o, We see that for “just
significant on this coarse lattice. cooled” configurations the index theorem is again perfectly

0 0 0 0
0 0 0 0
0 0
+1 +1

o
o

+
[N

I
coo . o
I
O R O

NP OO0 0000000000 OoOOo
NP OO0OO0OO0OO0ODO0OO0OO0DO0O0O0OO0OO0OOoOOoOo

+ 1 ‘

OOOOHNHOOOOOOOOOOOOOOOOOHO
+ 1 coo !l ot

loNeNeN-NNSIN NN NeNoNoNoNoNeo Nl el e} - —

o ooo©
oo oo©
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TABLE IIl. Results for 3=4.38 improved gauge configurations TABLE IV. Results forB=4.60 improved gauge configurations
on an X 16 lattice with spacing=0.165 fm: Qgis calculated on a 12X 24 lattice with spacing=0.125 fm: Qs calculated
from the zero modes of the overlap operator on the original unfrom the zero modes of the overlap operator on the original un-
cooled configurationsQ is obtained using the improved topologi- cooled configurationsQy is obtained using the improved topologi-
cal charge operator for the “just cooled” configuratior@y; is cal charge operator for the “just cooled” configurationg; .o iS
obtained using the improved topological charge operator for thelso calculated from the zero modes of the overlap operator, but on
configurations obtained after just three improved cooling sweepste “just cooled” configurations.

Qg coor IS also calculated from the zero modes of the overlap opera=

tor, but on the “just cooled” configurations. Configuration No. Qu(x=0.19) Qq Qd cool
Configur- Qu(k Qq(x ; N 1 N i N i
ation No. =0.19) =0.2499) Qg3 Qq Q4 cool 3 —4 —a —a
Lo 9 o ;* .
2 +3 +3 +4  +3 +3 5 _5 _5 _5
3 +1 0 0 0 0 7 5 _5 _5
4 0 0 0 0 0 8 —-1 -1 -1
5 0 0 -1 -1 -1 9 0 0 0
6 -1 -1 -1 -1 -1 10 -2 -2 -2
7 +5 +4 +4  +6 +6 1 +1 +1 +1
8 -1 —4 -2 -2 -2 12 0 0 0
9 +1 +1 +1 +1 +1 13 -3 -3 -3
10 0 0 -1 0 0 14 —4 -3 -3
15 -2 -4 -4
11 -2 -2 -3 -3 -3 16 1 5 5
12 -1 -1 -1 -1 -1 17 -5 -5 _5
13 +2 +2 +3 +2 +2 18 -2 -3 -3
14 +3 -5 -4 -4 —4 19 -5 -5 -5
15 -3 -3 -3 -3 -3 20 —4 —4 —4
16 0 0 -1 0 0
17 0 -1 -1 0 0
18 -1 -1 -1 -1 -1 reasonable for such modest volume lattices and small num-
19 +1 +1 +1 41 +1 bers of configurations.
20 +1 0 0o -2 -2 We also observe that for this largest lattice there appears

to be a significant imbalance in the sign@fn the ensemble
and in particular the sign is consistently negative for the last
satisfied. In that sense, we conclude that our “just cooled™€ight configurations in the ensemble. If the configurations
configurations are indeed smooth enough. were uncorrelated, this would be very unlikely to occur. This
We now present in Table 1V the results for the third lattice suggests that for larger lattices, when measuring quantities
with an intermediate lattice spacing=0.125 fm corre- that are very sensitive to topology, one should use an in-
sponding toB=4.60 and with lattice size $X 24. This lat- creased number of thermalization and separation sweeps. To
tice has the largest physical volume. The range of coolingalance the topological charge in the ensemble one should
sweeps needed for this medium-spaced lattice was betweerp2rhaps consider doubling the ensemble size by adding
and 14 with an average of approximately 8. As we mightparity-transformed link configurationi@4] which leave the

anticipate, the agreement Qf; with Qg in this case is worse action invariant but reverse the sign Qf
than for the fine lattice but better than for the coarse lattice.

We do not have results for the large=0.2499 case here,

since on this Iz_:lrger lattice this.marginal chgice_;of)rqved V. CONCLUSIONS AND DISCUSSION

numerically difficult. Calculating Qg coq With its “just

cooled” configurations gives perfect agreement w@p for We have shown that overlap fermions are suitable for use
all configurations. in the study of topology and the Atiyah-Singer index theorem

It is expected thatQ?) should scale approximately as the in lattice simulations. We have shown that with an improved
volumeV for large volumes, since the topological suscepti-gluon action and an improved definition of the gluon topo-
bility is given by(Q?)/V and should be volume independent. logical charge operator we can obtain near integer topologi-
The ratio of this four-volume to that for the coarse lattice iscal charge(within 1%) within a relatively small number of
1.66. The mea®? per configuration for this lattice is easily cooling sweeps. The finer the lattice the fewer cooling
seen from Table IV to béQ?)=7.3, whereas for the coarser, sweeps are needed to obtain these “just cooled” configura-
smaller-volume lattice in Table Ill we finQ?)=4.85. We tions. We found that for lattice spacings of
see that(Q?)pg/(Q?)sma=1.51 which is approximately =0.093, 0.125, and 0.165 fm we needed on average 3, 8,
equal toVpg/Vsmar=1.66. This level of agreement seemsand 12.5 improved cooling sweeps, respectively. For all
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configurations on all lattices, we found the index theoremwhen calculating lattice quantities that are very sensitive to
satisfied for these “just cooled” configurations. Even for the topology.
finest lattice and with an improved topological charge opera-

tor some small number of cooling sweeps was needed to

obtain an integer gluon topological charge. On the finest lat-

tice the index of the overlap operator appeared independent We thank Paul Coddington of the Distributed and High-
of k and agreed with the “just cooled” overlap index 29 out Performance Computing Group and Francis Vaughan of the
of 30 times. This lattice appears then to be almost fineSouth Australian Center for Parallel Computing for support
enough that the index theorem has meaning without coolingn the development of parallel algorithms iGH PERFOR-

For all lattices the index theorem appeared to be fully satisMANCE FORTRAN. This work was carried out using the Orion
fied for the “just cooled” configurations. This provides us Supercomputer. The support of the Australian Research
with a clear benchmark for smoothness and lattice spacin@ouncil for this research is gratefully acknowledged.
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