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Regularization-independent study of renormalized nonperturbative quenched QED

Ayşe Kızılersü,* Tom Sizer,† and Anthony G. Williams‡

Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, Adel
University, Adelaide, South Australia 5005, Australia
~Received 17 January 2001; published 4 April 2002!

A recently proposed regularization-independent method is used for the first time to solve the renormalized
fermion Schwinger-Dyson equation numerically in quenched four-dimensional QED. The Curtis-Pennington
vertex is used to illustrate the technique and to facilitate comparison with previous calculations which used the
alternative regularization schemes of modified ultraviolet cutoff and dimensional regularization. Our new
results are in excellent numerical agreement with these, and so we can now conclude with confidence that there
is no residual regularization dependence in these results. Moreover, from a computational point of view the
regularization independent method has enormous advantages, since all integrals are absolutely convergent by
construction, and so do not mix small and arbitrarily large momentum scales. We analytically predict power
law behavior in the asymptotic region, which is confirmed numerically with high precision. The successful
demonstration of this efficient new technique opens the way for studies of unquenched QED to be undertaken
in the near future.
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I. INTRODUCTION

The divergences inherent in quantum field theories h
plagued physicists for years. The infinities are removed i
two-step process: first the divergences are controlled b
regulator, then the regulator is removed using the renorm
ization procedure to obtain finite, renormalizatio
independent physical quantities. Depending on the type
regulator introduced, different problems can occur. It is u
ful to discuss the difficulties that arise in the Schwing
Dyson equations~SDE’s! @1#, since these are identical to th
difficulties encountered in perturbation theory and beca
we will be using them as a tool to study nonperturbat
QED. In the literature, SDE’s in quenched four-dimensio
QED (QED4) are commonly studied by using the ultraviol
cutoff regularization scheme@2#. One difficulty faced is that
the use of an ultraviolet~UV! cutoff L to regulate the inte-
gration will in general lead to an explicit violation of gaug
covariance@3#. Because this regularization scheme does
respect translation invariance in the loop-momentum integ
tion, it will lead to an explicit gauge-covariant violating con
tribution in the result,even afterL is taken to infinity. More
precisely, this violation of gauge invariance has been
served in quenched QED calculations employing the Cur
Pennington~CP! @4# electron-photon vertex and may b
traced back to a certain, logarithmically diverge
4-dimensional momentum integral which vanishes beca
of rotational symmetry at allL,`, but leads to a finite
contribution forL→`. It is this discontinuous behavior as
function of L which complicates correct numerical reno
malization with this regulator. Incorrect results will be o
tained unless care is taken to identify and remove gau
covariance violating terms@5–7#. In its favor, cutoff
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regularization is computationally economical and gives ac
rate answers after gauge-covariance violating terms are
moved.

On the other hand, SDE studies implemented usin
gauge-invariant regularization scheme, such as dimensi
regularization@8#, do not have such a problem. However
dynamical mass is generated for all coupling constants
D,4, instead of only above critical coupling inD54 in
cutoff regularization. In nonperturbative studies this sche
is computationally more demanding since a careful and tim
consuming removal of the regulator must be performed,
volving an extrapolation of many high-precision solutio
for different e to e50. Additionally the accuracy of the re
sults is, in practice, more limited because the integrat
range necessarily extends to infinity.

In this paper we will be employing for the first time th
regulator-independent method recently proposed by Kı
ersüet al. @9# to solve the renormalized fermion Schwinge
Dyson equation numerically in quenched QED4. This
method deals with renormalized quantities only, as the re
lator is removed analytically. The dependence on the m
scale introduced by the regulator is traded for the momen
scalem at which the theory is renormalizedbeforeperform-
ing any numerical calculations. In this way any regula
which does not violate gauge covariance~such as dimen-
sional regularization or cutoff regularization modified as d
cussed above! can be used and the regulator removed a
lytically beforeany numerical calculations are begun. Mo
importantly, from a numerical point of view, removal of th
regulator means that no longer does one have to solve
gral equations involving mass scales of vastly different
ders of magnitude~and then, in addition, take a limit in
which one of the scales goes to infinity!. Rather, the impor-
tant scales in the problem become scales of physical im
tance, e.g., the renormalized massm(m) and the renormal-
ization scalem at which this mass is defined. It is therefore
be expected that the dominant contributions to any in
grands will be from a finite region of momenta. This featu
is generic; i.e., it is independent of the particular vertex a
©2002 The American Physical Society20-1
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satz that one makes use of, and it remains a valid cons
ation for an arbitrary renormalizable field theory.

The regularization-independent approach is computat
ally very economical and very accurate, although one m
lose direct contact with the bare theory. In particular, o
cannot study dynamical chiral symmetry breaking in this
proach by simply setting the bare massm050 and investi-
gating at what value of coupling the dynamical fermion ma
is generated. In Ref.@10#, within quenched QED, a remova
of the regulator was attempted in a manner which has s
similarity to what we do here. As emphasized by Mirans
~Refs. @11,12# as well as Chapter 10.7 of Ref.@13#!, some
care needs to be taken with the treatment of the bare m
while removing the regulator in order to avoid drawing i
correct conclusions about the presence or absence of dyn
cal chiral symmetry breaking in gauge theories.

In SDE studies of quenched QED4 there is a critical cou-
pling ac , below which the fermion propagator is well be
haved and the standard textbook renormalization proce
for renormalizing the nonperturbative propagator appear
be entirely adequate, e.g., see Refs.@1–5,7,8#. Atkinsonet al.
studied the transition throughac within standard QED4 us-
ing a bifurcation method@14#. It was found in the unrenor
malized quenched theory that at critical coupling the so
tions bifurcate and fora.ac the SDE’s in the chiral limit
admit both a trivial M (p2)50 solution and a solution
M (p2)Þ0 with dynamical mass generation. For this reas
the transition is often referred to as a dynamical chiral sy
metry breaking transition even though the conservation
the axial current is not explicitly demonstrated.

In the studies of renormalized quenched QED4 in Refs.
@1,2,5,7,8#, the renormalization prescription that is us
above critical coupling (a.ac) is the same one that is use
below critical coupling (a,ac), i.e., the standard ‘‘text-
book’’ definition. Above critical coupling in these studies th
dynamically generated mass function becomes infinite as
regulator is removed in the chiral limit when the bare ma
m0 is held to zero as the regularization is removed. This d
not happen in model studies of QCD@1# where a running
coupling constantas(q

2) is used@1#. For finite renormalized
solutions above critical coupling the unphysical behav
manifests itself as oscillations in the renormalized m
function M (p2) and this has been demonstrated with hi
numerical precision in the previously cited references. T
interpretation of these results is that above critical coupl
in quenched QED4 a phase change has occurred, which
coincident with the onset of dynamical mass generation
inconsistent with the renormalized fermion being a physi
excitation. We say that it is not a physical excitation in t
sense that it does not have a Lehmann representation w

FIG. 1. The Schwinger-Dyson equation for the fermion prop
gator.
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positive semidefinite spectral function in the timelike regio
Hence, above critical coupling applying the ‘‘textbook
renormalization prescription of holding the renormalized f
mion mass constant at some renormalization point as
regularization is removed may well be inappropriate. Wh
should be done above critical coupling is that the physi
excitations in the supercritical phase should be identified
it is the properties of these that should be held fixed as
regularization is removed. Since our purpose here is to
tablish and test a new technique for solving renormaliz
SDE’s, we will restrict our consideration to the same sup
critical renormalization scheme that was used in previo
studies. This is done so that we can compare in detai
earlier published work and because the supercritical phas
quenched QED4 is not yet well understood. Below critica
coupling, we are still in the standard phase and the ‘‘te
book’’ renormalization applied here is quite appropriate.

For completeness and to put this work into context,
briefly summarize results of other studies of QED4. Miran-
sky @11–13# has studied the fermion self-energy in quench
QED in the ladder-approximation SDE in the Landau gau
In this work there were two phases and this construction
to the conclusion of a nontrivial continuum limit of QED
Miransky interpreted the critical couplingac as an ultravio-
let stable fixed point and decreased the bare couplinge0 with
cutoff in such a way that as the ultraviolet cutoff is remov
the mass functionM (p2) remains finite and no oscillation
occur. There have been a number of other attempts to c
struct microscopic models of dynamical chiral symme
breaking@15–18#. Holdom @15# questioned whether Miran
sky’s method of renormalization represented a tr
renormalization-group flow. Bardeenet al. @16# emphasized
that the strong coupling phase of QED may render 4-Fe
operators relevant; hence in this phase, we should be st
ing the gauged Nambu–Jona-Lasinio~NJL! model rather
than QED in isolation. The vacuum polarization effect
model SDE studies is considered in Refs.@17–20# and it was
concluded that there was a chiral phase transition that le
the triviality of QED@18#. Azcoiti et al. @21–23# used a com-
bination of lattice simulations and mean-field approximati
and found qualitative agreement with the work of Mirans
and the conclusion that QED was nontrivial. Another no
perturbative tool, the nonperturbative renormalization gro
was used in other studies@24# where it was concluded the
QED was a trivial theory.

The only first-principles studies of nonperturbative QE
are those based on lattice gauge theory. There have be
variety of lattice-based studies of QED@25–34#. It appears
that recently these lattice studies are approaching agree
@29,34# that standard textbook~i.e., unquenched, noncom
pact! QED4 is a trivial theory. These results support Landau
conjecture that in the continuum limit QED interactions a
completely screened and the~renormalized! fine structure
constant vanishes. It has been argued that the Landau
problem of QED4 is resolved since the region of paramet
space where this occurs is unavailable to the theory bec
of dynamical chiral symmetry breaking@34#. It was noted
that Kim et al. @29# did not find numerical support for the
work of Azcoiti et al. @21–23#.

-
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REGULARIZATION-INDEPENDENT STUDY OF . . . PHYSICAL REVIEW D 65 085020
In this work we limit ourselves to standard textbook@35#
renormalization in the quenched theory, where the coup
is not renormalized and is independent of the cutoff, ev
above critical coupling. Our long-term goal is to simult
neously solve the fermion and photon propagator SDE’s w
a well-constrained ansatz for the fermion-photon vertex.
these future studies we hope to establish whether or not Q
is trivial and/or whether additional four-Fermi interactio
must be included. We compare our new regularization-f
method, with previous numerical analyses of renormaliz
quenched CP QED by the current authors and their colla
rators@2,5,7,9#. The application of textbook renormalizatio
immediately leads to the fact that in quenched QED ther
no renormalization of the photon propagator~i.e., Z351 in
that case! and hence, due to the Ward-Takahashi iden
which ensures thatZ15Z2, there is no renormalization of th
coupling constant.

In Sec. II we formulate the regularization-independe
method for renormalized SDE for quenched QED in 4
mensions with an arbitrary covariant gauge. Section III d
cusses the large momentum behavior of the fermion pro
gator and gives its analytical form. We go on to solve SD
numerically in Euclidean space for the fermion wav
function renormalization function and the mass function e
ploying the CP vertex. The integration range in these eq
tions is taken to infinity analytically and subsequen
evaluated using a combination of numerical and analytic
sults. We do this extrapolation to infinity to facilitate com
parison with previous results at very high momentum sca
and to compare these results with their asymptotic forms.
demonstrate numerically to high precision the agreement
tween the regularization independent approach and the m
fied cutoff and dimensional regularization schemes. Fina
in Sec. IV we summarize our results and conclude.

II. REGULARIZATION-FREE FORMALISM IN
QUENCHED QED4

The renormalized Schwinger-Dyson equation for the el
tron propagator~Fig. 1! can be formulated as

S21~m;p!5Z2~m!S021~p!

2 iZ1~m!e0
2E ddk

~2p!dGa~m;p,k!

3S~m;k!gbDab
0 ~m;q!

[Z2~m!S021~p!2 iZ1~m!S̄ ~p!. ~2.1!

Here Z1(m) and Z2(m) are the vertex and fermion wave
function renormalization constants respectively. These re
malization constants relate the regularized but unrenorm
ized ~i.e. bare! and renormalized propagator and vertex b

Gm~k,p;m!5Z1~m,L!Gm
bare~k,p;L!, ~2.2!

S~p;m!5Z2
21~m,L!Sbare~p;L!. ~2.3!
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In quenched QED, there is no renormalization of the elect
charge (e0

25em
2 54pa) and the appropriate photon propag

tor is simply the tree-level form

Dab
0 ~q!52

1

q2 F S gab2
qaqb

q2 D 1j
qaqb

q2 G , ~2.4!

wherej is the covariant gauge parameter. We useS(m;p) to
denote the full fermion propagator renormalized at the m
mentum scalem. It can be expressed in terms of two sca
functionsZ(m2;p2), the fermion wave-function renormaliza
tion function, andM (p2), the mass function, by

S~m;p!5
Z~m2;p2!

p”2M ~p2!
. ~2.5!

Note thatS0(p)[1/(p”2m0) is the tree-level fermion propa
gator ~i.e., the bare fermion propagator in the absence
interactions!. The full ~proper! renormalized fermion-photon
vertex isGm(m;k,p). Multiplying the fermion SDE Eq.~2.1!
by p” and I and taking their respective spinor traces, we c

separate the fermion self-energyS̄ (p2) into Dirac odd,

S̄ d (p2), and Dirac even, S̄ s (p2), parts; i.e. S̄ (p)

5p” S̄ d (p2)1S̄s(p2); then we perform Wick rotation to the
Euclidean space. This gives

Z21~m2;p2!5Z2~m!2Z1~m!S̄ d~p2!, ~2.6!

M ~p2!Z21~m2;p2!5Z2~m!m01Z1~m!S̄ s~p2!, ~2.7!

and these self-energies make use of any regulariza
scheme that does not violate gauge covariance. Here, the
over these quantities indicates that we have explicitly se
rated out the renormalization constantsZi(m); note that for
notational brevity we do not indicate the implicit dependen

on m2 of S̄d,s(p2) through the functionZ(m2;p2).
Because of the Ward-Takahashi identity, which must

satisfied by any acceptable vertex ansatz forGm(m;k,p) and
any acceptable renormalization scheme, one hasZ1(m)
5Z2(m). Making use of this fact, Eqs.~2.6! and~2.7! can be
rearranged as

Z2
21~m!5Z~m2;p2!2Z~m2;p2!S̄ d~p2!, ~2.8!

M ~p2!5m01@M ~p2!S̄d~p2!1S̄ s~p2!#. ~2.9!

In order to avoid cumbersome notation, we have not exp
itly indicated functional dependence on the regulator in E
~2.1!–~2.9! but it should be understood. The renormalizati
constantsZ1,2(m) and the bare fermion massm0 are regula-
tor dependent in the above equations. As one removes
regulator, the integrals on the right hand side of Eq.~2.1!,

and henceS̄ d(p2) andS̄ s(p2), diverge logarithmically. It is
the defining feature of a renormalizable field theory th
these divergences may be absorbed into the const
Z1,2(m) and into the bare massm0, rendering finite,
regularization-independent limits forZ(m2;p2) and M (p2).
0-3
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AYŞE KIZILERSÜ, TOM SIZER, AND ANTHONY G. WILLIAMS PHYSICAL REVIEW D 65 085020
However, we can make use of thep2 independence o
Z1,2(m) andm0 in order to eliminate these constants from t
above equations. The renormalization conditions for the
mion wave-function renormalization function and the ma
function are

Z~m2;m2!51 and M ~m2![m~m!. ~2.10!

Note thatm(m) should not be confused with an explicit ch
ral symmetry breaking mass such as the current quark m
in QCD. Even in the chiral limit where the bare massm0
50, above critical coupling we can have dynamical ma
generation and hence ourm(m)Þ0. Evaluating Eqs.~2.8!
and ~2.9! at a second momentum which we take to bep2

5m2 and taking the difference one obtains the central eq
tions that we solve here:

Z~m2;p2!511Z~m2;p2!S̄ d~p2!2S̄ d~m2!,

M ~p2!5m~m!1@M ~p2!S̄ d~p2!1S̄ s~p2!#

2@m~m!S̄ d~m2!1S̄ s~m2!#. ~2.11!

As the left-hand sides of these equations must be finite as
regulator is removed, then the right-hand side~RHS! must be
also, even though the individual terms on the RHS maysepa-
rately diverge.

These renormalized equations Eq.~2.11! with the regula-
tor removed provide a starting point for nonperturbative
vestigations which have significant advantages over the u
treatment found in the literature@2–8#. In the following sec-
tion we shall illustrate this approach by turning to the e
ample of quenched QED with the Curtis-Pennington vert

III. QUENCHED QED WITH THE CURTIS-PENNINGTON
VERTEX

In this section we use the regulator-independent met
for solving the renormalized SDE in Eq.~2.11! in an arbi-
trary covariant gauge. As usual we write the full vertex a
sum of the Ball-Chiu vertex@36# ~longitudinal part satisfying
the Ward-Takahashi identity! and the Curtis-Pennington term
@4# ~the transverse part satisfying multiplicative renormal
ability of the fermion propagator!,

Gm~m;k,p!5GBC
m ~m;k,p!1t6~m;k,p!

3@gm~p22k2!1~p1k!m~k”2p” !#, ~3.1!

whereGBC
m (m;k,p) andt6(m;k,p) are given in Appendix A.

After performing the angular integration, Eq.~2.11! can be
written as

Z~m2;p2!512
aj

4pEp2

m2

dk2
1

@k21M2~k2!#
Z~m2;k2!

1
a

4pE0

` dk2

@k21M2~k2!#

3@Z~m2;p2!I ~k2,p2!2I ~k2,m2!#, ~3.2!
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M ~p2!5m~m!1
a

4pE0

` dk2

@k21M2~k2!#

3@J~k2,p2!2J~k2,m2!1M ~p2!I ~k2,p2!

2m~m!I ~k2,m2!#, ~3.3!

where the kernel functionsI (p2,k2) and J(p2,k2) are also
given in Appendix A. The kernels have the same form
Ref. @14# except that the gauge-covariance violating term h
been removed, since it does not survive the four-dimensio
momentum integration in the absence of a cutoff. This te
does not vanish if the angular integral is done first with t
radial integral taken to infinity afterward, which is why
must be removed by hand in the cutoff approach.

The above equations are finite as can be seen by ana
of the large momentum limits of the integrands forZ andM,
which behave asymptotically as (k2)2n and (k2)2r , respec-
tively, where n,r .1. The equation for the wave-functio
renormalization function Eq.~3.2! is the same as Eq.~10! in
Ref. @10#; however our treatment of the mass function diffe
from theirs.

A. Asymptotic limits of the solutions

In this subsection we solve Eqs.~3.2! and ~3.3! analyti-
cally for momenta p2 much larger thanM2(p2) ~the
asymptotic region! by linearizing them for finite mass, in a
manner similar to that used by Atkinsonet al. @14# for the
chirally symmetric theory~i.e. m050). It is convenient to
temporarilytake the renormalization pointm to also be very
large, removing this constraint once our derivation is co
plete. Whenp2 and m2 are in the asymptotic regionk2 is
necessarily also much greater thanM2(k2); therefore ex-
panding in powers ofM2(k2)/k2 and keeping at most linea
terms in M (k2), the kernel functions take their asymptot
forms I (p2,k2)→0 and J(p2,k2)→k2J8(p2,k2), where
J8(k2;p2) is defined in Appendix A. Hence whenp2 andm2

are both in the asymptotic region, we obtain

Z~m2;p2!512
aj

4pEp2

m2dk2

k2
Z~m2;k2!, ~3.4!

M ~p2!5m~m!1
a

4pE0

`

dk2@J8~k2,p2!

2J8~k2,m2!#. ~3.5!

These linearized equations admit power law solutions.
The solution of this asymptotic form of theZ equation is

easily seen to be@3#

Z~m2;p2!5S p2

m2D n

with n5
aj

4p
, ~3.6!

which differs from Ref.@14# due to the absence of the gaug
covariance violating term. We thus obtain forp2 and p82

both large that
0-4
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REGULARIZATION-INDEPENDENT STUDY OF . . . PHYSICAL REVIEW D 65 085020
Z~m2;p2!

Z~m2;p82!
5S p2

p82D n

with n5
aj

4p
, ~3.7!

which is valid for anarbitrary renormalization pointm since
the ratio is by definition renormalization-point independe
It then follows for largep2 and any arbitrarym2 that

Z~m2;p2!5CmS p2

m2D n

with n5
aj

4p
, ~3.8!

for some appropriateCm such thatCm→1 asm2 enters the
asymptotic region.

We shall see that power law solutions of theM equation
occur in two regimes, depending on the value ofa. Those
with a real exponent can be identified with the subcriti
regime, wherea is less than its critical valueac which
marks the onset of dynamical mass generation. Those
complex exponent correspond to oscillating solutions wh
correspond to the supercritical regime wherea.ac . We ex-
amine these two cases separately in what follows.

1. Subcritical asymptotic solution

Where, as before,m2 andp2 are understood to be chose
much greater than all other mass scales, we try a solutio
Eq. ~3.5! of the form

M ~p2!5m~m!S p2

m2D 2s

, sPR. ~3.9!

Solving for s, we find

3n

2j F2p cotsp2p cotnp13p cot~n2s!p

1
2

~12s!
1

1

~n11!
1

1

n
2

3

~n2s!
2

1

~n2s11!G
1

s21

n2s11
50. ~3.10!

This equation is the same as in Ref.@14#, but in contrast to
the unrenormalized equation examined in that paper,
power ansatz is valid for the renormalized equation that
have here whether or not the bare massm0 is zero. We can
again form a ratio, i.e., providedp2 andp82 are much larger
than all other mass scales, we have

M ~p2!

M ~p82!
5S p2

p82D 2s

, sPR. ~3.11!

Both Eqs.~3.10! and ~3.11! are manifestly renormalization
point independent and so are valid for an arbitrary choice
renormalization pointm. It then follows that for largep2 and
any arbitrarym2 that

M ~p2!5DmS p2

m2D 2s

, s,DmPR ~3.12!
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for some appropriateDm . We see thatDm /(m2)2s is a
renormalization-point independent constant and that we m
haveDm→m(m) asm2 moves into the asymptotic region.

There is in fact more than one real solution tos in Eq.
~3.10! ~see also Ref.@14#!, e.g., in Landau gauge there a
two. However, only one of these matches smoothly onto
perturbative solution, and hence is the relevant solution.
other solutions appear as a spurious by-product of the lin
ized approximation in Eq.~3.5!. @Solutions that do not match
smoothly onto perturbation theory can arise in Eq.~3.5! if
the integrals diverge as 1/a, due to infrared divergences; thi
cannot occur in Eq.~3.3! because of the regulating mass
the denominator.# Sinces is real there are no oscillations i
the mass function. These solutions,M (p2Þ0), in the sub-
critical region are explicit chiral symmetry breaking sol
tions.

2. Supercritical asymptotic solution

In the case wheres is complex, the~real! mass function is
a superposition of powers ofs and its complex conjugate
For largep2 and arbitrarym2 we have as the counterpart t
Eq. ~3.12!

M ~p2!5
1

2
DmS p2

m2D 2s

1
1

2
Dm* S p2

m2D 2s*

,

s,DmPC, ~3.13!

whereDm is some appropriate complex constant, and

1

2
~Dm1Dm* !5Re~Dm!→m~m! ~3.14!

asm2 enters the asymptotic region. Heres ands* are com-
plex conjugate solutions to Eq.~3.10! and the combination
results in a mass function that oscillates. This oscillato
behavior is more transparent if we write Eq.~3.13! as

M ~p2!5S p2

m2D 2Re(s)

$Re~Dm!cos@ Im~s!log~p2/m2!#

1Im~Dm!sin@ Im~s!log~p2/m2!#% ~3.15!

which has the form of a phase-shifted cosine function p
odic in log(p2/m2), with a period of 2p/Im(s), modulated by
an exponentially decaying envelope of (p2/m2)2Re(s). The
oscillations are an indication of a new phase in quenc
QED employing the CP vertex at sufficiently strong coupli
a.ac .

B. Numerical solutions

In the regularization-independent approach, the equat
are constructed so as to remove all infinities from the ou
and so the UV region of the integral is not a crucial limitin
factor. Moreover, establishing exact asymptotic forms of
wave-function renormalization and mass functions in
previous subsection makes it possible to analytically in
grate Eqs.~3.2! and ~3.3! from the highest grid point to in-
0-5
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finity. We denote this highest grid point, where th
asymptotic analytic forms are matched onto the numer
results, as the ‘‘matching point’’km

2 . For p2>km
2 , we use the

analytic forms, while forp2,km
2 we can rewrite Eqs.~3.2!

and ~3.3! as

Z~m2;p2![12
aj

4pEp2

m2

dk2
1

@k21M2~k2!#
Z~m2;k2!

1
a

4pE0

km
2 dk2

@k21M2~k2!#

3@Z~m2;p2!I ~k2,p2!2I ~k2,m2!#

1Zhigh~m2;km
2 ,p2!, ~3.16!

M ~p2![m~m!1
a

4pE0

km
2 dk2

@k21M2~k2!#

3@J~k2,p2!2J~k2,m2!1M ~p2!I ~k2,p2!

2m~m!I ~k2,m2!#

1Mhigh~m2;km
2 ,p2!, ~3.17!

where the matching point,km
2 , is chosen sufficiently large

that the asymptotic formulas are valid@km
2 @M2(km

2 )#. These
equations serve as definitions of the analytic forms that
need to evaluate, i.e.,Zhigh(m

2;km
2 ,p2) andMhigh(m

2;km
2 ,p2)

are defined as the contributions arising from integrating fr
km

2 to infinity for Eqs. ~3.16! and ~3.17! respectively. The
analytic forms forZhigh and Mhigh and their derivations are
given in Appendix B. By calculatingZ(m2;p2) and M (p2)
in this way we can achieve very high accuracy in the U
region.

Equations~3.16! and~3.17! have been solved numericall
in Euclidean space forZ(m2;p2) and M (p2) with a variety
of gaugesj, renormalization pointsm2, and renormalized
massesm(m) for the couplingsa50.6 ~subcritical! and a
51.5 ~supercritical!. Each solution was iterated from an in
tial guess untilZ(m2;p2) andM (p2) converge; our conver
gence criterion is that the change in successive solution
less than one part in 108 at each momentum point. At ever
iteration the data are refitted to the asymptotic analytic for
of Z(m2;p2) andM (p2).

We have found, in line with the above discussion, that
regularization-independent method allows us to extend s
tions for momenta up to 1065 as opposed to solutions ob
tained from cutoff regularization where numerical round-
error meant that the momenta in our solutions could typica
not exceedO(1018) @2,5,7#. We also verified that our solu
tions do not change when we vary the location of the po
km where the matching of our numerical and analytical so
tions is carried out.

In Figs. 2 and 3, we show typical solutions, using reg
larization independent regularization, of the fermion wav
function renormalization and mass functions for subcriti
(a50.6) and supercritical (a51.5) cases respectively. Als
shown are corresponding solutions based on the theore
08502
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asymptotic powers with fitted scales. The log-log nature
the figures emphasizes the UV behavior of the propaga
One can see there is excellent agreement in the regionp2

@M2(p2). To emphasize this point we present the theore
cal and numerically calculated powers for these two so
tions in Table I.

In summary, our knowledge of the exact forms
Z(m2;p2) andM (p2) in the asymptotic region saves us fro
the need to extend our numerical solutions far into the ul
violet. Therefore Eqs.~3.16! and ~3.17! are solved numeri-
cally up to the matching point (km

2 ) in the UV, whereafter the
analytical solution joins smoothly to the numerical one. T
fitting parameters@Cm ,Re(Dm),Im(Dm),Re(s),Im(s),n# for
the analytic continuation are recalculated after each iterat

C. Comparison of regularization schemes

We can now compare numerical solutions from t
regularization-independent approach to those from cu
regularization with the gauge-covariance modification@2,5,7#
and those from dimensional regularization@8#. In cutoff
regularization the fermion self-energies are integrated o
logarithmically spaced grid ink2 momentum up to the high
est ~cutoff! momentum L2. Additionally, in dimensional
regularization, an estimate is made of the contribution to
integral from the highest grid point to infinity. In both th
modified cutoff and the dimensional regularization stud
subtractive renormalization is performed numerically for t
regularized~but otherwise divergent! fermion self-energies.

FIG. 2. Comparison of the numerical solution for the fini
renormalization 1/Z(m2;p2) and the mass functionM (p2) ~solid
lines! and their predicted asymptotic behavior with matching sca
~dashed lines! from Eqs. ~3.8! and ~3.12! for the subcritical cou-
pling a50.6. The example solution was for a renormalized m
m(m)5400 ~arbitrary units!, renormalization pointm25108 and
gauge parameterj50.25.
0-6
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For the modified UV cutoff regularization approach it w
necessary to perform the calculation at several values oL
and in principle perform aL→` extrapolation. In practice it
was found that it was sufficient simply to ensure thatL was
chosen large enough. For the dimensional regularization
proach it was necessary to calculate solutions at high a
racy for very many values ofe and then carefully extrapolat
e to 0. Numerical limitations made it difficult to obtain so
lutions at very smalle, which in turn limits the achievable
accuracy of thee→0 extrapolation.

In Figs. 4 and 5, we compare these three regulariza
methods for subcritical (a50.6) and supercritical (a51.5)
cases respectively, with the standard parameter choicej
50.25,m25108,m(m)5400. One can see that the agreem

FIG. 3. Comparison of the numerical solution for the fin
renormalization 1/Z(m2;p2) and the mass functionM (p2) ~solid
lines! and their predicted asymptotic behavior with matching sca
~dashed lines! from Eqs.~3.8! and ~3.13! for the supercritical cou-
pling a51.5. The example solution was for a renormalized m
m(m)5400 ~arbitrary units!, renormalization pointm25108 and
gauge parameterj50.25. The ‘‘guidelines’’ are added simply t
guide the eye between data points on this logarithmic plot.
08502
p-
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between the regulator-independent~NR! and the modified
cutoff and dimensionally regularized~DR! solutions is excel-
lent. They are indistinguishable on the main figures: the
sets in Figs. 4 and 5 have the samep2 scale and reveal the
remarkable agreement between them in the infrared reg
In Tables II and III we quantify the relative difference
achieved between the three regularization schemes at a
ety of momentum values. The difference between the res
is entirely attributable to the limitations achievable in n
merical precision. We can now conclude with some con

s

s

FIG. 4. The finite renormalization 1/Z(m2;p2) and dynamical
massM (p2) for the solution of the fermion SDE for subcritica
coupling a50.6 and gauge parameterj50.25 found from the
regularization-independent~NR! method compared with solution
using the modified UV cutoff regulator and dimensional regulari
tion. The dimensional regularization~DR! solution shown is the
result of extrapolating various finitee solutions at scale 103 to e
50 using a fit cubic ine at each momentum point. All solution
have renormalized massm(m)5400 ~in arbitrary units! at the
renormalization pointm25108. The small variation between th
three regularization schemes is entirely attributable to limitatio
achievable in numerical precision.
mass
er law
TABLE I. This table compares the powers of the asymptotes of the finite renormalization and
functions in Figs. 2 and 3, as determined analytically and by fitting the numerical solutions to a pow
form.

Figure Coupling Determination n Re(s) Im(s)

2 a50.6 analytical 0.01193662073 20.181667015
numerical 0.01193662073 20.181666808

3 a51.5 analytical 0.02984155182 20.416012578 0.418128942
numerical 0.02984155183 20.416012521 0.418129001
0-7
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AYŞE KIZILERSÜ, TOM SIZER, AND ANTHONY G. WILLIAMS PHYSICAL REVIEW D 65 085020
dence that the three regularization schemes give iden
results for the renormalized solutions.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have solved for the first time t
Schwinger-Dyson equations for the fermion propagator
quenched QED4 using the regularization-independent a
proach recently proposed in Ref.@9#. This has been done fo
the particular choice of the Curtis-Pennington transve
photon-fermion vertex, since this facilitates comparison w

FIG. 5. The finite renormalization 1/Z(m2;p2) and dynamical
massM (p2) for the solution of the fermion SDE for supercritica
coupling a51.5 and gauge parameterj50.25 found from the
regularization-independent~NR! method compared with solution
using the modified UV cutoff regulator and dimensional regulari
tion. The dimensional regularization~DR! solution shown is the
result of extrapolating various finitee solutions at scale 103 to e
50 using a fit cubic ine at each momentum point. All solution
have renormalized massm(m)5400 ~in arbitrary units! at the
renormalization pointm25108. The small variation between th
three regularization schemes is entirely attributable to limitati
achievable in numerical precision.
08502
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previous results which used the~gauge-covariance! modified
UV cutoff and the dimensional regularization schemes.
addition, we have conformed with previous numerical stu
ies @2,5–9#, which used standard, ‘‘textbook’’ renormaliza
tion @35# below and above critical coupling. We have carri
out precise calculations in these three approaches and
achieved excellent numerical agreement between them.
clearly demonstrates that we are able to achieve h
precision nonperturbative calculations of the renormaliz
fermion propagator that are free from any spurious err
which might arise from the regularization procedure itsel

We have derived and used the asymptotic analytic form
the solutions to obtain high accuracy even at extremely la
momentum scales@O(1065)#. The reason that this is possib
now is because in the regularization-independent appro
all momentum integrations are finite by construction; see
~2.11!. No bare mass or renormalization constants appea
this formulation, since they have been eliminated by comb
ing and subracting renormalized quantities. The onset of
phase transition is signaled by the appearance of oscillat
in the UV mass function. This is a well-studied phenomen
in quenched QED4. We have derived the explicit analytica
forms for the oscillations in the asymptotic region abo
critical coupling, including the period and decay envelope
these.

The importance of this regularization-independent a
proach lies in the fact that since all unregularized moment
integrations are finite from the outset, we do not have
mixing of small and arbitrarily large momentum scales in t
intermediate stages of our numerical calculations. T
means that we can achieve high accuracy for solutions in
low and medium momentum regime with great numeri
economy. ForquenchedQED4 it will be necessary to iden-
tify the true nature of the supercritical phase so that an
propriate renormalization procedure can be defined for
phase. This new approach will now permit numerically tra
table studies ofunquenchedQED4. These studies are now
under way.
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TABLE II. Relative differences achieved for the finite renormalization 1/Z(m2;p2) between the regularization-independent approach
the modified UV cutoff and dimensional regularization~for cubic and quartic fits! approaches. The differences are averages over
momentum points solved in each order of magnitude shown. The solution parameters are the same as those in Figs. 4 and 5.

Regularization independent vs p251026 p251022 p25102 p25106 p251010

a50.6 Modified cutoff 1.44310210 1.45310210 1.94310210 5.3531028 8.2231028

Dimensional regularization~cubic! 2.1031027 2.1031027 2.0931027 9.0531028 1.6331026

Dimensional regularization~quartic! 9.6531028 9.6431028 9.6331028 6.1131028 1.1331027

a51.5 Modified cutoff 1.32310210 1.73310210 4.8231029 4.9731028 2.0531027

Dimensional regularization~cubic! 3.9531027 3.9531027 2.1331027 2.2331027 3.6431026

Dimensional regularization~quartic! 2.0431026 2.0431026 5.7331027 1.2731027 6.9231027
0-8
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TABLE III. This table shows the relative differences achieved for the mass functionM (p2) between the regularization-independe
approach and the modified UV cutoff and dimensional regularization approaches. The parameters are the same as those in Figs

Regularization independent vs p251026 p251022 p25102 p25106 p251010

a50.6 Modified cutoff 2.63310210 2.63310210 3.19310210 3.5131027 1.5831026

Dimensional regularization~cubic! 4.7331027 4.7331027 4.7331027 4.5231027 2.3431025

Dimensional regularization~quartic! 5.1631027 5.1631027 5.1631027 9.8831027 4.1831026

a51.5 Modified cutoff 1.2431027 1.2431027 1.2331027 2.5731027 6.4731025

Dimensional regularization~cubic! 4.6831027 4.6831027 9.2931027 1.0831026 2.0631024

Dimensional regularization~quartic! 1.6431026 1.6431026 5.2231027 4.2631027 3.7431025
ow
APPENDIX A

The expressions mentioned in Sec. III are given bel
The Ball-Chiu vertex@36# is

GBC
m ~m;k,p!5

1

2 S 1

Z~m2;k2!
1

1

Z~m2;p2!
D gm

1
~k1p!m

k22p2 F S 1

Z~m2;k2!
2

1

Z~m2;p2!
D ~k”1p” !

2

2S M ~k2!

Z~m2;k2!
2

M ~p2!

Z~m2;p2!
D G . ~A1!
08502
.

The coefficient function of the transverse vertex~Curtis-
Pennington! @4# is

t6~m;k,p!52
1

2d S 1

Z~m2;k2!
2

1

Z~m2;p2!
D ,

where

d5
$~k22p2!21@M2~k2!1M2~p2!#2%

~k21p2!
. ~A2!

The constituents of the integrands in Eqs.~3.2! and~3.3! are
the renormalization-point independent kernel functions:
I ~k2,p2!5
3

2~k22p2!
H M ~k2!FM ~k2!2M ~p2!

Z~m2;k2!

Z~m2;p2!
G1

1

2

~k21p2!@M2~k2!1M2~p2!#2

$~k22p2!21@M2~k2!1M2~p2!#2%
F12

Z~m2;k2!

Z~m2;p2!
G J

3S k4

p4
u~p22k2!1u~k22p2!D 1j

Z~m2;k2!

Z~m2;p2!

M ~k2!M ~p2!

k2 S k4

p4
u~p22k2!D , ~A3!

J~k2,p2!5
3

2
M ~k2!H 11

Z~m2;k2!

Z~m2;p2!
1

~k42p4!

$~k22p2!21@M2~k2!1M2~p2!#2%
S 12

Z~m2;k2!

Z~m2;p2!
D J

3S k2

p2
u~p22k2!1u~k22p2!D 2

3

2
p2

Z~m2;k2!

Z~m2;p2!

@M ~k2!2M ~p2!#

k22p2 S k4

p4
u~p22k2!1u~k22p2!D

1j
Z~m2;k2!

Z~m2;p2!
M ~k2!S k2

p2
u~p22k2!D . ~A4!

Linearizing Eqs.~A3! and ~A4! in terms of the mass function yields

I ~k2,p2! ——→
k2,p2@M2

I 8~k2,p2![0,

J~k2,p2! ——→
k2,p2@M2

k2J8~k2,p2!,

where
0-9
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J8~k2,p2!5j
1

p2

Z~m2;k2!

Z~m2;p2!
M ~k2!u~p22k2!

1
3

2 H 2M ~k2!

~p22k2!
F p2

Z~m2;k2!

Z~m2;p2!
2k2G

3Fu~p22k2!

p2
1

u~k22p2!

k2 G
2

Z~m2;k2!

Z~m2;p2!

M ~p2!2M ~k2!

~p22k2!

3F k2

p2
u~p22k2!1

p2

k2
u~k22p2!G J . ~A5!

APPENDIX B

This appendix is devoted to the analytic calculation of
wave-function renormalization and mass functions in
asymptotic limit. The quantities that we need to evaluate

Zhigh~m2;km
2 ,p2![

a

4pEkm
2

` dk2

k21M2~k2!

3@Z~m2;p2!I ~k2,p2!2I ~k2,m2!#,

Mhigh~m2;km
2 ,p2!

[
a

4pEkm
2

` dk2

k21M2~k2!
@J~k2,p2!2J~k2,m2!

1M ~p2!I ~k2,p2!2m~m!I ~k2,m2!#, ~B1!

whereI (k2,p2) andJ(k2,p2) are given in Appendix A. Pro-
vided km

2 is sufficiently large thatkm
2 @M2(km

2 ), these quan-
tities become

E
km

2

` dk2

k21M2~k2!
I ~k2,p2!

5

km
2

@M2~km
2

!

E
km

2

` dk2

k2 H 2
3

2

M ~p2!M ~k2!

~k22p2!

Z~m2;k2!

Z~m2;p2!

1
3

4
M4~p2!

~p21k2!

~k22p2!3 S 12
Z~m2;k2!

Z~m2;p2!
D J ,
08502
e
e
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E
km

2

` dk2

k21M2~k2!
J~k2,p2!

5

km
2

@M2~km
2

!

E
km

2

` dk2

k2 H 3M ~k2!13M ~k2!
p2

~k22p2!

3S 12
Z~m2;k2!

Z~m2;p2!
D

2
3

2
p2

Z~m2;k2!

Z~m2;p2!

M ~k2!2M ~p2!

~k22p2!
J . ~B2!

We have already shown fork2@M2 that the wave-function
renormalization and the mass function have a power law
havior:

Z~m2;k2!5CmS k2

m2D n

,

M ~k2!5
1

2
DmS k2

m2D 2s

1
1

2
Dm* S k2

m2D 2s*

. ~B3!

The results forZhigh and Mhigh for large km
2 and arbitrary

p2,m2,km
2 can then be given in terms of hypergeomet

functions:

Zhigh~m2;km
2 ,p2!5

3a

16p
@Z~m2;p2! Ĩ ~p2!2 Ĩ ~m2!#,

Mhigh~m2;km
2 ,p2!5

3a

16p
@2J̃~p2!22J̃~m2!

1M ~p2! Ĩ ~p2!2m~m! Ĩ ~m2!#,

~B4!

with
0-10
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Ĩ ~p2!5M4~p2!F p2

3~km
2 !3

F~3,3,4,p2/km
2 !1

1

2~km
2 !2

F~3,2,3,p2/km
2 !G

2
M4~p2!

Z~m2;p2!

Cm

~m2!n F 1

~32n!

p2

~km
2 !32n

F~3,32n,42n,p2/km
2 !1

1

~22n!

1

~km
2 !22n

F~3,22n,32n,p2/km
2 !G

1
M ~p2!

Z~m2;p2!

CmDm

~m2!n2s

~km
2 !n2s21

~n2s21!
F~1,12n1s,22n1s,p2/km

2 !

1
M ~p2!

Z~m2;p2!

CmDm*

~m2!n2s*

~km
2 !n2s* 21

~n2s* 21!
F~1,12n1s* ,22n1s* ,p2/km

2 ! ~B5!

and

J̃~p2!5
Dm

~m2!2s

p2

~11s!~km
2 !s11

F~1,11s,21s,p2/km
2 !1

Dm*

~m2!2s*

p2

~11s* !~km
2 !s* 11

F~1,11s* ,21s* ,p2/km
2 !

2
3

2

CmDm

~m2!n2sZ~m2;p2!

p2

~11s2n!~km
2 !s2n11

F~1,11s2n,21s2n,p2/km
2 !

2
3

2

CmDm*

~m2!n2s* Z~m2;p2!

p2

~11s* 2n!~km
2 !s* 2n11

F~1,11s* 2n,21s* 2n,p2/km
2 !

2
Cm

~m2!n

M ~p2!

Z~m2;p2!

p2

~n21!~km
2 !12n

F~1,12n,22n,p2/km
2 !. ~B6!
D

-

d

B

n,

o,

m
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