PUBLISHED VERSION

Kizilersu, Ayse; Sizer, Tom; Williams, Anthony Gordon
Reqularization-independent study of renormalized nonperturbative quenched QED Physical
Review D, 2002; 65(8):085020

© 2002 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevD.65.085020

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S.
Copyright Act, 17 U.S.C.

8101, the employer named [below], shall have the following rights (the “Author Rights”):
[...]

3. The right to use all or part of the Article, including the APS-prepared version without
revision or modification, on the author(s)’ web home page or employer’s website and to
make copies of all or part of the Article, including the APS-prepared version without
revision or modification, for the author(s)’ and/or the employer’s use for educational or
research purposes.”

8th April 2013

http://hdl.handle.net/2440/11145



http://hdl.handle.net/2440/11145�
http://link.aps.org/doi/10.1103/PhysRevD.65.085020�
http://link.aps.org/doi/10.1103/PhysRevD.62.093023�
http://hdl.handle.net/2440/11145�
http://publish.aps.org/authors/transfer-of-copyright-agreement�

PHYSICAL REVIEW D, VOLUME 65, 085020

Regularization-independent study of renormalized nonperturbative quenched QED

Ayse Kizilersy* Tom Sizer! and Anthony G. William$
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University, Adelaide, South Australia 5005, Australia
(Received 17 January 2001; published 4 April 2002

A recently proposed regularization-independent method is used for the first time to solve the renormalized
fermion Schwinger-Dyson equation numerically in quenched four-dimensional QED. The Curtis-Pennington
vertex is used to illustrate the technique and to facilitate comparison with previous calculations which used the
alternative regularization schemes of modified ultraviolet cutoff and dimensional regularization. Our new
results are in excellent numerical agreement with these, and so we can now conclude with confidence that there
is no residual regularization dependence in these results. Moreover, from a computational point of view the
regularization independent method has enormous advantages, since all integrals are absolutely convergent by
construction, and so do not mix small and arbitrarily large momentum scales. We analytically predict power
law behavior in the asymptotic region, which is confirmed numerically with high precision. The successful
demonstration of this efficient new technique opens the way for studies of unquenched QED to be undertaken
in the near future.
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[. INTRODUCTION regularization is computationally economical and gives accu-
rate answers after gauge-covariance violating terms are re-
The divergences inherent in quantum field theories havéoved.
plagued physicists for years. The infinities are removed in a On the other hand, SDE studies implemented using a
two-step process: first the divergences are controlled by gauge-invariant regularization scheme, such as dimensional
regulator, then the regulator is removed using the renormaf:gularization[8], do not have such a problem. However a
ization procedure to obtain finite, renormalization- dynamical mass is generated for all coupling constants in

independent physical quantities. Depending on the type op <4, instead of only above critical coupling @=4 in

regulator introduced, different problems can occur. It is use:cumﬁ regularization. In nonperturbative studies this scheme

ful to discuss the difficulties that arise in the Schwinger—IS computationally more demanding since a careful and time-

; ) ) . . consuming removal of the regulator must be performed, in-
Dyson equation¢SDE's) [1], since these are identical to the volving an extrapolation of many high-precision solutions

difficu_lties enc_ountered in perturbation theory and beca_us?or different € to e=0. Additionally the accuracy of the re-
we will be using them as a tool to study nonperturbativeg, . is, in practice, more limited because the integration
QED. In the literature, SDE’s in quenched four—d|men3|onalrange necessarily extends to infinity.
QED (QED,) are commonly studied by using the ultraviolet | this paper we will be employing for the first time the
cutoff regularization schem]. One difficulty faced is that regulator-independent method recently proposed by Kizil-
the use of an ultravioletUV) cutoff A to regulate the inte-  ersuet al.[9] to solve the renormalized fermion Schwinger-
gration will in general lead to an explicit violation of gauge Dyson equation numerically in quenched QEDThis
covariance 3]. Because this regularization scheme does noimethod deals with renormalized quantities only, as the regu-
respect translation invariance in the loop-momentum integratator is removed analytically. The dependence on the mass
tion, it will lead to an explicit gauge-covariant violating con- scale introduced by the regulator is traded for the momentum
tribution in the resultgven afterA is taken to infinity. More  scalew at which the theory is renormalizéskbforeperform-
precisely, this violation of gauge invariance has been obing any numerical calculations. In this way any regulator
served in quenched QED calculations employing the Curtiswhich does not violate gauge covarian@ch as dimen-
Pennington(CP) [4] electron-photon vertex and may be sional regularization or cutoff regularization modified as dis-
traced back to a certain, logarithmically divergent, cussed abovecan be used and the regulator removed ana-
4-dimensional momentum integral which vanishes becausktically beforeany numerical calculations are begun. More
of rotational symmetry at allA <o, but leads to a finite importantly, from a numerical point of view, removal of the
contribution forA —oe. It is this discontinuous behavior as a regulator means that no longer does one have to solve inte-
function of A which complicates correct numerical renor- gral equations involving mass scales of vastly different or-
malization with this regulator. Incorrect results will be ob- ders of magnitudgand then, in addition, take a limit in
tained unless care is taken to identify and remove gaugewhich one of the scales goes to infinityRather, the impor-
covariance violating termg5-7]. In its favor, cutoff tant scales in the problem become scales of physical impor-
tance, e.g., the renormalized mas§u) and the renormal-
ization scalew at which this mass is defined. It is therefore to

*Email address: akiziler@physics.adelaide.edu.au be expected that the dominant contributions to any inte-
"Email address: tsizer@physics.adelaide.edu.au grands will be from a finite region of momenta. This feature
*Email address: awilliam@physics.adelaide.edu.au is generic; i.e., it is independent of the particular vertex an-
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q=k-p positive semidefinite spectral function in the timelike region.
- Hence, above critical coupling applying the “textbook”
-1 -1 _i:\lvz_ renormalization prescription of holding the renormalized fer-
- = — - mion mass constant at some renormalization point as the
P P kK ™ regularization is removed may well be inappropriate. What

should be done above critical coupling is that the physical

FIG. 1. The Schwinger-Dyson equation for the fermion propa-excitations in the supercritical phase should be identified and

gator. it is the properties of these that should be held fixed as the

regularization is removed. Since our purpose here is to es-
satz that one makes use of, and it remains a valid considefablish and test a new technique for solving renormalized
ation for an arbitrary renormalizable field theory. SDE’s, we will restrict our consideration to the same super-

The regularization-independent approach is computationeritical renormalization scheme that was used in previous
ally very economical and very accurate, although one magtudies. This is done so that we can compare in detail to
lose direct contact with the bare theory. In particular, oneearlier published work and because the supercritical phase of
cannot study dynamical chiral symmetry breaking in this apquenched QERis not yet well understood. Below critical
proach by simply setting the bare masg=0 and investi- coupling, we are still in the standard phase and the “text-
gating at what value of coupling the dynamical fermion masshook” renormalization applied here is quite appropriate.
is generated. In Ref10], within quenched QED, a removal For completeness and to put this work into context, we
of the regulator was attempted in a manner which has somieriefly summarize results of other studies of QEMiran-
similarity to what we do here. As emphasized by Miranskysky[11-13 has studied the fermion self-energy in quenched
(Refs.[11,12] as well as Chapter 10.7 of RdfL3]), some QED in the ladder-approximation SDE in the Landau gauge.
care needs to be taken with the treatment of the bare mass this work there were two phases and this construction led
while removing the regulator in order to avoid drawing in- to the conclusion of a nontrivial continuum limit of QED.
correct conclusions about the presence or absence of dynanmitiransky interpreted the critical coupling. as an ultravio-
cal chiral symmetry breaking in gauge theories. let stable fixed point and decreased the bare couglingith

In SDE studies of quenched QElhere is a critical cou-  cutoff in such a way that as the ultraviolet cutoff is removed
pling a., below which the fermion propagator is well be- the mass functioM (p?) remains finite and no oscillations
haved and the standard textbook renormalization procedurgccur. There have been a number of other attempts to con-
for renormalizing the nonperturbative propagator appears tetruct microscopic models of dynamical chiral symmetry
be entirely adequate, e.g., see Rgfs:5,7,9. Atkinsonet al.  preaking[15—18. Holdom [15] questioned whether Miran-
studied the transition through. within standard QERus-  sky's method of renormalization represented a true
ing a bifurcation method14]. It was found in the unrenor- renormalization-group flow. Bardeest al. [16] emphasized
malized quenched theory that at critical coupling the soluthat the strong coupling phase of QED may render 4-Fermi
tions bifurcate and fow>a the SDE’s in the chiral limit operators relevant; hence in this phase, we should be study-
admit both a trivial M(p?)=0 solution and a solution ing the gauged Nambu-Jona-LasinidJL) model rather
M(p?) #0 with dynamical mass generation. For this reasonthan QED in isolation. The vacuum polarization effect in
the transition is often referred to as a dynamical chiral symmodel SDE studies is considered in R¢fis7—20 and it was
metry breaking transition even though the conservation otoncluded that there was a chiral phase transition that led to
the axial current is not explicitly demonstrated. the triviality of QED[18]. Azcoiti et al.[21-23 used a com-

In the studies of renormalized quenched QED Refs.  bination of lattice simulations and mean-field approximation
[1,2,5,7,8, the renormalization prescription that is usedand found qualitative agreement with the work of Miransky
above critical coupling ¢> «) is the same one that is used and the conclusion that QED was nontrivial. Another non-
below critical coupling &¢<«.), i.e., the standard “text- perturbative tool, the nonperturbative renormalization group,
book” definition. Above critical coupling in these studies the was used in other studi¢24] where it was concluded the
dynamically generated mass function becomes infinite as th@ED was a trivial theory.
regulator is removed in the chiral limit when the bare mass The only first-principles studies of nonperturbative QED
Mg is held to zero as the regularization is removed. This doeare those based on lattice gauge theory. There have been a
not happen in model studies of QC] where a running variety of lattice-based studies of QER5-34. It appears
coupling constantr(g?) is used 1]. For finite renormalized that recently these lattice studies are approaching agreement
solutions above critical coupling the unphysical behavior{29,34 that standard textbook.e., unquenched, noncom-
manifests itself as oscillations in the renormalized maspach QED; is a trivial theory. These results support Landau’s
function M(p?) and this has been demonstrated with highconjecture that in the continuum limit QED interactions are
numerical precision in the previously cited references. The&ompletely screened and theenormalized fine structure
interpretation of these results is that above critical couplingconstant vanishes. It has been argued that the Landau pole
in quenched QEPR a phase change has occurred, which isproblem of QEL is resolved since the region of parameter
coincident with the onset of dynamical mass generation andpace where this occurs is unavailable to the theory because
inconsistent with the renormalized fermion being a physicabf dynamical chiral symmetry breakin@4]. It was noted
excitation. We say that it is not a physical excitation in thethat Kim et al. [29] did not find numerical support for the
sense that it does not have a Lehmann representation withveork of Azcoiti et al. [21-23.
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In this work we limit ourselves to standard textbd@g| In quenched QED, there is no renormalization of the electron
renormalization in the quenched theory, where the couplingharge egzei:wa) and the appropriate photon propaga-
is not renormalized and is independent of the cutoff, evenor is simply the tree-level form

above critical coupling. Our long-term goal is to simulta-
neously solve the fermion and photon propagator SDE's with g.9 9.9
gaﬁ_?ﬁ +§?ﬁ . (29

. : 0 _
a well-constrained ansatz for the fermion-photon vertex. In Dapld)=——
these future studies we hope to establish whether or not QED q
is trivial and/or whether additional four-Fermi interactions where¢ is the covariant gauge parameter. We 86g;p) to
must be included. We compare our new regularization-fregjenote the full fermion propagator renormalized at the mo-
method, with previous numerical analyses of renormalizedyentum scalgu. It can be expressed in terms of two scalar

guenched CP QED by the current authors and their COIIabOFunctionsZ(Mz;pz), the fermion wave-function renormaliza-
rators[2,5,7,9. The application of textbook renormalization tion function, andM (p2), the mass function, by

immediately leads to the fact that in quenched QED there is

no renormalization of the photon propagatoe., Z;=1 in Z(u2:p?)
that casg and hence, due to the Ward-Takahashi identity S(u;p)= > (2.5
which ensures that, = Z,, there is no renormalization of the p—M(p%)

coupling constant. Note thatS°(p)=1/(p—m,) is the tree-level fermion propa-

In Sec. Il we formulate the regularization-independent ator (i.e., the bare fermion propagator in the absence of
method for renormalized SDE for quenched QED in 4 di-J L propaga .
interaction$. The full (proped renormalized fermion-photon

mensions with an arbitrary covariant gauge. Section Il d's'vertex isI", (u:k. p). Multiplying the fermion SDE Eq(2.1)

cusses the large momentum behavior of the fermion bropa; p and| and taking their respective spinor traces, we can
gator and gives its analytical form. We go on to solve SDE’s y 9 P P '

numerically in Euclidean space for the fermion wave-Separate the fermion self-energy(p?) into Dirac odd,
function renormalization function and the mass function em=, ; (p?), and Dirac even, 3 (p?), parts; i.e. 3(p)
ploying the CP vertex. The integration range in these equa- p§ QLS (12 ; ;

. - T ; =p2 4 (p°) +2(p°); then we perform Wick rotation to the
tions is tak(_en to |nf|n!ty analyncally and subsequently Euclidean space. This gives

evaluated using a combination of numerical and analytic re-
sults. We do this extrapolation to infinity to facilitate com- —1 2,042\ — _ S (n2

parison with previous results at very high momentum scales Z (WP =2 = 2o 2 o), 2.6
and to compare these results with their asymptotic forms. We N 1s 2Dy real
demonstrate numerically to high precision the agreement be-  M(P)Z™ " (15p9) =Zo(w) Mo+ Zy(0)25(p%), (2.7
tween the regularization independent approach and the mod

fied cutoff and dimensional regularization schemes. Finall and these sel-energies make use of any regularization
) . 9 : Yscheme that does not violate gauge covariance. Here, the bar
in Sec. IV we summarize our results and conclude.

over these quantities indicates that we have explicitly sepa-
rated out the renormalization consta#igw); note that for
Il. REGULARIZATION-FREE FORMALISM IN notational brevity we do not indicate the implicit dependence
QUENCHED QED, on 2 of 34 (p?) through the functiorz(u?;p?).
The renormalized Schwinger-Dyson equation for the elec- Because of the Ward-Takahashi identity, which must be

tron propagatofFig. 1) can be formulated as satisfied by any acceptable vertex ansatzlfp(u;k,p) and
any acceptable renormalization scheme, one HKaSu)
S Y wip)=Zo( )X (p) =Z,(u). Making use of this fact, Eq$2.6) and(2.7) can be
' ; rearranged as
d%

s 2 af - _ —
'Za(1)€ f @ma (HPk) 2, M) =2(uBp) ~Z(pZ A o(pD), (29

. B0 . _ _
XStV Daglpsi) M(p?)=mo+[M(P2)Z4(P?) +X (P, (29

EZZ(M)SO_l(p)_izl(M)g(p)- (2.1) In order to avoid cumbersome notation, we have not explic-

itly indicated functional dependence on the regulator in Egs.
. (2.1)—(2.9 but it should be understood. The renormalization
Here Zy(n) and Z,(u) are the vertex and fermion wave constantsZ; ) and the bare fermion mass, are regula-
function renormalization constants respectively. These renot: OV .

o : or dependent in the above equations. As one removes the
malization constants relate the regularized but unrenormaf—

ized (i.e. bare) and renormalized propagator and vertex by regulator, the integrals on the _rlght hand fc"de_Of qu)’_
and hence& 4(p?) ands (p?), diverge logarithmically. It is

Co — bar . the defining feature of a renormalizable field theory that
T (ki) =Za(p, MTTTK EA), 2.2 these divergences may be absorbed into the constants
. bar Z,{m) and into the bare massn,, rendering finite,
S(p; ) =25 (1, A)S*p; A). (2.3} regularization-independent limits f@&(x2p?) and M (p?).
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However, we can make use of th# independence of
Z, 1) andmg in order to eliminate these constants from the

above equations. The renormalization conditions for the fer-
mion wave-function renormalization function and the mass

function are
Z(p?%p?)=1 (2.10

Note thatm(u) should not be confused with an explicit chi-
ral symmetry breaking mass such as the current quark ma
in QCD. Even in the chiral limit where the bare masg
=0, above critical coupling we can have dynamical mas
generation and hence oun(u)#0. Evaluating Eqs(2.8)
and (2.9 at a second momentum which we take to fire
= u? and taking the difference one obtains the central equ
tions that we solve here:

and M(u?)=m(u).

Z(p%pA)=1+Z(uZp?)3 o(p) -3 a(1?),
M(p?)=m(u) +[M(p)Z 4(p?) += «(p?)]

—[IM(w)S g(wd)+3(pd]. (21D

a_

PHYSICAL REVIEW D 65 085020

j dk?
0 [k2+ M2(k2)]
X[I(K2,p?)—I(k%, u?)+M(p?)l (k% p?)
—m(u)l (K3 u?)], (3.3

©

M(p?)=m(u)+ 1

where the kernel function(p?,k?) and J(p? k?) are also
iven in Appendix A. The kernels have the same form as
ef.[14] except that the gauge-covariance violating term has

S‘been removed, since it does not survive the four-dimensional

momentum integration in the absence of a cutoff. This term
does not vanish if the angular integral is done first with the
radial integral taken to infinity afterward, which is why it
must be removed by hand in the cutoff approach.

The above equations are finite as can be seen by analysis
of the large momentum limits of the integrands andM,
which behave asymptotically ag¥) " and k?) ', respec-
tively, wheren,r>1. The equation for the wave-function
renormalization function Eq3.2) is the same as E@10) in
Ref.[10]; however our treatment of the mass function differs
from theirs.

As the left-hand sides of these equations must be finite as the

regulator is removed, then the right-hand siB&1S) must be
also, even though the individual terms on the RHS apya-
rately diverge.

These renormalized equations Eg.11) with the regula-

tor removed provide a starting point for nonperturbative in-

vestigations which have significant advantages over the usu
treatment found in the literatuf@—8]. In the following sec-

tion we shall illustrate this approach by turning to the ex-

A. Asymptotic limits of the solutions

In this subsection we solve Eg&.2) and (3.3) analyti-
cally for momentap? much larger thanM?(p?) (the
asymptotic regionby linearizing them for finite mass, in a
manner similar to that used by Atkinsat al. [14] for the
ghirally symmetric theory(i.e. my=0). It is convenient to
temporarilytake the renormalization point to also be very
large, removing this constraint once our derivation is com-

ample of quenched QED with the Curtis-Pennington verteXpjete. Whenp? and w2 are in the asymptotic regiok? is

IIl. QUENCHED QED WITH THE CURTIS-PENNINGTON
VERTEX

In this section we use the regulator-independent metho

for solving the renormalized SDE in E¢R.1]) in an arbi-
trary covariant gauge. As usual we write the full vertex as
sum of the Ball-Chiu vertek36] (longitudinal part satisfying
the Ward-Takahashi identityand the Curtis-Pennington term

[4] (the transverse part satisfying multiplicative renormaliz-

ability of the fermion propagator

X[y*(p*—k?) +(p+k)*(k—p)], (3.1

wherel'§-(u;K,p) and rg(u;k,p) are given in Appendix A.
After performing the angular integration, E(.11) can be
written as

1

2.1,2
e M2 )

Lo, b (w?
Z(u?pdH=1 47Tfp2dk2
f dk?

0 [k2+M?23(k?)]
X[Z(u?p?)1 (K2, p?) =1 (K%, u?)],

oo

o

4m

(3.2

a

necessarily also much greater thd?(k?); therefore ex-
panding in powers oM?(k?)/k? and keeping at most linear
terms inM(k?), the kernel functions take their asymptotic
rms 1(p?,k?)—0 and J(p?k?)—k2J'(p?k?), where
"(k?;p?) is defined in Appendix A. Hence whest and 2
are both in the asymptotic region, we obtain

2dk?
Z(M2§p2)=1—g p’; ?Z(Mz;kz), (3.4
o
M (p?)=m(u)+ Efo AL 3" (K2, p?)
I (k2,u2)]. 35

These linearized equations admit power law solutions.
The solution of this asymptotic form of th& equation is
easily seen to bg3]

2 ag
V= ——,

4

Z(,uz;p2)=( 2) with (3.6
yn

which differs from Ref[14] due to the absence of the gauge
covariance violating term. We thus obtain fpf and p’?
both large that
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aé for some appropriatdd,,. We see thatDM/(,uz)*S is a
=—, (3.7 renormalization-point independent constant and that we must
4m haveD ,—m(u) as u? moves into the asymptotic region.
There is in fact more than one real solutiongan Eq.
(3.10 (see also Ref[14]), e.g., in Landau gauge there are
‘two. However, only one of these matches smoothly onto the
perturbative solution, and hence is the relevant solution. The
2\ v other solutions appear as a spurious by-product of the linear-
Z(,uz;p2)=C#(p—2) with  »= “_g (3.9 ized approximation in Eq_3.5). [Solutions th.at d_o not mgtch
4 smoothly onto perturbation theory can arise in E85) if
the integrals diverge asd/ due to infrared divergences; this
for some appropriat€ , such thatC,—1 asu? enters the  cannot occur in Eq(3.3) because of the regulating mass in
asymptotic region. the denominato}.Sinces is real there are no oscillations in
We shall see that power law solutions of thleequation  the mass function. These solutiod(p?+0), in the sub-
occur in two regimes, depending on the valueaofThose  critical region are explicit chiral symmetry breaking solu-
with a real exponent can be identified with the subcriticaltions.
regime, wherea is less than its critical valuer. which
marks the onset of dynamical mass generation. Those with 2. Supercritical asymptotic solution
complex exponent correspond to oscillating solutions which
correspond to the supercritical regime whete «.. We ex-
amine these two cases separately in what follows.

Z(p*p?) :( L
Z(u?p'?) \p'?
which is valid for anarbitrary renormalization poing since

the ratio is by definition renormalization-point independent
It then follows for largep? and any arbitrary.? that

) with v

In the case whersis complex, th€real) mass function is
a superposition of powers & and its complex conjugate.
For largep? and arbitraryu? we have as the counterpart to
Eqg.(3.12

1. Subcritical asymptotic solution

Where, as beforey? andp? are understood to be chosen 2

1
much greater than all other mass scales, we try a solution of M (p?)= ED“ L + ED; - ,
Eq. (3.5 of the form M
2\ —s s,D,eC, (3.13
M(p?)= — R :
(p9)=m(p) M2> » SE€ 39 whereD , is some appropriate complex constant, and
Solving fors, we find 1
? 5(D,+Di)=ReD,)—mun) (314
3v
2¢ 2m cotsm—  Cotym+ 37 COv—S) ™ asu? enters the asymptotic region. Hes@ands* are com-
plex conjugate solutions to E43.10 and the combination
n i Lo B results in a mass function that oscillates. This oscillatory
2 1 1 3 1 Its i function th il Thi ill
(1-s) (v+1) v (v—s) (v—s+1) behavior is more transparent if we write H§.13 as
s—1 2\ —Re(s)
e (3.10 M(p)=|=—|  {ReD,)cogIm(s)log(p?u?)]
)73
This equation is the same as in REF4], but in contrast to +Im(Dﬂ)sir{Im(s)Iog(pzluz)]} (3.15

the unrenormalized equation examined in that paper, this

power ansatz is valid for the renormalized equation that Weyhich has the form of a phase-shifted cosine function peri-
havg here Whether_or not the bare magsis zero. We can  odic in log(p%«?), with a period of 27/Im(s), modulated by
again form a ratio, i.e., providegf andp’? are much larger  an exponentially decaying envelope qi2(12)~Re®). The

than all other mass scales, we have oscillations are an indication of a new phase in quenched
_ QED employing the CP vertex at sufficiently strong coupling
M(pz) p2 a>ag.
—=|—73| . seR (3.11
M(p™®) \p

B. Numerical solutions

Both Egs.(3.10 and(3.11) are manifestly renormalization- . .
point independent and so are valid for an arbitrary choice of In the regularization-independent approach, the equations

renormalization poinj. It then follows that for large? and are constructed SO as to remove all i.nfinities fro”.‘ thg outset
any arbitrary? that and so the UV region of_ thg integral is not a c_rumal limiting
factor. Moreover, establishing exact asymptotic forms of the
-s wave-function renormalization and mass functions in the
) , sD,eR (3.12  previous subsection makes it possible to analytically inte-
grate Egs(3.2) and(3.3) from the highest grid point to in-

2
M(p*)=D,

PE
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finity. We denote this highest grid point, where the Subcritical Fermion Propagator
asymptotic analytic forms are matched onto the numerical 0=0.6, §=0.25

results, as the “matching poink?,. Forp?=kZ, we use the ' '
analytic forms, while fopp?<k?2, we can rewrite Eqs(3.2)
and(3.3) as

12 =

—_— rllumerical
——- analytical

1.0

& [w? 1
Z(u?; 251—a—f dke—————7(u?K?
(P = L | e )

+i krzn dk?
4mlo [K?+M?(k?)]
X[Z(u?p?)1 (K2, p?) — 1 (K?, u?)]

Dynamical Mass M(p2) Finite Renormalization 1/ Z(ngpz)

+ Zyigh( 1% ki P?), (3.16
M(pd =i+ [ 2
=m — S
POEI T 4w o e M2k
2 02y 1k2 2 21 (112 2 10% . \ ,

X[JI(k%,p?) = Ik, 1) + M (p9) I (k% p2) 10° 101 102 10% 169
—m(u)(k?,u?)] p° [Euclidean]
+ Mpign( 12Kz, p?), (3.17 FIG. 2. Comparison of the numerical solution for the finite

renormalization T (u?;p?) and the mass functioM(p?) (solid

where the matching poinkﬁq, is chosen sufficiently large lines) and their predicted asymptotic behavior with matching scales
that the asymptotic formulas are valik?>M?2(k?)]. These (dashed linesfrom Egs.(3.8) and (3.12 for the subcritical cou-
equations serve as definitions of the analytic forms that wé!ing «=0.6. The example solution was for a fe”‘)zrmagged mass
need to evaluate, i-ihigh(ﬂzikﬁwpz) anthigh(M2§kﬁwp2) m(u) =400 (ar:)ltr_a:)yzlénlts, renormalization pointu“=10° and
are defined as the contributions arising from integrating fromP2Uge parame @=0.25.
krzn to infinity for Egs. (3.16 and (3.17) respectively. The
analytic forms forZy,g, and Mg, and their derivations are
given in Appendix B. By calculating (u?;p?) and M (p?)
in this way we can achieve very high accuracy in the UV
region.

Equationg3.16 and(3.17) have been solved numerically
in Euclidean space faZ(u?;p?) and M (p?) with a variety
of gaugesé¢, renormalization points.?, and renormalized
massean(u) for the couplingsa= 0.6 (subcritica) and «
= 1.5 (supercritical. Each solution was iterated from an ini-
tial guess untilZ(«?;p?) andM(p?) converge; our conver-

gence criterion is that the change in successiye solutions Iz§nalytica| solution joins smoothly to the numerical one. The
!ess t_han one part in fQ_at each momentum point. At every fitting parameter§C,, ,Re(,,),Im(D,,),Re(s),Im(s), »] for
'terat'og ”;e data arezrefltted fo the asymptotic analytic form§he analytic continuation are recalculated after each iteration.
of Z(u%;p%) andM(p?).

We have found, in line with the above discussion, that the
regularization-independent method allows us to extend solu-
tions for momenta up to £8 as opposed to solutions ob-  We can now compare numerical solutions from the
tained from cutoff regularization where numerical round-off regularization-independent approach to those from cutoff
error meant that the momenta in our solutions could typicallyregularization with the gauge-covariance modificafisb, 7|
not exceed?(10'%) [2,5,7. We also verified that our solu- and those from dimensional regularizatip@]. In cutoff
tions do not change when we vary the location of the pointegularization the fermion self-energies are integrated on a
k., where the matching of our numerical and analytical soludogarithmically spaced grid ik> momentum up to the high-
tions is carried out. est (cutoffi momentum A2. Additionally, in dimensional

In Figs. 2 and 3, we show typical solutions, using regu-regularization, an estimate is made of the contribution to the
larization independent regularization, of the fermion wave-integral from the highest grid point to infinity. In both the
function renormalization and mass functions for subcriticalmodified cutoff and the dimensional regularization studies
(«=0.6) and supercritical¢=1.5) cases respectively. Also subtractive renormalization is performed numerically for the
shown are corresponding solutions based on the theoreticedgularized(but otherwise divergentfermion self-energies.

asymptotic powers with fitted scales. The log-log nature of
the figures emphasizes the UV behavior of the propagator.
One can see there is excellent agreement in the regfon
>M?(p?). To emphasize this point we present the theoreti-
cal and numerically calculated powers for these two solu-
tions in Table I.

In summary, our knowledge of the exact forms of
Z(u?;p?) andM(p?) in the asymptotic region saves us from
the need to extend our numerical solutions far into the ultra-
violet. Therefore Eqs(3.16 and (3.17) are solved numeri-
cally up to the matching poin1k€n) in the UV, whereafter the

C. Comparison of regularization schemes
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FIG. 3. Comparison of the numerical solution for the finite  FIG. 4. The finite renormalization Z(u?p® and dynamical
renormalization Z(u?;p?) and the mass functioM(p?) (solid massM (p?) for the solution of the fermion SDE for subcritical
lines) and their predicted asymptotic behavior with matching scalesoupling «=0.6 and gauge parametér=0.25 found from the
(dashed linesfrom Egs.(3.8) and(3.13 for the supercritical cou- regularization-independerfNR) method compared with solutions
pling =1.5. The example solution was for a renormalized masgising the modified UV cutoff regulator and dimensional regulariza-
m(u) =400 (arbitrary unity, renormalization poin];uz: 108 and tion. The dimensional regularizatiaj’DR) solution shown is the
gauge parametef=0.25. The “guidelines” are added simply to result of extrapolating various finite solutions at scale foto €

guide the eye between data points on this logarithmic plot. =0 using a fit cubic ine at each momentum point. All solutions
have renormalized mass(u)=400 (in arbitrary unit$ at the

renormalization pointu?=10%. The small variation between the
three regularization schemes is entirely attributable to limitations
achievable in numerical precision.

For the modified UV cutoff regularization approach it was
necessary to perform the calculation at several values of
and in principle perform & — oo extrapolation. In practice it
was found that it was sufficient simply to ensure thatvas
chosen large enough. For the dimensional regularization afgpetween the regulator-independeitR) and the modified
proach it was necessary to calculate solutions at high accutoff and dimensionally regularizé®R) solutions is excel-
racy for very many values of and then carefully extrapolate lent. They are indistinguishable on the main figures: the in-
e to 0. Numerical limitations made it difficult to obtain so- sets in Figs. 4 and 5 have the sapfescale and reveal the
lutions at very smalle, which in turn limits the achievable remarkable agreement between them in the infrared region.
accuracy of thee— 0 extrapolation. In Tables Il and Ill we quantify the relative differences
In Figs. 4 and 5, we compare these three regularizatiomchieved between the three regularization schemes at a vari-
methods for subcriticald=0.6) and supercriticald=1.5) ety of momentum values. The difference between the results
cases respectively, with the standard parameter choiée ofis entirely attributable to the limitations achievable in nu-
=0.25u%=10°%, m(w) =400. One can see that the agreementmerical precision. We can now conclude with some confi-

TABLE |. This table compares the powers of the asymptotes of the finite renormalization and mass
functions in Figs. 2 and 3, as determined analytically and by fitting the numerical solutions to a power law

form.
Figure Coupling Determination v Re(s) Im(s)
2 a=0.6 analytical 0.01193662073 —0.181667015
numerical 0.01193662073 —0.181666808
3 a=1.5 analytical 0.02984155182 —0.416012578 0.418128942
numerical 0.02984155183 —0.416012521 0.418129001
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Supercritical Regularization Comparison previous results which used tligauge-covariangamodified
“ =15, &=0.25 UV cutoff and the dimensional regularization schemes. In
I : ' N — DR addition, we have conformed with previous numerical stud-
% N 11661636 - Nl:ff J ies [2,5—9, which used standard, “textbook” renormaliza-
= ! eute tion [35] below and above critical coupling. We have carried
% 08F [ |- Lo61634 ! out precise calculations in these three approaches and have
g ! achieved excellent numerical agreement between them. This
g 06 t L1e61632 ! clearly demonstrates that we are able to achieve high-
;“:’ 04 b Foeesd ! N precision nonperturbative calculations of the renormalized
e sliady 661630 P fermion propagator that are free from any spurious errors
é 1600 t } Eaans t which might arise from the regularization procedure itself.
o~ 1400 [ e 1482293 ! We have derived and used the asymptotic analytic form of
§ 1200 } 1 ! the solutions to obtain high accuracy even at extremely large
» 1000 | ! momentum scaleg?(10°%)]. The reason that this is possible
S 8o [ Jiss2202 ! now is because in the regularization-independent approach
g 600 F ELLLS I all momentum integrations are finite by construction; see Eq.
é 400 \ (2.11). No bare mass or renormalization constants appear in
& 200 f- T P ! this formulation, since they have been eliminated by combin-
or . .. Lo ; ing and subracting renormalized quantities. The onset of the
'20?0.10 105 1° 105 10° 10° 102 phase transition is signaled by the appearance of oscillations

in the UV mass function. This is a well-studied phenomenon
o o . in quenched QER We have derived the explicit analytical
FIG. 5. The finite renormalization Z(x?p®) and dynamical  forms for the oscillations in the asymptotic region above

massM (p?) for the solution of the fermion SDE for supercritical critical coupling, including the period and decay envelope of
coupling a=1.5 and gauge parametg=0.25 found from the hese

regularization-independeriNR) method compared with solutions The importance of this regularization-independent ap-

using the modified UV cutoff regulator and dimensional regulariza- L . :

tion. The dimensional regularizatiofDR) solution shown is the proach !les in the fgct that since all unregularized momentum

result of extrapolating various finite solutions at scale £0to e mt_e_gratlons are finite f_rom_ the outset, we do not haye the

=0 using a fit cubic ine at each momentum point. All solutions lelng Of_ small and arbitrarily large m_omentum Scfiles In th?
intermediate stages of our numerical calculations. This

have renormalized mass(u)=400 (in arbitrary unitg at the ’ ) ’ )
renormalization pointu?=10°. The small variation between the Means that we can achieve high accuracy for solutions in the

three regularization schemes is entirely attributable to limitationdoW and medium momentum regime with great numerical

achievable in numerical precision. economy. ForquenchedQED, it will be necessary to iden-
tify the true nature of the supercritical phase so that an ap-

dence that the three regularization schemes give identicgiropriate renormalization procedure can be defined for this

p? [Euclidean]

results for the renormalized solutions. phase. This new approach will now permit numerically trac-
table studies ounquenchedQED,. These studies are now
IV. CONCLUSIONS AND OUTLOOK under way.

In this paper we have solved for the first time the
Schwinger-Dyson equations for th_e f(_erm|_on propagator in ACKNOWLEDGMENTS
quenched QED using the regularization-independent ap-
proach recently proposed in R¢®]. This has been done for This work was supported by the Australian Research
the particular choice of the Curtis-Pennington transvers&€ouncil. We thank Andreas Schreiber for numerous helpful
photon-fermion vertex, since this facilitates comparison withdiscussions.

TABLE II. Relative differences achieved for the finite renormalizatiah(14/?; p?) between the regularization-independent approach and
the modified UV cutoff and dimensional regularizati¢for cubic and quartic filsapproaches. The differences are averages over all
momentum points solved in each order of magnitude shown. The solution parameters are the same as those in Figs. 4 and 5.

Regularization independent vs p?=10"° p?=10"2 p?=10 p?=10° p2=10Y

a=0.6 Modified cutoff 1.4%1071° 1.45x1071° 1.94x10°° 535x10°8 8.22x1078
Dimensional regularizatiofcubic) 2.10x10°7 2.10x10°7 2.09x1077 9.05<10°8 1.63x 10

Dimensional regularizatiofquartio 9.65x 108 9.64x10°8 9.63x10°8 6.11x10°8 1.13x1077

a=15 Modified cutoff 1.3x10°1° 1.73x10°1° 4.82x10°° 4.97x10°8 2.05<10° 7
Dimensional regularizatiofcubic) 3.95x10° 7 3.95x 1077 2.13x10°7 2.23x10°7 3.64x10°°

Dimensional regularizatiofquartic 2.04x10°8 2.04x10°8 5.73x 1077 1.27x10°7 6.92x10° 7
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TABLE lIl. This table shows the relative differences achieved for the mass fundipp’) between the regularization-independent
approach and the modified UV cutoff and dimensional regularization approaches. The parameters are the same as those in Figs. 4 and 5.

Regularization independent vs p?=10"% p?=102 p?=107 p?=10° p?=10'°

a=0.6 Modified cutoff 2.6%10°1° 2.63x10°1° 3.19x10°1° 3.51x10° 7 1.58x10 6
Dimensional regularizatiofcubic) 4731077 4731077 4731077 4.52x10°7 2.34x10°°

Dimensional regularizatiofquartio 5.16x10 7 5.16x10° 7 5.16x10° 7 9.88x10 7 4.18x10°°

a=15 Modified cutoff 1.2410°7 1.24x10°7 1.23x10° 7 2.57x10°7 6.47x10°°
Dimensional regularizatiofcubic) 4.68x1077 4.68x1077 9.29x 1077 1.08x 106 2.06x10°4

Dimensional regularizatiofquartio 1.64x10°8 1.64x10°8 5.22x10° 7 4.26x10°7 3.74x107°

APPENDIX A The coefficient function of the transverse vert@urtis-

The expressions mentioned in Sec. lll are given below.pennlngtom [4]s

The Ball-Chiu verte36] is

(wk.p) 1 1 1
T6( K, p)=— == - ,
P (kpy— &L 1 ) } ST 20\ 20208 Z(uzpd)
kp)=3 +
a2\ 2z Tz where
Sl i 1 |ktP) {(K= )%+ [M2(K) + M?(p) 13
Tep |\ zae) zutpy) 2 d= G

(k?+p?)

. (A1) The constituents of the integrands in E¢&2) and(3.3) are
Z(p%k?)  Z(u?p?)

the renormalization-point independent kernel functions:

M(k®)  M(p?) )

Z(p%kd)] 1 (KR+pA[MA(KD) +M?(p?)]? zwz:k%]
k2 2\ — k2 k2 _ 2 _ —
P 2(k*=p?) MIAMED M(p)zmz;p2> 2 {(K2=p?)2+[M2(K)+M2(pD) 13| Z(uZpd)
k? Z(u?k%) M(K3)M(p?) ( k?
- 2_k2 k2_ 2 - 2_k2
X<p46(p )+ 6(k“—p?) +§Z(M2;p2) 2 p40(p )| (A3)
3 Z(u?k?) (K*—p*) ( zwz;kZ))
2 2y~ 2 _
P =MD 1+Z(MZ;PZ)+{(kz_p2)2+[M2(k2)+Mz(pz)]z} ! Z(u?p?
k? 3 sz;kZ)[M(kZ)—M(pZ)](k“ )
o 2_k2 k2_ 2 __Rn2 o 2_k2 k2_ 2
X pze(p )+ 6( p)) 2P ) K p? p46(p )+ 6(k“—p?)
Z(p?K?) k2 )
e Tk S oapr—k?) | . (A4)
gy NP0

Linearizing Eqs(A3) and(A4) in terms of the mass function yields

I(k?,p?) —— 1"(k?,p%)=0,

K2,p2sM2

I(K?,p?) —— K" (K?,p?),

K2,p2s M2

where
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2

Z(u?k?) = dk
J k2, 2\ — T M k2(9 2_k2 j [ — k2, 2
(k%,p%) ngZ(,uz;pz) (k%) 6(p*—k*) 2R M) (k%,p?)
3| 2M(K?) |, Z(p?K? = dk? 2
> 2( 2) 2 (“2 2) —kzl = fz—z 3M (k?)+3M (k?) 2p 2
(p==k) [ Z(u5p9) 2 >m2(c) * km K (k®=p?)
2_ 12 2_Rn2
p? k2 o 2.2
Z(p55p°)
2.1,2 2\ _ 2
_ Z(Mz,kz) M(p Z l\/l(k ) _Epzz(f‘z?kz) M (k?)— M (p?) o)
Z(psp ) (p —k9) 2 Z(MZ,pZ) (k2_p2)
k2 p2
X| = 0(p*—k*)+ P.sr(kz—pZ) } (A5)

P We have already shown fde>M? that the wave-function
renormalization and the mass function have a power law be-
havior:

APPENDIX B
This appendix is devoted to the analytic calculation of the ,
wave-function renormalization and mass functions in the _— k?
asymptotic limit. The quantities that we need to evaluate are Z(p"k)=C, ; '
a (@ dk?
Zhigh(Mz;kﬁq,pz)E— TN 2\ s 2\ —s*
47 J\2 K2+ M2(K?) ) k) 1 *(k)
m M(k?)=zD,| —| +zD¥| — . (B3)
2 T H qu 2w ,U«Z

X[Z(u?p?)1 (K2, p?) = 1 (K2, 1?)],

The results forZ,g, and Mgy, for large kﬁ1 and arbitrary

M hign( 4% K 1)
p?,u?<k? can then be given in terms of hypergeometric

_a [ dk? K2 p2 K2 2
Tan)e k2+M2(k2)[J( P =I5 functions:
+M(pH)1(K2,p?)—m(u)l (k% u?)], (B1)

3a

Znig( w?: ki) = 75— [Z(n? P2)T(PA) = T(1?)],
wherel (k?,p?) andJ(k?,p?) are given in Appendix A. Pro-
vided k2, is sufficiently large thak?>M?(k?), these quan-

tities become
3a - ~
Miigh 1% K. P%) = 75—-[23(p%) = 23(1?)

f o 1(k?,p?)
M)
+M(p?)T(p?)—m(p)T(12)],

_3M(PIM(K?) Z(p?3K)
2 (k*-p?)  Z(p%pd) (B4)

»dk?
» J‘kﬁq?

2 2,12
K2 >M2(k2)

_Z(p*K?)

3 . (P
Z(u?p?

* ZM4(p )(k2_p2)3

} ’ with
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p2
3(k2)

m

T(p?)=M*p?)

F(3,3,4p%/K3) + !
3 = m 2(k§1)2

_ MApH C, §
Z(u?p?) (p?)”
M(p?) C,D, (kj)» !
Z(p?p?) (u?)r—s (v=s=1)

M(p?)

1 p
(3—v) (K2)%~

2 \v—s* -
C,.D% (k)™ 71

F(3,3— v,4—v,p?/k3)+
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F(3,2,3p%/k2)

G2 3Pk
(2_]}) (kZ)Z—V ( 1 V! le m)
m

F(1,1— v+s,2— v+s,p%k2)

L F(1,1— v+s*,2— v+s*,p?k3) (B5)
Z(p*p?) (u?)"% (v=s*=1) "
and
~ D p? D* p?
I(p?)=—- F(1,1+5,2+s,p%/kh) + — - F(1,1+5* 2+5s*,p?/k2
(p ) (MZ)—S (1+S)(kﬁq)s+1 ( p m) (1“'2)_5 (1+S*)(k§.])s +1 ( p m)
3 c,D 2
- = r P 5 F(1,1+s—v,2+s—v,p%/k2)
2 (u?)"5Z(p?%p?) (L+s—v)(kq)s 't
3 c,D* 2
272 ,Sib - 7 2 " P 7 +1F(1,1+S*_V,2+S*—V,p2/kfn)
()" Z(p5p%) (1+s*—v)(kp)® 77
C M 2 2
. L P ~F(1,1-»,2- »,p?/K3). (B6)

(1D Z(puZp?) (r—1)(K2)Y
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