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The quenched chiral logarithms are examined on a 163328 lattice with Iwasaki gauge action and overlap
fermions. The pion decay constantf p is used to set the lattice spacing,a50.200(3) fm. With pion mass as low
as ;180 MeV, we see the quenched chiral logarithms clearly inmp

2 /m and f P , the pseudoscalar decay
constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched
one-loop chiral perturbation theory (xPT) to apply. With the constrained curve-fitting method, we are able to
extract the quenched chiral logarithmic parameterd together with other low-energy parameters. Only formp

<300 MeV do we obtain a consistent and stable fit with a constantd which we determine to be 0.24~3!~4! ~at
the chiral scaleLx50.8 GeV). By comparing to the 123328 lattice, we estimate the finite volume effect to be
about 2.7% for the smallest pion mass. We also fitted the pion mass to the form for the re-summed cactus
diagrams and found that its applicable region is extended farther than the range for the one-loop formula,
perhaps up tomp;500–600 MeV. The scale independentd is determined to be 0.20~3! in this case. We study
the quenched non-analytic terms in the nucleon mass and find that the coefficientC1/2 in the nucleon mass is
consistent with the prediction of one-loopxPT. We also obtain the low energy constantL5 from f p . We
conclude from this study that it is imperative to cover only the range of data with the pion mass less than
;300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched
QCD and match them with quenched one-loopxPT.

DOI: 10.1103/PhysRevD.70.034502 PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc
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I. INTRODUCTION

One of the important goals of lattice QCD is to unde
stand, from first principles, low-energy hadron phenomen
ogy as a consequence of chiral symmetry. However, th
have been problems with regard to chiral symmetry since
advent of the lattice formulation. The lack of chiral symm
try in traditional approaches~such as Wilson fermions an
staggered fermions! leads to a plethora of conceptual an
technical difficulties. In particular, as a result of critical slow
ing down and the existence of exceptional configuratio
there is a practical limit on how low in quark~or pion! mass
one can carry out a Monte Carlo simulation. The exist
calculations with these fermions are typically limited to pi
mass greater than;300 MeV. As such, the extrapolatio
from the current lattice data with pion mass abo
;300 MeV, sometimes well above, to the physical pi
mass of 137 MeV is both a theoretical and a practical ch
lenge. The primary concern is whether the quark mass re
~of the lattice data! is inside the range where chiral perturb
tion theory (xPT) applies. If not, one does not have a re
able analytic form in quark mass dependence to allow for
unbiased extrapolation. Furthermore, most of the quenc
xPT calculations are carried out at one-loop order; this lim
its range of applicability further, to even smaller qua
masses. How small does the quark mass have to be in o
to see the chiral behavior predicted byxPT? Is the strange
quark in the radius of convergence ofxPT? Is there a way to
model the chiral extrapolation from well above a 300 Me
1550-7998/2004/70~3!/034502~16!/$22.50 70 0345
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pion mass without introducing systematic errors? These w
some of the issues addressed in the panel discussion d
the ‘‘Lattice 2002’’ conference@1#.

Fortunately, recent progress in lattice fermions has led
formulations~such as domain-wall fermions, overlap ferm
ons, and the fixed-point actions! with lattice chiral symmetry
at finite cutoff. As a consequence, many chiral-symmetry
lations@2–6# and the quark propagator@7# preserve the same
structure as in the continuum. While a lot of progress h
been made in checking the chiral symmetries in all th
three formulations, we find that overlap fermions@5# offer
several distinct advantages. For example, it has been dem
strated that one can simulate near the physical quark-m
region with very gentle critical slowing down@8#. Second,
the overlap-fermion inverter can accommodate multi
masses in the calculation of quark propagators@9# and thus is
particularly well suited for studying the details of the log
rithmically varying mass dependence of physical obse
ables. Third, we find that theO(a2) andO(m2a2) errors are
small @7,8,10#. @There are noO(a) errors due to chiral sym-
metry @11#.# For these reasons, in this paper we use over
fermions in a quenched lattice calculation to study the ch
logarithms in the pion mass, the pseudoscalar decay con
f P , the pion decay constantf p , and the nucleon mass. W
determine how small a quark mass or pion mass needs t
for one-loopxPT to be valid. In the present work, we on
consider hadrons with degenerate quark masses. Quan
involving the strange quark such as the kaon mass and d
constant will be studied later.
©2004 The American Physical Society02-1
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II. NUMERICAL DETAILS

Our calculation is done on a 163328 lattice with 80
quenched gauge configurations generated with the Iwa
gauge action@12# at b52.264 and the quark propagators a
calculated with overlap fermions. The lattice spacing
0.200~3! fm, as determined from the pion decay consta
f p(mp); the box size is 3.2 fm.

The massive overlap Dirac operator@13# is defined so that
at the tree level there is no mass or wave function renorm
ization @10#:

D~m!5r1
m

2
1S r2

m

2 Dg5e~H !. ~1!

Here e(H)5H/AH2 is the matrix sign function andH is
taken to be the Hermitian Wilson-Dirac operator, i.e.H
5HW5g5DW . HereDW is the usual Wilson fermion opera
tor, except with a negative mass parameter2r51/2k24 in
which kc,k,0.25. We takek50.19 in our calculation
which corresponds tor51.368.

Throughout the paper, we shall use lattice units for dim
sionful quantities, except that the lattice spacinga will be
explicit in figures.

Zolotarev approximation

The numerical aspects of the calculation have been g
elsewhere@8,10#. The new ingredient is the adoption of th
Zolotarev optimal rational approximation@14,15# of the ma-
trix sign function.

To approximate the function 1/Ax, it is suggested@14#
that one should consider the minimization of

uu12Ax f~x!uu
`

[lmin
2 ,lmax

2 ]
, ~2!

with f (x) being approximated by a rational polynomi
f̃ (x)PRm21,m5p(m21)/q(m) where p(m21) and q(m)
are polynomials with degreem21 and m, respectively. It
was proven by Zolotarev@16# that x f̃(x2)PR2m21,2m is the
uu.uu`-optimal rational approximation for the sign function o
@2ulmaxu,2ulminu#ø@ ulminu,ulmaxu#. By way of Zolo-
tarev’s theorem@16–18#, there is an analytic solution

f̃ ~x!5A

)
l 51

m21

~x1c2l !

)
l 51

m

~x1c2l 21!

, ~3!

where the coefficients can be expressed in terms of Jaco
elliptic functions

cl5
sn2~ lK /2m;k!

12sn2~ lK /2m;k!
, l 51,2, . . . ,2m21, ~4!

whereA12k25ulmax/lminu and K is the complete elliptic
integral. According to Ref.@14#, A is determined by the con
dition
03450
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C[1,(lmax/lmin)2]

@12Ax f~x!#52 min
C[1,(lmax/lmin)2]

@12Ax f~x!#.

~5!

However, there is a worry when the sign functione(H) is
not bounded by unity because of slight numerical impre
sion. From the Cauchy-Schwartz inequalityuug5ẽ(H)uu
,uug5uu uu ẽ(H)uu, the overlap operatorD(0)511g5e(H)
with e(H) approximated byẽ(H) could have superfluous
unphysical zero modes@20#. In view of this, we fine-tune the
parameterA by reducing it a little from the value determine
from Eq. ~5! to minimize the positive residual. This double
the worst residuals.

For the Wilson action kernelHW5g5DW inside the sign
function, the largest eigenvalue is around 2.43 and is fa
stable over the configuration space. Furthermore, we
that the eigenstates ofHW to be projected out become den
at ;0.05–0.06. Thus, it is sufficient to specifyA12k2

5ulmax/lminu580. With ulmaxu52.5, this gives ulminu

TABLE I. Coefficients for the 14th degree Zolotarev approx
mation in Eq.~6!.

i c i qi

1 0.8371803911435546d202 0.4203852824188996d204
2 0.9813674433769438d202 0.4230339571009471d203
3 0.1294644813006436d201 0.1458829357287322d202
4 0.1831241561050564d201 0.3894118671815802d202
5 0.2684553134920763d201 0.9481580995276351d202
6 0.4004971283185919d201 0.2225210303473774d201
7 0.6031838397347246d201 0.5146873615634705d201
8 0.9155798451341547d201 0.1185868564259925d100
9 0.1406107013842408d100 0.2742893835909246d100

10 0.2211980404641135d100 0.6437234073136943d100
11 0.3673892837229880d100 0.1567367648339766d101
12 0.6933239005020095d100 0.4183844803034055d101
13 0.1812368256185377d101 0.1442795672202632d102
14 0.1555827970041009d102 0.1451886134043600d103

FIG. 1. The residuale r(x) of the approximation to the sign
function. The solid line is the current 14th degree Zolotarev
proximation. The dashed and dotted lines are the 14th@19# and 12th
@8# degree Remez approximations respectively.
2-2
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CHIRAL LOGARITHMS IN QUENCHED QCD PHYSICAL REVIEW D70, 034502 ~2004!
50.0315 which is smaller than the largest eigensta
(;0.05–0.06) we project out from the kernelHW . Since the
coefficients of the rational polynomial approximation are e
pressed in terms of the Jacobian elliptic functions, one
use as high a degree of the polynomials as the memory
hold in the multi-mass algorithm. In practice, we use 14
degree which is a sufficiently good approximation for o
calculation. We plot the residuale r(x)5x/Ax22Z14(x) for
x.0 in Fig. 1 as a function ofx. Here Z14(x) is the 14th
degree Zolotarev approximationx f̃(x2) from Eq. ~2!. As we
can see, in the selected window@0.031, 2.5#, the approxima-
tion is better than 3.3310210. This is a good deal better tha
the earlier attempts which approximateg(x) to 1/Ax with the
Remez algorithm, in which case the resultant approxima
to the sign function withxg(x2) is not optimal in the range
@2ulmaxu,2ulminu#ø@ ulminu,ulmaxu#. We plot the residual
e r(x) for the 14th degree@9# approximationR(14) and 12th
degree@8# approximationR(12) with the Remez method in
comparison with the 14th degree Zolotarev approximat
Z(14). We see that the Remez method gives residuals in
order of 1025 in the relevant range@0.031, 2.5#. We note that
according to Chebyshev’s theorem, the errors of the opti
rational approximationf̃ (x)PRm,n5p(m)/q(n) havem1n
12 alternating signs in the range of the approximatio
Since the Zolotarev approximation to the sign function
optimal, it should satisfy this requirement. In other word

TABLE II. Pion mass obtained from thêPP& correlator on a
163328 lattice. The pion decay constantf p is used to set the lattice
spacing,a50.200(3) fm.

m mp mp (MeV) x2/N

0.80000 1.3106~42! 1293~20! 0.68
0.60000 1.1069~38! 1092~17! 0.60
0.40000 0.8740~30! 862~13! 0.56
0.32200 0.7743~22! 764~12! 0.54
0.26833 0.7017~24! 692~11! 0.57
0.22633 0.6416~25! 633~10! 0.63
0.18783 0.5829~28! 575~9! 0.72
0.15633 0.5312~31! 524~8! 0.77
0.12950 0.4840~32! 478~8! 0.75
0.10850 0.4438~36! 438~7! 0.70
0.08983 0.4050~38! 400~7! 0.64
0.07583 0.3748~38! 370~7! 0.62
0.06417 0.3470~40! 342~6! 0.58
0.05367 0.3200~43! 316~6! 0.53
0.04433 0.2940~42! 290~6! 0.55
0.03617 0.2693~48! 266~6! 0.52
0.03033 0.2501~54! 247~6! 0.56
0.02567 0.2332~56! 230~7! 0.48
0.02333 0.2244~59! 221~7! 0.58
0.02100 0.2151~61! 212~7! 0.62
0.01867 0.2055~61! 203~7! 0.60
0.01750 0.2005~65! 198~7! 0.64
0.01633 0.1953~69! 193~7! 0.68
0.01400 0.1844~71! 182~8! 0.72
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there should be 29 alternating maxima and minima~includ-
ing the endpoints of the range! for the approximation with
m513, n514. As seen in Fig. 1, this feature is preserv
with the restriction allowing only positive residuals, as d
scribed above.

After partial fraction expansion, the approximated si
function in the rational polynomialx f̃(x2)PR2m21,2m has
the form

x

Ax2
;x (

i 51

N514
ci

x21qi

. ~6!

The coefficientsci andqi for our 14th degree Zolotarev ap
proximation are listed in Table I.

In order to improve the approximation of the matrix sig
function as well as the convergence in the conjugate grad
inversion in the inner do loop@8–10#, it is desirable to
project out the lowest several eigenmodes ofHW . We use the
Iwasaki improved gauge action which requires that a sma
number of eigenmodes be projected, compared to the Wi
and Lüscher-Weisz gauge actions@21#. We calculated 140
small eigenvaluesl and projected out the lowest 110–14
eigenmodesCl , based on the criterion that the residual
the eigenvalue, defined as uuHWCl

2lCluu/uulAdim.(HW)uu, be less than 1027. The next
smallest eigenvalue is;0.05–0.06, which is well within the
window where the approximation for the sign function
better than 3.3310210. The residuals of both the inner an
the outer do loops for the inversion of the massive over
Dirac operator in Eq.~1! are at the level of 1027.

III. PION MASS AND ZERO MODES

We look at the pion mass as calculated from the pseu
scalar correlator ^(xWP(xW ,t)P(0)& where P5c̄ ig5(1
2D/2)c. The pion massesmp obtained from this correlato

FIG. 2. The pion mass as calculated from the^PP& correlator as
a function of the bare quark massm from 0.014 to 0.8. The inset is
for the results with small quark masses up tom50.1.
2-3
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are listed in Table II and plotted in Fig. 2 as a function of the quark massm. Our smallest pion mass is 182~8! MeV.
Consider the contributions of the zero modes to the meson correlator of the interpolation fieldM5c̄G(12D/2)c:

E d3x^M ~x!M†~0!&uzero modes52E d3xF (
i , j 5zero modes

^tr@c j
†~x!g5Gc i~x!#tr@c i

†~0!Ḡg5c j~0!#&

m2

12 (
i 50,l.0

^tr@cl
†~x!g5Gc i~x!#tr@c i

†~0!Ḡg5cl~0!#&

l21m2 G , ~7!
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whereG is the spinorial matrix andḠ56G†. For the pseu-
doscalar case withG5g5, the zero modes contribute to bo
the direct and cross terms in the correlator. They contrib
also to the cross terms in thê(xWA4(xW ,t)P(0)& and

^(xWA4(xW ,t)A4(0)& correlators, where A45c̄ ig4g5(1
2D/2)c, but not to the direct terms. In view of the worr
that the pseudoscalar correlator may be contaminated by
zero modes@10,22# particularly at small volumes, we look a

^(xWA4(xW ,t)A4(0)& to check if the masses calculated are t
same as those from the^PP& correlator. We plot the ratios o
the pion masses from thêPP& correlator and thêA4A4&
correlator in Fig. 3. We see that the ratios are basically u
within errors all the way to the smallest quark mass. T
suggests that at this volume, i.e.V5(3.2fm)4, there is no
detectable contamination due to the zero modes. Howe
this is not so at smaller volumes. We will show results on
123328 lattice and discuss the volume dependence in Se

It has been shown that the correlator^PP&2^SS& can get
rid of the zero mode contribution@22# for both the direct and
cross terms. This is a good procedure for medium qu
masses. For small quark masses, there is a complication
to the quenchedh8-p ghost state contribution in thêSS&
@23# which has a mass close to 2 times the pion mass.
have fitted thê PP&2^SS& correlator with the inclusion of
the ghost state which has a negative weight. We show

FIG. 3. Ratio of pion masses as calculated from the^PP& and
^A4A4& correlators as a function of themp obtained from the
^A4A4& propagator.
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Fig. 4 the ratio of pion masses determined from the^PP&
and the ^PP&2^SS& correlators. We note that the erro
from the^PP&2^SS& are larger formp<0.4438(36) due to
the presence of the ghost state which is close to the gro
state pion mass. It is not clear to what extend the additio
complication due to the ghost state is disentangled from
of the zero modes. In any case, we find that the pion ma
obtained are consistent with those from the^PP& and
^A4A4& correlators. Their central values differ by 2.5%
most. We will come back to this issue in the next secti
when we fit the quenched chiral logarithm inmp .

IV. CHIRAL LOGARITHM IN mp

It is predicted that in the quenched approximation, th
are quenched chiral logarithms@24,25# arising from the hair-
pin diagrams; the flavor-singlet pseudoscalar correlator d
not yield a full h8 mass due to the absence of dynamic
fermion loops. Instead, the would-beh8 propagator gives a
double pole of the Goldstone boson. The predicted form
the one-loop formula inxPT is @26,27#

mp
2 5Am$12d@ ln~Am/Lx

2!11#%1Aam2@1

12 ln~Am/Lx
2!#1Bm2, ~8!

FIG. 4. Ratio of pion masses as calculated from the^PP& and
^PP&2^SS& correlators as a function of thema.
2-4
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TABLE III. Summary of the quenched chiral logarithmic calculations inmp
2 with different fermion

actions and ranges of quark masses.mp,min is the minimum pion mass used in the fitting.mp,trou is the pion
mass at the trough ofmp

2 /m. E is the percentage of excess of the highestmp
2 /m at mp,min relative to the

corresponding trough atmp,trou .

Group Fermion La mp,min mp,trou E d
~fm! ~MeV! ~MeV!

CP-PACS@28# Wilson 3.2 300 ;550 ;8% 0.060~10!–0.106~5!

Fermilab@29# Wilson-Clover 2.7 290 ;400 ;7% 0.073~20!

QCDSF@30# Wilson-Clover 1.5–2.3 400 ;800 ;11% 0.14~2!

MILC @31# Staggered 2.6 320 ;700 ;8% 0.061~3!

Kim and Ohta@32# Staggered 2.6 210 ;570 ;8% 0.057~13!

Blum et al.@22# Domain Wall 3.2 390 ;740 ;11% 0.07~4!

RCB @33# Domain Wall 2.4 285 ;660 ;6% 0.107~38!

BGR @34# fixed point 2.6 210 ;870 ;15–20% 0.17~2!

BGR @34# Chirally Improved 2.4 240 ;930 ;15–20% 0.18~3!

Chiu and Hsieh@35# Overlap 1.5 440 ;770 ;11% ;0.2
Present work Overlap 3.2 182 ;480 ;33% 0.236~33!~37! ~one loop!

0.20~3! ~cactus!
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where the coefficientsA, Aa andB are given in terms of the
parametersS, f , aF and 2a82a5 in the quenched effective
chiral Lagrangian, i.e.

A52S/ f 2,

Aa5
aFA2

3~4p f !2
,

B5
~2a82a5!A2

~4p f !2
, ~9!

andLx is an unphysical cutoff scale which is usually tak
in xPT to be in the range of 0.5–1.0 GeV. The parameteraF

is the singlet coupling in the quenched theory. The quenc
chiral logarithmic parameterd is

d5
m0

2

16p2Nf f
2

, ~10!

wherem0;870 MeV from the Veneziano model of theh8
mass. From this, one estimates thatd50.183.

There are several calculations to extract the chiral lo
rithmic parameterd @22,28–35#. Save for Refs.@34,35#,
most of the calculations obtained values ford in the range
0.06–0.1 which are smaller than the expectation. We h
summarized these results in Table III. The present simula
adopts the overlap fermion action which has exact ch
symmetry on the lattice and a highly accurate numerical
proach~the matrix sign function is approximated to bett
than 1029). This should be a valuable tool to probe the r
evant range of applicability of the one-loopxPT with pion
mass as low as;180 MeV on a fairly large volume
(3.2 fm). We plot in Fig. 5 thêPP& results formp

2 /m as a
function of the bare quark massm. We see clearly that below
m50.1295 (mp;480 MeV), there is a dramatic divergen
03450
d
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e
n
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-

behavior. The ratio of the highest value atm50.014 (mp

;180 MeV) to that at the trough atm50.1295 (mp

;480 MeV) is ;1.33. Thus, the percentage excess,E, of
the highest value at the minimum pion massmp,min relative
to that at the trough atmp,trou is 33%. Most of the calcula-
tions studying the quenched chiral log stopped abovemp

;300 MeV; thus, they seem to be seeing the onset of
behavior with corresponding excess;6% –11%. In Table
III, we summarize the attempts made by various groups
calculate this quenched chiral log frommp

2 /m with different
actions and lattices. Except for the present work, all the
sults are fitted to Eq.~8! without theAa term.

We see from Table III that the results are not consist
with each other. There is a large spread ind and mp,trou
which invokes many issues to ponder: To what extent d
the fermion action matter? IsxPT valid in the range of pion
masses calculated? If so, is the one-loop formula suffic
and how does one judge it? The parametersA, d, Lx , andB
are not linearly independent in Eq.~8!; how does one fit
them? Practically all the calculations so far ignoredAa ; does
it change the results much if included? How large are
finite volume effects for the range of pion masses in

FIG. 5. The ratiomp
2 /m as a function of the quark massm.
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TABLE IV. The low-energy chiral parametersC1 andC1L ~andC2 andC2L) are fitted from Eq.~11! with a maximum of 17 quark masse
in correlated and constrained fits for several ranges of quark masses with the minimum quark mass at 0.0140@which corresponds to the
smallest pion mass at 182~8! MeV#. These are then used to determineA, d, Aa , andB from Eq.~12!. The parametersA, d, andB vary with
the chiral scale, and are evaluated atLx50.8.

mmax mp,max C1 C1L A d Aa B x2/dof

0.02100 0.2151~61! 0.82~17! 20.368(64) 1.51~27! 0.244~40! – – 0.48
0.02333 0.2244~59! 0.84~16! 20.362(52) 1.51~24! 0.239~36! – – 0.49
0.02567 0.2332~56! 0.83~15! 20.353(51) 1.48~23! 0.238~35! – – 0.46
0.03033 0.2501~54! 0.84~14! 20.350(56) 1.48~23! 0.236~35! – – 0.44
0.03617 0.2693~48! 0.85~15! 20.349(50) 1.49~22! 0.234~33! – – 0.42
0.04433 0.2940~42! 0.87~14! 20.340(50) 1.50~22! 0.226~31! – – 0.46
0.05367 0.3200~43! 0.87~14! 20.315(47) 1.44~21! 0.219~32! – – 0.58
0.06417 0.3470~40! 1.05~16! 20.256(50) 1.53~22! 0.167~30! – – 0.61
0.07583 0.3748~38! 1.08~16! 20.246(48) 1.55~21! 0.159~29! – – 0.64
0.08983 0.4050~38! 1.13~16! 20.233(42) 1.57~21! 0.148~26! 20.003(167) 1.55~55! 0.82
0.10850 0.4438~36! 1.16~14! 20.227(42) 1.59~19! 0.143~24! 20.053(132) 1.39~45! 0.93
0.12950 0.4840~32! 1.14~13! 20.228(39) 1.58~18! 0.145~22! 20.092(125) 1.42~40! 0.92
0.15633 0.5312~31! 1.16~12! 20.228(39) 1.60~17! 0.143~21! 0.003~93! 1.42~31! 0.79
0.18783 0.5829~28! 1.15~9! 20.230(38) 1.59~13! 0.145~19! 20.001(63) 1.43~24! 0.79
0.22633 0.6416~25! 1.15~8! 20.221(35) 1.57~12! 0.141~17! 20.093(49) 1.47~18! 0.81
0.26833 0.7017~24! 1.16~8! 20.221(31) 1.58~11! 0.140~16! 20.046(38) 1.44~15! 0.95
0.32200 0.7743~22! 1.17~8! 20.214(30) 1.58~11! 0.135~15! 20.070(40) 1.43~14! 0.95
0.40000 0.8740~30! 1.17~7! 20.213(30) 1.58~11! 0.135~15! 20.079(37) 1.43~13! 0.92
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calculation?~As will be demonstrated in Sec. V, the pio
masses calculated from the^PP& correlator in small volumes
are contaminated by the zero modes even up to fairly la
quark masses, i.e. the strange quark region. This could a
the position ofmp,trou and the result ford.! How does one
control the finite volume and zero mode effects?

Before addressing these questions, we first point out
there is a fundamental problem in the way the lattice data
usually fitted to the form predicted by thexPT. The common
practice is to fit the lattice data to thexPT result from a high
pion mass down to cover the range of calculated masses
then extrapolate to the physical pion mass. This can forc
fit but cannot answer the question as to whether the one-
chiral formula is applicable for the range of masses con
ered. It is possible that the range of masses will requ
higher orders inxPT or even that the mass range is outs
the radius of convergence ofxPT. Then one does not know
the precise form to fit. Extrapolating down from the pio
mass as high as 1 GeV is simply diametrically opposed to
philosophy ofxPT which is based on the expansion of sm
quark masses and momenta.

So how does one proceed? To be consistent with thexPT
approach, we start from the smallest quark mass and
where the one-loop formula applies@36#. Since we have
come down to the pion mass as low as;180 MeV, we will
assume that it is in the range where one-loopxPT is valid.
We fit the one-loop formula with the five smallest pio
masses and then incrementally add higher pion masses
by one. If the formula is valid for the range of masses, th
the parameters will remain constant; i.e., they are truly
low energy constants that we seek to evaluate. On the o
hand, if the parameters begin to change as one includes m
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higher masses, we take it as an indication that the one-l
formula starts to lose its applicability. This could be due
the fact that higher orders are needed or that the mas
simply outside the range of validity ofxPT.

We mentioned earlier that in the fitting of the one-loo
formula, the parametersA, d, Lx , and B are not linearly
independent. We can rewrite Eq.~8! as

mp
2 5C1m1C1Lm ln~m!1C2m21C2Lm2ln~m!, ~11!

where

C15A@12d~ ln A22 lnLx11!#,

C1L52Ad,

C25Aa~112 lnA24 lnLx!1B,

C2L52Aa ~12!

are the independent parameters. Therefore, we have on
dundant variable which we take to be the cutoff scaleLx .
We adopt a Bayesian-based constrained curve-fitting me
@37,38# with an adaptive procedure to obtain priors sequ
tially according to the relative importance of the paramete
The details of the constrained curve-fitting algorithm for t
hadron masses will be given elsewhere@39#. In each of the
quark mass ranges, the priors forC1 , C1L , C2, andC2L are
obtained from the correspondinĝA4A4& correlators. After
the C parameters are determined from the fit, we solve
~12! to obtainA, d, Aa , andB for a givenLx . We list their
results evaluated atLx50.8 together withC1 and C1L in
Table IV. We also plotA, Aa , B, andd as a function of the
2-6
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CHIRAL LOGARITHMS IN QUENCHED QCD PHYSICAL REVIEW D70, 034502 ~2004!
maximum pion massmp,max of the fitting range in Figs. 6
and 7. We should mention that due to the limited numbe
gauge configurations, we are not able to carry out correla
fits with a reasonablex2 for more than 17 quark masse
Therefore, for longer ranges, we choose a maximum of
representative masses to cover the range of the fit. Formmax
less than 0.08983@mp50.4050(38) or 400~7! MeV#, we find
that the data are dominated byC1L and C1. The contribu-
tions fromC2 andC2L cancel each other and the combin
contribution is negligible compared to those ofC1L andC1.
This is illustrated in Fig. 8 for a typical fit. As a result, it i
practically impossible to obtain a reliable fit forC2 andC2L .
We decided to fit these low mass data using a prior forC2L
which is limited to less than 2 during the fitting procedure

FIG. 6. FittedA, Aa , andB as a function ofmp,max, the maxi-
mum pion mass of the fit, forLx50.8. The minimum pion mass i
at 0.1844~71! @182(8) MeV#.

FIG. 7. The solid circles are the quenched chirald plotted as a
function of mp,max, the maximum pion mass of the fitting rang
with the minimum pion mass fixed at 0.1844~71! @182(8) MeV#.
The open circles@solid squares# are those fitted downward
from a maximum pion mass fixed at 0.8740~30!
@862(13) MeV# „0.6414(21)@633(10) MeV#… and plotted as a
function of mp,min , the minimum pion mass of the fitting rang
These results are atLx50.8.
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the ^A4A4& correlators. We tried using the priors withou
such a limit and also tried droppingC2 andC2L all together
in these low mass ranges and found that the fittedC1 and
C1L are not changed within errors. The central values fod
are changed only by 1%–2%. In view of this inability to fi
C2 and C2L , we do not quote the fittedAa and B below
mmax50.08983@mp50.4050(38)# where the errors are
larger than their central values. Hopefully, with better sta
tics, one will be able to extract the parametersAa andB in
the rangemp,400(7) MeV.

We see in Fig. 6 that values forA are fairly stable
throughout the range of the fit.Aa and B are also stable in
the range wheremmax>0.08983 andAa is consistent with
zero in this range. On the contrary,d in Fig. 7 is constant up
to mmax;0.044 which corresponds tomp,max;300 MeV.
Beyond that, it has a sharp drop. We take the fact thatd is
sensitive to the range of masses as an indication that
one-loop chiral formula in Eq.~8! is valid only up to mp

;300 MeV. Below this value, the parameters in the formu
do not exhibit mass dependence and thus they are the
energy constants of the effective chiral theory at a cert
chiral scale~e.g.Lx50.8).

Next, we simulate what has been commonly done in
tice calculations. We fix the maximum pion mass atmp

50.8740(30)@862(13) MeV# and incrementally include
lower pion masses to fit Eq.~11!. We find that no matter how
many low pion masses are included, the results are not c
patible with those starting frommp,min50.1844(71)
@182(8) MeV# and ending atmp,max;300 MeV. We illus-
trate this by plotting, in Fig. 7, the fittedd ~open circles! as a
function of the minimum pion massmp,min for the range of
the fit. We see that when pion masses down to 300–
MeV are included, the fittedd is in the range of;0.15
which is consistent with those found in Table III with a sim
lar mass range and can explain why most of the calculati
end up with a smalld. The only exception is Ref.@35# which
obtains a larged;0.2 withmp,min;440 MeV. We speculate
that this may be due to the small volume usedL
51.5 fm). As will be explored further in Sec. V, we find tha

FIG. 8. Fractional contributions for different terms in Eq.~11!.
The input of the C parameters are from the fit withmmax

50.03617. Note the combined contributionC1m21C1Lm2ln(m)
denoted by the dashed line is very small.
2-7
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CHEN et al. PHYSICAL REVIEW D 70, 034502 ~2004!
the zero modes make a sizable contribution to pion masse
high as 800 MeV on a lattice withL52.4 fm and likely
higher at smaller volumes. It would be sensible to chec
this is the case by comparing pion masses obtained from
^PP& correlator to those from̂A4A4& as will be done in Sec
V.

In view of the fact that the rise ofmp
2 /m left of the trough

at mp;480 MeV is mostly due to the chiral logarithm whil
the rise right of the trough is mostly due to them2 term, we
first fit the points around the trough~i.e. fromm50.07583 to
0.22633! with the form in Eq.~11! but without theAa term
and then extend the range by including smaller qu
masses. The results ofA, d andB turn out to be very close to
the ones starting from the maximum pion mass atmp

50.8740(30)@862(13) MeV#. We show the results ofd ~la-
beledd trou) as a function of the minimum pion massmp,min
in Fig. 7 and find them almost the same asdmin at small
quark masses and similarly smaller than those where the
masses are restricted to lower than;300 MeV.

For comparison, we show in Fig. 9 the fit ofmp
2 /m for the

forward fitting ending atmp50.269(5)(m50.03617)~solid
line! and the backward fitting frommp50.641(2)(m
50.22633) to the smallest quark mass~dashed line!.

As one can see from Eq.~12!, the parametersA, d, andB
depend logarithmically onLx . In Fig. 10 we show howA
andd vary as a function ofLx . The C1 andC1L are taken
from the fit for mmax50.03617@mp50.2693(48) or 266~6!
MeV# in Table IV. Incidentally, for a givenC1 and C1L ,
there is a maximal value

Lx,max5AC1LeC1/2C1L ~13!

~for which d51 andA5C1), beyond which no solution ex
ists. But this is well beyond the range of applicability of E
~8!. We should point out that the factA runs with lnLx is a
peculiar feature of quenched QCD. This is not the case in
QCD whereA is basically the quark condensate where th
is no quenched chirald @24#. From Eq.~12!, we see that the
combination Ad is independent of the chiral scale. Th
makesd also run with lnLx . This is not physical, but rathe

FIG. 9. The fit tomp
2 /m as a function of the quark massm. The

solid line is the forward fitting ending atmp50.269(5)(m
50.03617). The dashed line is the backward fitting frommp

50.641(2)(m50.22633) to the smallest quark mass. The inset
blowup for the small quark mass region.
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is due to the fact that Eq.~8! contains only the leading term
in the expansion ofd @40#. To see this, consider the examp
where the leading logarithm is re-summed for the ‘‘cac
diagrams’’@24# ~one is not concerned withAa and B here!
which leads to

mp
2 5m1/(11d)~ALx

2d!1/(11d). ~14!

We see that them and Lx dependence ofd are separable
which implies thatd does not run withLx , and the unphysi-
cal Lx can be absorbed inA with

A}Lx
22d , ~15!

which gives

d ln A

d ln Lx
2

52d. ~16!

This is the same as obtained from Eq.~8! when one requires
that mp

2 be independent ofLx and assumes thatd does not
depend onLx .

We shall report our final results based on the fit of pi
mass from 0.184(7)(m50.014) to 0.269(5)(m50.03617)

a

FIG. 10. The running ofd and A and as a function ofLx ac-
cording to the one-loop formula. The input ofC1 andC1L are for
the fit with mmax50.03617.
2-8
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CHIRAL LOGARITHMS IN QUENCHED QCD PHYSICAL REVIEW D70, 034502 ~2004!
with 9 quark masses. This choice is based on the observa
that d begins to decrease beyondmmax50.03617@mpmax
50.269(5)#. Although this happens to coincide with th
minimum in x2/NDF in Table IV, we should stress that
minimal x2/NDF is not and should not be the criterion fo
such a choice. As we pointed out earlier, the primary di
culty in chiral extrapolation is the uncertainty about the va
range of one-loop formula inxPT. A x2/NDF less than unity
does not imply that the fitting formula is correct. One way
judge is the criterion that we adopt; namely, the one-lo
formula is not valid when the fitted parameters do not rem
constant beyond certainmpmax.

As we said earlier, we are not able to obtain a reliable
for Aa , andB at these low masses. As for the finite volum
systematic errors, we note that the finite volume correct
for the lowestmp

2 is estimated to be 5.4% and the seco
lowestmp

2 is estimated to be 3.6%.~This will be explained in
more detail in Sec. V.! We thus estimate the systematic erro
due to the finite volume to be at the few percent level wh
are smaller than our current statistical errors. We a
dropped the last quark mass and fitted the 8 quark ma
from m50.01633@mp50.195(7)# to m50.03617@mp

50.269(5)# and found thatA andd change only about 1%
which are much smaller than the statistical errors.

We quote our final results for the low-energy paramet
of the quenched one-loop chiral perturbation theory atLx

50.8 GeV close to ther mass in Table V. In view of the
unphysical dependence ofd on Lx at the order specified in
Eq. ~8!, we shall estimate the systematic error to be the
erage deviation from the value at 0.8 GeV of the values
Lx51 GeV and 0.6 GeV. We see that the central value od
is somewhat larger than the phenomenological value
0.183 in Eq.~10!, but they are consistent within errors.

Fitting of re-summed cactus diagrams

Since at small quark masses, the higher order results
@d ln(m)#n corrections are important, it is pertinent to fit th
re-summed cactus diagram form@24# for the chiral loga-
rithm, which leads to a scale independentd. Thus, we shall
fit with the power form

mp
2 5Am1/(11d)1Bm2. ~17!

Similar to fitting the one-loop formula in Eq.~11!, we
start from the smallest quark mass and fit upward first. Si
at very small quark masses theB contribution is very small,
we put a very weak constraint at 1.861 which covers the

TABLE V. The low energy parameters in the quenched ch
Lagrangian are given as a fit of Eq.~11! from m50.014@mp

5182(8) MeV# to m50.03617@mp5266(6) MeV# at Lx

50.8 GeV. The second error ind is the estimated systematic erro
determined as the average deviation atLx51 and 0.6 GeV from the
value at 0.8 GeV.

Lx A d

0.8 GeV 1.46~22! GeV 0.236~33!~37!
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range ofB as fitted in one-loop formula in Table IV. Th
resultantd, A andB are presented in Figs. 11, 12, and 13. W
see that, in contrast to the sharp transition atmp,max
;300 MeV in the one-loop formula fit, the transition ford is
smoother. The behavior forA and B are similarly changed.
This is to be expected, since the power form takes into
count the re-summed cactus diagrams to all orders. As s
it should extend the range of applicability of the quench
xPT to beyondmp;300 MeV for the one-loop case, pro
vided that it dominates the higher loop corrections. From
fitted results, it appears that the power form gives a stabl
to the trough of mp

2 /m and is perhaps valid tomp

;500–600 MeV. Abovemp;640 MeV, all the parameters
(d, A and B) are different from those belowmp,max
;300–400 MeV by two sigmas. We shall quote the result
the scale independent d at m50.08083@mp

5400(7) MeV# whered50.20(3). We have fitted also the

l

FIG. 11. The solid circles are the scale independent chirad
plotted as a function ofmp,max, the maximum pion mass of the
fitting range, with the minimum pion mass fixed at 0.1844~71!
@182(8) MeV#. The same are for the triangles (d32) except the
starting minimum pion mass is at 0.2055~61! @203(7) MeV#. The
solid squares are those fitted downward from a maximum pion m
fixed at 0.6416~25! @633(10) MeV# and plotted as a function o
mp,min , the minimum pion mass of the fitting range.

FIG. 12. The circles and triangles are fittedA as a function of
mp,max starting from m50.014 and 0.01867, respectively. Th
squares are those fitted downward starting fromm50.22633 as a
function of mp,min .
2-9
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CHEN et al. PHYSICAL REVIEW D 70, 034502 ~2004!
pion mass from thêPP2SS& correlator and find that the
changes ofd andA are small, at a few percent level. In th
range betweenmp50.2501(54) and 0.4840~32!, the change
is at the 1% level. For example,d50.20(4) at m
50.08083(mp5400(7) MeV).

We also fitted the points around the trough (m
50.07583–0.22633) and then incrementally added sma
quark masses in the fit, as we did for the one-loop formu
The results are plotted in Figs. 11, 12, and 13 as a functio
mp,min and labeleddmin ,Amin andBmin . We see again tha
they do not reproduce those parameters which are obta
from fitting the range fromm50.014 to 0.08983@mp

50.4050(38)#.
As we are concerned about the finite volume effect~this

will be addressed in Sec. V! for small quark masses, we dro
the three smallest quark masses and then fit the pion m
upward. We plot the results in Figs. 11, 12, and 13 a
function of mp,max and labeledd32 ,A32 andB32 . We see
that in most cases they are only a few percent different fr
those (dmax,Amax andBmax) without dropping the last three
quark masses. We have also performed the same test fo
one-loop logarithmic formula fit and find that the paramet
are also not changed much. We plot in Fig. 14 the result
d32 from this fit together withdmax as obtained from the
one-loop log fit without dropping the last 3 points. We s
that the characteristic transition aroundmp;300 MeV is
still visible.

V. FINITE VOLUME EFFECTS

Intertwined in the discussion of the validity of the on
loop xPT for a certain mass range are the finite volu
effects. There are two questions to consider: First of all, h
does one know how large the zero mode contributions
and how much do they affect the pion mass in the range
the fitting? Secondly, how large is the finite volume effect
the pion mass where the finite box is not larger than 4 tim
the Compton wavelength of the pion? We considered
zero mode contribution in Sec. III where we examined
ratio of pion masses from thêPP& and ^A4A4& correlators

FIG. 13. The circles and triangles are fittedB as a function of
mp,max starting from m50.014 and 0.01867, respectively. Th
squares are those fitted downward starting fromm50.22633 as a
function of mp,min .
03450
er
.

of

ed

ss
a

the
s
of

e
w
e,
of
r
s
e
e

for the 163328 lattice and found that the ratio is basical
unity within errors for the range of quark masses that we
concerned with. We now look at the same ratio in a sma
lattice 123328 (La52.4 fm in this case!. They are plotted in
Fig. 15 together with those from the 163328 lattice. We see
that the ratio for the 123328 lattice deviates from unity by
two sigmas for pion mass in the range of 0.5–0.8
;500–800 MeV. The central value of the ratio goes do
to 98% atmp;300 MeV before it turns back to around unit
for small pion mass due to the finite volume effect. This is
clear indication that the zero mode contribution to the^PP&
propagator is visible even for pion mass as heavy
;800 MeV. Most of the calculations compiled in Table I
have volumes similar to our 123328 lattice, therefore one
needs to be concerned about the zero mode contamina
which is a finite volume artifact. Since the zero mode co
tribution varies as 1/AV @10,22#, the effect of the zero mode
contribution will be larger for calculations with still smalle

FIG. 14. The solid circles are the chirald (dmax) plotted as a
function of mp,max, the maximum pion mass of the fitting rang
with the minimum pion mass fixed at 0.1844~71! @182(8) MeV#.
The same are for the open circles (d32) except the starting mini-
mum pion mass is at 0.2055~61! @203(7) MeV#.

FIG. 15. Ratio of pion masses as calculated from the^PP& and
^A4A4& correlators as a function ofmp from the^A4A4& correlator
for both the 163328 and 123328 lattices.
2-10
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CHIRAL LOGARITHMS IN QUENCHED QCD PHYSICAL REVIEW D70, 034502 ~2004!
lattice sizes. It would be useful to compare the pion mas
from ^PP& and^A4A4& correlators to see how different the
are in these cases.

To check the finite volume effect, we consider the pi
mass from thê A4A4& correlator which is less affected b
the zero mode contamination. We plot the ratio of pi
masses between the 123328 and 163328 lattices in Fig. 16
as a function ofmp . We see that the ratio is basically uni
for pion mass greater than;300 MeV. Below this, the pion
mass from the smaller volume, i.e. the 123328 lattice, be-
comes higher. The worst deviation, at the smallest pion m
of 182~8! MeV, is 3.7%. For comparison, we also plot in Fi
16 the corresponding ratio ofmp from the ^PP& correlator.
Contrary to thê A4A4& correlator, we see that the ratio has
dip between themp range of 250 and 800 MeV, again re
flecting the fact that the pion mass calculated from the^PP&
correlator on the 123328 lattice has observable zero mo
contributions.

To assess the finite volume correction, we first consi
the leading finite volume correction calculated by replac
the infinite volume meson propagator with the finite volum
counterpart. The correction@25# for mp

2 is

D~mp
1-loop!25

mp
2

4p2f 2
~m22amp

2 !A 2p

mpL
e2mpL, ~18!

where m25mh8
2

2mh
2/22mp0

2 /25(871 MeV)2. With amp
2

!m2 @25#, we can estimate the percentage difference ofmp
2

between the 123328 and the 163328 lattices for the small-
estmp5182(8) MeV to be

D~mp
1-loop!2~12!2D~mp

12 loop!2~16!

mp
2

50.13%. ~19!

This is much smaller than the Monte Carlo calculation
7.4% derived from thêA4A4& correlators in Fig. 16. Next
we use the empiricalL3 dependence@41# to estimate the
finite volume correction with

FIG. 16. Ratio of pion masses between the 122328 and 163

328 lattices for both thêA4A4& and the^PP& correlators.
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mp~L !5mp~L5`!1
a

L3
. ~20!

For our lowestmp(L516)5182(8) MeV where the corre
spondingmp(L512) is 3.7% higher, we obtain the finit
volume correction for themp(L516)5182(8) MeV to be
2.7% and the correction formp

2 (L516)5@182(8)MeV#2 to
be 5.4%. Similarly, for the second lowest pion mass
193~7! MeV, the correction is 3.6% formp

2 (L516). These
are smaller than the statistical errors for the fitted low-ene
parameters in Sec. IV.

We are not in a position to fully address the continuu
limit extrapolation, as we only have results at one latt
spacing. However, we know there is noO(a) error due to
chiral symmetry@11# and theO(a2) andO(m2a2) errors are
small @7,8,10#. We shall use the results from the small vo
ume study in Ref.@8# to gain some feeling for the magnitud
of theO(a2) errors. We have calculated pion and rho mas
on the 63312, 83316, and 103320 lattices with the Wilson
gauge action atb55.7, 5.85, and 6.0 respectively. The fig
ures ofmpa/Asa andmra/Asa (s is the string tension! vs
sa2 in Ref. @8# show that both of them are quite flat a
mp /mr50.4, 0.5, and 0.6. Since the lattice spacing atb
55.7, as measured with the Sommerr 0, is 0.171 fm which
is very close to our present lattice whose lattice spacing
determined fromr 0 is 0.175 fm, we shall use theb55.7 data
as the estimate for the present lattice. After extrapolating
pion mass fromb55.7, 5.85, and 6.0 in Ref.@8# to the con-
tinuum limit, we find the central values ofmp at b55.7 are
changed by 1%–3% for the cases withmp /mr50.4, 0.5,
and 0.6. We thus tentatively suggest that our present p
masses are subject to the similar level ofO(a2) errors due to
the continuum limit extrapolation. This, of course, needs
be checked with calculations at smaller lattice spacings t
what we have now.

FIG. 17. f p determined from the pseudoscalar correla

GPP(pW 50,t) in Eq. ~21! as a function of the quark massm. The
dashed curve is a linear fit to the high mass region,m50.1085
@mp50.4438(36) or 438~7! MeV# to 0.4 @mp50.8740(30) or
862~13! MeV#.
2-11
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VI. CHIRAL BEHAVIOR OF f p AND f P

We show in Fig. 17 our data on renormalizedf p as ob-
tained@10# from

f p5 lim
t→`

2mAGPP~pW 50,t !mpempt/2

~mp!2
. ~21!

We see that if one fits a linear curve in quark mass fr
0.1085 @mp50.4438(36) or 438~7! MeV# to 0.4 @mp

50.8740(30) or 862~13! MeV# as is usually done in the
literature, the fit gives f p50.0935(6)10.110(2)m with
x2/NNDF51.0. In this case, the data belowm50.1085 shows
a hump with a one-sigma deviation from the linear fit at t
low mass end. Even thoughf p in full QCD with dynamical
fermions has a leading order chiral logarithm@42,43# in the
form mp

2 log(mp
2) with a known coefficient, it is absent in th

FIG. 18. f p as a function ofmp
2 . The dashed curve is a fit with

f p(0)1C1mp
2 to the high mass region,mp50.4438(36) or 438~7!

MeV to 0.8740~30! or 862~13! MeV. The solid curve is the fit with
Eq. ~22! for the small mass region,mp50.1844(71) or 182~8! MeV
to mp,max50.3748(38) or 370~7! MeV. The inset is a blowup for
the small mass region.

FIG. 19. f p(0) as determined from the fit Eq.~22! as a function
of the maximum pion massmp,max.
03450
quenched theory@24#. We interpret the bump as a cons
quence of the quenched chiral logarithm in the pion ma
Thus, we plot thef p as a function ofmp

2 in Fig. 18 and fit
with the form

f p5 f p~0!1C1mp
2 1C2mp

4 . ~22!

As in the fit of mp
2 , we fix the minimum pion mass a

0.1844~71! and fit the data to the above formula with var
able ranges. The results off p(0) are plotted in Fig. 19 as a
function of the maximum pion massmp,max

2 . We plot the
same forC1 andC2/10 in Fig. 20. Even though there appe
to be some changes in the region ofmp,max between
0.3748~38! and 0.4840~32! for f p(0), C1 andC2, the errors
are such that one cannot be as certain as in the case o
chiral logarithm d. Thus, we shall quote the results fo
mp,max50.3748(38) or 370~7! MeV. They are given in Table
VI. The fit for f p in the range up tomp,max50.3748(38)
with the parameters in Table VI is plotted in Fig. 18 as t
solid lines for both the full figure and the inset. We also fitf p

with only the quadratic pion mass term for the large pi
mass region frommp50.4438(36) or 438~7! MeV to
0.8740~30! or 862~13! MeV and obtain f p50.0952(6)
10.0551(13)mp

2 . This fit is plotted as the dash line in Fig
18.

According to the quenched chiral perturbation theo
@29#, C154L5 / f p(0). From our data reported in Table VI
we obtain L553.6(1.5)31023. This is comparable toL5
52.5(5)31023 as obtained from the study off p with the
clover fermion action on Wilson gauge configurations atb
55.7. But it is substantially larger than the phenomenolo
cal value of 1.4(5)31023 @44#.

FIG. 20. Same as in Fig. 19 but forC1 andC2/10.

TABLE VI. f p(0), C1, andC2 as fitted frommp50.1844(71)
or 182~8! MeV to mp50.3748(38) or 370~7! MeV.

f p(0) C1 C2 L5

0.0905~23! 0.150~63! 20.46(37) 3.6(1.5)31023
2-12
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Using the experimental valuef p(mp)592.4 MeV and
mp5137 MeV to set the scale, we determine the latt
spacinga to be 0.200~3! fm. We see thatf p(mp) is higher
than f p(0) by ;5%.

The unrenormalized pseudoscalar decay constant of
pion is defined as

f P
U5^0uc̄ ig5~12D/2!cup~pW 50!&. ~23!

From the chiral Ward identity, we have

ZA]mAm52ZmmZPP, ~24!

where Am5c̄ igmg5(12D/2)c and P5c̄ ig5(12D/2)c.
SinceZm5ZS

21 andZS5ZP due to the fact the scalar densi

S5c̄(12D/2)c and the pseudoscalar densityP are in the
same chiral multiplet,Zm andZP cancel in Eq.~24!. There-
fore, from the relation of the on-shell matrix elements

^0uZA]4A4up~pW 50!&52m^0uPup~pW 50!&, ~25!

one obtains that

f P
U

f p
5

mp
2

2m
, ~26!

where f p is renormalized whilef P
U and m are unrenormal-

ized. The relation also holds when bothf P andm are renor-
malized sinceZm5ZP

21 . It is clear from Eq.~26! that the
chiral behavior off P

U is the combination of those ofmp
2 /2m

and f p .

VII. QUENCHED mN

We first plot the nucleon mass as a function ofmp
2 in Fig.

21. We see that it is fairly linear inmp
2 all the way down to

mp;0.4438(36)@438(7) MeV#. Below that point, there ap
pears to be a deviation from the linear behavior. Follow

FIG. 21. The nucleon mass as a function ofmp
2 . The dashed

line is a fit only linear inmp
2 for the range ofmp from 438~7! MeV

to 862~13! MeV. The solid line is a fit with Eq.~27! for the range
mp5182(8) –316(6) MeV.
03450
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the case off p , we shall first fit theN mass only linear inmp
2

in the range of mp
2 50.196–0.763 and obtainmN

50.998(21)10.932(74)mp
2 . This fit is represented by a

dashed line in Fig. 21. We see that the data~in the smallmp

region! in this case are systematically lower than the line
fit.

According to the quenchedxPT for the baryons@45#, the
one-loop result predicts the presence of the non-anal
termsmp andmp

2 log(mp), both of which are proportional to
the quenchedd. Thus, we fit the nucleon data from the low
est pion mass, i.e.mp,min5182(8) MeV, upward as done in
previous sections with the form

mN5mN~0!1C1/2mp1C1mp
2 1C1Lmp

2 logS mp

Lx
D1C3/2mp

3 .

~27!

We should mention again that the fit does not depend on
value ofLx , since there is an analytic term inmp

2 . We take
Lx51.16 for this case.

The fitted results ofmN(0) are plotted in Fig. 22 as a
function of the maximum pion massmp,max of the fitted
range. We see that it is rather stable in the range fitted. S
larly, the coefficientsC1/2, C1L , C1 andC3/2 are plotted in
Fig. 23. We see that bothC1/2 and C1L have rather smooth
behavior in mp,max from 0.3 to 0.55 and approach zer
aroundmp,max50.6–0.7. On the other hand,C1 has more of
a variation in the rangemp,max50.3–0.55. Whenmp,max
reaches the region 0.6–0.7, the error bars do not touch th
at mp,max;0.3. We note thatC3/2 is consistent with zero in
the whole range of the fit. We have tried to include the n
analytic termmp

4 @46#. It turns out thatmN(0), C1/2, andC1

are not changed outside their errors in this case. Howe
C3/2 andC2 with the mp

4 term become ill determined. The
are consistent with zero but with large errors. Thus, the d
seem to suggest that there is no evidence for a largemp

3 term
in the quenched nucleon mass. We quote the fit evaluate
mp,max50.3200(43)@316(6) MeV# in Table VII. This fit is
shown as the solid curve in Fig. 24 formp

2 up to

FIG. 22. FittedmN(0) in Eq.~27! as a function ofmp,max of the
fitting range.
2-13
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0.4840(32)@mp5478(8) MeV#. Also shown in the figure as
the dashed curve is the linear fit from the higher pion m
range of mp50.4438(36)@438(7) MeV# to 0.8740(30)
@862(13) MeV#.

We should mention that even though the error is lar
C1/2 is consistent with that predicted by the one-loopxPT
@45#, for which C1/252(3p/2)(D23F)2d. Using d
50.20(3) from our fit in Sec. IV, it givesC1/2520.31(5).
This is consistent with the value in Table VII which
20.358(234). HereC152.44(67) from the low mass fit is
much larger than that of the high mass fit whereC1
50.932(74).

VIII. CONCLUSION

The chiral extrapolation has always been a major ch
lenge in lattice QCD calculations, primarily due to the fa

FIG. 23. The same as in Fig. 22 for the coefficientsC1L andC1/2

~upper figure! and for the coefficientsC1 andC3/2 ~lower figure!.

TABLE VII. mN(0), C1/2, C1 , C1L , and C3/2 as fitted from
mp50.1844(71)@182(8) MeV# to 0.3200(43)@316(6) MeV#.

mN(0) C1/2 C1 C1L C3/2

0.957~43! 20.358(234) 2.44~67! 0.319~290! 0.016~199!
03450
s

,

l-
t

that one does not know if the formula used to fit is correct
the range of the available data. The idea of usingxPT to
guide the fit is useful and appropriate except it is comp
cated by the fact that one does not know the range in wh
the one-loop formula is valid. In this work, we attempt
answer this question by fitting the data from our small
pion mass~close to the physical value! upward and seeing
where the low-energy parameters change. This is comm
surate with thexPT approach which expands around t
small pion mass and momentum. The chiral logarithmd
from fitting the pion mass to the quenched one-loop ch
formula clearly demonstrates a sharp transition around 3
400 MeV in the pion mass. We take this as an evidence
reveal the upper limit for the applicability of the one-loo
formula in quenchedxPT. We have also fitted the pion mas
with the cactus re-summed diagrams in quenchedxPT and
the results suggest that its range of applicability extends
yond the one-loop formula. We should point out that fittin
with the cactus re-summed diagrams is preferred over
one-loop formula since it gives a scale-independentd. How-
ever, not all the physical quantities have cactus re-summ
results in thexPT and, in many cases, one would rely o
one-loop formula to do the chiral fitting. Thus, it is essent
to find out where the one-loop formula is valid. To be su
that this is not skewed by the finite volume effects, we co
pared our data on the 163328 lattice against those on th
123328 lattice and found that the finite volume errors a
much smaller than the statistical errors. Although less cer
due to larger errors, the analytic term in theN mass and inf p

shows variations in the pion mass range of 300–400 M
and theC1 coefficients change by a factor of;2 –3 com-
pared with those from fits involving exclusively pion mass
beyond this range. Thus we tentatively conclude that the o
loop quenchedxPT is valid for pion mass less tha
;300 MeV. It is claimed that using a different regulariz
tion scheme such as the finite range regularization@47# will
extend the range of validity for the one-loop quenchedxPT

FIG. 24. The nucleon mass as a function ofmp
2 for smaller pion

masses. The solid line is a fit with Eq.~27! for the rangemp

50.1844(71)@182(8) MeV# to 0.3200~43! @316~6! MeV#. The
dashed line is a linear fit from a higher mass range ofmp

50.4438(36)@438(7) MeV# to 0.8740~30! @862~13! MeV#.
2-14
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from that of the dimensional regularization, but it remains
be checked by lattice Monte Carlo data at low pion mass

One of the valuable lessons learned in this study is tha
seems futile to extrapolate to the chiral region from pi
mass beyond;300 MeV. We tried to fit the pion mass wit
the one-loop formula by extrapolating frommp

5862(13) MeV and found that, no matter how small pi
masses one includes,d is inevitably different~by more than
two sigmas! from that obtained with the data limited tomp

&250 MeV. One could try to model the functional form
higher masses, but it is not likely to succeed, because
does not knowa priori how and when the modeled formu
eases into that of the one-loop chiralxPT. Direct simulation
at pion masses less than;300 MeV is nearly impossible~or
at the very least an extremely difficult task! for lattice calcu-
lations employing fermion actions which suffer from exce
tional configurations and/or critical slowing down. A
overlap-fermion calculation is numerically intensive, b
with approximately fixed cost—its critical slowing down
rather mild@8#. The fact that it has chiral symmetry alleviate
the worry that something may go wrong at small qua
uc

et

. D

. B

re

l
d

m

03450
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ne
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masses. Furthermore, the chiral behavior study is greatly
hanced by the incorporation of the multi-mass algorith
which facilitates the constrained curve-fitting method to d
cern the logarithm structure. One does not know how diff
ent the chiral behavior in full QCD will be from that of th
quenched approximation, but it is hard to imagine that th
are different scales for the sea and valence quarks. If so,
will need to work harder to lower the dynamical qua
masses such that the corresponding pion mass is be
;300 MeV.
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