Large Scale Antenna Array for GPS Bistatic Radar

Chow Yii Pui

Thesis submitted for the degree of

Doctor of Philosophy

School of Electrical and Electronic Engineering Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide South Australia

July 2017

Contents

A	bstra	nct	v
D	eclar	ation	vii
A	ckno	wledgements	ix
Li	ist of	Figures	xi
Li	ist of	Tables	xix
A	bbre	viations	xxi
Sy	mbo	bls	XXV
Pı	ıblic	ations	xxix
1	Int	roduction	1
	1.1	Problem Description	1
	1.2	Outline of Thesis and Main Contributions	4
2	GP	S Bistatic Radar Background for Target Detection	7
	2.1	Introduction	7
	2.2	Background of Passive Bistatic Radar	7
	2.3	PBRs Performance Comparison	
	2.4	Background of GPS	11
		2.4.1 GPS Signal Detection Techniques	13
	2.5	GPS Bistatic Radar Detection Applications	
	2.6	GPS Signal Air Target Detection for Passive Bistatic Radar	20
	2.0		
	2.0	2.6.1 Coherent Integration	21
	2.0	2.6.1 Coherent Integration2.6.2 Non-coherent Integration	21

		2.6.4 Phased-array Technique	24
		2.6.5 MIMO Radar Technique	25
	2.7	Proposed Research	27
		2.7.1 Coherent Integration	27
		2.7.2 Phased-array Technique	29
		2.7.3 MIMO Radar Technique	30
	2.8	Conclusion	30
3	Fea	sibility of Target Detection using Phased-array Technique	33
	3.1	Introduction	33
	3.2	Estimation of Parameters for GPS Bistatic Radar	34
		3.2.1 Power Measurement of Target Scattering	34
	3.3	Background of Phased-array Technique	39
		3.3.1 Phased-array Receiver for PBR	40
		3.3.2 Null-Steering	43
		3.3.3 Discussion of Phased-array Technique for GPS Bistatic Radar	43
	3.4	Antenna Array Calibration Technique	45
		3.4.1 Background	45
		3.4.2 Phase Error Calibration for GPS Bistatic Radar	47
		3.4.3 Attitude Calibration of Receiving Array for GPS Bistatic Radar	49
	3.5	Target Verification and Identification Process	50
		3.5.1 Target Detection Modelling	52
		3.5.2 Simulation Example of Target Detection	54
		3.5.3 Target Parameter Estimation	60
		3.5.4 Simulation Example of Target Parameters Estimation	64
	3.6	Conclusion	71
4	GP	S Bistatic Radar using MIMO Technique	75
	4.1	Introduction	75
	4.2	MIMO Radar Target Detection Model for GPS Bistatic Radar	76
	4.3	Performance of MIMO Technique for GPS Bistatic Radar	79

		4.3.1 Target Detection Performance	80
		4.3.2 Target Location Estimation Accuracy	83
		4.3.3 Computational Complexity	
	4.4	Simulation of Target Detection Results for GPS MIMO Radar	85
		4.4.1 Target Detection (SISO vs. MISO)	86
		4.4.2 Target Detection (MISO vs. MIMO)	93
		4.4.3 Detection for Multiple Targets (SISO vs MISO vs MIMO)	98
		4.4.4 Target Tracking for GPS MISO/MIMO Radar	101
	4.5	Conclusion	108
5	F ww	novimental Target Detection Devformance for CDS Pistatic	Dodon 112
3	Схļ	permental larget Detection remormance for GFS distance	Rauar 115
	5.1	Introduction	113
	5.2	Experimental Receiver for Air Search GPS Bistatic Radar	116
		5.2.1 Description of Receiver's Design	116
		5.2.2 Receiver Performance Benchmark	121
	5.3	Direct-path Signal Acquisition	123
	5.4	Experimental Antenna Array Calibration Results	130
		5.4.1 Antenna Array Deployment	130
		5.4.2 Calibration Process and Outcome	130
		5.4.3 Verification of Calibration Results	
	5.5	Direct-path Signal Interference Cancellation Technique	137
		5.5.1 Background	137
		5.5.2 Simulation Examples of DSI cancellation technique	140
		5.5.3 Experimental results using DSI cancellation technique	143
	5.6	Experimental Results from Air Target Detection	145
		5.6.1 Experiment Scenario for Target Detection	145
		5.6.2 Phased-array Detection Technique	148
		5.6.3 MISO Radar Detection Technique	160
	5.7	Conclusion	165

171

6.1	Summary and Contributions	.167
6.2	Further Recommendations	.170

References

Abstract

GPS passive bistatic radar uses signals transmitted by navigation satellites to perform target detection. This research aims to develop a ground-based receiver that detects the reflected GPS signals from air targets. The main challenge for GPS bistatic radar is the difficulty in detecting the extremely weak power GPS signal reflections from a target since GPS satellites are located at very high altitudes and transmit signals at relatively low power levels.

The research in this thesis investigates the minimum power of the reflected GPS signal that can be reliably detected by applying several techniques for enhancing the receiver detection performance. The proposed techniques for GPS bistatic radar target detection model include: using a large scale antenna array at the receiver, applying long coherent integration times for the captured data and non-coherently summing the power returns of targets from multiple satellites or receivers. This detection model requires the radar system to incorporate the signal information from a large number of receiving channels and non-cooperative transmitters to perform air target detection.

This research also incorporates additional techniques at the pre-detection stage that are essential for the target detection model. Among these techniques include: direct-path GPS signals acquisition that obtains the Doppler frequency component and C/A code pattern from each satellite, array calibration that realigns the inter-element phase errors and orientation of phased-array receiver using the GPS system, and direct-path signal interference cancellation.

The GPS bistatic radar target detection performance was initially investigated using the results produced by computer simulations. Then, a prototype phased-array GPS bistatic radar receiver was built to capture target reflections from an aircraft and investigate the detection performance of the system experimentally. The system was able to successfully detect and locate the position of a nearby aircraft, which demonstrates that the techniques introduced for GPS bistatic radar in this thesis do work in practice. The experimental results also provide a

benchmark that can be used to estimate the scale of the receiver required for detecting objects at a greater distance.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

Signature:

Date:

Acknowledgements

Firstly, I would like to thank my first co-supervisor, Mr. Matthew Trinkle, for being willing to spend his precious time with me together investigating the problems addressed in my research and accompany me during the excursions to perform the air target detection experiments. He is also the person who introduced me to study the topic of GPS bistatic radar. I had learnt a lot of skills in RF electronic system, PCB and FPGA designs from him since I did my undergraduate honours project under his supervision. These knowledges are potentially useful for my future career in the electrical and electronic engineering field.

Besides, I would like to thank my second co-supervisor, Prof. Doug Gray, for admitting me as a student member of the Adelaide Radar Research Centre (ARRC), which granted me access to the radar laboratory and numerous resources for designing, testing and building the experimental GPS bistatic radar receiver for my research. Besides, he has provided much useful feedback that greatly improved the writing quality of my thesis.

Also, I would like to thank my principal supervisor, Dr. Brian Ng, for his role in supervising and managing my PhD candidature during these years. He provided useful information and advice before I started writing this thesis. He also encouraged me when I at times lost concentration in writing the thesis.

There are several staff members at the School of Electrical and Electronic that I am indebted for their assistance and advice. Mr. Danny di Giacomo provided me with a wide range of electronic components suitable for my experimental receiver and placed orders when components were required. Mr. Pavel Simcik helped me to fabricate PCBs for several modules in the system. Ian Linke provided materials for building the receiver's structure and performed safety inspection for its worthiness in mounting on a car prior to performing the field test. Ms. Rose-Marie Descalzi managed the paperwork and expenses for my travel to conferences.

In addition, I would like to thank Dr. Abraham du Plooy from Opt-Osl Systems for fabricating the phased-array elements for the radar receiver. Besides, I would like to thank Dr.

James Palmer from DSTO for his invitation to present my research outcome at several passive bistatic radar workshops. These workshops further stimulate my interest in the development work of passive bistatic radar. I had also learnt some useful knowledge related to my research by sharing with other attendees.

I also treasured my friendship with my fellow colleagues, Ruiting Yang, Zili Xu, Kai Yu and Yuexian Wang. We love to share both our work and life together while helping each other when needs arose.

There are also a few distant but sincere friends, Keyi Lu, Sieng Yii Tiong, Maggie Jing Li and Amg Chong Ngu whom I truly appreciated for their concern regarding the progress of my PhD study when they sent me birthday greetings every year.

Lastly, I would like to utterly thank my wife for her truly great love and care since our relationship began, and also my parents for their unconditional love in raising me up and teaching me well. May the success and achievement from my research glorify the name of my Heavenly Father.

List of Figures

Figure 1.1: Illustration of monostatic radar vs. bistatic radar2
Figure 1.2: The PBR airborne target detection environment
Figure 2.1: A typical block diagram of GPS receiver14
Figure 2.2: The illustration of discrete linear code-Doppler search algorithm. The 'X' symbol
in the grid indicates the code-Doppler location of a GPS signal17
Figure 2.3: A down-converted GPS signal located at Doppler offset of 1,900 Hz and sampled
code phase of 2,866 is sampled at 4.167MHz and detected using code-Doppler search for an
integration period of 5 milliseconds and Doppler resolution of 50 Hz17
Figure 2.4: Schematic of the proposed phased array (Top) and MIMO radar (Bottom) designs
for GPS bistatic radar in performing air target detection and parameters estimation28
Figure 3.1: Target detection scenario of a bistatic radar (not to scale)
Figure 3.2: Estimated return power (Left) and SNR (Right) of various RCS targets36
Figure 3.3: Given a certain CFAR, a higher SNR of the input signal results in an improvement
of receiver performance in terms of probability of detection
Figure 3.4: Required GPS bistatic radar receiver gain for detecting targets of various RCS, σB ,
while satisfying detection performance of $\mathbb{P}D = 90\%$ and $\mathbb{P}FA = 1\%$
Figure 3.5: Illustration of the arrival of plane wave signals at antenna array
Figure 3.6: Beam pattern of a 8-element ULA showing 2 null directions using the null-steering
technique44
Figure 3.7: Geometry of phased-array antenna panel in 3-D coordinates
Figure 3.8: Orientation of phased-array panel with respect to the original configuration48
Figure 3.9: Satellite tracking program "JSatTrak" showing the orbit (Top), range, azimuth and
elevation angles information (Bottom Left) and polar plot (Bottom Right) of GPS PRN02 from
a receiver position near Adelaide airport (Courtesy Shawn Gano)
Figure 3.10: Flowchart of the attitude calibration process for a receiving array incorporating

Figure 3.11: Normalised CAF of GPS bistatic radar from simulation search process using Figure 3.12: Correlation value at 1st sample delay vs. frequency difference at output of single Figure 3.13: Beampower of 32-element receiver for target scattering signal at $f_{\delta} = -170$ Hz and Figure 3.14: CCAF from a GPS bistatic radar single target detection scenario (Sim 1).......59 Figure 3.15: CCAF from a GPS bistatic radar single target detection scenario (Sim 2)......60 Figure 3.16: Normalised CCAF processed from simulation in a GPS bistatic radar multiple Figure 3.17: Beampower of target 1 return using detection from PRN12 and PRN24. The peaks Figure 3.18: Beampower of target 3 return using detection from PRN12 and PRN24. The peak Figure 3.19: BCAF results (PRN12) of target 1/2 and 3 that are performed during the target Figure 3.20: BCAF results (PRN12) of target 1/2 and 3 that are performed during the target Figure 3.21: BCAF results (PRN12) of target 1/2 and 3 that are performed during the target Figure 3.22: Correlation function that is performed using original vs. interpolated signals. Note that the correlation value is normalised and the sample delay axis is applied with the time scale of interpolated signals. The peak of correlation for PRN04, PRN12, PRN23 and PRN24 appear Figure 3.23: Inverse MSE of localisation for target 3 determined from model (3.51) using sampling delay from original (Left) vs. interpolated (Right) correlation results. The largest inverse MSE of these results appear at position of [38, 174, 95] and [0, 150, 97] metres relative to the radar receiver respectively......70 Figure 3.24: Inverse MSE of localisation for target 3 determined from model (3.53) using its corresponding Doppler readings from BCAF results (Top Left) and the 3-D velocity diagrams Figure 4.1: Illustration of target detection scenario for GPS MISO radar......77 Figure 4.2: Block diagram of GPS MISO radar system (Top) that combines the output from L satellites. The function of the matched filters (Bottom) within the system is also illustrated. 78

Figure 4.3: Block diagram of GPS MIMO radar system that combines the output from <i>B</i> MISO	
receivers	
Figure 4.4: The probability of detection vs. pre-integrator stage SNR using different numbers	
of non-coherent integration	
Figure 4.5: Comparison of gain level at different numbers of integration	
Figure 4.6: Simulated geolocation of target detection (4TX and 1RX). Note that the unit 'Mm'	
denotes Mega (10 ⁶) metre	
Figure 4.7: Target location estimation results (normalised) from $L \times 1$ GPS MISO radar systems	
with 10 m search resolution using integration of different numbers of SV	
Figure 4.8: Errors between the magnitudes of true target velocity (i.e. 54.78 m/s) and the	
readings from the measurements of $L \times 1$ GPS MISO radar target location estimation results.	
Figure 4.9: Histograms of $\mathcal{H}0$ and $\mathcal{H}1$ compared with the theoretical chi-squared and non-	
central chi-squared PDFs model respectively for $L \times 1$ GPS MISO configurations	
Figure 4.10: Comparison of CDFs for different numbers of non-coherent integration between	
the histograms given by the MCE of MISO detection results (o) and the theoretical chi-squared	
models (continuous lines)	
Figure 4.11: Comparison of pRMSE and vRMSE measurements obtained from the MCE	
between <i>L</i> ×1 MISO configurations at different input SNR levels	
Figure 4.12: Simulated geolocation of target detection (4TX and 4RX)	
Figure 4.13: Target location estimation results (normalised) from GPS $L \times B$ MIMO radar with	
10 m search resolution using integration of different numbers of receivers95	
Figure 4.14: Errors between the magnitudes of true target velocity (54.78 m/s) and the readings	
from the measurements of $L \times B$ GPS MIMO radar target location estimates	
Figure 4.15: Histograms of $\mathcal{H}0$ and $\mathcal{H}1$ compared with the theoretical chi-squared and non-	
central chi-squared PDFs model respectively for $L \times B$ GPS MIMO configurations	
Figure 4.16: Comparison of CDFs for different numbers of non-coherent integration between	
the histograms given by the MCE of MIMO detection results (o) and the theoretical chi-squared	
models (continuous lines)	
Figure 4.17: Comparison of pRMSE and vRMSE measurements obtained from the MCE	
between 4×1 MISO, 4×2 and 4×4 MIMO configurations at different input SNR levels97	
Figure 4.18: Simulated geolocation of target detection (4TX, 4RX and 3 targets)	

Figure 4.19: Position estimation and velocity error results of multiple targets (normalised) from
GPS SISO/MISO radar systems with 10 m search resolution using the 1×1 , 2×1 and 4×1
configurations
Figure 4.20: Position estimation results of multiple targets (normalised) from GPS MIMO radar
systems with 10 m search resolution using the 4×2 and 4×4 configurations
Figure 4.21: Simulated geolocation of target detection (4TX, 1RX and 3 targets)102
Figure 4.22: Variations in targets positions, Doppler frequency, sample delays and DOAs due
to their corresponding motions in 100 ms
Figure 4.23: Illustration of matched filter for tracking target in the detection process using the
TBD (Top) and integration with fragmentised data samples (Bottom) methods103
Figure 4.24: MIMO radar target location estimation results (normalised) at 10 m search
resolution (Top Left) and their corresponding 3-D velocity components using the TBD
technique. The velocity vector estimates for all identified targets are [50; 20; -10], [500; 200;
-10] and [2000; 2000; 0] m/s respectively
Figure 4.25: MIMO radar target location estimation results (normalised) at 10 m search
resolution using the integration of the first sub-block fragmentised data of 10 ms, 25 ms, 50 ms
and full integration process of 100 ms (i.e. no fragmentisation)
Figure 4.26: The sequence of MIMO radar target location estimation results (normalised) at 10
m search resolution using the integration of 25 ms fragmentised data sub-blocks out of 100 ms
data snapshot
Figure 4.27: The 2-D velocity result corresponding to the integration of fragmentised data sub-
block 0 - 25 ms
Figure 4.28: The true target path and the recorded target (Tgt2) positions where peak returns
appeared at all the time frames using the fragmentised data integration of various sub-block
lengths out of 100 ms data snapshot
Figure 4.29: Performance chart of tRMSE vs. integration sub-block lengths109
Figure 5.1: Overall process of GPS bistatic radar system for performing target detection114
Figure 5.2: Outline of the experimental GPS bistatic radar receiver
Figure 5.3: Picture of the front-end's PCB
Figure 5.4: Picture of the 32-elements array and the schematic of the 8-element circular grid
sub-array (Courtesy of Opt-Osl Systems)118
Figure 5.5: Comparison of beam pattern of 8-element sub-array ($\theta_s = 0^\circ, \phi_s = 45^\circ$)119
Figure 5.6: Comparison of beam pattern of 32-element antenna array ($\theta_s = 0^\circ, \phi_s = 45^\circ$) 119

Figure 5.7: Illustration of data captured from 4 FPGAs stored into PC, translated into decimal
complex numbers form and sorted into 64 blocks based on the configuration of antennas in the
array121
Figure 5.8: Analysis of GPS signal correlation sample lag across time and its rate of change
modelling using linear regression method. Note that PRN12 and PRN24 possess a negative (-
4.1 Hz) and positive (3.6 Hz) Doppler respectively
Figure 5.9: Phase analysis of GPS signal after the removal of C/A codes decimation filtering.
Each phase change of π radians in the figures indicates a data-bit transition of the navigation
message126
Figure 5.10: Phase reading of residual Doppler component in the GPS signal
Figure 5.11: Comparison of the signal phase of PRN12 after residual Doppler removal
modelled by various polynomial orders. The variances of these phase readings in the ascending
polynomial order are 0.0051, 0.0049, 0.0046 and 0.0043. These parameters show that a slightly
smoother phase reading is achieved as the time varying Doppler component is removed using
higher order polynomial regression modelling
Figure 5.12: Phase reading of residual Doppler component in the GPS signal128
Figure 5.13: Comparison of the signal phase of PRN24 after residual Doppler removal
modelled by various polynomial orders. The variances of these phase readings in the ascending
polynomial order are 0.0307, 0.0175, 0.0170 and 0.0168. These parameters show a
significantly smoother phase reading is achieved as the time varying Doppler component is
removed using the polynomial regression modelling
Figure 5.14: Block diagram of navigation message and residual Doppler component extraction
from a GPS signal
Figure 5.15: Illustration of the GPS bistatic radar receiver's deployment for the air target
detection experiment (Courteousy Google Map's satellite view)
Figure 5.16: Phase measurement of direct-path signals correlation peaks at 62 channels from 5
GPS satellites (PRN12, 14, 24, 25 and 29)
Figure 5.17: Normalised inverse MSE determined by the array attitude calibration process. The
highest inverse MSE value was located at $\phi e = -42.5^{\circ} \& \theta e = 183.5^{\circ}$
Figure 5.18: Antenna positions relative to the reference before attitude correction, u , and after
attitude correction, <i>u</i> ^{''} 133
Figure 5.19: Normalised correlation values (dB scale) of phased-array receiver vs single
channel from every element using an integration length of 980 ms (PRN12 & PRN24)134

Figure 5.20: Peak correlation value (dB scale) of each channel relative to their phased-array
correlation peak (PRN12 & PRN24) at zero sampled code phase134
Figure 5.21: Comparison of direct-path signals acquisition results between a single (reference
element) and beamformer: Phase readings of data after the removal of C/A codes PRN02 (Left);
Coarse Doppler search for GPS signal PRN04 (Right)
Figure 5.22: Normalised beampowers (dB scale) vs. DOA of PRN04, 12 and 14 from the
phased-array GPS receiver DOA search process with an angle resolution of 1° for both θ and
<i>φ</i> 136
Figure 5.23: Illustration of a Wiener filter for estimating and cancelling the interferences from
the captured data
Figure 5.24: Normalised CAF results from a simulation detection process without Wiener filter
(Top), with Wiener filter to remove the DSIs only (Middle) and to remove both DSIs and their
multipath (Bottom). Both the CAFs from the Wiener filter are compressed to a dynamic range
of 30 dB142
Figure 5.25: Squared correlation results (dB) for PRN02 and PRN24 from the beamformer's
output applying (i) No filter; Wiener filter for DSI cancellation with number of taps, $\mathfrak{M} = (ii)$
20, (iii) 40 and (iv) 60
Figure 5.26: Experiment scenario (Courtesy Google Map's satellite view)146
Figure 5.27: Deployment of phased-array receiver (Left); Power supply and data acquisition
PC for the receiver system (Right)146
Figure 5.28: Pictures of landing aircraft extracted from the footage recorded by a digital video
camera at the target detection experiment site147
Figure 5.29: Positions of GPS satellites during the aircraft detection experiment
Figure 5.30: Normalised CCAF results of PRN02, 04, 12 and 24 from the experiment detection
process for data period 200 - 300 ms
Figure 5.31: Normalised beampower of peak returns from the CCAF results of PRN02, 04, 12
and 24 for data period 200 - 300 ms
Figure 5.32: Normalised beampower of 3 rd peak return from the CCAF result of PRN24 for
data period 200 - 300 ms. The DOA for the highest beampower is indicated150
Figure 5.33: Normalised beampower results of peak return from the CCAF results of PRN02
along the captured data. Among the results are those from frame 1, 3, 5 and 8152
Figure 5.34: Comparison of flight path and the azimuth angles measured from the beamformer
results of PRN02 along the captured data of approximately 1000 ms. Google Earth was used
to perform the angles and distance measurements

Figure 5.35: Variations of azimuth and elevation angles corresponding to the peak returns from
PRN02, 04 and 24 at different time
Figure 5.36: Normalised BCAF results of PRN02, 04, 12, 24, 25 and 29 from the experiment
detection process for data period 200 - 300 ms at $\phi_d = 63^\circ$ and $\theta_d = -157^\circ$ 154
Figure 5.37: Normalised inverse 2-D position MSE results estimated by the TDOAs from 4, 5
and 6 satellites. The red lines resemble the flight path determined from Google Earth157
Figure 5.38: Normalised inverse 2-D position MSE results estimated by the Doppler offsets
from 4, 5 and 6 satellites. The red lines represent the flight path determined from Google Earth.
Figure 5.39: Normalised 2-D target positioning results from frame 3, 6, 9, 12, 15 and 18 at 50
m altitude using 7×1 MISO configuration (i.e. PRN02, 04, 12, 14, 24, 25 and 29). Each frame
represents the result processed from the data integration process of 50 ms and 10 m search
position resolution. The red lines represent the predicted flight path162
Figure 5.40: SNR of target return peaks at different time for MISO configurations: 4×1 , 5×1 ,
6×1 and 7×1 . Note that the 6×1 results are overlapped by the 7×1 results due to their extremely
small SNR differences across the whole data block. The average SNR for each configuration
is recorded in the legend box163
Figure 5.41: Results of various MISO configurations showing the 2-D positions of peak target
returns from different time frames at 50m altitude. The red lines represent the predicted flight
path164

List of Tables

Table 3.1: List of simulation cases using different expected target SNR
Table 3.2: Positions of targets and transmitters relative to the radar receiver
Table 3.3: Rounded number of samples (time in picoseconds) delays of target returns relative
to direct-path signals65
Table 3.4: Measured parameters of each return from the detection process. 67
Table 3.5: Summary of parameters for target 3 from simulated detection and estimation71
Table 4.1: Summary of the input and pre-integrator SNR for various MISO configurations. 88
Table 4.2: Summary of the input and pre-integrator SNR for MIMO configurations
Table 4.3: Summary of the normalised correlation values between Tgt1 and Tgt2 using the
fragmentised integration process of various lengths105
Table 5.1: Specification chart for essential parameters of the experimental GPS bistatic radar.
Table 5.2: Summary of target detection range for a 32-element GPS bistatic radar receiver.
Table 5.3: Summary of DOA of GPS satellites to the GPS bistatic radar receiver
Table 5.4: Comparison of DOA readings between the results from ephemeris information and
the beamformer's search process135
Table 5.5: Summary of signal parameters for DSI cancellation simulation case. 141
Table 5.6: SNR of target return peaks from 6 GPS satellites at data period 200-300 ms155
Table 5.7: List of PRNs applied for each MSE configuration
Table 5.8: Comparison of target velocity between the estimations from the predicted from the
flight path and the results from the MSE solution159
Table 5.9: Comparison between the target parameters determined by simulation and
experiment
Table 5.10: List of PRNs applied for each MISO configuration and their average SNRs161
Table 5.11: Target velocity determined by the MISO positioning results

Abbreviations

2-D/3-D	Two/Three-dimensional space
ADC	Analogue-to-digital converter
ARM	Anti-radiation missile
AWGN	Additive white Gaussian noise
BCAF	Cross ambiguity function (Beamformer)
BDS	BeiDou navigation satellite system
BPSK	Binary phase-shift keying
C/A	Coarse/acquisition
CAF	Cross ambiguity function
CCAF	Cross ambiguity function (Combined elements)
CDF	Cumulative distribution function
CDMA	Code division multiple access
CFAR	Constant false alarm rate
CRPA	Controlled radiated pattern antenna
CW	Continuous wave
DAB	Digital audio broadcasting
DOA	Direction-of-arrival
DOP	Dilution of precision
DSI	Direct-path signal interference
DSP	Digital signal processor
DSSS	Direct-sequence spread spectrum
DVB-S	Digital video broadcasting-Satellite
DVB-T	Digital video broadcasting-Terrestrial
ECM	Electronic countermeasure
EIRP	Effective isotropic radiated power

FFT	Fast Fourier transform
FIFO	First in, first out
FM	Frequency modulation
FPGA	Field-programmable gate arrays
FRPA	Fixed radiated pattern antenna
GEMS	GNSS environment monitoring system
GNSS	Global navigation satellite system
GPS	Global Positioning System
GSM	Global system for mobile communications
HDOP	Horizontal dilution of precision
IF	Intermediate frequency
JPALS	Joint precision approach and landing system
LEO	Low Earth orbit
LHCP	Left-hand, circularly polarized
LNA	Low noise amplifier
LOS	Line-of-sight
LP	Linearly polarised
LSE	Least squares estimator
MCE	Monte Carlo experiments
MEO	Medium Earth orbit
MIMO	Multiple-input & multiple-output
MISO	Multiple-input & single-output
MMSE	Minimum mean square error
MSE	Mean squared error
MVDR	Minimum variance distortionless response
PBR	Passive bistatic radar
Р	Precision
PC	Personal computer
PDF	Probability density function
PDOP	Position dilution of precision
PLL	Phased-locked loop
PMR	Passive MIMO radar
PRN	Pseudo-random noise
RCS	Radar cross-section

Radio frequency
Right-hand, circularly polarised
Root-mean-square error
Synchronous dynamic random access memory
Single-input & single-output
Signal-to-noise ratio
Space vehicle
Track-before-detect
Time-difference-of-arrival
Time-of-arrival
User equivalent range error
Vertical dilution of precision
VHSIC hardware description language
Very high speed integrated circuit

Symbols

<i>x</i> [*]	complex conjugate
x^{T}	transpose
x ^H	Hermitian/conjugate transpose
f(t)	continuous function
f(k)	discrete function
n(t), n(k)	white noise
a	array steering vector
b	receiver index
С	speed of light
$f_{\rm B}$	signal bandwidth
f_0	signal carrier frequency
fD	direct-path signal Doppler frequency
f_{δ}	target Doppler frequency
Ø	function of Doppler frequency
j	complex number
k	sample index
k	Boltzmann constant
k	data sub-block time frame index
l	transmitter/satellite index
m	antenna element index
m	multipath signal index
n	noise
p	position vector
u	coordinate of sensor's element relative to reference
v	velocity vector
W	weigh vector

В	number of base stations/receiver sites
C(t), C(k)	PRN code sequence
$\mathcal{C}(k, \boldsymbol{p}_{\delta})$	function of PRN code sequence
$\mathrm{E}(H)$	expectation of random variable
G	gain
${\mathcal H}$	hypothesis of a statistical model
Ι	identity matrix
Κ	number of samples
\mathbb{K}	total number of data sub-blocks
\overline{K}	size of each data sub-block
L	number of illuminators/satellites
М	number of antenna elements
M	number of multipath signals
${\mathcal N}$	number of Monte Carlo experiments
P_x, P_y, P_z	position search range in x , y and z dimensions
\mathbb{P}	probability
${\cal P}$	subspace projection of signals
P_{R}	receiving power at the receiver
P_{T}	transmitting power of illuminator
R _D	direct propagation path
R _T	transmitter-to-target/transmission path
R _R	receiver-to-target/reflected path
$\mathcal{R}(t)$, $\mathcal{R}(k)$	Cross-correlation function
RX	receiver
TX	transmitter
V_x, V_y, V_z	velocities search range in x , y and z dimensions
V	velocity magnitude
Г	Gamma function
Λ	chi-squared distribution non-centrality parameter
α	number of beams
β	bistatic angle
γ	lower incomplete Gamma function
δ	target index

Symbols

ϵ	inter-element phase error
θ	azimuth angle
λο	signal wavelength
ρ	pseudorange
Ψ	target velocity aspect angle
μ	signal amplitude
σ	noise amplitude
σ_B	bistatic radar cross section
τ	detection threshold
ϕ	elevation angle

xxviii

Publications

- 1. C. Pui, M. Trinkle, "GPS Bistatic Radar Research and Experimental Results", in Progress in Radar Research (PIRR) Workshop, Adelaide, Australia, 2011.
- C. Pui, M. Trinkle, "GPS Bistatic Radar for Target Detection and Estimation using Antenna Arrays", in International Global Navigation Satellite Systems (IGNSS), Sydney, Australia, 2011.
- C. Pui, M. Trinkle, "Experimental Results Investigating the Feasibility of GPS Bistatic Radar for Target Detection and Estimation", in Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, September 2011, pp. 3165-3171.
- C. Pui, M. Trinkle, B. Ng, "Passive Bistatic Radar for Aircraft Detection using GPS as a Source of Opportunity", in Defence Science Institute (DSI) Passive Radar Workshop, Melbourne, Australia, 2013.
- C. Pui, M. Trinkle, B. Ng, "Aircraft Detection Experimental Results for GPS Bistatic Radar using Phased-array Receiver", in International Global Navigation Satellite Systems (IGNSS), Gold Coast, Australia 2013.
- C. Pui, M. Trinkle, "GPS Bistatic Radar using Phased-array Technique for Aircraft Detection", in Proceedings of IEEE International Conference on Radar, Adelaide, Australia, 2013, pp. 274-279.
- C. Pui, M. Trinkle, B. Ng, "Progress in GPS Bistatic Radar for Air Target Detection", in Progress in Radar Research (PIRR) Workshop, Adelaide, Australia, 2014.
- 8. C. Pui, M. Trinkle, "Aircraft Detection using GPS Bistatic Radar incorporating MIMO Techniques", in IEEE Two-Day Workshop on Passive Radar, Adelaide, Australia, 2015.