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Within the most recent extension of the quark-jet hadronization framework, we explore the transverse-
polarization-dependent dihadron fragmentation functions (DiFFs) H∢

1 and H⊥
1 of a quark into πþπ− pairs.

Monte Carlo (MC) simulations are employed to model polarized quark hadronization and calculate the
corresponding number densities. These, in turn, are used to extract the Fourier cosine moments of the
DiFFsH∢

1 andH⊥
1 . A notable finding is that there are previously unnoticed apparent discrepancies between

the definitions of the so-called interference DiFF (IFF) H∢
1 , entering the cross sections for two-hadron

semi-inclusive electroproduction, and those involved in the production of two pairs of hadrons from back-
to-back jets in electron-positron annihilation. This manuscript completes the studies of all four leading-
twist DiFFs for unpolarized hadron pairs within the quark-jet framework, following our previous work on
the helicity-dependent DiFF G⊥

1 .

DOI: 10.1103/PhysRevD.97.014019

I. INTRODUCTION

The study of the transverse-polarization-dependent
dihadron fragmentation functions (DiFFs) [1,2], and of
the interference DiFF (IFF) in particular, has gained a lot
of attention in recent years, both in theory and in experi-
ment. The chief reason is that the IFF is a crucial
ingredient in accessing the so-called transversity parton
distribution function (PDF) in dihadron production in
semi-inclusive deep inelastic scattering (SIDIS) [3–7].
This is important, since the transversity PDF, which at
leading approximation describes the correlations of the
transverse polarizations of the nucleon and its constituent
partons, is the least well-known leading-twist collinear
PDF due to its chiral-odd nature. The recent phenomeno-
logical analysis in Refs. [8,9] used BELLE measurements
[10] of the azimuthal asymmetry involving IFF H∢

1 in
inclusive dihadron pair production in back-to-back jets
emanating from eþe− annihilation, along with input
from Monte Carlo (MC) simulations for the unpolarized
DiFF, to fit both the unpolarized DiFF D1 and the IFF H∢

1 .
These fits were then used to extract the transversity
PDFs from the SIDIS measurements at HERMES [11]

and COMPASS [12,13]. The recent BELLE measure-
ments in Ref. [14] would provide the information on the
unpolarized DiFFs, eliminating the need for the MC input.
Nevertheless, systematic improvements of the extraction
procedure might benefit from the information that can be
gained from the model calculations of the DiFFs, for
example by providing some guidance concerning the
parametrizations of the unpolarized DiFFs and IFFs.
The quark-jet framework is based on the originalmodel of

the collinear hadronization of an unpolarized quark [15,16].
Over the past several years it has been developed to include
the production of kaons and other hadrons [17–20], as well
as the transverse momentum dependence [21] by utilizing
MC simulations of the hadronization process and the
Nambu–Jona-Lasinio (NJL) quark model [22,23] for cal-
culating the input elementary fragmentation functions. We
also studied DiFFs [24–26] within the framework, with a
simplistic treatment of the quark polarization to access the
so-called single-hadron Collins fragmentation function and
the IFF. A self-consistent treatment of the quark polarization
within the quark-jet picture was recently developed in
Ref. [27] and used to calculate the Collins fragmentation
functions (FF) of a polarized light quark into pions [28].
Following our previous work on calculations of the

helicity-dependent DiFF in [29] within the quark-jet
framework, here we extend the study to the DiFFs
involving the correlations between the transverse polariza-
tion of the fragmenting quark and the transverse momenta
of the two hadrons. The goal is to provide a description of
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the complete set of the leading-twist two-hadron fragmen-
tation functions for unpolarized hadron pairs within a self-
consistent framework of polarized quark hadronization and
to complement the description of the single-hadron frag-
mentation functions in Ref. [28] within the same approach.
This paper is organized in the following way. In Sec. II

we summarize the DiFF kinematics and formal definitions.
In Sec. III we derive the expressions for extracting the
moments of DiFFs from the polarized number density. The
numerical results for the DiFFs are presented in Sec. IV,
while their validation tests against explicit integral expres-
sions for the two-hadron emission process are detailed in
Sec. V. The final conclusions are presented in Sec. VI.

II. FORMALISM

A. Kinematics and definitions

We begin the discussion by reviewing the kinematics and
field theoretical definitions of the DiFFs. A more detailed
description of the kinematics and the formalism can be
found, e.g., in Ref. [29]. Here we consider the fragmenta-
tion of a quark q with momentum k and mass m into a pair
of hadrons h1, h2 with masses M1, M2 and corresponding
momenta P1 and P2. The total and the relative transverse
momenta are defined as

P≡ Ph ¼ P1 þ P2; ð1Þ

R ¼ 1

2
ðP1 − P2Þ: ð2Þ

The ẑ directions for the two relevant coordinate systems
labeled ⊥ and T are defined using either the 3-momentum
of the quark k or the total 3-momentum of the hadron pair
P, respectively. The components of 3-vectors perpendicular
to the ẑ directions in the two systems are denoted with
subscripts ⊥ and T. The total and the relative light-cone
momentum1 fractions are expressed in terms of those for
individual hadrons zi ¼ Pþ

i =k
þ as

z ¼ z1 þ z2; ð3Þ

ξ ¼ z1
z
¼ 1 −

z2
z
: ð4Þ

The transverse components of the relevant momenta
in the two systems are related using the following
expressions:

P1T ¼ P1⊥ þ z1kT; ð5Þ
P2T ¼ P2⊥ þ z2kT; ð6Þ

kT ¼ −
P⊥
z
; ð7Þ

RT ¼ z2P1⊥ − z1P2⊥
z

¼ ð1 − ξÞP1⊥ − ξP2⊥: ð8Þ

The magnitude of RT is often replaced by the invariant
mass Mh of the hadron pair:

M2
h ¼ P2

h; ð9Þ

R2
T ¼ ξð1 − ξÞM2

h −M2
1ð1 − ξÞ −M2

2ξ: ð10Þ

The field-theoretical definitions of the DiFFs [1,3,30] are
given using projections of the quark-quark correlator Δ
with various Dirac operators,

Δ½γþ� ¼ D1ðz; ξ; k2T;R2
T; kT · RTÞ; ð11Þ

Δ½γþγ5� ¼ ϵijT RTikTj
M1M2

G⊥
1 ðz; ξ; k2T;R2

T; kT · RTÞ; ð12Þ

Δ½iσiþγ5� ¼ ϵijT RTj

M1 þM2

H∢
1 ðz; ξ; k2T;R2

T; kT · RTÞ

þ ϵijT kTj
M1 þM2

H⊥
1 ðz; ξ; k2T;R2

T; kT · RTÞ; ð13Þ

where D1 is the unpolarized, G⊥
1 is the helicity-dependent,

H∢
1 is the IFF, and H⊥

1 is the analogue of the single-hadron
Collins fragmentation function. The tensor ϵijT ≡ ϵ−þij is
the “transverse” Levi-Cività tensor, and we use the con-
vention ϵ12T ¼ þ1.

B. Fourier moments of DiFFs

The SIDIS cross section in general can be decomposed in
terms of the convolutions of various PDFs with an infinite
series of Fourier moments of the fully unintegrated DiFFs;
see Ref. [31]. It is clear that the angular dependence of the
DiFFs defined in Eqs. (11)–(13) is encoded in the argument
kT · RT ∝ cosðφRKÞ, where φRK ≡ φR − φk is the differ-
ence between the azimuthal angles φR and φk of the vectors
RT and kT . Thus, the Fourier decomposition of these DiFFs
only involves their cosine moments. We define the nth
cosine moments for different integrated DiFFs as

D½n�
1 ðz;M2

hÞ ¼
Z

dξ
Z

dφR

Z
d2kT

× cosðn · φRKÞD1ðz; ξ; k2T;R2
T; kT · RTÞ;

ð14Þ

G⊥;½n�
1 ðz;M2

hÞ ¼
Z

dξ
Z

dφR

Z
d2kT

× cosðn · φRKÞkTRTG⊥
1

× ðz; ξ; k2T;R2
T; kT · RTÞ; ð15Þ

1We define the light-cone components of a 4-vector a as
a� ¼ 1ffiffi

2
p ða0 � a3Þ.
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H∢;½n�
1 ðz;M2

hÞ ¼
Z

dξ
Z

dφR

Z
d2kT

× cosðn ·φRKÞRTH
∢
1 ðz;ξ;k2T;R2

T;kT ·RTÞ;
ð16Þ

H⊥;½n�
1 ðz;M2

hÞ ¼
Z

dξ
Z

dφR

Z
d2kT

× cosðn · φRKÞkTH⊥
1 ðz; ξ; k2T;R2

T; kT · RTÞ:
ð17Þ

The integrated cross section for two back-to-back diha-
dron pairs produced in eþe− annihilation involves only
single Fourier cosine moments [30]:

D1ðz;M2
hÞ≡D½0�

1 ðz;M2
hÞ; ð18Þ

G⊥
1 ðz;M2

hÞ≡G⊥;½1�
1 ðz;M2

hÞ; ð19Þ

H∢;eþe−
1 ðz;M2

hÞ≡H∢;½0�
1 ðz;M2

hÞ: ð20Þ
On the other hand, the situation is different for the H∢

1

appearing in the integrated SIDIS cross section, used in
extracting the transversity PDF using the “collinear frame-
work” in Refs. [3,9]. In the original derivation of the
corresponding expression [3], only the zeroth cosine
moment enters the definition of the integrated IFF. This
omits a contribution to the cross section involving H⊥

1 , as
can be easily seen by following the derivation steps of the
expression in Eq. (17) in Ref. [3] starting from the fully
unintegrated cross section in Eq. (10). This was also shown
in Eqs. (17)–(20) and (46) in Ref. [4], where the derivation
of the SIDIS cross section was performed using a quark-
quark correlator that was first integrated over the total
transverse momentum of the hadron pair (same as the quark
transverse momentum in the T system). The relevant
expression for the IFF entering the SIDIS cross section is

H∢;SIDIS
1 ðz;M2

hÞ≡H∢;½0�
1 ðz;M2

hÞ þH⊥;½1�
1 ðz;M2

hÞ: ð21Þ

Analogously, a similar reduction of the unintegrated
cross section into a modulation involving the convolution
of the transversity PDF and H⊥

1 involves

H⊥;SIDIS
1 ðz;M2

hÞ≡H⊥;½0�
1 ðz;M2

hÞ þH∢;½1�
1 ðz;M2

hÞ: ð22Þ

This term can be isolated by integrating the sinðφh þ φSÞ
weighted SIDIS cross section expression in Eq. (10) in
Ref. [3], where φh and φS are the azimuthal angles of the
hadron pair’s total transverse momentum and the transverse
polarization of the target nucleon. We also note that here
too the integrated unpolarized DiFF is just the zeroth
moment of the unintegrated one, similar to the eþe− case.
Thus, it appears that there could be a difference between

the IFFs extracted from eþe− and those entering the SIDIS

cross section, because of the admixture of the first Fourier
cosine moment of H⊥

1 in the latter. It is clearly important to
understand the magnitude of this effect, at least using some
model calculations, as they can potentially impact the
phenomenological extraction of the transversity PDF from
data. We have to emphasize here that there may be missing
terms in the expression for the unintegrated cross section of
eþe− annihilation in Ref. [30], that might contribute to the
integrated cross section and resolve the discrepancies
between the two definitions of IFFs in Eqs. (20) and
(21). Nonetheless, the results for the corresponding cosine
moments of the integrated DiFFs presented in this paper
will remain true.

III. EXTRACTING DIFFS FROM MONTE
CARLO SIMULATIONS

We use MC simulations of the polarized quark hadro-
nization process, as described in detail in Refs. [19,21,24–
26,28,29]. We calculate various number densities by
averaging over a large number of MC simulation events
of quark hadronization. The DiFFs are extracted from these
number densities using the corresponding modulations
with respect to azimuthal angles. The expression for the
number density for the production of two unpolarized
hadrons in polarized quark fragmentation can be encoded
using the definitions in Eqs. (11)–(13):

Fðz; ξ; kT;RT ; sÞ
¼ D1ðz; ξ; k2T;R2

T; kT · RTÞ

þ sL
ðRT × kTÞ · ẑ

M1M2

G⊥
1 ðz; ξ; k2T;R2

T; kT · RTÞ

þ ðsT × RTÞ · ẑ
M1 þM2

H∢
1 ðz; ξ; k2T;R2

T; kT · RTÞ

þ ðsT × kTÞ · ẑ
M1 þM2

H⊥
1 ðz; ξ; k2T;R2

T; kT · RTÞ: ð23Þ

This can also be written in terms of azimuthal angles φk and
φR of vectors kT and RT :

Fðz; ξ; kT;RT ; sÞ
¼ D1ðz; ξ; k2T;R2

T; cosðφRKÞÞ

− sL
RTkT sinðφRKÞ

M1M2

G⊥
1 ðz; ξ; k2T;R2

T; cosðφRKÞÞ

þ sT
RT sinðφR − φsÞ

M1 þM2

H∢
1 ðz; ξ; k2T;R2

T; cosðφRKÞÞ

þ sT
kT sinðφk − φsÞ

M1 þM2

H⊥
1 ðz; ξ; k2T;R2

T; cosðφRKÞÞ: ð24Þ

The Fourier cosine moment of the DiFFs in Eqs. (14)–
(17) then can be obtained by integrating the number density
multiplied by specific trigonometric factors:
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D½n�
1 ðz;M2

hÞ ¼
Z

dξ
Z

dφR

Z
d2kT

× cosðn · φRKÞFðz; ξ; kT;RT ; sÞ; ð25Þ

G⊥;½n�
1 ðz;M2

hÞ
M1M2

¼ −
1

sL

Z
dξ

Z
dφR

Z
d2kT

×
cosðn · φRKÞ
sinðφRKÞ

Fðz; ξ; kT;RT ; sÞ; ð26Þ

H∢;½n�
1 ðz;M2

hÞ
M1 þM2

¼ 2

sT

Z
dξ

Z
dφR

Z
d2kT

× cosðφk − φsÞ
cosðn · φRKÞ
sinðφRKÞ

× Fðz; ξ; kT;RT ; sÞ; ð27Þ
H⊥;½n�

1 ðz;M2
hÞ

M1 þM2

¼ −
2

sT

Z
dξ

Z
dφR

Z
d2kT

× cosðφR − φsÞ
cosðn · φRKÞ
sinðφRKÞ

× Fðz; ξ; kT;RT ; sÞ: ð28Þ
Using this method, we can extract the zeroth moments of

H∢
1 , H⊥

1 , with the former entering the cross section
expression for eþe− annihilation; see Eq. (20). We can also
extract the first moments and calculate the expressions for
H∢

1 ; H
⊥
1 entering the SIDIS cross section using Eqs. (21) and

(22). On the other hand, we can also directly extract these
two DiFFs from the polarized number densities:

H∢;SIDIS
1 ðz;M2

hÞ
M1 þM2

¼ 2

sT

Z
dξ

Z
dφR

Z
d2kT

× sinðφR − φsÞFðz; ξ; kT;RT ; sÞ; ð29Þ

H⊥;SIDIS
1 ðz;M2

hÞ
M1 þM2

¼ 2

sT

Z
dξ

Z
dφR

Z
d2kT

× sinðφk − φsÞFðz; ξ; kT;RT ; sÞ: ð30Þ

We focus on the M2
h integrated DiFFs in this work, and

introduce the following notation for the corresponding
dimensionless functions:

D1ðzÞ≡
Z

dM2
hD1ðz;M2

hÞ; ð31Þ

~G⊥
1 ðzÞ≡ 1

M1M2

Z
dM2

hG
⊥
1 ðz;M2

hÞÞ; ð32Þ

~H∢
1 ðzÞ≡ 1

M1 þM2

Z
dM2

hH
∢
1 ðz;M2

hÞ; ð33Þ

~H⊥
1 ðzÞ≡ 1

M1 þM2

Z
dM2

hH
⊥
1 ðz;M2

hÞ: ð34Þ

IV. THE QUARK-JET MODEL RESULTS

We model the hadronization of a transversely polarized
quark within the most recent extension of the quark-jet
framework [27,28], in the same manner as for the longi-
tudinally polarized quark in Ref. [29]. The emission of
hadrons h1, h2 and so forth by a quark within the model is
shown schematically in Fig. 1. The transverse momentum
and the light-cone momentum fraction of the remnant quark
after each emission are determined using momentum
conservation along those directions, while the polarization
is determined by its momentum and the polarization of the
emitting quark using the spin density matrix formalism.
MC simulations of the hadronization process are used to
calculate the quark-polarization-dependent number den-
sities as averages over the corresponding numbers of
hadron pairs of given momenta. Each hadronization sim-
ulation is terminated after a fixed number of emissions, NL.
The remaining input into the quark-jet model for the
numerical computations is the eight quark-to-quark and
two quark-to-hadron splitting functions (SF) that are
needed to sample the types of the produced hadrons, their
momenta and the polarization of the remnant quark. In this
work we use SFs calculated using the low-energy effective
quark model of Nambu–Jona-Lasinio (NJL) [22,23].
Specifically, we employ the SFs modified by the ð1 − zÞ4
ansatz presented in Ref. [28], which mimics the effects of
the QCD evolution on the unpolarized FFs and DiFFs by
shifting the functions towards the lower-z region. Though
the QCD evolution equations of the DiFFs [32], needed in
order to compare the results of our low-energy model with
experiment, are well known [32] and we applied them to the
quark-jet modeled unpolarized DiFFs [24], here we omit
that step for simplicity. Also, we use only one set of
input SFs to outline the overall qualitative features of our
results, which are mostly independent of these inputs. A
detailed comparison of the dependence of the results for the
single-hadron FFs on the choice of both the initial model
SFs and the ð1 − zÞ4 ansatz was presented in Ref. [28],
demonstrating this point. Further, this model only considers
the up and down quarks and pions for simplicity, with exact
isospin symmetry (Mu ¼ Md and mπ� ¼ mπ0). The flavor
of the initial quark is always set to u.
The polarization of the initial quark in the MC simu-

lations is set to be completely in the transverse direction

FIG. 1. Hadronization within the quark-jet framework.
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(sL ¼ 0 and sT ¼ 1) to maximize the signal for extracting
H∢

1 and H⊥
1 that is proportional to sT . It is possible to

simultaneously extract the G⊥
1 DiFF by choosing a nonzero

value for sL, but this would require higher statistics to
achieve the same precision as s2L þ s2T ≤ 1. The results in
this section are obtained using 1012 MC simulations. We
choose 100 discretization points for z in the region [0, 1]
and 200 discretization points for the azimuthal angles in
region ½0; 2πÞ.
The first results presented here are for the zeroth and the

first moments of ~H∢
1 and ~H⊥

1 , as shown in Fig. 2. We allow
only the minimal possible number of produced hadrons,
NL ¼ 2, in these simulations. The opposite signs for ~H∢

1

and ~H⊥
1 can be intuitively deduced by considering the

orientations of the relative and the total transverse momenta
of a back-to-back hadron pair. An interesting observation
here is that the relative size of the first moment of ~H∢

1 is
comparable with sizes of the zeroth moments for both ~H∢

1

and ~H⊥
1 . On the other hand, the first moment of ~H⊥

1 is much
smaller than the others in the plot. The importance of this
result will become apparent a little later.
It is important to present once again the results for the

unpolarized DiFF D1ðzÞ in Fig. 3(a), even though we
have already discussed them in the context of extracting
the helicity-dependent DiFF G⊥

1 in Ref. [29]. We ensure
the extracted values of D1 are the same for different
MC simulations as a consistency check. Also, they are
important in fully assessing the analyzing powers for the
DiFFs shown in Figs. 3(c) and 4. The NL dependencies of
~H⊥;½0�
1 ðzÞ and its analyzing power are depicted in Figs. 3(b)

and 3(c), respectively. It is clear that the analyzing power
saturates rapidly with the increasing NL. The same holds

for the analyzing powers of ~H⊥;½1�
1 ðzÞ, ~H∢;½0�

1 ðzÞ, and
~H∢;½1�
1 ðzÞ not shown here.
The plots in Fig. 4 depict the analyzing powers of ~H∢

1

and ~H⊥
1 for NL ¼ 2, NL ¼ 6, and NL ¼ 6 with additional

cuts z1;2 ≥ 0.1 imposed on the hadrons in the pair. The

results for both of the moments entering the eþe− cross
sections from Eq. (20) and those entering the SIDIS cross
section from Eqs. (21) and (22) are shown together to allow
a comparison. We also depict the analyzing powers for ~G⊥

1

extracted in Ref. [29] for comparison. We have explicitly
checked that the SIDIS DiFFs computed using the indi-
vidually extracted moments via Eqs. (27) and (28) agree
with the calculations using Eqs. (29) and (30). For NL ¼ 2,

it is important to note that the magnitudes of ~H∢;½0�
1 and

~H∢;SIDIS
1 are comparable, while the magnitude of ~H⊥;SIDIS

1 is

much smaller than that for ~H⊥;½0�
1 , especially for large z.

FIG. 2. The MC results for the z dependencies of the first two
moments of ~H∢

1 ðzÞ and ~H⊥
1 ðzÞ for πþπ− pairs, where NL ¼ 2.

(a)

(b)

(c)

FIG. 3. The variation of MC results for (a) D1ðzÞ, (b) ~H⊥;½0�
1 ðzÞ,

and (c) their ratios for πþπ− pairs with the increasing values
of NL.
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This result is easy to understand by recalling those

in Fig. 2 and Eqs. (21) and (22). ~H∢;½1�
1 has a much more

significant impact on ~H⊥;SIDIS
1 than ~H⊥;½1�

1 on ~H∢;SIDIS
1

because of the considerable differences in their relative
magnitudes. The large differences of the magnitudes and
shapes of ~H∢;SIDIS

1 and ~H⊥;SIDIS
1 for NL ¼ 6 have the

same origins. For NL ¼ 6 results, we observe a notable

difference between the analyzing powers of ~H∢;½0�
1

and ~H∢;SIDIS
1 , which grow with z. Also, it is worthwhile

to compare the results for ~H∢;½0�
1 and ~G⊥

1 , where the latter

is much smaller, especially in the low- to mid-z region.
The cuts on the minimum values for the z of each hadron
in the pair, z1;2 ≥ 0.1, do not significantly change
the overall conclusions for the results on the analyzing
powers.
In the MC simulations, we have ready access to all the

possible combinations of pion pairs. In Fig. 5(a), we depict

as an example the analyzing power ~H∢;½0�
1 ðzÞ=D1ðzÞ for all

the pion pairs. Here, similar to our previous work, we again
use the z-ordering for the same-charged pairs by assigning
hadrons the labels first and second, so z1 ≥ z2. We use
simulations with NL ¼ 6 and the cut z1;2 ≥ 0.1. The
analyzing power for πþπþ pairs has the same sign and a
larger magnitude than that for πþπ− pairs, while the
analyzing power for π−π0 pairs has an opposite sign.
The results for π−π− pairs are smaller and not well
determined for z≳ 0.8. The reason is that a u quark needs
to emit at least four hadrons to produce two π− (along with
two πþ), with the first π− appearing at rank 2 or higher.
Thus, the probability of finding such a pair with a very
large value of z ≥ 0.8 is extremely small. In Fig. 5(b), we
depict the analogous results for the analyzing power

(a)

(b)

(c)

FIG. 4. The ratios of ~H∢;½0�
1 ðzÞ, ~H∢;SIDIS

1 ðzÞ, ~H⊥;½0�
1 ðzÞ,

~H⊥;SIDIS
1 ðzÞ and G⊥ðzÞ to D1ðzÞ for (a) NL ¼ 2, (b) NL ¼ 6,

and (c) NL ¼ 6 with an additional cut z1;2 ≥ 0.1, for πþπ− pairs.

(a)

(b)

FIG. 5. The comparison of ratios ~H∢;½0�
1 ðzÞ=D1ðzÞ with the cuts

(a) z1;2 ≥ 0.1 and (b) ~H∢;SIDIS
1 ðzÞ=D1ðzÞ, for all the possible pion

pairs extracted from MC simulations with NL ¼ 6. We used z-
ordering to assign the first and second hadrons in the same-
charged pairs.
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~H∢;SIDIS
1 ðzÞ=D1ðzÞ, without the cuts on z1;2. Here again the

analyzing power for πþπþ pairs has the same sign as that
for πþπ− pairs, but becomes smaller in magnitude for
values of z≳ 0.5.

V. VALIDATION OF MC RESULTS

In this section we derive explicit integral expressions for
H∢

1 and H⊥
1 for hadronization with only two produced

hadrons, NL ¼ 2. We use these expressions to cross-check
the results extracted from the MC simulations, for vali-
dation of our method. They are also important in elucidat-
ing the underlying mechanism for the generation of these
DiFFs via single-hadron SFs. We follow the same approach
as in our previous work in Refs. [28,29], where similar
expressions were derived for the unpolarized and unfavored
Collins FFs and unpolarized and helicity-dependent DiFFs.
We consider the case in which the initial transversely
polarized quark q sequentially fragments into two hadrons
h1 and h2. We denote the spin vector of the initial quark as
sq ¼ ðsT; 0Þ, and the spin vector of the remnant quark q1
after the emission of the first hadron as sq1 ¼ ðsT1

; sL1
Þ. The

light-cone momentum fraction and the transverse momen-
tum of q1 with respect to the initial quark q are denoted by
η1 and p1⊥, while those for h2 with respect to q1 are denoted
by η2 and p2⊥. Using momentum conservation and a
Lorentz boost we can calculate the light-cone momentum
fractions z1, z2 and the transverse momenta P1⊥, P2⊥ of h1
and h2 with respect to q:

z1 ¼ 1 − η1; ð35Þ
z2 ¼ η1η2; ð36Þ

P1⊥ ¼ −p1⊥; ð37Þ
P2⊥ ¼ p2⊥ þ η1p1⊥: ð38Þ

We calculate each DiFF by identifying the corresponding
term in the polarized number density F using Eq. (24). The
number density itself can be easily expressed as a product
of the two number densities for the processes q → h1 þ q1
and q1 → h2 þ q2:

Fð2Þ
q→h1h2

ðη1; p1⊥; η2; p2⊥; sqÞ
¼

X
q1

f̂q→q1ðη1; p1⊥; sqÞ · f̂q1→h2ðη2; p2⊥; sq1Þ: ð39Þ

The elementary probability densities are expressed in terms
of the corresponding SFs,

f̂q→q1ðz; p⊥; sÞ

¼ D̂ðq→q1Þðz; p2⊥Þ þ
ðp⊥ × sTÞ · ẑ

zMq1

Ĥ⊥ðq→q1Þðz; p2⊥Þ;

ð40Þ

f̂q→hðz; p⊥; sÞ

¼ D̂ðq→hÞðz; p2⊥Þ þ
ðp⊥ × sTÞ · ẑ

zmh
Ĥ⊥ðq→hÞðz; p2⊥Þ; ð41Þ

whereMq1 andmh are the masses of the remnant quark and
the produced hadron, respectively.
Thus, we only need to determine the transverse compo-

nent of the polarization vector of q1. For a transversely
polarized initial quark, q, this is determined using the
corresponding SFs and the momentum [28],

sT1
¼ 1

f̂q→q1ðη1; p1⊥; sqÞ

�
p01⊥

η1Mq1

D̂⊥
T ðη1; p2

1⊥Þ

þ sTĤTðη1; p2
1⊥Þ þ

p1⊥ðp1⊥ · sTÞ
η21M

2
q1

Ĥ⊥
T ðη1; p2

1⊥Þ
�
;

ð42Þ

where D̂⊥
T , ĤT , and Ĥ

⊥
T are the polarizing, transversity, and

pretzelocity transverse momentum dependent SFs. The
transverse vector p1⊥0 is defined as p1⊥0 ≡ ð−p1y; p1xÞ.
We can then easily derive the integral expressions for the

z dependence of the two DiFFs in which we are interested.
Here we will only describe the relevant terms contributing
H∢

1 and H⊥
1 to avoid explicitly writing out lengthy

expressions:

H∢ð2Þ
1 ðz; ξ; k2T;R2

T; kT · RTÞ
M1 þM2

¼ z3

1 − zξ

×
�
Ĥ⊥ðq→q1ÞD̂ðq1→h2Þ þ 1 − z

1 − zξ
Ĥðq→q1Þ

T Ĥ⊥ðq1→h2Þ

− zððkT · RTÞ − zξk2TÞĤ⊥ðq→q1Þ
T Ĥ⊥ðq1→h2Þ

�
; ð43Þ

H⊥ð2Þ
1 ðz; ξ; k2T;R2

T; kT · RTÞ
M1 þM2

¼ z4

1 − zξ

×

�
−ξĤ⊥ðq→q1ÞD̂ðq1→h2Þ þ 1 − ξ

1 − zξ
Ĥðq→q1Þ

T Ĥ⊥ðq1→h2Þ

− ðzξðkT · RTÞ − R2
TÞĤ⊥ðq→q1Þ

T Ĥ⊥ðq1→h2Þ
�
; ð44Þ

where the SFs for q → q1 are functions of ðη1; p1⊥Þ; those
for q1 → h2 depend on ðη2; p2⊥Þ; and we have redefined the
SFs to absorb the corresponding denominators ðη1Mq1Þ,
ðη1Mq1Þ2, ðη2mh2Þ appearing in Eqs. (40) and (42).
We can readily see from Eqs. (43) and (44) that both

of the transverse-polarization-dependent DiFFs share
the same generation mechanism. The first contribution,
Ĥ⊥ðq→q1ÞD̂ðq1→h2Þ, encodes the transverse momentum
“recoil” effect in the hadronization chain. The Collins
effect in the first emission step creates some modulation
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with respect to the azimuthal angle of the transverse
momentum of the remnant quark, and consequently h1
via momentum conservation (37). A fraction of this
momentum is then transferred to the second hadron h2
according to Eq. (38). The second and third terms,

Ĥðq→q1Þ
T Ĥ⊥ðq1→h2Þ and Ĥ⊥ðq→q1Þ

T Ĥ⊥ðq1→h2Þ, involve the
transversity and the pretzelocity SFs in the first emission
step, which transfer the transverse polarization of the initial
quark to q1; see Eq. (42). Then, this transverse polarization
is correlated with the transverse momentum of the pro-
duced hadron, h2, via the Collins effect in the second
emission step.
Explicit integral expressions (IE) for H∢;½0�

1 , H∢;SIDIS
1 ,

H⊥;½0�
1 , and H⊥;SIDIS

1 are easily obtained by calculating
the Fourier cosine moments using Eqs. (16) and (17)
and forming the corresponding combinations given in
Eqs. (20)–(22). We can then use the NJL model expressions
for the SFs from Ref. [28] to compute the integrals and
obtain the numerical results.
In Fig. 6 we compare the transverse-polarization-depen-

dent DiFFs calculated using the IEs andMC simulations for

πþπ− pairs, in particular the results for (a) ~H∢;½0�
1 , ~H∢;SIDIS

1

and (b) ~H⊥;½0�
1 , ~H⊥;SIDIS

1 . The MC simulations are plotted
using the solid and dashed lines, while the crosses and open

circles show the IE results. We achieved excellent agree-
ment between the two methods for all four DiFFs consid-
ered, demonstrating the reliability of our MC simulations.

VI. CONCLUSIONS

In this paper we studied the two DiFFs describing the
correlations between the transverse polarization of the
fragmenting quark and the transverse momenta of a
produced hadron pair in the hadronization process. We
first briefly overviewed the two-hadron fragmentation
kinematics and the field-theoretical definitions of the
leading-twist DiFFs in Sec. II. The Fourier decomposition
of these DiFFs only contains the cosine moments that were
defined in Eqs. (14)–(17).
An important observation here is that there is a discrep-

ancy between the definitions of the integrated DiFFs that
enter into the cross section expression for eþe− production
of two back-to-back hadron pairs in Ref. [30] and the
production of hadron pairs in SIDIS in Ref. [4]. The eþe−
expression shown in Eq. (20) contains the zeroth cosine
moment of the unintegrated DiFF, while those for SIDIS in
Eqs. (21) and (22) also contain the first cosine moments of
the alternate DiFFs. This difference can potentially have a
significant impact on the combined experimental and
phenomenological efforts [5–9] of studying the nucleon
transversity parton distribution functions by analyzing the
two-hadron SIDIS measurements [11–13]. The crucial
ingredient here is the H∢

1 IFF that is obtained by fitting
the measured eþe− asymmetries [10]. Of course, a
thorough review of the cross section derivations for this
process is needed to ensure against the possibility that
terms were missed in the initial derivations in Ref. [30] that
might possibly resolve the discrepancies. We could not find
any omissions in deriving the asymmetries from the
corresponding cross sections, but a full, systematic review
of the derivations is beyond the scope of this work. On the
other hand, our aim has been to use the quark-jet model to
give a quantitative estimate of the differences between

H∢;½0�
1 and H∢;SIDIS

1 .
In the MC simulations, we directly calculated the various

number densities, written out in Eq. (23) in Sec. III. Then,
we derived the method of extracting the cosine moments of
the DiFFs from the polarized number densities. A straight-
forward prescription (29)–(30) for computing the SIDIS
DiFFs directly from the number density was described.
This provides an alternative to adding the cosine moments
in Eqs. (21) and (22), obtained using Eqs. (27) and (28).
This prescription also outlines how these quantities appear
in the cross section of the integrated SIDIS cross section,
first demonstrated in Ref. [4]. For example, when the
number density (24) (or the quark-quark-correlator in [4])
is integrated over φk, then theH⊥

1 term does not completely
disappear. Rather, its first cosine moment survives, multi-
plied by sinðφR − φsÞ.

(a)

(b)

FIG. 6. Comparison of the πþπ− results for (a) ~H∢;½0�
1 ðzÞ,

~H∢;SIDIS
1 ðzÞ and (b) ~H⊥;½0�

1 , ~H⊥;SIDIS
1 , obtained using IEs and

MC simulations for NL ¼ 2.
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The numerical results for the z dependence of ~H∢
1 and ~H⊥

1

for pion pairs were presented in Sec. IV. The plots for their
first two moments for πþπ− pairs in MC simulations with
NL ¼ 2were presented in Fig. 2, demonstrating the opposite

signs for ~H∢
1 and ~H⊥

1 . Moreover, the first moment of ~H⊥;½1�
1 is

significantly smaller in magnitude than ~H∢;½0�
1 , while ~H∢;½1�

1

is comparable in magnitude to ~H⊥;½0�
1 . This has important

implications for the combinations ~H∢;½0�
1 , ~H∢;SIDIS

1 , ~H⊥;½0�
1 ,

and ~H⊥;SIDIS
1 . Their analyzing powers are depicted in Fig. 4

forNL ¼ 2,NL ¼ 6, andNL ¼ 6with a z-cut, alongside the
results for ~G⊥

1 computed in Ref. [29]. The rapid convergence

of the analyzing power of ~H⊥;½0�
1 ðzÞ with increasing NL was

shown in Fig. 3. Examining theNL ¼ 6 results, it is apparent

that ~H∢;½0�
1 and ~H⊥;½0�

1 are similar in magnitude and opposite
in sign. The suppression of ~H⊥;SIDIS

1 can be understood from
the earlier observations about the relative sizes of the first
two moments of the DiFFs.
We observe that the magnitude of ~H∢;SIDIS

1 is roughly 50%

smaller than the magnitude of ~H∢;½0�
1 for z > 0.2. Further, the

magnitude of ~G⊥
1 is significantly suppressed compared to

~H∢;½0�
1 and ~H∢;SIDIS

1 for the majority of the z region. This
further strengthens the conclusions drawn in Ref. [29],
supporting the nonobservation of the ~G⊥

1 signal at
BELLE [33,34] and COMPASS [35], while the correspond-
ing asymmetries for IFF have been successfully measured in
both experiments [10,12,13]. The ~H⊥;SIDIS

1 appears to be
significantly smaller in magnitude than ~H∢;SIDIS

1 ; thus the
corresponding signal in the SIDIS cross section should be
also suppressed. The minimum z-cut on each hadron in
the pair produced no qualitatively significant change in the
results. The last result presented in the section was for the

analyzing power of ~H∢;½0�
1 and ~H∢;SIDIS

1 for all the possible

pion pairs in Fig. 5, showing that the ~H∢;½0�
1 signal for the

πþπþ pairs has the same sign and larger magnitude than the
signal for the πþπ− pairs. On the other hand, the ~H∢;SIDIS

1

signal for πþπþ becomes smaller in magnitude than that for
the πþπ− pairs for the large values of z≳ 0.5.
Finally, we performed a validation test of our MC

extraction of the DiFFs in Sec. V by explicitly calculating
the polarized number density for two-hadron emission and
identifying the terms corresponding to the different DiFFs.
Then, the numerical values were computed by substituting
the NJL-model-calculated SFs and integrating over the
transverse momenta. The results for both eþe− and SIDIS
combinations are illustrated in Fig. 6, showing perfect
agreement with the MC simulations. In addition, in the
results for the unintegrated H∢

1 and H⊥
1 in Eqs (43) and

(44), we can readily identify the mechanism for their

generation via the single-hadron-emission elementary
SFs. There are the three contributions involving the same
SFs for both DiFFs. The “recoil” transverse momentum is
modulated by the Collins effect in the first hadron emission
and the two terms describing the transfer of the transverse
polarization of the quark to the remnant quark after the first
emission. In all of the terms, the Collins function is present,
generating the correlations between transverse polarization
and the transverse momenta. These results are very similar
to those for the Collins function for rank-2 hadrons derived
in Sec. II. C of Ref. [28].
It is important to note several caveats. In this work we

used the low scale effective NJL model input for the
numerical computations. Thus, QCD evolution of these
DiFFs [32] needs to be performed before comparing with
the experiment. We roughly modeled the impact of QCD
evolution by employing the ð1 − zÞ4 ansatz for the input
SFs to mimic the effects of evolution by shifting them to a
lower z region. Nevertheless, a proper evolution of the
results will be performed in our future work, as done
previously for the unpolarized DiFFs in Ref. [24]. Another
significant omission is the production of kaons and the
vector mesons, as well as the strong decays of the vector
resonances. The rich structure of the invariant mass
dependence of the unpolarized DiFF is generated by the
decays of these resonances, as shown both in MC simu-
lations [24,36] and the recent BELLE results [14].
Consequently, any possible two-hadron interference effects
between the decay products of the resonances, conven-
tionally attributed to the generation of the IFF (see, e.g.,
[36]), were also omitted.
In summary, in the series of works including Ref. [29]

and this manuscript, we successfully calculated all four
leading-twist DiFFs for pion pairs within the quark-jet
hadronization framework. We made several important
observations, most notably about the relative sizes of the
various DiFFs and their generation mechanisms. Future
work will be aimed at refining the model, by including, for
example, several hadron production, strong decay channels
and QCD evolution.
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