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PHYSICAL REVIEW D, VOLUME 65, 074510
Numerical study of the lattice index theorem using improved cooling and overlap fermions

J. B. Zhang,* S. O. Bilson-Thompson,† F. D. R. Bonnet,‡ D. B. Leinweber,§ A. G. Williams,i and J. M. Zanotti¶

Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics,
University of Adelaide, Adelaide, South Australia 5005, Australia

~Received 30 November 2001; published 27 March 2002!

We investigate the topological charge and the index theorem on finite lattices numerically. Using mean field
improved gauge-field configurations we calculate the topological chargeQ using the gluon field definition with
O(a4)-improved cooling and anO(a4)-improved field strength tensorFmn . We also calculate the index of the
massless overlap fermion operator by directly measuring the differences between the numbers of zero modes
with left- and right–handed chiralities. For sufficiently smooth field configurations we find that the gluon field
definition of the topological charge is an integer to better than 1%, and furthermore that this agrees with the
index of the overlap Dirac operator, i.e., the Atiyah-Singer index theorem is satisfied. This establishes a
benchmark for reliability when calculating lattice quantities that are very sensitive to topology.
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I. INTRODUCTION

The connection between the topology of a backgrou
gauge field and fermion zero modes is related to the a
anomaly and the largeh-h8 mass splitting in QCD. Lattice
gauge theory is the tool best suited to the study of th
nonperturbative issues. We study this connection in Q
formulated on a periodic lattice, i.e., on a four-dimensio
toroidal mesh. For a fine enough lattice and/or a sufficien
smooth gauge-field configuration we should recover the
sults for continuum QCD on a four-torus. In particular, w
should recover the Atiyah-Singer index theorem@1#.

In the continuum the Dirac operatorD5gm(]m1 igAm)
of massless fermions in a smooth background gauge
with a nontrivial topology has eigenmodes with zero eige
value ~i.e., ‘‘zero modes’’! which are also chiral eigenstate
of positive or negative chirality. The Atiyah-Singer inde
theorem@1# gives the result

Q5 index~D !, ~1.1!

where

Q5
g2

32p2E d4xemnrs tr~FmnFrs! ~1.2!

is the topological charge of the background gauge field
where

index~D ![n22n1 ~1.3!

is the chirality index of the Dirac operator. Heren1 andn2

are the number of zero eigenmodes with positive~right-
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handed! and negative~left-handed! chiralities respectively,
i.e.,Dc50 with 1/2 chiralities such thatg5c56c. These
results apply to QCD defined on a continuum four-toru
where ultimately we wish to take the size of the four-torus
infinity, i.e., the infinite-volume limit.

However, in the lattice formulation one has ambiguiti
associated with the discretization and in general one can
pect the index theorem of Eq.~1.1! to be satisfied only on a
sufficiently fine lattice and/or after sufficient smoothing
the gauge fields. The use of improved operators and act
will lead to the index theorem being satisfied for less str
gent conditions on lattice spacing and/or smoothness. Th
are different ways to calculateQ for a given gauge field
configuration, e.g., using the gauge-field tensor definition@2#
of Eq. ~1.2! or using the geometrical definition@3#. In this
study we focus on the definition in Eq.~1.2!. On a continuum
four-torus the two definitions of topological charge for th
gauge field are necessarily identical. However, in the ca
lation of hadronic observables using typical lattices, the c
figurations in the ensembles are too coarse for the lat
definitions of Eq.~1.2! to lead to integer topological charg
and so the index theorem is not satisfied.

In an arbitrary gauge field, the Wilson fermion operat
does not have exact zero modes due to the Wilson te
which removes fermion doublers and breaks chiral symm
try. Attempts to study the index theorem with such an act
require one to estimate the number of ‘‘zero modes’’ by loo
ing at low lying real eigenvalues@4#. Because of the difficul-
ties in estimating the index of the Wilson fermion operator
a precise manner, it is difficult to reach a definite conclus
concerning the validity of the index theorem on a finite la
tice with Wilson fermions. In the case of Ginsparg-Wilso
~GW! Dirac fermions@5–7# there is an exact lattice realiza
tion of chiral symmetry@8# and the GW Dirac operator pos
sesses exact zero modes. Hence the ambiguity assoc
with the need to subjectively estimate the number of ‘‘ze
modes’’ of the Wilson fermions is absent. A good review a
introduction to many of these issues can be found in Ref.@9#.

There are several numerical studies@10–15# of the index
theorem on a finite lattice. In Ref.@10# the overlap fermion
formalism is used to estimate the probability distribution
©2002 The American Physical Society10-1
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J. B. ZHANG et al. PHYSICAL REVIEW D 65 074510
topological chargep(Q) in pure SU~2! gauge theory by ex-
amining the spectral flow ofH(m), whereH(m) is the Her-
mitian Wilson-Dirac operator. The study in Ref.@11# ex-
plores the real eigenvalues of the Wilson-Dirac opera
which are identified as the lattice counterparts of the c
tinuum zero modes. These authors studied topology by
amining the complete spectrum of the fermion matrix
SU~2! gauge theory on small lattices. Reference@12# uses the
spectral flow method to perform a comprehensive study
both quenched SU~3! and dynamical fermion configurations
There the role of the Sheikholeslami-Wohlert term is a
examined.

We focus here on Neuberger’s overlap Dirac opera
which is an explicit solution of the Ginsparg-Wilson relatio
and investigate the Atiyah-Singer index theorem on a fin
lattice by numerical methods. In a recent paper@16#, Adams
performed an analytical study which showed that the ind
theorem was satisfied by the overlap operator in the c
tinuum limit. We calculate the index of the overlap fermio
operator directly by measuring the number of left minus rig
zero modes of the overlap Dirac operatorD.

In measuring the gauge-field definition of the topologic
charge,Q, we use anO(a4)-improved definition of the field
strength tensor leading to an improved topological cha
operator. We also use a mean-field-improved Syman
gluon action in the quenched approximation to generate
ensemble of configurations. Where we have employed c
ing to smooth our configurations, we have used
O(a4)-improved gluon action in the cooling algorithm. Th
resulting Q approaches integer values after a few cool
sweeps and has been verified to be stable for hundred
thousands of cooling sweeps.

The paper is organized as follows. In Sec. II we introdu
the details of our calculation of the improved gauge-fie
topological chargeQ. In Sec. III we review the overlap quar
propagator and describe our calculation of index(D). Our
results are described in Sec. IV and finally our summary
discussion are presented in Sec. V.

II. IMPROVED COOLING AND TOPOLOGY

To investigate the topology of gauge fields on the latt
we first construct an ensemble of gauge-field configuratio
In lattice QCD, the gluon fields are represented by SU~3!
matrices on each link connecting adjacent lattice sites. Th
links are parallel transport operators between the lattice s
We use a parallel Cabibbo-Marinari@17# pseudo-heat-bath
algorithm with three diagonal SU~2! subgroups looped ove
twice and appropriate link partitioning@18#.

For typical lattice spacings used in simulations of QC
the link configurations in the ensemble have fluctuations
many scales. In particular, such typical link configuratio
are not smooth at the scale of the lattice spacing. Howe
the Boltzmann factore2Sgauge with Sgauge}1/g2 will ensure
that link configurations become increasingly smooth as
continuum limit is approached (g→0, a→0). But the cost
is that the volumes that one can afford to simulate also
come correspondingly smaller.

One common approach to probing the medium to lo
07451
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range topological structure of typical link configurations is
cool them sufficiently that they become approximate
smooth at the scale of the lattice spacing@19#. Cooling in-
volves recursively modifying the link values to locally min
mize the action. As we sweep repeatedly over the wh
lattice we reduce the total action, smoothing out fluctuatio
on successively larger scales@20#. This quickly eliminates
the high-frequency, rough components of the fields, leav
relatively smooth topological structures. Once the link co
figuration has been cooled sufficiently, we can expect
cooling process to preserve the global topological chargeQ.
If we cool indefinitely a link configuration on a sufficientl
fine lattice such that we preserve the global topologi
chargeQ, then we should converge toward the minimu
action solutions with chargeQ, i.e., we should converge to
self-dual configurations (Fmn5F̃mn). The resulting self-dual
configurations on the four-torus should contain onlyuQu in-
stantons~if Q.0! or anti-instantons~if Q,0!. The action of
an instanton or anti-instanton in infinite space-time is kno
analytically and is given byS058p2/g2. Instantons and
anti-instantons have the property that they are scale inv
ant, i.e., they can have any scale in the infinite four-volu
continuum and their actionS0 is unaffected. In infinite space
time in the continuum, aself-dualgluon configuration with
actionS will necessarily have topological chargeuQu5S/S0
and contain only instantons~or anti-instantons!. To the extent
that the finite volume of a four-torus is sufficiently larg
compared with the size of the instantons on it, one can
pect the above results to hold.

However, it is well established that cooling with the sta
dard Wilson action eventually destroys~anti-!instanton con-
figurations, due to the discretization errors inherent in
Wilson action@21#. The Wilson gluon~i.e., Yang-Mills! ac-
tion at each lattice site is calculated from the plaquette
closed product of four link operators

SWil5b(
x

(
m,n

1

N
Re tr~12Umn! ~2.1!

where the plaquette operatorUmn is

Umn5Um~x!Un~x1m!Um
† ~x1n!Un

†~x!. ~2.2!

This Wilson plaquette action contains deviations from t
continuum Yang-Mills action ofO(a2) wherea is the lattice
spacing. This problem may be remedied by improving
action. Tree-level improvement of the classical lattice act
combined with mean-field~i.e., tadpole! nonperturbative im-
provement@22# provides a simple and very effective mea
of eliminating lowest-order discretization errors. The sim
plest improvement of the classical gauge action on the lat
is achieved by taking a linear combination of the Wils
plaquette and ana32a rectangle, i.e., Symanzik improve
ment. Since the plaquette and rectangle have differentO(a2)
errors they can be added in a linear combination in suc
way that theseO(a2) errors cancel, leaving only errors o
O(a4) in the classical~i.e., tree-level! gauge action. One can
preserve this improvement at the nonperturbative level
combining this with mean-field improvement of the link
@23#. More recently, DeForcrandet al. @24# have used tree-
0-2
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NUMERICAL STUDY OF THE LATTICE INDEX . . . PHYSICAL REVIEW D65 074510
level improvement to construct a lattice action which elim
natesO(a4) errors and leaves onlyO(a6) errors, by using
combinations of up to five different closed-loop products
link operators~Wilson loops!. From these five loops, particu
lar linear combinations were studied in detail and were
ferred to as three-loop, four-loop, and five-loop improv
actions. The difference is the number of nonzero contri
tions in the linear combination of the five planar loops. Th
represent the improved action as

Simp5(
i 51

5

ciSi , ~2.3!

where theSi are the actions calculated as per Eq.~2.1!, but
using five different Wilson loops, and theci are the weight-
ing constants tuned to eliminate theO(a2) andO(a4) errors.
Additional details may be found in Ref.@24#.

In our work we construct improved actions utilizing th
results of DeForcrandet al. However, we have chosen t
improve the topological charge via an improved fie
strength tensor. In particular, we employ anO(a4)-improved
definition of Fmn in which the standard clover sum of fou
131 Wilson loops lying in them,n plane is combined with
232 and 333 Wilson loop clovers. Bilson-Thompsonet al.
@25# find

gFmn5
2 i

8 F S 3

2
W1312

3

20u0
4 W232

1
1

90u0
8 W333D 2H.c.G

traceless

, ~2.4!

whereWn3n is the clover sum of fourn3n Wilson loops
and whereFmn is made traceless by subtracting 1/3 of t
trace from each diagonal element of the 333 color matrix.
This definition reproduces the continuum limit withO(a6)
errors. We employ the plaquette measure of the mean lin

u05^ 1
3 Re trUmn&x,mÞn

1/4 , ~2.5!

which is updated after each sweep through the lattice.
mean linku0 rapidly tends to 1 under cooling, thus repr
ducing the classical limit. However, early in the cooling pr
cedure, the fields are not classical andu0 serves to tadpole
improve the definition ofFmn .

This improved field-strength tensor can be used directly
Eq. ~1.2!, resulting in a topological charge that is automa
cally free of discretization errors to the same order as
field-strength tensor. On self-dual configurations, this ope
tor produces integer topological charge to better than 4 p
in 104. Furthermore, since the gluon~i.e., Yang-Mills! action
is also based upon the field-strength tensor, it is possibl
create what we refer to as areconstructed actionbased upon
the improved field-strength tensor. The value of the act
calculated with the reconstructed action operator can be c
pared with the value calculated with the standard impro
action operator Eq.~2.3! at each cooling sweep as a doub
07451
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checking mechanism to ensure that the two different
proaches to tree-level improvement removingO(a4) errors
yield consistent results.

The principal criteria by which we may judge the value
an improvement scheme are how quickly and how clos
the results for the topological chargeQ approach integer val-
ues, and the stability with which they remain at that integ
On a lattice, the discretization errors prevent us from obta
ing exactly integer results. However, the more successful
improvement program, the more rapidly we can expect co
ing to lead us to a stableQ, and the closer this will be to an
integer. Figure 1 shows how both the action and topolog
charge approach the same integer value as a function o
number of cooling sweeps. This is exactly as we would
pect forQ. As we approach self-duality on the four-torus w
appear to recover S/S05uQu just as in the
continuum infinite-volume limit. Recall that the positivit
of (Fmn

a 6F̃mn
a )2 ensures that 0<*d4x(Fmn

a 6F̃mn
a )2

52*d4x@(Fmn
a )26Fmn

a F̃mn
a # and hence

S5
1

4E d4x~Fmn
a !2>

1

4
U E d4xFmn

a F̃mn
a U5 8p2

g2
uQu5S0uQu,

~2.6!

where we have definedS0[8p2/g2. Self-dual configurations
Fmn

a 56F̃mn
a saturate this identity, i.e.,uQu5S/S0. This result

applies independent of the shape of the space-time man
and so applies on the continuum four-torus as well as
infinite space-time. However, note that Nahm’s theorem@26#
implies that there is no self-dualuQu51 configuration pos-
sible on the four-torus. In infinite space-timeS0 is the single
instanton or anti-instanton action.

While an in-depth comparison of the various coolin
schemes is beyond the scope of this report, we summariz
noting that it has been determined@25# that three-loop im-
proved cooling with a three-loop topological charge opera
gives excellent results in terms of how close the calcula
values ofS/S0 and Q come to integer values, the stabilit

FIG. 1. An example plot of how improved cooling stabilizes t
action ~circles! and topological charge~triangles! at consistent val-
ues. The action has been rescaled by dividing it byS0, the action of
a single instanton.
0-3



J. B. ZHANG et al. PHYSICAL REVIEW D 65 074510
TABLE I. Parameters of generated lattices.

Action Volume Ntherm Nsep b a ~fm! u0 Physical volume~fm!

Improved 83316 5000 500 4.80 0.093 0.89625 0.75331.50
Improved 83316 5000 500 4.38 0.165 0.87821 1.32332.64
Improved 123324 5000 500 4.60 0.125 0.88888 1.50333.0
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with which they remain at that integer, and the speed w
which cooling can be performed.

III. OVERLAP FERMIONS AND ZERO MODES

The overlap fermion formalism@27# provides a way of
realizing exact chiral symmetry on the lattice. The massl
overlap-Dirac operator can be written as

Do~0!5@11g5e~Hw!#, ~3.1!

wheree(Hw) is the matrix sign function

e~Hw!5
Hw

uHwu
, Hw5g5Dw , ~3.2!

Dw is the usual Wilson-Dirac operator

Dw5Maam,bbn

5da,bda,bdm,n2k (
m51

4

@~12gm!ab

3Um~m!abdm,n2m̂1~11gm!ab

3Um
† ~m2m̂ !abdm,n1m̂#, ~3.3!

andk is the hopping parameter,

k5
1

22m18
. ~3.4!

The bare mass parameter for the Wilson kernel in the ove
formalism m has to be in the range~0,2! for Do(0) to de-
scribe a single massless Dirac fermion. Note that them used
in this context is the negative of the bare mass used in si
lations with the Wilson quark action itself. In principle, an
value of m in the above range should give the same c
tinuum theory. But on a finite lattice, where volume and l
tice spacing are finite, the results for the overlap action
depend on the value chosen form. For the purposes of usin
overlap fermions to be most sensitive to the topology of
background gauge fields@12#, m has to be chosenm
.m1(g2) for somem1(g2) going to zero in the continuum
limit. For typical gauge configurationsm1(g2) is slightly less
than mc , wheremc is the critical value ofm at which the
pion mass extrapolates to zero in a simulation with ordin
Wilson fermions. In the hopping parameter formalism, thek
should be in the range~kc , 0.25! at tree level. The massles
overlap operatorDo(0) has been shown@7# to satisfy the
Ginsparg-Wilson relation

$g5 ,Do~0!%5Do~0!g5Do~0!. ~3.5!
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Its spectral properties are as follows.
The modulus of the eigenvalue ofDo(0) lies in the range

@0,2#. It has exact zero eigenvalues which are associated
topology. The corresponding eigenvectors are also eigen
tors of g5. They need not occur in pairs. There can ben1

zero modes with eigenvalues ofg5 equal to 1 andn2 zero
modes with eigenvalues ofg5 equal to21. It also has ei-
genvalues equal to62 which also have definite chirality
Their difference (n18 2n28 ) is equal to (n22n1).

Nonzero eigenvalues ofDo(0) are complex, their modul
are less than 2, they come as pairs, and they are conjuga
each other. The associated eigenvectors are not eigenve
of g5.

In practice, we calculate a small number of low-lying e
genvalues and eigenvectors ofDo

†(0)Do(0). Note that
Do

†(0)Do(0) commutes withDo(0) and it is Hermitian and
positive definite. It also commutes withg5 and can be simul-
taneously diagonalized. Hence,Do

†(0)Do(0) has zero eigen-
modes of definite chirality which are also the zero eige
modes ofDo(0).

We compute low-lying eigenmodes ofDo
†(0)Do(0) using

the Ritz functional algorithm@28#. In the computation of the
overlap operator, the time consuming part is the calculat
of the matrix sign functione(Hw). There are several numer
cal approaches by which to approximate the sign funct
e(z) @29–31#. We adopt the optimal rational approximatio
@30# with a ratio of polynomials of degree 12 in the Rem
algorithm. We find the error to the approximation ofe(z) to
be within 1026 in the range@0.04,1.5# of the argumentz. To
improve the accuracy as well as efficiency of computation
the matrix sign functione(Hw), a number of low-lying ei-
genvalues ofHw whose absolute values are less than 0.04
projected out. Since

Do
†~0!Do~0!5Do

†~0!1Do~0!, Do
†~0!5g5Do~0!g5 ,

~3.6!

we use chiral states in the Ritz functional algorithm, a
hence can save one matrix multiplication@32# per iteration.

IV. RESULTS AND COMPARISON

Configurations have been generated on an 83316 lattice
at bothb54.80 andb54.38 as well as on a 123324 lattice
at b54.60. Configurations are selected afterNtherm55000
thermalization sweeps from a cold start and everyNsep
5500 sweeps thereafter with the average linku0 fixed at the
time of the first sample configuration being taken. Latti
parameters are summarized in Table I.

We first use the gluon field definition to calculate the t
pological chargeQ by using the three-loop improved fiel
0-4
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NUMERICAL STUDY OF THE LATTICE INDEX . . . PHYSICAL REVIEW D65 074510
strengthFmn as described in Sec. II. For each configurati
we measure the topological charge by cooling with the thr
loop improved action for just enough cooling sweeps thaQ
is integer to within 1%. This typically requires from one
30 cooling sweeps depending on the lattice spacing and
particular configuration. We retain both the original uncoo
configurations as well as these ‘‘just cooled’’ configuration
We denote the topological charge obtained from the ‘‘j
cooled’’ gluon field configurations asQg .

Secondly, we use the overlap formalism to calculate
index of the gauge configurations at twok values, i.e.,k
50.19 corresponding tom51.36 and k50.2499 corre-
sponding tom51.999. The second value approaches
largest allowed value ofm to describe a single massle
Dirac fermion. We extract the overlap index for both t
original uncooled and the ‘‘just cooled’’ cooled configur
tions and denote the results byQd andQd cooled, respectively.

The results for the small-volume 83316, b54.80 lattice
are collected in Table II. We see that since the physical v
ume of our lattice is rather small, only a few configuratio
have nontrivial topology. The indexQd of the overlap opera-
tor calculated at the two differentk values is the same for a
30 configurations. The range of cooling sweeps needed to
Q to within 1% of integer was between 1 and 7 with
average of approximately 3. The index for these ‘‘ju
cooled’’ configurations differs from these for only one of th
30 configurations, i.e., configuration 26. For all of the co
figurations the gluon topological chargeQg is identical to the
index of the overlap operator extracted from ‘‘just coole
configurationsQd cooled. These results indicate that on such
fine lattice (a50.093 fm) topology is relatively well repre
sented and the index theorem is ‘‘almost’’ valid for uncool
configurations. We see also that for ‘‘just cooled’’ configur
tions the index theorem appears to be perfectly satisfied.
ture investigations should explore the possible volume
pendence of these results.

We next turn to the coarser (a50.165 fm), larger-
volume 83316, b54.38 lattice. The results for this lattic
are shown in Table III. Since the physical volume of t
lattice is larger there is more nontrivial topology than befo
which is reflected in the largeQ values. We find thatQd now
differs in 30% of cases depending on which value ofk is
used in the overlap kernel. In some cases, e.g., for confi
ration 14, the disagreement is very significant indeed. T
range of cooling sweeps needed for this coarse lattice
between 4 and 28 with an average of approximately 12.5
addition to measuring the gluon topological charge on th
‘‘just cooled’’ configurationsQg , on this lattice we have also
attempted to identify the gluon topological charge after j
three cooling sweeps, i.e.,Qg3. This was done by identifying
the nearest integer to the gluon topological charge after
three cooling sweeps and was motivated by the observa
that the action density and the reconstructed action den
matched within 10% after three sweeps. We see thatQg3 is
reasonably consistent with the robustQg , but there are sig-
nificant differences.Qg3 also has significant differences from
theQd values. The disagreement betweenQd andQg is more
significant on this coarse lattice.
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These differences may be interpreted by considering
size of the topological objects giving rise to exact ze
modes@33#. At k50.19, the overlap operator will typically
miss zero modes associated with small topological obje
Indeed, for the six configurations whereQd(k50.19)
ÞQd(k50.2499), Qd(k50.2499) agrees better withQg3

than withQg . This is as one might expect, as further cooli
will remove topological objects smaller than the dislocati
threshold of the improved cooling algorithm, which is typ
cally two lattice spacings.

These results all suggest that for uncooled configurati
on this coarser lattice topology is not well represented a
the index theorem is badly violated. However, from the p
fect agreement betweenQg andQd cool, we see that for ‘‘just
cooled’’ configurations the index theorem is again perfec

TABLE II. Results forb54.80 improved gauge configuration
on an 83316 lattice with spacinga50.093 fm: Qd is calculated
from the zero modes of the overlap operator on the original
cooled configurations;Qg is obtained using the improved topolog
cal charge operator for the ‘‘just cooled’’ configurations~i.e., con-
figurations after just enough improved cooling sweeps to bringQ
within 1% of integer!; Qd cool is also calculated from the zero mode
of the overlap operator, but on the ‘‘just cooled’’ configurations.

Configuration No. Qd(k50.19) Qd(k50.2499) Qg Qd cool

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 11 11 11 11
5 0 0 0 0
6 21 21 21 21
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 21 21 21 21
25 22 22 22 22
26 11 11 0 0
27 0 0 0 0
28 0 0 0 0
29 0 0 0 0
30 0 0 0 0
0-5
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satisfied. In that sense, we conclude that our ‘‘just coole
configurations are indeed smooth enough.

We now present in Table IV the results for the third latti
with an intermediate lattice spacinga50.125 fm corre-
sponding tob54.60 and with lattice size 123324. This lat-
tice has the largest physical volume. The range of coo
sweeps needed for this medium-spaced lattice was betwe
and 14 with an average of approximately 8. As we mig
anticipate, the agreement ofQg with Qd in this case is worse
than for the fine lattice but better than for the coarse latt
We do not have results for the largek50.2499 case here
since on this larger lattice this marginal choice ofk proved
numerically difficult. Calculating Qd cool with its ‘‘just
cooled’’ configurations gives perfect agreement withQg for
all configurations.

It is expected that̂Q2& should scale approximately as th
volumeV for large volumes, since the topological suscep
bility is given by^Q2&/V and should be volume independen
The ratio of this four-volume to that for the coarse lattice
1.66. The meanQ2 per configuration for this lattice is easil
seen from Table IV to bêQ2&57.3, whereas for the coarse
smaller-volume lattice in Table III we find̂Q2&54.85. We
see that ^Q2&big /^Q2&small51.51 which is approximately
equal toVbig /Vsmall51.66. This level of agreement seem

TABLE III. Results forb54.38 improved gauge configuration
on an 83316 lattice with spacinga50.165 fm: Qd is calculated
from the zero modes of the overlap operator on the original
cooled configurations;Qg is obtained using the improved topolog
cal charge operator for the ‘‘just cooled’’ configurations;Qg3 is
obtained using the improved topological charge operator for
configurations obtained after just three improved cooling swee
Qd cool is also calculated from the zero modes of the overlap op
tor, but on the ‘‘just cooled’’ configurations.

Configur-
ation No.

Qd(k
50.19)

Qd(k
50.2499) Qg3 Qg Qd cool

1 0 0 11 0 0
2 13 13 14 13 13
3 11 0 0 0 0
4 0 0 0 0 0
5 0 0 21 21 21
6 21 21 21 21 21
7 15 14 14 16 16
8 21 24 22 22 22
9 11 11 11 11 11

10 0 0 21 0 0
11 22 22 23 23 23
12 21 21 21 21 21
13 12 12 13 12 12
14 13 25 24 24 24
15 23 23 23 23 23
16 0 0 21 0 0
17 0 21 21 0 0
18 21 21 21 21 21
19 11 11 11 11 11
20 11 0 0 22 22
07451
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n 2
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reasonable for such modest volume lattices and small n
bers of configurations.

We also observe that for this largest lattice there appe
to be a significant imbalance in the sign ofQ in the ensemble
and in particular the sign is consistently negative for the l
eight configurations in the ensemble. If the configuratio
were uncorrelated, this would be very unlikely to occur. Th
suggests that for larger lattices, when measuring quant
that are very sensitive to topology, one should use an
creased number of thermalization and separation sweeps
balance the topological charge in the ensemble one sh
perhaps consider doubling the ensemble size by add
parity-transformed link configurations@34# which leave the
action invariant but reverse the sign ofQ.

V. CONCLUSIONS AND DISCUSSION

We have shown that overlap fermions are suitable for
in the study of topology and the Atiyah-Singer index theore
in lattice simulations. We have shown that with an improv
gluon action and an improved definition of the gluon top
logical charge operator we can obtain near integer topolo
cal charge~within 1%! within a relatively small number of
cooling sweeps. The finer the lattice the fewer cooli
sweeps are needed to obtain these ‘‘just cooled’’ configu
tions. We found that for lattice spacings ofa
50.093, 0.125, and 0.165 fm we needed on average 3
and 12.5 improved cooling sweeps, respectively. For

-

e
s;
a-

TABLE IV. Results forb54.60 improved gauge configuration
on a 123324 lattice with spacinga50.125 fm: Qd is calculated
from the zero modes of the overlap operator on the original
cooled configurations;Qg is obtained using the improved topolog
cal charge operator for the ‘‘just cooled’’ configurations;Qd cool is
also calculated from the zero modes of the overlap operator, bu
the ‘‘just cooled’’ configurations.

Configuration No. Qd(k50.19) Qg Qd cool

1 21 21 21
2 11 11 11
3 24 24 24
4 0 0 0
5 11 11 11
6 22 22 22
7 22 22 22
8 21 21 21
9 0 0 0

10 22 22 22
11 11 11 11
12 0 0 0
13 23 23 23
14 24 23 23
15 22 24 24
16 21 22 22
17 25 25 25
18 22 23 23
19 25 25 25
20 24 24 24
0-6
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configurations on all lattices, we found the index theor
satisfied for these ‘‘just cooled’’ configurations. Even for t
finest lattice and with an improved topological charge ope
tor some small number of cooling sweeps was needed
obtain an integer gluon topological charge. On the finest
tice the index of the overlap operator appeared indepen
of k and agreed with the ‘‘just cooled’’ overlap index 29 o
of 30 times. This lattice appears then to be almost fi
enough that the index theorem has meaning without cool
For all lattices the index theorem appeared to be fully sa
fied for the ‘‘just cooled’’ configurations. This provides u
with a clear benchmark for smoothness and lattice spa
no

ys

ll-

rd

07451
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to
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g

when calculating lattice quantities that are very sensitive
topology.
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