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The quenched chiral logarithms are examined on 3B lattice with Iwasaki gauge action and overlap
fermions. The pion decay constdntis used to set the lattice spaciregs 0.200(3) fm. With pion mass as low
as ~180 MeV, we see the quenched chiral logarithms clearlynfrjm and fp, the pseudoscalar decay
constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched
one-loop chiral perturbation theorwPT) to apply. With the constrained curve-fitting method, we are able to
extract the quenched chiral logarithmic parameteogether with other low-energy parameters. Only rioy
<300 MeV do we obtain a consistent and stable fit with a constambich we determine to be 0.23)(4) (at
the chiral scale\ ,=0.8 GeV). By comparing to the $x 28 lattice, we estimate the finite volume effect to be
about 2.7% for the smallest pion mass. We also fitted the pion mass to the form for the re-summed cactus
diagrams and found that its applicable region is extended farther than the range for the one-loop formula,
perhaps up ton,~500-600 MeV. The scale independehis determined to be 0.28) in this case. We study
the quenched non-analytic terms in the nucleon mass and find that the coefligieint the nucleon mass is
consistent with the prediction of one-logdPT. We also obtain the low energy constant from f_. We
conclude from this study that it is imperative to cover only the range of data with the pion mass less than
~300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched
QCD and match them with quenched one-lodpT.
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I. INTRODUCTION pion mass without introducing systematic errors? These were

. . . some of the issues addressed in the panel discussion during
One of the important goals of lattice QCD is to under- the “Lattice 2002” conferencé].

stand, from first pr|nc|ples% Iok\:\./-elnergy hadrorlhphenomeﬂol- Fortunately, recent progress in lattice fermions has led to
ogy as a consequence of chiral symmetry. However, 1 €Mfbrmulations(such as domain-wall fermions, overlap fermi-

have been problems with regard to chiral symmetry since thgg and the fixed-point actionsith lattice chiral symmetry
adv_ent of _the lattice formulation. The Ia_ck of chlrgl Symme- a¢ finite cutoff. As a consequence, many chiral-symmetry re-
try in traditional approacheguch as Wilson fermions and lations[2—6] and the quark propagatff] preserve the same
staggered fermionsleads to a plethora of conceptual and strycture as in the continuum. While a lot of progress has
technical difficulties. In particular, as a result of critical slow- heen made in checking the chiral symmetries in all these
ing down and the existence of exceptional configurationsthree formulations, we find that overlap fermiof offer
there is a practical limit on how low in quafikr pion) mass  several distinct advantages. For example, it has been demon-
one can carry out a Monte Carlo simulation. The existingstrated that one can simulate near the physical quark-mass
calculations with these fermions are typically limited to pionregion with very gentle critical slowing dowi8]. Second,
mass greater than-300 MeV. As such, the extrapolation the overlap-fermion inverter can accommodate multiple
from the current lattice data with pion mass abovemasses in the calculation of quark propagaf®tsnd thus is
~300 MeV, sometimes well above, to the physical pionparticularly well suited for studying the details of the loga-
mass of 137 MeV is both a theoretical and a practical chalfithmically varying mass dependence of physical observ-
lenge. The primary concern is whether the quark mass regioables. Third, we find that th&(a?) andO(m?a?) errors are

(of the lattice datpis inside the range where chiral perturba- small[7,8,10. [There are nd(a) errors due to chiral sym-
tion theory (yPT) applies. If not, one does not have a reli- metry[11].] For these reasons, in this paper we use overlap
able analytic form in quark mass dependence to allow for afiermions in a quenched lattice calculation to study the chiral
unbiased extrapolation. Furthermore, most of the quencheldgarithms in the pion mass, the pseudoscalar decay constant
xPT calculations are carried out at one-loop order; this limitsfp, the pion decay constaffit., and the nucleon mass. We

its range of applicability further, to even smaller quark determine how small a quark mass or pion mass needs to be
masses. How small does the quark mass have to be in ord&ar one-loopyPT to be valid. In the present work, we only

to see the chiral behavior predicted pPT? Is the strange consider hadrons with degenerate quark masses. Quantities
guark in the radius of convergence @T? Is there a way to involving the strange quark such as the kaon mass and decay
model the chiral extrapolation from well above a 300 MeV constant will be studied later.

1550-7998/2004/73)/03450216)/$22.50 70 034502-1 ©2004 The American Physical Society
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Il. NUMERICAL DETAILS 10 Fr——r———————————
o . . 10° F x () R(12) E
Our calculation is done on a 1828 lattice with 80 0 b \“;h —— €(x) R(14) 4 3
quenched gauge configurations generated with the Iwasaki 0 b MY — R ]
gauge actiori12] at 3=2.264 and the quark propagators are 10° b f 3
calculated with overlap fermions. The lattice spacing is B o B 4
0.2003) fm, as determined from the pion decay constant ~:’ 107 b E
f.(m,); the box size is 3.2 fm. 10° |
The massive overlap Dirac operafds] is defined so that 107k 3
at the tree level there is no mass or wave function renormal- 107"k .
ization[10]: 107 | 1
107 Lo
m m 107° 10’

Dim=p+ 5+ P—§>7’56(H)- 1) *

FIG. 1. The residuak,(x) of the approximation to the sign
function. The solid line is the current 14th degree Zolotarev ap-
proximation. The dashed and dotted lines are the l¥@hand 12th

a- [8] degree Remez approximations respectively.

Here e(H)=H/\H? is the matrix sign function andf is
taken to be the Hermitian Wilson-Dirac operator, ilé.
=H=7ysDw. HereDyy is the usual Wilson fermion oper
tor, except with a negative mass parametgr=1/2«—4 in
which k.<x<0.25. We takex=0.19 in our calculation max min
which corresponds tp=1.368. CIL (A max/ A min) ] CIL (M max/ A min) ]

Throughout the paper, we shall use lattice units for dimen- 5
sionful quantities, except that the lattice spacmgvill be
explicit in figures.

[1—xf(x)]=— [1—xf(x)].

However, there is a worry when the sign functiefH) is
not bounded by unity because of slight nhumerical impreci-

sion. From the Cauchy-Schwartz inequalityyse(H)||

The numerical aspects of the calculation have been givers||ys|| |[€(H)||, the overlap operatob(0)=1+ yse(H)
elsewherg8,10]. The new ingredient is the adoption of the with e(H) approximated bye(H) could have superfluous
Zolotarev optimal rational approximatidi4,15 of the ma-  unphysical zero modd&0]. In view of this, we fine-tune the
trix sign function. parameteA by reducing it a little from the value determined

To approximate the function {x, it is suggested14] from Eq. (5) to minimize the positive residual. This doubles
that one should consider the minimization of the worst residuals.

For the Wilson action kerndl,= ysD\y inside the sign
function, the largest eigenvalue is around 2.43 and is fairly
stable over the configuration space. Furthermore, we find
with f(x) being approximated by a rational polynomial that the eigenstates &f,, to be projected out become dense
T(x) e R™ M=p(m—1)/q(m) where p(m—1) andq(m) at ~0.05-0.06. Thus, it is sufficient to specifyl— «?
are polynomials with degrem—1 andm, respectively. It = |Nmax/Aminl=80. With [\nad=2.5, this gives [\
was proven by Zolotaref16] that xf(x?) e R*™~ 12" is the
[|.]|.-optimal rational approximation for the sign function on
[_|7\max|v_|)\min|]U[|)\min|v|7\max|]- By way of Zolo-

Zolotarev approximation

2 2
12 VX (o[ tmed, @

TABLE |. Coefficients for the 14th degree Zolotarev approxi-
mation in Eq.(6).

tarev’s theorenj16—1§, there is an analytic solution

I Ci i
mt 1 0.837180391143554602  0.4203852824188996(D4
_ |Hl (x+Ca1) 2 0.981367443376943802  0.4230339571009471dD3
fX)=A—, (3 3 0.129464481300643601  0.1458829357287322D2
T (x+cy_o) 4  0.1831241561050564cD1  0.3894118671815802d2
=1 5  0.2684553134920763D1  0.9481580995276351d2
6 0.4004971283185919D1  0.2225210303473774d1
where the coefficients can be expressed in terms of JaCObian7 0.603183839734724601 0.5146873615634705dD1
elliptic functions 8  0.915579845134154701  0.11858685642599250
sr2(1K /211 9  0.140610701384240800  0.27428938359092460
o= , =12, .m-1, (4 10  0.2211980404641135M0  0.6437234073136943d0
1—sr?(IK/2m; k) 11 0.3673892837229880d)0  0.1567367648339766d1
12 0.69332390050200950  0.4183844803034055d1

where V1— k2= |\ max/Amin] @andK is the complete elliptic 13
integral. According to Ref.14], A is determined by the con- 14

0.181236825618537#dD1
0.1555827970041009D2

0.1442795672202632d2
0.14518861340436083

dition
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TABLE II. Pion mass obtained from th@ P) correlator on a 14 . . . . : . :
16°x 28 lattice. The pion decay constdntis used to set the lattice =
spacing,a=0.200(3) fm. 12 1
m m, m_ (MeV) X2IN 15 ]
0.80000 1.310@12) 129320) 0.68 0.8 B 0.5 . : : : 1
0.60000 1.106@88) 109217) 0.60 % o L _
0.40000 0.874(B0) 86213 0.56 06 . 0.4 i
0.32200 0.774@2) 764(12) 0.54 o 03 | L ]
0.26833 0.70124) 69211) 0.57 04r £ S b 17
0.22633 0.641@5) 63310) 0.63 s G2 T & 1
0.18783 0.582@8) 5759) 0.72 0.1 L . . .
0.15633 0.531681) 5248) 0.77 5 , . ., 0 002004006008 01
0.12950 0.484(82) 4788) 0.75 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8
0.10850 0.44386) 4387) 0.70 ma
0.08983 0.405(88) 4007) 0.64 FIG. 2. The pion mass as calculated from {feP) correlator as
0.07583 0.374&88) 3707) 0.62 a function of the bare quark massfrom 0.014 to 0.8. The inset is
0.06417 0.347@10) 3426) 0.58 for the results with small quark masses upne=0.1.
0.05367 0.320@3) 316(6) 0.53
0.04433 0.294012) 2906) 0.55 there should be 29 alternating maxima and mini@nalud-
0.03617 0.269318) 2666) 0.52 ing the endpoints of the rangéor the approximation with
0.03033 0.250(64) 2476) 0.56 m=13,n=14. As seen in Fig. 1, this feature is preserved
0.02567 0.233%6) 2307) 0.48 with the restriction allowing only positive residuals, as de-
0.02333 0224@59) 221(7) 0.58 scribed above.
0.02100 0.215(1) 2127) 0.62 After partial fraction expansion, the approximated sign
0.01867 0.20581) 2037) 0.60 function in the rational polynomiakf(x2) e RZ"~ 12 has
0.01750 0.20085) 1987) 0.64 the form
0.01633 0.195®9) 1937) 0.68
0.01400 0.184471) 182(8) 0.72 N-14
X Ci
\/_—wa 2 2_I (6)
X =1 x°+q;

=0.0315 which is smaller than the largest eigenstates

(~0.05-0.06) we project out from the kerrgy,. Since the

coefficients of the rational polynomial approximation are ex-1he coefficientss; andg; for our 14th degree Zolotarev ap-
pressed in terms of the Jacobian elliptic functions, one caRroximation are listed in Table I.

use as high a degree of the polynomials as the memory can In order to improve the approximation of the matrix sign
hold in the multi-mass algorithm. In practice, we use 14thfunction as well as the convergence in the conjugate gradient
degree which is a sufficiently good approximation for ourinversion in the inner do loog8-10, it is desirable to
calculation. We plot the residua,(x) =x/\x2—Z14(x) for ~ Projectout the lowest several eigenmodesigf. We use the

x>0 in Fig. 1 as a function ok. Here Z,,(x) is the 14th  Iwasaki improved gauge action which requires that a smaller
number of eigenmodes be projected, compared to the Wilson

and Lischer-Weisz gauge actiong1]. We calculated 140
small eigenvaluea. and projected out the lowest 110-140

the earlier attempts which approximagéx) to 1A/X with the eigenmodest, , based on the criterion that the residual of

Remez algorithm, in which case the resultant approximationhe eigenvalue, defined as  [[Hw¥,
to the sign function withxg(x?) is not optimal in the range —AW,[/lINJdim.(Hy)[|, be less than 10'. The next

L= N rads = N min TUT A il Armad 1. We plot the residual smallest eigenvalue is 0.05—0.06, which is well within the

€,(x) for the 14th degreg9] approximationR(14) and 12th \éwrt]tdov;/hwhzrex ;g‘?lg‘p_ﬂ?x'ma.?“ lfor ftge tﬁ'?r? fgnctlon :js
degre€[8] approximationR(12) with the Remez method in the ert ar& .I f- the residuais Of tho € Inner anl
comparison with the 14th degree Zolotarev approximatio € outer do loops for the inversion ot the n;asswe overiap
Z(14). We see that the Remez method gives residuals in th irac operator in Eq(1) are at the level of 10",

order of 10 ° in the relevant rangg0.031, 2.3. We note that
according to Chebyshev’s theorem, the errors of the optimal
rational approximatiorf(x) e R™"=p(m)/q(n) havem+n

+2 alternating signs in the range of the approximation. e look at the pion mass as calculated from the pseudo-
Since the Zolotarev approximation to the sign function isscalar correlator (2;P(x,t)P(0)) where P=yiys(1
optimal, it should satisfy this requirement. In other words,—D/2)¢. The pion masses,. obtained from this correlator

degree Zolotarev approximatiorf(x?) from Eq.(2). As we
can see, in the selected windg®.031, 2.5, the approxima-
tion is better than 3.8 10 . This is a good deal better than

Ill. PION MASS AND ZERO MODES

034502-3
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are listed in Table Il and plotted in Fig. 2 as a function of the quark masur smallest pion mass is 1& MeV.
Consider the contributions of the zero modes to the meson correlator of the interpolatiov fiald” (1 —D/2):

(U] 05T g ()T 4 (0)T ys445(0) 1)

2

f d3X<M(X)MT(O)>|zero modes:_f dsx{

i,j=zero modes m

(Tl () ysT () Tt 4 (0)T 59, (0) )

+2
A+ m?

i=0A>0

)

whereT is the spinorial matrix an@ = +T'". For the pseu- Fig- 4 the ratio of pion masses determined from {ReP)
doscalar case with = ys, the zero modes contribute to both and the(PP)—(S$ correlators. We note that the errors
the direct and cross terms in the correlator. They contributérom the(PP)—(S$ are larger form,<0.4438(36) due to
also to the cross terms in th¢2gA4(>Z,t)P(0)) and the presence of thg ghost state which is close to the gr'ound
<2*A4(>Z t)A,(0)) correlators, where Au= i yaye(l state pion mass. It is not clear to What _extend the additional
v 5/2)¢: but not to the direct 1terms. In view of the worry complication due to the ghost state is disentangled from that

that the pseudoscalar correlator may be contaminated by ttfd (€ Zéro modes. In any case, we find that the pion masses
zero mode$10,22 particularly at small volumes, we look at OPtained are consistent with those from thBP) and

(3:A4(x,t)A4(0)) to check if the masses calculated are the<A4A4> correlators. Their central values differ by 2.5% at
same as those from t{& P) correlator. We plot the ratios of mr? st. We f.\f[v It|r|1 come bﬁclg t%.th'lsl |ssu.fh|n ! he next section
the pion masses from thePP) correlator and théA,A,) W en we nit the quenched chiral fogarithmmm, .

correlator in Fig. 3. We see that the ratios are basically unity
within errors all the way to the smallest quark mass. This
suggests that at this volume, i¥=(3.2fm)*, there is no
detectable contamination due to the zero modes. However, |; is predicted that in the quenched approximation, there

this is not so at smaller volumes. We will show results on the, o quenched chiral logarithrfia4,25 arising from the hair-
12°x 28 lattice and discuss the volume dependence in Sec. Yin diagrams; the flavor-singlet pseudoscalar correlator does
_ Ithas been shown that the correla{P) —(SS can get ot vield a full ' mass due to the absence of dynamical
rid of the zero mode contributidi22] for both the direct and  tarmion loops. Instead, the would-bg propagator gives a

cross terms. This is a good procedure for medium quarlgo ple pole of the Goldstone boson. The predicted form for
masses. For small quark masses, there is a complication dig, one-loop formula incPT is[26,27]

to the quenched;’ -7 ghost state contribution in th€SS

[23] which has a mass close to 2 times the pion mass. We
have fitted thelPP)—(S$S correlator with the inclusion of
the ghost state which has a negative weight. We show in

IV. CHIRAL LOGARITHM IN  m

k

m2=Am{1- [ In(AMVA%)+1]}+A,m?[ 1

11} ] +2In(AmVA%)]+Bn?, (8)
16° x28 —e—
— 108 | 1
‘
< 106 | | _onf
= A
= 104 | T A
3 ¢ 105t
=" A (4
ey Vv
L] % el 8 5 5 g
E"/ 1 g 1 111 R
e ~
g 098 1 =
& 0951
0.96 1 v
[
0.94 1 1 1 1 1 1 1 1 1 1 E 0.9 Ll
02 03 04 05 06 07 08 09 1 11

0 005 01 015 02 025 03 035 04
ma

mga

FIG. 3. Ratio of pion masses as calculated from {R&) and
(A4A,) correlators as a function of the, obtained from the
(A4A,) propagator.

FIG. 4. Ratio of pion masses as calculated from {Ré’) and
(PP)—(S9 correlators as a function of thea
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TABLE lll. Summary of the quenched chiral

PHYSICAL REVIEW D70, 034502 (2004

logarithmic calculationsnid with different fermion

actions and ranges of quark massas.n;, is the minimum pion mass used in the fitting,, o, is the pion

mass at the trough ohi/m. £ is the percentage o
corresponding trough an_ o, .

f excess of the highaéﬂm at m_ i, relative to the

Group Fermion La My min Maitrou & 9
(fm) (MeV) (MeV)

CP-PACS[28] Wilson 3.2
Fermilab[29] Wilson-Clover 2.7
QCDSF[30] Wilson-Clover 1.5-2.3
MILC [31] Staggered 2.6
Kim and Ohta[32] Staggered 2.6
Blum et al.[22] Domain Wall 3.2
RCB [33] Domain Wall 2.4
BGR [34] fixed point 2.6
BGR [34] Chirally Improved 2.4
Chiu and HsieH35] Overlap 1.5
Present work Overlap 3.2

300 ~550 ~8% 0.06010)—0.1085)
290 ~400 ~7% 0.07320)
400 ~800 ~11% 0.142)
320 ~700 ~8% 0.0613)
210 ~570 ~8% 0.05713)
390 ~740 ~11% 0.074)
285 ~660 ~6% 0.10738)
210 ~870 ~15-20% 0.1R)
240 ~930 ~15-20% 0.183)
440 ~770 ~11% ~0.2

182 ~480 ~33%  0.23633)(37) (one loop
0.203) (cactus

where the coefficientd, A, andB are given in terms of the
parameterg,, f, ag and 2og— as in the quenched effective
chiral Lagrangian, i.e.

A=23/f2
_ C((I;AZ
“ 3(4wf)?’
(ZQS_CYS)AZ
B=——+——, 9
(47f)?

and A, is an unphysical cutoff scale which is usually taken

in xPT to be in the range of 0.5—-1.0 GeV. The parametgr
is the singlet coupling in the quenched theory. The quench
chiral logarithmic parametes is

2
Mg

-0 10
16’772fo2 ( )

wheremy~870 MeV from the Veneziano model of thg'
mass. From this, one estimates tldat0.183.

There are several calculations to extract the chiral loga- 26

rithmic parameters [22,28-35. Save for Refs.[34,35,
most of the calculations obtained values ®in the range

behavior. The ratio of the highest value mt=0.014 (M,
~180 MeV) to that at the trough am=0.1295
~480 MeV) is ~1.33. Thus, the percentage exceSs,of

the highest value at the minimum pion mass ,;, relative

to that at the trough an o, is 33%. Most of the calcula-
tions studying the quenched chiral log stopped abome
~300 MeV; thus, they seem to be seeing the onset of this
behavior with corresponding excess6%—11%. In Table

Ill, we summarize the attempts made by various groups to
calculate this quenched chiral log fromnﬁr/m with different
actions and lattices. Except for the present work, all the re-
sults are fitted to Eq@8) without theA, term.

We see from Table Il that the results are not consistent
with each other. There is a large spreaddrand m, i,
which invokes many issues to ponder: To what extent does
efhe fermion action matter? hePT valid in the range of pion

masses calculated? If so, is the one-loop formula sufficient
and how does one judge it? The paramefers, A, andB

are not linearly independent in E¢8); how does one fit
them? Practically all the calculations so far ignofegd does

it change the results much if included? How large are the
finite volume effects for the range of pion masses in the

251
24 r

0.06-0.1 which are smaller than the expectation. We have
summarized these results in Table Ill. The present simulation
adopts the overlap fermion action which has exact chiral
symmetry on the lattice and a highly accurate numerical ap-
proach(the matrix sign function is approximated to better
than 10°°). This should be a valuable tool to probe the rel-
evant range of applicability of the one-log@PT with pion
mass as low as~180 MeV on a fairly large volume
(3.2 fm). We plot in Fig. 5 thé PP) results form?/m as a
function of the bare quark mass We see clearly that below
m=0.1295 fn,.~480 MeV), there is a dramatic divergent

034502-5
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TABLE IV. The low-energy chiral parametet; andC,, (andC, andC,,) are fitted from Eq(11) with a maximum of 17 quark masses
in correlated and constrained fits for several ranges of quark masses with the minimum quark mass didigh4€orresponds to the
smallest pion mass at 18 MeV]. These are then used to determie’, A, , andB from Eq.(12). The parameters, &, andB vary with
the chiral scale, and are evaluated\gt=0.8.

Mmax M max C, Ci. A 8 A, B x>/dof
0.02100 0.215(B1) 0.8217) —0.368(64) 1.5@27) 0.24440) - - 0.48
0.02333 0.224¢69) 0.8416) —0.362(52) 1.5024) 0.23936) - - 0.49
0.02567 0.233%6) 0.8315) —0.353(51) 1.483) 0.23435) - - 0.46
0.03033 0.250(64) 0.8414) —0.350(56) 1.483) 0.23635) - - 0.44
0.03617 0.269318) 0.8515) —0.349(50) 1.4@2) 0.23433) - - 0.42
0.04433 0.294@12) 0.8714) —0.340(50) 1.5(12) 0.22631) - - 0.46
0.05367 0.320@13) 0.8714) —0.315(47) 1.4@1) 0.21932) - - 0.58
0.06417 0.347@10) 1.0516) —0.256(50) 1.582) 0.167430) - - 0.61
0.07583 0.37489) 1.0916) —0.246(48) 1.5621) 0.15929) - - 0.64
0.08983 0.405(38) 1.1316) —0.233(42) 1.5121) 0.14826) —0.003(167) 1.565) 0.82
0.10850 0.443@6) 1.16(14) —0.227(42) 1.5019) 0.14324) —0.053(132) 1.3Q15) 0.93
0.12950 0.484(32) 1.1413) —0.228(39) 1.5818) 0.14522) —0.092(125) 1.4Q10) 0.92
0.15633 0.531@1) 1.1612) —0.228(39) 1.60L7) 0.14321) 0.00393) 1.4231) 0.79
0.18783 0.582@8) 1.159) —0.230(38) 1.5013) 0.14519) —0.001(63) 1.4R4) 0.79
0.22633 0.641@5) 1.158) —0.221(35) 1.5712) 0.14117) —0.093(49) 1.4718) 0.81
0.26833 0.701(24) 1.168) —0.221(31) 1.561L1) 0.14416) —0.046(38) 1.4415) 0.95
0.32200 0.774@2) 1.178) —0.214(30) 1.58611) 0.13515) —0.070(40) 1.4814) 0.95
0.40000 0.874(30) 1.177) —0.213(30) 1.5811) 0.13515) —0.079(37) 1.4813 0.92

calculation?(As will be demonstrated in Sec. V, the pion higher masses, we take it as an indication that the one-loop

masses calculated from thE P) correlator in small volumes formula starts to lose its applicability. This could be due to

are contaminated by the zero modes even up to fairly largéhe fact that higher orders are needed or that the mass is

guark masses, i.e. the strange quark region. This could affestmply outside the range of validity ofPT.

the position ofm_, o, and the result fos.) How does one We mentioned earlier that in the fitting of the one-loop

control the finite volume and zero mode effects? formula, the parameterd, 5, A,, andB are not linearly
Before addressing these questions, we first point out thahdependent. We can rewrite E@®) as

there is a fundamental problem in the way the lattice data are 5

usually fitted to the form predicted by thé>T. The common mZ=C;m+Cy mIn(m)+C,m?+Cy m?in(m), (11)

practice is to fit the lattice data to thdT result from a high

pion mass down to cover the range of calculated masses amr'ere

then extrapolate to the physical pion mass. This can force a C,=A[1-8(InA-2InA +1)]

fit but cannot answer the question as to whether the one-loop X '

chiral formula is applicable for the range of masses consid- Cy =—ASJ,

ered. It is possible that the range of masses will require

higher orders inyPT or even that the mass range is outside Co=A,(1+2InA—41InA,)+B,

the radius of convergence @PT. Then one does not know

the precise form to fit. Extrapolating down from the pion C,o =2A, (12)

mass as high as 1 GeV is simply diametrically opposed to the
philosophy ofyPT which is based on the expansion of smallare the independent parameters. Therefore, we have one re-
guark masses and momenta. dundant variable which we take to be the cutoff scalg.

So how does one proceed? To be consistent with/#€  We adopt a Bayesian-based constrained curve-fitting method
approach, we start from the smallest quark mass and agld7,38 with an adaptive procedure to obtain priors sequen-
where the one-loop formula appli¢86]. Since we have tially according to the relative importance of the parameters.
come down to the pion mass as low-a480 MeV, we will  The details of the constrained curve-fitting algorithm for the
assume that it is in the range where one-lgd®T is valid. hadron masses will be given elsewh¢88]. In each of the
We fit the one-loop formula with the five smallest pion quark mass ranges, the priors fof, C; , C,, andC,_ are
masses and then incrementally add higher pion masses onbtained from the corresponding\;A;) correlators. After
by one. If the formula is valid for the range of masses, therthe C parameters are determined from the fit, we solve Eq.
the parameters will remain constant; i.e., they are truly thé12) to obtainA, &, A,, andB for a givenA , . We list their
low energy constants that we seek to evaluate. On the otheesults evaluated ak,=0.8 together withC, and C,, in
hand, if the parameters begin to change as one includes mofable IV. We also plo#, A, , B, andé as a function of the
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FIG. 6. FittedA, A,,,

at 0.184471) [182(8) MeV.

andB as a function o, .4, the maxi-
mum pion mass of the fit, foA , =0.8. The minimum pion mass is

FIG. 8. Fractional contributions for different terms in Ed1).
The input of the C parameters are from the fit withm,,,,
=0.03617. Note the combined contributi@®m?+ C;, m2In(m)
denoted by the dashed line is very small.

maximum pion massn, max Of the fitting range in Figs. 6 the (A,A,) correlators. We tried using the priors without
and 7. We should mention that due to the limited number okuych a limit and also tried droppir@, andC,, all together
gauge configurations, we are not able to carry out correlategh these low mass ranges and found that the fitigdand
fits with a reasonablg? for more than 17 quark masses. C,, are not changed within errors. The central valuesdor
Therefore, for longer ranges, we choose a maximum of 1&re changed only by 1%—2%. In view of this inability to fit
representative masses to cover the range of the fitnigay, ~ C, and C, , we do not quote the fittedh, and B below
less than 0.0898@m,.=0.4050(38) or 40() MeV], we find  my5,=0.08983[m_.=0.4050(38) where the errors are
that the data are dominated K84, and C,. The contribu- larger than their central values. Hopefully, with better statis-
tions fromC, andC,, cancel each other and the combinedtics, one will be able to extract the parametésandB in
contribution is negligible compared to those®f, andC,.  the rangem;<400(7) MeV.

This is illustrated in Fig. 8 for a typical fit. As a result, itis ~ We see in Fig. 6 that values foh are fairly stable
practically impossible to obtain a reliable fit fér, andC,, .  throughout the range of the fi, andB are also stable in
We decided to fit these low mass data using a priordgr ~ the range wheren,,,=0.08983 andA,, is consistent with
which is limited to less than 2 during the fitting procedure forze€ro in this range. On the contragjn Fig. 7 is constant up

to My ,x~0.044 which corresponds to, ,,~300 MeV.

0.35 : : ; . . . . Beyond that, it has a sharp drop. We take the fact thist
FI— sensitive to the range of masses as an indication that the
03 Brin . —o— ] one-loop chiral formula in Eq(8) is valid only up to m_
Biraus ~300 MeV. Below this value, the parameters in the formula
RS 1  do not exhibit mass dependence and thus they are the low
{ energy constants of the effective chiral theory at a certain
021 1 chiral scale(e.g. A ,=0.8).
Z°] A .
015 | | Next, we simulate what has been commonly done in lat-
ﬁ % i { % { } } } tice calculations. We fix the maximum pion mass mf
01l i =0.8740(30)862(13) MeV] and incrementally include
{> lower pion masses to fit Eq11). We find that no matter how
0.05 - {) . many low pion masses are included, the results are not com-
patible with those starting fromm, ;,=0.1844(71)

04 0.5 0.6 0.7
mn,maxa or mn,mina

0.3

[182(8) MeV] and ending atm,, ,,x~300 MeV. We illus-
trate this by plotting, in Fig. 7, the fittedl (open circlegas a
function of the minimum pion mass,, i, for the range of
the fit. We see that when pion masses down to 300—400

FIG. 7. The solid circles are the quenched chi#gllotted as a
function of m_ ,x, the maximum pion mass of the fitting range,
with the minimum pion mass fixed at 0.18Z4) [182(8) MeV.
The open circles[solid squarek are those fitted downward
from a maximum pion mass fixed at 0.8730
[862(13) MeV (0.6414(21)633(10) MeV]) and plotted as a
function of m_ ,i,, the minimum pion mass of the fitting range.
These results are &, =0.8.

MeV are included, the fitteds is in the range of~0.15
which is consistent with those found in Table Il with a simi-
lar mass range and can explain why most of the calculations
end up with a smalb. The only exception is Ref35] which
obtains a larged~ 0.2 withm_, ,;,~440 MeV. We speculate
that this may be due to the small volume used (
=1.5 fm). As will be explored further in Sec. V, we find that
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FIG. 9. The fit tom?/m as a function of the quark mass The 06 065 07 075 08 08 09 095 1
solid line is the forward fitting ending am_=0.2695)(m A

=0.03617). The dashed line is the backward fitting from)
=0.6412)(m=0.22633) to the smallest quark mass. The inset is a
blowup for the small quark mass region.

the zero modes make a sizable contribution to pion masses &
high as 800 MeV on a lattice with =2.4 fm and likely
higher at smaller volumes. It would be sensible to check if
this is the case by comparing pion masses obtained from thwg
(PP) correlator to those fromA,A,) as will be done in Sec.

V.

In view of the fact that the rise ah?/m left of the trough
atm,_~480 MeV is mostly due to the chiral logarithm while
the rise right of the trough is mostly due to theé term, we
first fit the points around the troughe. fromm=0.07583 to

0.22633 with the form in Eq.(11) but without theA, term 06 065 07 075 08 08 09 095 1
and then extend the range by including smaller quark Ax

masses. The results Af § andB turn out to be very close to

the ones starting from the maximum pion mass nat FIG. 10. The running o6 andA and as a function of\, ac-

=0.8740(30)862(13) MeV]. We show the results af (la-  cording to the one-loop formula. The input 6f andC,, are for

beleddy,,) as a function of the minimum pion mass, ,;,  the fit with my,,,=0.03617.

in Fig. 7 and find them almost the same &g, at small ) )

quark masses and similarly smaller than those where the pida due to the fact that Eq8) contains only the leading term

masses are restricted to lower thar800 MeV. in the expansion ob [40]. To see this, consider the example
For comparison, we show in Fig. 9 the fit mﬁ/m for the where the leading quarithm is re-sumr_ned for the “cactus

forward fitting ending am,_=0.2695)(m=0.03617)(solid  didgrams”[24] (one is not concerned with,, and B herg

line) and the backward fitting fromm_=0.64%2)(m  Which leads to

=0.22633) to the smallest quark masiashed ling m2 = mYa+ 5)(AA25)1/(1+ 5)
As one can see from E12), the parameters, 5, andB g X '

depend logarithmically or., . In Fig. 10 we show hovA  \we see that then and A, dependence of are separable

and § vary as a function o\, . TheC, andC,,_are taken  which implies thats does not run with\ , , and the unphysi-
from the fit for m,,,=0.03617[m_,=0.2693(48) or 26@®) cal A, can be absorbed iA with

MeV] in Table IV. Incidentally, for a giverC, and C,,

(14

there is a maximal value AocA;Z‘S, (15
Ay max= JC, eCr%Cu (13)  Which gives

(for which §=1 andA=C,), beyond which no solution ex- dinA 5 16

ists. But this is well beyond the range of applicability of Eq. din A)Z( '

(8). We should point out that the faétruns with InA, is a

peculiar feature of quenched QCD. This is not the case in fullThis is the same as obtained from E8) when one requires
QCD whereA is basically the quark condensate where therehat me be independent oA, and assumes thai does not

is no quenched chirad [24]. From Eq.(12), we see that the depend om\ .

combination Aé is independent of the chiral scale. This  We shall report our final results based on the fit of pion
makesé also run with InA . This is not physical, but rather mass from 0.184)(m=0.014) to 0.2685)(m=0.03617)
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TABLE V. The low energy parameters in the quenched chiral 0.35
Lagrangian are given as a fit of Eqll) from m=0.014[m,, Opax * +——
=182(8) MeV] to m=0.03617[m,=266(6) MeV] at A, 03 T Slginf -
=0.8 GeV. The second error ifiis the estimated systematic error 025 | H g &
determined as the average deviatiogt=1 and 0.6 GeV from the YY) l A I P
value at 0.8 GeV. 02| HHHIT%i i
7<) el o o
L 11 e ] i :
A, A 5 013 %{HH} Py g
0.8 GeV 1.4622) GeV 0.23633)(37) oLy
0.05 -

. . . . . 0 1 1 1 1 1 1 1
with 9 qua(k masses. This choice is based on the observation 02 03 04 05 06 07 08 09
that 6 begins to decrease beyomd,,,,=0.03617[ M 1 ax - ———
=0.269(5)]. Although this happens to coincide with the mmax? T

minimum in xy?/Npe in Table 1V, we should stress that a
minimal x?/Npg is not and should not be the criterion for
such a choice. As we pointed out earlier, the primary diffi-
culty in chiral extrapolation is the uncertainty about the valid

. 2 .
range of (_)ne-loop formu_la_ IWPT. Ax /_NDF less than unity starting minimum pion mass is at 0.2G6%) [203(7) MeV]. The
does not imply that the fitting formula is correct. One way 104y squares are those fitted downward from a maximum pion mass

judge is the criterion that we adopt; namely, the one-loopixed at 0.641625) [633(10) Me\] and plotted as a function of
formula is not valid when the fitted parameters do not remaify_ . the minimum pion mass of the fitting range.

constant beyond certaim_ -

As we said earlier, we are not able to obtain a reliable firange ofB as fitted in one-loop formula in Table IV. The
for A,, andB at these low masses. As for the finite volume resultants, A andB are presented in Figs. 11, 12, and 13. We
systematic errors, we note that the finite volume correctiorsee that, in contrast to the sharp transition naf yay
for the lowestm? is estimated to be 5.4% and the second~300 MeV in the one-loop formula fit, the transition f6iis
lowestm? is estimated to be 3.6%This will be explained in  smoother. The behavior fok and B are similarly changed.
more detail in Sec. YWe thus estimate the systematic errorsThis is to be expected, since the power form takes into ac-
due to the finite volume to be at the few percent level whichcount the re-summed cactus diagrams to all orders. As such,
are smaller than our current statistical errors. We alsdt should extend the range of applicability of the quenched
dropped the last quark mass and fitted the 8 quark massgdT to beyondm_~300 MeV for the one-loop case, pro-
from m=0.01633[m_,=0.195(7)] to m=0.03617[m,  vided that it dominates the higher loop corrections. From the
=0.269(5) and found tha®A and § change only about 1%, fitted results, it appears that the power form gives a stable fit
which are much smaller than the statistical errors. to the trough of me/m and is perhaps valid tom,

We quote our final results for the low-energy parameters~500—600 MeV. Abovem_~640 MeV, all the parameters
of the quenched one-loop chiral perturbation theornyAgt (5, A and B) are different from those belown, .y
=0.8 GeV close to the mass in Table V. In view of the ~300-400 MeV by two sigmas. We shall quote the result of
unphysical dependence éfon A, at the order specified in the scale independent § at m=0.08083[m,

Eq. (8), we shall estimate the systematic error to be the av=400(7) MeV] where §=0.2Q(3). We have fitted also the
erage deviation from the value at 0.8 GeV of the values at

FIG. 11. The solid circles are the scale independent chiral
plotted as a function o .y, the maximum pion mass of the
fitting range, with the minimum pion mass fixed at 0.184Y
[182(8) MeV]. The same are for the triangleg;( ) except the

A,=1 GeV and 0.6 GeV. We see that the central valué of 1.3 T

is somewhat larger than the phenomenological value of 14 | o 0

0.183 in Eq.(10), but they are consistent within errors. " + HH Ay —— ) ;

- 4 o
|
Fitting of re-summed cactus diagrams < L2 ¢ HH r1 1] l % %
Since at small quark masses, the higher order results with RN »Lll ' + ! F 11

[ 8In(m)]" corrections are important, it is pertinent to fit the L T [l Jree

re-summed cactus diagram forf@4] for the chiral loga-

rithm, which leads to a scale independéntThus, we shall 09 r

fit with the power form 08

02 03 04 05 06 07 08 09
mn,maxa or mn,mina

Similar to fitting the one-loop formula in Eq11), we FIG. 12. The circles and triangles are fittddas a function of
start from the smallest quark mass and fit upward first. Sincen_ .. starting from m=0.014 and 0.01867, respectively. The

at very small quark masses tBecontribution is very small, squares are those fitted downward starting from 0.22633 as a
we put a very weak constraint at -8 which covers the function of m_ .

m2=AmY(+9+ B, 17
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FIG. 13. The circles and triangles are fittBdas a function of 01 02 03 04 05 06 07 08 09

M, max Starting fromm=0.014 and 0.01867, respectively. The My max®
squares are those fitted downward starting frors 0.22633 as a
function of m_ in. FIG. 14. The solid circles are the chirél(5,,,) plotted as a

function of m_ .4, the maximum pion mass of the fitting range,

pion mass from théPP—S$ correlator and find that the With the minimum pion mass fixed at 0.1824) [182(8) MeV].

The same are for the open circle8;() except the starting mini-
changes o5 andAiare small, at a few percent level. In the mum pion mass is at 0,208 [203(7) MeV].
range betweem_=0.2501(54) and 0.48482), the change

is at the 1% level. For exampleg=0.20(4) at m  for the 16X 28 lattice and found that the ratio is basically
=0.08083M,=400(7) MeV). unity within errors for the range of quark masses that we are
We also fitted the points around the troughm ( concerned with. We now look at the same ratio in a smaller
=0.07583-0.22633) and then incrementally added smalldattice 12 28 (La=2.4 fm in this casg They are plotted in
quark masses in the fit, as we did for the one-loop formulaFig. 15 together with those from the %628 lattice. We see
The results are plotted in Figs. 11, 12, and 13 as a function dhat the ratio for the 12< 28 lattice deviates from unity by
M. min @nd labeleddyin,Amin @andBpi,. We see again that two sigmas for pion mass in the range of 0.5-0.8 or
they do not reproduce those parameters which are obtained500—800 MeV. The central value of the ratio goes down
from fitting the range fromm=0.014 to 0.08983[m, t0 98% atm,~300 MeV before it turns back to around unity
=0.4050(38). for small pion mass due to the finite volume effect. This is a

As we are concerned about the finite volume eff@iis clear indication that the zero mode contribution to {(FeP)
will be addressed in Sec.)\or small quark masses, we drop propagator is visible even for pion mass as heavy as

the three smallest quark masses and then fit the pion massS00 MleV Most Olf thte calcui!gtlzogsl (t:fmp'![ﬁd |nf Table il
upward. We plot the results in Figs. 11, 12, and 13 as ave volumes similar to our attice, theretore one

function of M, nax and labeleds;_ A, andBs._. We see needs to be concerned about the zero mode contamination

which is a finite volume artifact. Since the zero mode con-
that in most cases they are only a few percent different from Mribution varies as AV [10,22, the effect of the zero mode
those Omax:Amax aNdBa0) Without dropping the last three

contribution will be larger for calculations with still smaller
guark masses. We have also performed the same test for the 9

one-loop logarithmic formula fit and find that the parameters ' ' ' ' ‘ ' ' ' ' '
are also not changed much. We plot in Fig. 14 the results of P |
93 from this fit together withdy,. as obtained from the — 1.08 128 —e— .
one-loop log fit without dropping the last 3 points. We see & 166 |
that the characteristic transition aroumd_.~300 MeV is 3-: ’
still visible. =% 104+ 1
£
N 102 ¢ 8
V. FINITE VOLUME EFFECTS E 1 L] Th é 3 & g i
Intertwined in the discussion of the validity of the one- \‘—'; 098 | I {' i . |
loop xPT for a certain mass range are the finite volume g
effects. There are two questions to consider: First of all, how 096 | ]
does one know how large the zero mode contributions are ;g4 U
and how much do they affect the pion mass in the range ol 0z 03 04 05 06 07 08 08 1 11
the fitting? Secondly, how large is the finite volume effect for m.a

the pion mass where the finite box is not larger than 4 times

the Compton wavelength of the pion? We considered the FIG. 15. Ratio of pion masses as calculated from(th®) and
zero mode contribution in Sec. Ill where we examined the(A,A,) correlators as a function oh,, from the(A,A,) correlator
ratio of pion masses from th@? P) and(A4A,) correlators  for both the 18x 28 and 18x 28 lattices.
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FIG. 16. Ratio of pion masses between théx128 and 18 FIG. 17. f, determined from the pseudoscalar correlator
x 28 lattices for both th¢A,A,) and the(PP) correlators. Gpp(p=01) in Eq. (21) as a function of the quark mass. The

dashed curve is a linear fit to the high mass regior; 0.1085

lattice sizes. It would be useful to compare the pion masseldn»=0.4438(36) or 43§) MeV] to 0.4 [m,=0.8740(30) or
from (PP) and(A,A,) correlators to see how different they 86213 MeV].
are in these cases.

To check the finite volume effect, we consider the pion a
mass from theg A,A,) correlator which is less affected by my(L)=mg(L=2)+ —. (20)
the zero mode contamination. We plot the ratio of pion L
masses between the 228 and 18x 28 lattices in Fig. 16
as a function oim_. We see that the ratio is basically unity For our lowestm
for pion mass greater than300 MeV. Below this, the pion
mass from the smaller volume, i.e. the*k28 lattice, be-
comes higher. The worst deviation, at the smallest pion mas .
of 182(8) gIe/IeV, is 3.7%. For comparison, we also pIoF; in Fig. /% and the correction fan? (L= 16):[182(8),’\”6\42 to
16 the corresponding ratio oh,, from the(PP) correlator. P& 5-4%. Similarly, for the second I0\2/vest plon mass at
Contrary to the/A,A,) correlator, we see that the ratio has a 1937) MeV, the correction is 3.6% fom7(L=16). These
dip between them,. range of 250 and 800 MeV, again re- &€ smallert_han the statistical errors for the fitted low-energy
flecting the fact that the pion mass calculated from{g®)  Parameters in Sec. IV. _
correlator on the 1228 lattice has observable zero mode . e aré not in a position to fully address the continuum
contributions. limit extrapolation, as we only have results at one lattice

To assess the finite volume correction, we first considefPacing. However, we know thzere is '@(az) 2error due to
the leading finite volume correction calculated by replacingShiral symmetry11] and theO(a®) andO(m*a“) errors are

the infinite volume meson propagator with the finite volumeSMall [7,8,10. We shall use the results from the small vol-
counterpart. The correctidi25] for m? is ume study in Ref{8] to gain some feeling for the magnitude
” of theO(a?) errors. We have calculated pion and rho masses

2 P on the @x_lz, 8% 16, and 16 20 lattices with the Wilson
T (12— am?) / e Mk (18 gauge action aB=5.7, 5.85, and 6.0 respectively. The fig-
47%f? Nm.L ures ofm,a/\/oa andm,a//oa (o is the string tensionvs
oa’ in Ref. [8] show that both of them are quite flat at
where ,u2=mf7,—m’f]/2— m’o/2=(871 MeV@. With am?  m,/m,=0.4, 0.5, and 0.6. Since the lattice spacingat

~(L=16)=182(8) MeV where the corre-
spondingm_(L=12) is 3.7% higher, we obtain the finite
olume correction for then_(L=16)=182(8) MeV to be

A(ml-|00p)2:

<u? [25], we can estimate the percentage differencenpf ~ =5.7, as measured with the Sommgr is 0.171 fm which
between the 12 28 and the 1Bx 28 lattices for the small- IS Very close to our present lattice whose lattice spacing as
estm,_=182(8) MeV to be determined fronrg is 0.175 fm, we shall use the="5.7 data

as the estimate for the present lattice. After extrapolating the
1-1oopy2 _ 1-loopy 2 pion mass fronB=5.7, 5.85, and 6.0 in Ref8] to the con-
Alm; (12 ZA(m’T )"(16) =0.13%. (19 tinuum limit, we find the central values of, at 5=5.7 are
m;. changed by 1%-3% for the cases with./m,=0.4, 0.5,
and 0.6. We thus tentatively suggest that our present pion
This is much smaller than the Monte Carlo calculation ofmasses are subject to the similar levelifa?) errors due to
7.4% derived from thé A,A,) correlators in Fig. 16. Next, the continuum limit extrapolation. This, of course, needs to
we use the empirical® dependencé41] to estimate the be checked with calculations at smaller lattice spacings than
finite volume correction with what we have now.
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FIG. 18. f,, as a function ofm?2 . The dashed curve is a fit with
f.(0)+C,m? to the high mass regiom,=0.4438(36) or 43@)
MeV to 0.874Q30) or 86213) MeV. The solid curve is the fit with
Eqg. (22) for the small mass regiom,.=0.1844(71) or 18@B) MeV
to M, max—=0.3748(38) or 37(Y) MeV. The inset is a blowup for
the small mass region.

VI. CHIRAL BEHAVIOR OF f_ AND fp

We show in Fig. 17 our data on renormalizéd as ob-
tained[10] from

2m\Gpp(p=0t)m, emt?2

(m,)?

(21)
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FIG. 20. Same as in Fig. 19 but f@; andC,/10.

guenched theory24]. We interpret the bump as a conse-
guence of the quenched chiral logarithm in the pion mass.
Thus, we plot thef . as a function ofmf, in Fig. 18 and fit
with the form

f,=f.(0)+Cym2+C,m?. (22)

As in the fit of m%, we fix the minimum pion mass at
0.184471) and fit the data to the above formula with vari-
able ranges. The results 6£(0) are plotted in Fig. 19 as a
function of the maximum pion mas&mf,vmax. We plot the

same forC, andC,/10 in Fig. 20. Even though there appear

We see that if one fits a linear curve in quark mass fromf0 be some changes in the region of, .« between

0.1085 [m,_,=0.4438(36) or 43g) MeV] to 0.4 [m,
=0.8740(30) or 86@3) MeV] as is usually done in the
literature, the fit givesf,=0.0935(6} 0.110(2)m with
x*INype= 1.0. In this case, the data belom=0.1085 shows

0.374838) and 0.484@®2) for f (0), C; andC,, the errors

are such that one cannot be as certain as in the case of the
chiral logarithm 8. Thus, we shall quote the results for
M, max=0.3748(38) or 37(Y) MeV. They are given in Table

a hump with a one-sigma deviation from the linear fit at theVIl. The fit for f_ in the range up tan, n.,=0.3748(38)

low mass end. Even thoudh, in full QCD with dynamical
fermions has a leading order chiral logarith4®2,43 in the
form m2log(m?) with a known coefficient, it is absent in the

0.1

0.095 - _
5 {
S 009t < E
8
0.085 -
0.08 . . . . . . .
0 01 02 03 04 05 06 07

2 2
My max?

FIG. 19.f_(0) as determined from the fit ER2) as a function
of the maximum pion mass\,, ay-

with the parameters in Table VI is plotted in Fig. 18 as the
solid lines for both the full figure and the inset. We alsd fit
with only the quadratic pion mass term for the large pion
mass region fromm_=0.4438(36) or 43&) MeV to
0.874(30) or 86213) MeV and obtain f .=0.0952(6)
+0.0551(13)ni. This fit is plotted as the dash line in Fig.
18.

According to the quenched chiral perturbation theory
[29], C;=4Lg/f_(0). From our data reported in Table VI,
we obtainLs=3.6(1.5)x10 3. This is comparable td g
=2.5(5)x 10 3 as obtained from the study df, with the
clover fermion action on Wilson gauge configurationsBat
=5.7. But it is substantially larger than the phenomenologi-
cal value of 1.4(5x 10 3 [44].

TABLE VI. f_(0), C4, andC, as fitted fromm_=0.1844(71)
or 1828) MeV to m_=0.3748(38) or 37() MeV.

f~(0)
0.090523)

Gy C, Ls

0.15063)  —0.46(37)  3.6(1.5x103
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FIG. 21. The nucleon mass as a functionnof . The dashed
line is a fit only linear inm2w for the range om,, from 4387) MeV
to 86213) MeV. The solid line is a fit with Eq(27) for the range
m, =182(8)—-316(6) MeV.

Using the experimental valué,(m;)=92.4 MeV and

m_,=137 MeV to set the scale, we determine the Iatticed

spacinga to be 0.2003) fm. We see thaf .(m_) is higher
thanf_(0) by ~5%.

The unrenormalized pseudoscalar decay constant of the

pion is defined as

f5=(0|¢i ys(1~D/2) y| m(p=0)). (23
From the chiral Ward identity, we have
Zpd, A, =2Z,MZpP, (24)

where A, lpwﬂys(l D/2)yy and P= ¢|y5(1 D/2)y.

SinceZ —ZS andZs=Zp due to the fact the scalar density

S= ¢/f(1 D/2)y and the pseudoscalar densRyare in the
same chiral multipletZ,,, andZ, cancel in Eq(24). There-
fore, from the relation of the on-shell matrix elements

(0|ZpdsA4| m(p=0))=2m(0|P|m(p=0)), (25
one obtains that
fp m2
= om (26)

where f . is renormalized whilefy and m are unrenormal-
ized. The relation also holds when bdth andm are renor-
malized sinceZm=Z;1. It is clear from Eq.(26) that the
chiral behavior offp is the combination of those @fi?/2m
andf .

VII. QUENCHED my

We first plot the nucleon mass as a functiomﬁ[ in Fig.
21. We see that it is fairly linear imi all the way down to
m_~0.4438(36)[438(7) MeV|. Below that point, there ap-

pears to be a deviation from the linear behavior. Followingshown as the solid curve in Fig. 24 fonni

PHYSICAL REVIEW D70, 034502 (2004
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FIG. 22. Fittedmy(0) in Eq.(27) as a function om,, . Of the
fitting range.

the case of ., we shall first fit theN mass only linear imnfT

in the range of m>=0.196-0.763 and obtainmy
=0.998(21)+ 0.932(74m> . This fit is represented by a
ashed line in Fig. 21. We see that the datsthe smallm_.
regiorﬁ in this case are systematically lower than the linear

According to the quenchegPT for the baryon$45], the
one-loop result predicts the presence of the non-analytic
termsm,, and mf,log(mw), both of which are proportional to
the quenched. Thus, we fit the nucleon data from the low-
est pion mass, i.en, ni,=182(8) MeV, upward as done in
previous sections with the form

+ C3,2m
27

We should mention again that the fit does not depend on the
value of A, , since there is an analytic term in2.. We take
A, =1.16 for this case.

The fitted results ofmy(0) are plotted in Fig. 22 as a
function of the maximum pion mass, nax Of the fitted
range. We see that it is rather stable in the range fitted. Simi-
larly, the coefficientC4,, C1, C; andCg, are plotted in
Fig. 23. We see that bot@,,, and C;, have rather smooth
behavior inm_ .« from 0.3 to 0.55 and approach zero
aroundm,, ,,x=0.6—-0.7. On the other han@, has more of
a variation in the rangen, ,,,—=0.3-0.55. Whemm,, .«
reaches the region 0.6—0.7, the error bars do not touch those
atm, nax~0.3. We note thaCs, is consistent with zero in
the whole range of the fit. We have tried to include the next
analytic termm? [46]. It turns out thamy(0), Cj,, andC,
are not changed outside their errors in this case. However,
Csp and C, with the mj‘, term become ill determined. They
are consistent with zero but with large errors. Thus, the data
seem to suggest that there is no evidence for a Imbdfrm
in the quenched nucleon mass. We quote the fit evaluated at
M, max=0.3200(43)316(6) MeV] in Table VII. This fit is
up to

>|3

M= My(0)+Cym, +Cym2 + CleiIog(
X
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FIG. 24. The nucleon mass as a functiomdf for smaller pion
Cy —e— masses. The solid line is a fit with E¢27) for the rangem,,
3l Cap —o— . =0.1844(71)182(8) MeV] to 0.320@43) [3166) MeV]. The

dashed line is a linear fit from a higher mass range nof
} } =0.4438(36)438(7) MeV] to 0.874@30) [86213) MeV].

{ {' that one does not know if the formula used to fit is correct in
the range of the available data. The idea of usyRjT to
guide the fit is useful and appropriate except it is compli-
cated by the fact that one does not know the range in where
‘H‘J)‘H + ‘% % $ 9 ¢ b % i the one-loop formula is valid. In this work, we attempt to
answer this question by fitting the data from our smallest
A . - s . s l pion mass(close to the physical valyeupward and seeing
0.1 02 03 04 0.5 06 0.7 08 where the low-energy parameters change. This is commen-
My max® surate with theyPT approach which expands around the
small pion mass and momentum. The chiral logaritidm
FIG. 23. The same as in Fig. 22 for the coefficie@tg andC,,,  from fitting the pion mass to the quenched one-loop chiral
(upper figure and for the coefficient€,; and Cy, (lower figure. formula clearly demonstrates a sharp transition around 300—
400 MeV in the pion mass. We take this as an evidence to
0.4840(32)m,,=478(8) MeV]. Also shown in the figure as reveal the upper limit for the applicability of the one-loop
the dashed curve is the linear fit from the higher pion mas$ormula in quenchegPT. We have also fitted the pion mass
range of m_=0.4438(36)438(7) MeV] to 0.8740(30) with the cactus re-summed diagrams in quench®d and
[862(13) MeV. the results suggest that its range of applicability extends be-
We should mention that even though the error is largeyond the one-loop formula. We should point out that fitting
C,, is consistent with that predicted by the one-loppT  with the cactus re-summed diagrams is preferred over the
[45], for which C,,=—(3w/2)(D—3F)?5. Using 6 one-loop formula since it gives a scale-independertiow-
=0.20(3) from our fit in Sec. 1V, it give€,,,=—0.31(5).  ever, not all the physical quantities have cactus re-summed
This is consistent with the value in Table VII which is results in theyPT and, in many cases, one would rely on
—0.358(234). HereC,=2.44(67) from the low mass fit is one-loop formula to do the chiral fitting. Thus, it is essential
much larger than that of the high mass fit wheBg  to find out where the one-loop formula is valid. To be sure
=0.932(74). that this is not skewed by the finite volume effects, we com-
pared our data on the 1828 lattice against those on the
VIIl. CONCLUSION 12°x 28 lattice and found that the finite volume errors are
much smaller than the statistical errors. Although less certain
The chiral extrapolation has always been a major chaldue to larger errors, the analytic term in tienass and irf ,
lenge in lattice QCD calculations, primarily due to the factshows variations in the pion mass range of 300—400 MeV,
and theC, coefficients change by a factor ef2—-3 com-
TABLE VII. my(0), Cypp, Cy, Cy, andCg, as fitted from  pared with those from fits involving exclusively pion masses
m,=0.1844(71)[182(8) MeV] to 0.3200(43)[316(6) MeV]. beyond this range. Thus we tentatively conclude that the one-
loop quenchedyPT is valid for pion mass less than
my(0) Ciz €1 Cu Car ~300 MeV. It is claimed that using a different regulariza-

0.95743) —0.358(234) 2.467) 0.319290 0.016199 tion scheme such as the finite range regularizaftitf} will
extend the range of validity for the one-loop quenchd&ir

o
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from that of the dimensional regularization, but it remains tomasses. Furthermore, the chiral behavior study is greatly en-
be checked by lattice Monte Carlo data at low pion mass. hanced by the incorporation of the multi-mass algorithm
One of the valuable lessons learned in this study is that itvhich facilitates the constrained curve-fitting method to dis-
seems futile to extrapolate to the chiral region from pioncern the logarithm structure. One does not know how differ-
mass beyond-300 MeV. We tried to fit the pion mass with ent the chiral behavior in full QCD will be from that of the
the one-loop formula by extrapolating fromm,  quenched approximation, but it is hard to imagine that there
=862(13) MeV and found that, no matter how small pion are different scales for the sea and valence quarks. If so, one
masses one includes,is inevitably different(by more than il need to work harder to lower the dynamical quark
two sigmas from that obtained with the data limited to,  masses such that the corresponding pion mass is below
=250 MeV. One could try to model the functional form at — 300 MeV.
higher masses, but it is not likely to succeed, because one
does not knowa priori how and when the modeled formula

eases into that of the one-loop chigdPT. Direct simulation ACKNOWLEDGMENTS
at pion masses less than300 MeV is nearly impossibléor
at the very least an extremely difficult tadhr lattice calcu- This work is partially supported by U.S. DOE Grants DE-

lations employing fermion actions which suffer from excep-FG05-84ER40154 and DE-FG02-95ER40907. We thank A.
tional configurations and/or critical slowing down. An Alexandru, C. Bernard, M. Chanowitz, N. Christ, M. Golter-
overlap-fermion calculation is numerically intensive, butman, A. Kennedy, D. Leinweber, S. Sharpe, A. Soni, S. Tam-
with approximately fixed cost—its critical slowing down is hankar, H. Thacker, and H. Wittig for useful discussions and
rather mild[8]. The fact that it has chiral symmetry alleviates suggestions. Thanks are also due to Y. Aoki, K. Holland, and
the worry that something may go wrong at small quarkC. Gattringer for providing us unpublished numbers.

[1] C. Bernardet al, hep-lat/0209086. [21] R.G. Edwards and U.M. Heller, Phys. Rev. &, 014505
[2] For reviews, see, for example, H. Neuberger, Annu. Rev. Nucl. (2002.
Part. Sci51, 23(2002); Nucl. Phys. B(Proc. Supp).83-84 67 [22] T. Blum et al, Phys. Rev. D69, 074502(2004).
(2000; 73, 105(1999. [23] W. Bardeen, A. Duncan, E. Eichten, N. Isgur, and H. Thacker,
[3] R. Narayanan and H. Neuberger, Phys. Rev. Lg&tt. 3251 Phys. Rev. D65, 014509(2002.
(1993. [24] S. Sharpe, Phys. Rev. £6, 3146(1992.
[4] R. Narayanan and H. Neuberger, Nucl. Ph@143 305 [25] C. Bernard and M. Golterman, Phys. Rev4b, 853(1992.
(1995. [26] S. Sharpe, Phys. Rev. B6, 7052 (1997); 62, 099901E)
[5] H. Neuberger, Phys. Lett. B17, 141 (1998. (2000.
[6] M. Luscher, Phys. Lett. B28 342(1998. [27] J. Heitger, R. Sommer, and H. Wittig, Nucl. Phyg588, 377
[7] K.F. Liu, hep-lat/0206002. (2000.
[8] S.J. Dong, F.X. Lee, K.F. Liu, and J.B. Zhang, Phys. Rev. Lett[28] S. Aoki et al, Phys. Rev. Lett84, 238(2000; CP-PACS Col-
85, 5051(2000. laboration, S. Aokiet al, Phys. Rev. D67, 034503(2003.
[9] R.G. Edwards, U.M. Heller, and R. Narayanan, Phys. Rev. J29] W. Bardeen, A. Duncan, E. Eichten, and H. Thacker, Phys.
59, 094510(1999. Rev. D62, 114505(2000.
[10] S.J. Dong, T. Draper, |. Hofta, F.X. Lee, K.F. Liu, and J.B. [30] QCDSF Collaboration, M. Gakeler, et al, Nucl. Phys. B
Zhang, Phys. Rev. B5, 054507(2002. (Proc. Supp). 83, 203 (2000.
[11] Y. Kikukawa, R. Narayanan, and H. Neuberger, Phys. Lett. B[31] MILC Collaboration, C. Bernardet al, Phys. Rev. D64,
399 105(1997. 054506 (2001); MILC Collaboration, C. Aubin et al,
[12] Y. lwasaki, Nucl. PhysB258 141(1985. hep-lat/0209066.
[13] H. Neuberger, Phys. Rev. b7, 5417(1998. [32] S. Kim and S. Ohta, Phys. Rev. &1, 074506(2000.
[14] J. van den Eshoét al, Comput. Phys. Commuri46 203 [33] Y. Aoki et al, Phys. Rev. 369, 074504(2004); RBC Collabo-
(2002; Nucl. Phys. B(Proc. Supp). 106, 1070(2002. ration, Y. Aoki, Nucl. Phys. B(Proc. Supp). 106, 245 (2002.
[15] T.W. Chiuet al, Phys. Rev. D66, 114502(2002. [34] RGB Collaboration, C. Gattringest al, hep-lat/0209099; C.
[16] E.l. Zolotarev, Zap. Imp. Akad. Nauk. St. Petersbisg, Gattringer, hep-lat/0208056; S. Hauswirth, hep-lat/0204015.
(1877. We should note that the results quoted here are from a fitting
[17] D. Ingerman, V. Druskin, and L. Knizhnerman, Commun. Pure method which includes nondegenerate quark masses.
Appl. Math. 53, 1039(2000. [35] T.W. Chiu and T.H. Hsieh, Phys. Rev. 86, 014506(2002);
[18] P.P. Petrushev and V.A. PopdRational Approximation of Real hep-lat/0208066.
Functions(Cambridge University Press, Cambridge, England,[36] We will postpone the consideration of the finite volume effect
1987. and zero mode contribution to Sec. V.
[19] R.G. Edwards, U.M. Heller, and R. Narayanan, Parallel Com-{37] P. Lepageet al, Nucl. Phys. B(Proc. Supp). 106, 12 (2002.
put. 25, 1395(1999. [38] C. Morningstar, Nucl. Phys. BProc. Supp). 109 185(2002.
[20] H. Neuberger, Nucl. Phys. BProc. Supp). 83, 813(2000. [39] S.J. Dong, T. Draper, |. Hortla, F.X. Lee, K.F. Liu, N.

034502-15



CHEN et al.

Mathur, C. Srinivasan, and J.B. Zhaiiig preparation S.J.
Dong et al., hep-lat/0208055.
[40] We thank S. Sharpe for explaining this to us.

[41] M. Fukugitaet al, Phys. Rev. Lett68, 761(1992; Phys. Lett.

B 294, 380 (1992; Phys. Rev. D47, 4739 (1993; S. Aoki
et al, ibid. 50, 486 (1994).

[42] P. Langacher and H. Pagels, Phys. Rev. & 4595
(1973.

PHYSICAL REVIEW D 70, 034502 (2004

[43] J. Gasser and H. Leutwyler, Nucl. Phyg250, 465 (1985.

[44] A. Pich, Rep. Prog. Phy&8, 563(1995.

[45] J. Labrenz and S. Sharpe, Phys. Rewv4)4595(1996); Nucl.
Phys. B(Proc. Supp). 34, 335(1994).

[46] We thank D. Leinweber for pointing out the need to include
the next analytic term in the chiral expansion.

[47] D. Leinweber, A. Thomas, and R. Young, Phys. Rev. Litt.
be publisheyl hep-lat/0302020.

034502-16



