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A qualitative mechanism for the emergence of domain structured background gluon fields due to singulari-
ties in gauge field configurations is considered, and a model displaying a type of mean field approximation to
the QCD patrtition function based on this mechanism is formulated. An estimation of the vacuum parameters
(gluon condensate, topological susceptibility, string constant and quark condendatates that domainlike
structures lead to an area law for the Wilson loop, nonzero topological susceptibility and spontaneous break-
down of chiral symmetry. Gluon and ghost propagators in the presence of domains are calculated explicitly and
their analytical properties are discussed. The Fourier transforms of the propagators are entire functions and thus
describe confined dynamical fields.
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[. INTRODUCTION responsible for both confinement and chiral symmetry break-
ing.

Nearly every approach to the problem of the QCD ground Several mechanisms of confinement have been proposed
state accepts that the vacuum is characterized by strorgjnce the formulation of quantum chromodynamics. All try to
background gluon fields and, as results of lattice calculationsealize confinement as a dual-Meissner effect, and thus rely
suggest, by a clustered or lumpy distribution of topologicalon a condensation of singular gauge configurations such as
charge and action density in configuration space. We shalhonopoles and vorticd4.3,14. In particular center vortices
refer to such structures interchangeably as “clusters” andare considered as effective degrees of freedom relevant both
“domains.” They were first observed in typical lattice gauge to confinement and chiral symmetry breakirigl]. In gen-
configurations via cooling or smearing algorithms,2] eral, besides the above-mentioned configurations character-
which incrementally suppress quantum fluctuations by loized by topologically conserved charges there exist also to-
cally minimizing or at least reducing the action density. Forpologically trivial domain wall singularities in gauge fixed
more recent work on cooling the reader is referref@BjoOn  fields [15]. The form in which singular fields occur in the
the other hand, the resulting cooled gauge fields tend to givgauge fixed formulation varies with the gauge choice, but
rise to a diminished string constant indicating a loss of contheir presence itself is most probably an intrinsically un-
finement. An alternative way of analyzing the underlyingavoidable feature of non-Abelian theories, universal for a
fluctuations of topological charge density is via the chiralitylarge variety(if not all) of gauge fixing prescriptions. Con-
of fermionic modes in the background of topological sensus about this has been growing since the pioneering
“lumps,” as originally undertaken by4,5] and rediscussed works of Gribov and Singefl16]. This suggests that the
recently in[6]. Used with lattice fermions with good chiral manifestation of singular gauge fields is linked to the type
properties such as overlgp,8] or domain wall[9] fermions  and dimensionality of the manifold of singularities rather
the method indicates localization of low-lying fermionic than to the peculiarities of their realization within a particular
modes with definite chirality, the very modes responsible forgauge fixing prescription.
the chiral condensate, for exampl]. These results can be  We take as a working hypothesis that an effect of this kind
described in terms of the instanton liquid mofiEl] and are  can be seen in the restrictive influence of singular gauge
regarded as evidence for instantons on the lattice. While suciields on fluctuations in the vicinity of singulariti¢47,18
an interpretation connects clusters of topological charge witland formulate a simplified model which allows one to study
chiral symmetry breaking, it says nothing about their rel-manifestations of this effect in vacuum properties and quark-
evance to confinemeft2]. However, it might be significant gluon dynamics analytically.
that[8] have repeated the procedure[6f with overlap fer- The subtleties of separating fields into regular and singu-
mions and no smearing and still observe strong localizatiotar parts and the behavior of regular fields at the singularities
and definite chirality of the low lying modes. This is a piece are irrelevant if one could calculate the QCD functional in-
of evidence for the possibility that localization of chiral fer- tegral “exactly.” But these issues become crucial if one un-
mionic modes is due to the effective degrees of freedontertakes approximatiorid8]. For example, in gauge invari-

ant quantities singularities due to ambiguities in gauge fixing
should not occur. In the action such a finiteness, despite sin-
*Email address: akalloni@physics.adelaide.edu.au gularities in the gauge field, occurs either due to cancella-
"Email address: nedelko@thsund.jinr.ru tions between derivative and commutator parts in the field

0556-2821/2001/64.1)/11402%20)/$20.00 64 114025-1 ©2001 The American Physical Society



ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025

strength if the singularity is topologically nontrivigmono- R and approximate the mean field W by a covariantly
pole or vortex or due to finiteness of both terms separatelyconstant(anti-)self-dual configuration with the field strength
for topologically trivial configurationgdomain wallg. How-
ever this cancellation of singularities in the action density o o ,
can be destroyed by unconstrained fluctuations around the 323,:“(])5%, Bﬁj)ftBﬂ)V,
singular fields. Thus finiteness of the action implies specific
constraints on fluctuations. In R¢fL8] an example of this is o o
considered in detail for Polyakov gauge monopoles. B))BU)=B25,,, nl=t%cos+t8sing,
We formulate a model partition function which incorpo-
rates singularities in gauge fields effectively via their restric-
tive effect on fluctuations. We assume that singularities are & e{(2k+1)m/6}p_, 4
present in general in gauge potentials, and in their vicinity
one can divide an arbitrary fiel4, into singularSand regu-

lar Q parts: where the parametdé®=const is the same for all domains

and the constant matrilxj"ta belongs to the Cartan subalge-
AZ(X):Si(X)“LQZ(X)- (1) bra, the generatprsa being in the' fundamental representa-
tion. Note that since the mean field represents an effect of
fluctuations outside the domain there is no source for this
field on the boundary and therefore it should be treated as
strictly homogeneous in all further calculations. The homo-
geneity itself appears as a simplifying approximation. Be-
cause of the uniformitfon averagg of the system outside
@) the domain, slowly varying fields should be taken into ac-
count first of all, with leading contributions to this coming
This can be realized in two ways. If E() is satisfied via a frfom (éovangntly.cr?nstgnt f_|elds msufjie ‘?‘”d I?Tjth? ?olténdary
cancellation between derivative and commutator parts theﬁ. a domain, with a dominance d ”“')S¢ -aual Tielas,
since they are expected to have lower action derig®20

the singularity inS is topologically non-trivial and non- ; ' ;
Abelian. If the two parts separately vanish then the singular'-[han arbitrary constant fieldsee also the Ginsburg-Landau

ity is topologically trivial. The gauge potenti&lis then Abe- type consideration in Appendix B, where the appearance of a

lian, namely a constant unit color vectat can be associated discrete set of valueg; IS 'also mot!vate)j
with the fieldS The model for a partition function that we postulate and

. , then use for calculations describes a statistical system of fi-
To be explicit, at the cost of generality, we shall take the _. L . .
nite densityo ~~=N/V composed ofN—-c noninteracting

second of these possibilities and further assume that singu- herical reqions in a total Euclidean voluMesw each of
larities in vector potentials are concentrated on hypersurfacev%ﬁ“ch ” chgracterized by a set of internal parémeters with
5.\/1 (le’ " N) in Eu<_:I|dean space'o'f volume, in the random values: the angle; between chromoelectric and
vicinity of which gauge fields can be divided as above into a L ] =

. ) . chromomagnetic fields, spherical angles and 6; of the
sum of a singular pure gau@j and regular fluctuation part o ) -
QY. with a color vectom? associated witt5%). For such chromomagnetic field, the angl in the color matrixn;,
fields to have finite action the fluctuations charged with re-Ch'ra!'Fy violating angleaj_ entering the ferr_momc boundary
spect ton; must obey specific conditions atV;. The inte- condmon.and the coordinatg; of "_’1 dof‘”a”?- Clgsters_are
riors of these regions thus constitute “domaing]. De- ~ characterized also by the fluctuation fiel@d,, ' and ¢/

manding finiteness of the classical action density, one arrivegatisfying boundary conditiong3), whose dynamics is
at driven by the QCD Lagrangian in the presence of the mean
field. The propagators of fluctuation fields for a given back-
v () _ s gidia T ja—ia round and boundary condition can be found analytically.
Q. =0, ¥= ey, g=yiglens, @ '?’hus this partition fuzction offers a systematic presgriptio):]

] o . ) ~ for calculation of the correlation functions, based on a de-
for xe 9V, with the adjoint matrixn;=T?nf in the condi-  composition over fluctuations and taking the mean field into
tion for gluons, and a bag-like boundary condition for account explicitly. Such a treatment of fluctuations as pertur-
quarks, 7,,(x) being a unit vector normal teV;. bations of a certain background field is sensible only if the

Equations(3) indicate that gauge modes neutral with re- essential features of the system can be seen in the lowest
spect ton}"1 are not restricted and provide for interactions orders of the decompositigiat least semi-quantitativelyln
between domains. In a given domaifj the effect of fluc-  other words one has to verify whether such basic phenomena
tuations in the rest of the system is manifested by an externals confinement and spontaneous chiral symmetry breaking
gauge fieIoB]f"M neutral with respect toja. This motivates an  are provided by the domain-structured mean field and bound-
approximation in which domains are treated as decoupledry conditions under consideration.
but, simultaneously, with a compensating mean field intro- In the zeroth order of the expansion we shall find that the
duced in their interiors. The model becomes analyticallygluon condensate, topological susceptibijtyand the string
tractable if we consider spherical domains with fixed radiusconstants for color groupSU(3) take the compact form

In order that.4 generates finite action, it must be “close
enough” to a pure gauge configuration in the vicinity of the
singularity, meaning thdtQ,S]=0 and that the field strength
for pure gauges vanishes:

Su,=9,5,—4d,S,+ig9[S,,S,]=0.
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B4R* tion. Information about these aspects is contained in the
g% (F5,(0F3 (X)) =4B?, X= 1282’ o=Bf(7BR?), quark and gluon Green’s functions, in particular in their
propagators. It is shown that, as expected, the Dirichlet
> V3 [223dx boundary condition removes gluon zero modes, and the
f(z)= _( 3—— —sinx propagator in this problem is well defined, unlike the analo-
3z 2z)o X gous problem in the infinite volume. Both propagators have
2\/§ v 3dx support in the interior of the hypersphere, where they have
_Sve e —sinx), the usual ultraviolet singularity. Thus at short distances the
zZ Jo X propagators have standard perturbative form plus power cor-

rections. The singularity in the configuration representation
while the quark condensate density at the domain centepf propagators is integrable and their Fourier transforms ex-
calculated in the lowest nonvanishing order over quarkst, so that in momentum space the propagators are entire
fields, reads analytical functions due to their compact support. This we
regard as a manifestation of the confinement of dynamical
fields.

The paper is organized as follows. In Sec. Il the boundary
conditions are discussed and the model partition function is
dte2t—zcotit—1)/2 defined. We consider properties of the ensemble of mean

. (cotht—1), fields in Sec. Il and estimate the lowest dimension gluon
sintPt condensate, the topological susceptibility, the string constant
and the quark condensate in the lowest nonvanishing order in
q=B’R"/16, fluctuation fields. Gluon and ghost propagators are calculated

. ) in Sec. IV and their analytical properties are discussed. In
whereq is the absolute value of the topological charge assogg. v/ we give an outline of the problems remaining to be

ciated with a single domain. . _ solved and possible perspectives. The Appendixes contain
To gain numerical estimates of these quantities we fixeQyme technical and illustrative material.

the mean field strength parametiand domain radiuf to

(ppy=— d )[ZF(BRZ/Z\/§)+F(BR2/\/§)]

2m°R3(1+q

2

Z o0
F(z)=e*—z—1+ —J

4Jo

fit the known value of the string tension, Il. THE PARTITION FUNCTION
JB=947 MeV, R 1=760 MeV, (5) In this section we formulate a partition function which
will be used in subsequent sections for modelling the QCD
which leads to the values partition function in the presence of clustered background
fields. It should be clear from the very beginning that we will
(as/m)(F?)=0.081 GeV, Jr=420 MeV, not derive the model to be considered from the original QCD
o functional integral. The mathematically accurate framework
x=(197 MeV)*, (yy)=—(228 MeV)®, for such a derivation, a self-consistent mean field approxima-

(6)  tion requiring calculation of the effective action of QCD as a

_ _ B N 4 functional of the mean field and characteristic functions of
with domain charge=0.15 and density ~*=42.3 fm *.  he domains, is yet to be formulated. The best that can be
This estimation shows a high density of clusters and stronggne at this stage is to identify several ingredients of the
background fields in the system, with _confinement of Statiqormalism required for motivating the model within QCD,
charges and spontaneously broken chiral symmetry. There [systylate the model partition function, and then look for sig-
no separation of scales characterizing the syst¢BR~1.  natures of justificatiom posteriorj by means of explicit cal-
The qualitative picture as well as numerical values obtaine@|ations.

indicate consistency of the gross features of the model. Cjystered structure of the gauge fields is introduced by the

These results suggest that formation of clusters, predomjyroposition that singular configurations may not be excluded
nantly (anti-)self-dual and with average sizeR20.5 fm, a4 hocfrom the functional space of integration; rather the
can have a purely quantum origin whose explanation coul@haracter of singularities should be restricted by the natural
r_equire reference to the existence of obstructions in gaugeequirement that the classical action density for a gitian
fixing. ) general, singularconfiguration has to be finite.

It should be noted that the physical content of the above e assume that in the vicinity of a singularity an arbitrary
numbers can differ from other approaches. For instance thg,on field A4 can be divided as in Eqgl), (2), A%(x)
QCD sum-rule§21] determination of the gluon condensate —S%(x)+Q2(x), with Q a regular field ands the singular
is not exactly comparable to ours, since in our case correcﬁurg gaugeMpart
tions of orderO(as) and higher contain nonperturbative in- ’
formation via explicit dependence of quark and gluon propa- . 1 . i0f0 7 _sara
gators on the mean field. S#(x):G[a#U(x)]U (x), U =e97, f=f

Moreover, the above parameters only give a characteriza-
tion of the “bulk” properties of the theory and say little The field strength corresponding@ vanishes. In this paper
about confinement of dynamical color modes and hadronizawve will consider Abelian singular configurations
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,5,-4,5,=18,.5,]=0. nQ,=0 for xedV;, (8)

This can be implemented via while quark fields should satisfy the condition given in Eq.
(3). Equation(8) means that the modes of the gluon field
longitudinal to the color vectomJa are not restricted, so it is
convenient to decompose gluon fluctuations inside the region
V; into transverse and longitudinal parts with respeah;”to
where each of the function$; is singular on a three-

N
fzz ﬁ]fJ(X), ﬁjZCOI’]St, [5M,0"V]fj()():0, [ﬁj,ﬁk]ZO,
=1

dimensional boundaryV; of the (four-dimensional region QZ=ALa+ n?BL, anZjEO,
V:, while the matrices belong to the Cartan subalgebra of _
| ametri Al2=0  for xe V., 9
SU(3) and can be parametrized by ) or xe dV;. )
ﬁj=t3cos§j+tgsin§j , 0=¢<2m. The separation in Eq1) into singular and regular parts im-

poses certain restrictions on the gauge transformations if the
The boundaries of the densely packed regidpsecessarily ~ original and transformed field® are subject to the same
intersect each other and, for instance, color orientation assgoundary conditions. To determine these restrictions it is suf-
ciated with the boundary becomes ambiguous in the intersedicient to consider the infinitesimal transformation
tion regions. Strictly speaking, this means that the Abelian

singular fields should be accompanied by topologically non-  Su+Qu—S,+Qu+dQ,,
trivial vortexlike configurations, such that the three- a 2 eabe b c .
dimensional “domain wall”(a topologically trivial objedt 0Q;,= 0,0 = 13w (n°B, +AL+S,), (10

should start and finish at the two-dimensional singular sur- _ . .
faces, corresponding to a type of dislocation. A completefrom Wh'?h we conclude that gauge functions should satisfy
picture would include the whole hierarchy of singular fields: "€ conditions

domain walls, vortices, monopoles and instantons. It is hard
to formulate a complete approach in a precise way. A quali-
tative discussion of this aspect of domain-like structures can
be found in Ref[22]. Even if we neglect the effects of “dis-

locations” on the boundariegV;, a self-consistent consid- The lonaitudinal functi d not b tricted. Th
eration is still a complicated problem. However, in this case € ‘ongitudinal Tunctionsw; need not be restricted. 1he

one can get some idea about features of the required forma"f—Ondition Eq.(_ll) dictates that gauge fixing for the fields
ism by means of an artificial example—QED in the presenc _hould be achieved by means of restricted gauge transforma-

of the singular background fields, considered in Appendix A.'O1S: - - . .

The Iinea?ity of elecgt]rodynamics enables a formalpglefinition The original conditions Eqs{S) ShO\.N that the Interaction

of the free energyeffective actiof as a functional of a back- of qL_Jark and glgon f]uctuatlons within theth region with
ground field and characteristic functions of clusters, and thug1e f|elql fluctuations in the res_t of the §ystem can _be Seen as
relegates the question about formation of clusters in a typic«':ftCOUpl'n(‘:J tp ex_terngl gauge fields which are angltudlnal o
gauge field configuration to a competition between energy€ color directionn; of the boundarydV, . This feature
and entropy. In the case of an Abelian weakly interactingmouv_ates an approximative treatment of the partition func-
theory one hardly expects domain formation. On the contrar{ion in which clusters are treated as decoupled but, by way
in non-Abelian strongly interacting theory singular fields are®f compensation, a mean field is introduced in their interior.
most probably unavoidable, but unlike QED a straightfor—A self-con_S|stent_mean field approach requires caICL_JIatlon of
ward formulation is a difficult task. the effective action as a functional of the mean field and

First of all we should determine the appropriate boundanfharacteristic functions of the domains. Its minima would
conditions for the fluctuation fields about the singular figld contain information about mean field character, shape and

for finiteness of the action density. Substituting Efj. into ~ YPical domain size. , , ,
the QCD Lagrangian, we obtain Here we assume that the effective action favors formation

of clusters with typical sizeR and nonzero mean field. In
1 _ L Appendix B it is shown that with this and an arbitrary con-
Locp=— ZQ‘ZVQzﬁ Ylib—m+gD+gBly stant mean field the effective action for a domain exhibits
twelve degenerate discrete minima corresponding to

a_na.,. ja pa ja_
o®=njwjt o, Njoy 0,

9,02 =w?=0 for xedV;. (12)

ig . . 9° ..., , (anti-)self-dual configurations and six valuger SU(3)] of
+ fQ‘;V[SibQS—Sisz]— 3[(52)bb QY the angle¢ associated with the Weyl group. There is also a
degeneracy in the orientation of the chromomagnetic field.
— (VS#VSV)bb,QZQB’], (7)  The valuegy= /6 is specific for an ansatz with the effective

action polynomial in TB¥, but the periodm/3 is universal.
and Qf‘w is the usual field strength tensor for the fluctuationSince the volume of the domain is finite the degenerate
field. We see from Eq(7) that conditions on the gluon field minima do not correspond to thermodynamical phases and
arise have to be summed in the partition function.

114025-4
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The partition function for the model is defined as this we have to compute vacuum expectation values of a
N number of basic quantities omitting integration over fluctua-

s d*z i — tion fields. Thus we will calculate-point connected correla-
Z_Nl\'m |H1 vV zdai ]__iQDQ fiwp'ﬂip‘ﬁi tors of field strength and thereby the corresponding gluon

condensates, string constant and topological susceptibility.
X 5[D(B(i))Q(i)]AFP[B(i)yQ(i)]e_SSiCD[Q(i)+B(i)’(’b(i)’g(i)],
12

A. Mean field correlators

A straightforward application of Eq.12) to the vacuum
where the thermodynamic limit assumésN—oc with the  expectation value of a product of field strength tensors,
densityo ~1=N/V taken finite. The fieldQ®, y; andy; are  €ach of the form
subject to boundary conditions E@), in which the original N
sing_ularities are effectively encoded. Interaction between the B2 (x)= 2 nag) 0(1— (x—2)%R?),
original domains is substituted by the mean field. A back- d ] mr !
ground gauge condition is imposed. The Faddeev-Popov de-
terminant should be calculated on a restricted space of fun@ives for the connected-point correlation function
tions consistent with Eq11), which can be implemented in a a

(B}, (X1) ... By, (Xn)

the form of an integral over ghost fieldgja(,h?") subject to Hyvy

the boundary condition N q
z . . . .
=i e} nia (Ha,g i) (i)
im S [ [ don0e i), BY,

njh;=0 for xedV;. (13) VNoos ]
The integration measuro; is X O(1— (%= 2)2IR?) ... 0(1—(X,—2j)?/R?)
1 [(om 20 - =BNt% % B (X1, ... Xn), 15
f dO'i .= f daif d(,D,f dﬁ, sin Hi F LSRR Hn¥n n( ! n) ( )
s 487%J)o 0 0 o .
where the tensoris given by the integral
T 2

X | doj S(w;—mk f dé

fo wlkzzo,l (wi=mk) | d& 2.2 =f don®a . pMag) B()

HqVyn e MnVn J e Mqvy T T !
5

X, 5( &—(2l +1)Z) ce (14)  and can be calculated explicitly using the measure,(E4).

I=0 6 This tensor vanishes for odd In particular, the integral over

. spatial directions is defined by the generating formula
Here ¢; and 6; are the spherical angles of the chromomag- P y 9 g

netic field, w; is the angle between the chromomagnetic and 1 (2a - 0
chromoelectric fieldsg, is the angle in the color matrix; , g B do; fo dé;sin g;e'Curur
«a; is the chiral angle and; is the center of the domaix;,
with the boundary _sin\/ZBZ[JWJWtjMJW] "
2 2 -
X—z)“=R". =
(x=z)) V2B23,,3,,%3,,9,.]

i Th(fe (|joart|t.|ton7flunct|on Eqélzz despr;bes ? Staﬁ'St'C"’ll shys-. where the plus and minus corresponcBlgg), being self-dual
em ot density = composed of noninteracting NyPErspnert- . i self-dual. The translation-invariant function
cal clusters, each of which is characterized by a set of inter-

nal parameters and whose internal dynamics are represented 1
by the fluctuation fields. Correlation functions can be calcu- EnXq, oo Xp)= —f d*zo(1—(x,—2)%IR?) . ..
lated taking the mean field into account explicitly and de- v
composing over the fluctuations. First of all we consider X 6(1— (x,—2)4/R?) (17
vacuum characteristics of the system to zeroth order in this
expansion. can be seen as the volume of the region of overlam of
hyperspheres of radiuR and centersxy, ... X,), normal-
lll. VACUUM PROPERTIES TO LOWEST ORDER IN ized to the volume of a single hypersphere 7*R*/2,
FLUCTUATIONS
E,=1, for x;=...=Xx,.

The above prescribed perturbative treatment of fluctua-
tions means in particular that they cannot change vacuurit is obvious from this geometrical interpretation ti&j is a
properties of the system. Thus our immediate task is to testontinuous function and vanishes if the distance between any
whether the mean field itself reproduces the main nonpertutwo points|x; —x;| =2R; correlations in the background field
bative characteristics of the pure gluonic vacuum. To achievbave finite range R. The Fourier transform d& , is then an

114025-5
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entire analytical function and thus correlations do not havas determined by the two-point correlator of topological

particle interpretation. It should be stressed that the statisticalharge density, which in the lowest approximation reads

ensemble of background fields is not Gaussian since all con-

nected correlators are independent of each other and cannot —_

be reduced to the two-pointpcorrelations. (QMIR(Y))= WEZ(X_V)' (2D
As a simplest application of the above correlators we get

a gluon condensate density which to this approximation is and we get

4

g% (F2,(X)F5 (X)) =4B2 (18 B*R*
X~ 1282 (22
Note that the coupling constant is absorbed into the gauge
field.
C. Area law for the Wilson loop
B. Topological charge and susceptibility In the same mean field approximation the Wilson loop is
Another vacuum parameter which plays a significant role? V&" by the integral
in the resolution of theJ,(1) problem is the topological N d*z. 1
susceptibility[23—25. To define this we consider first the W(L)= lim H T’f do; N—Tr
topological charge density for the color gro8pJ(3), VN—o J=1JV c
9> - , 5
Q(x)=WF‘ZV(x)Fiv(X), xXex ILLda,W(X)BW(X) :
which in the mean field approximation takes the form where the measuréo; corresponds to an integral over the
set of parameters
B2 M
Q)= g, 22, o[1-(x~z)*R*Jcosw;, (19 {Zc. b, ox Eidi=r

of the field strength
where w; € {0,7} depending on the duality of theth do- g

main. We thus see that the topological charge density is con- ~ . .
stant in each domain, and the sign of this constant is uncor- B,.,(x)=2> nWBKa1-(x—2)%R?).
related. For a given field configuration then the topological k

charge is additive Note that path ordering in our case is not necessary since the

matricesn®® are assumed to be in the Cartan subalgebra.
sz d*xQ(x)=q(N.—N_), qgq=B2R%186, Strictly speaking the contou$, around which the path-

v ordered exponential is integrated should be a rectangle
whose Euclidean-time length should be taken arbitrarily
large before the spatial length. It is for such a contour that
one has a strict interpretation of the behavior of the exponent
in terms of a static potentidR6,27. However the expecta-
tion that there be an area law is not dependent on the specific
geometry of the contour. In view of the rotational properties
of our approximation to the vacuum fields, it is computation-
ally more convenient to consider @rcular contour in the
(X3,X4) plane of radiud with the center at the origin. If an
v N area law is established, as will be the case, the numerical
Pn(Q)= n(Q) : value of the resulting string constant would not be precisely

—Ng=Q=Ngq

whereq is a “unit” topological charge, namely the absolute
value of the topological charge of a single domain, &hd
(N_) is the number of domains witfanti-)self-dual field,
N=N_,+N_. With a fixed total number of domainy the
probability of finding the topological charg® in a given
configuration is given by the distribution

My 2N(N2—Qr2g)! (N/2+ Q/2q)! that corresponding to a rectangular contour. However due to
the fact that the loop must be taken large in order to extract
where NVy(Q) is the number of configurations with a given the potential, the difference between a circle and a rectangle
charge andVy is the total number of configurations. The should not lead to radically different values of the string
distribution is symmetric abou®=0, where it has a maxi- constant.

mum for N even. ForN odd the maximum is a®= +q. We To illustrate the steps in the calculation while avoiding
conclude that the topological charge averaged over the elgumbersome formulas we consider here the case of color
semble of clusters vanishes. groupSU(2). Thedetails ofSU(3) will be given in Appen-
The topological susceptibility dix C, though the final result will be quoted below. For color
SU(2) we have
X:j d*x(Q(x)Q(0)) (20) A= gkry k= =1,
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The thermodynamic limit {,N—«) assumes that the sub- »-pr2dX )

202 2
volume U(L)= 1- f —smx
(L) v ( 27713R2
v=VIN=m?R*2

w4 1 m?(1—cos 2rBR?)
i : . +—|zRL+ R -
is fixed. Calculation of the trace in color space leads to the v \3 2 v(27B)?
result
47°L >7BR2 m?L* [Rr2/L2
1 _ . ok +—3/sz2 PR dx sinx?— f ds
ETreX%IfSLdO-MV(X)BMV(X)] :cos(Ek € BELzJM,,(zk)), v(27B)¥?Jo 0
y f(1+\§)2dtsin{BL2[2<p—singo+s(2w—sinzp)]}
h h : :
where we have denoted (192 BLZ 20— sinp+s(2¢—sing)]
J,w(zk)=f do,,(X)0(1—(x—-2)%R%. (23 ¢ t—s+1 ¢ t+s—1
S c0S;= ———, COSs=——, (26)
2 2\t 2 2 st
Using the properties of the measure of integration over the
collective coordinates one gets where the thermodynamic limit N,V—o,0=V/N
=72R*?2) has been taken. One can check thdi)=0
) 803,z whenB—0, as it should.
W(L)=VI'me do -—(e g In the limit of large Wilson loof.> R the behavior of the
o first four terms inU (L) can be determined by inspection. For
() N the last term a slightly more involved calculation gives the
+e Budw(@)| large L behavior
) ] 214 rp2p 2 )2
We have exploited here the property that the integral over — fR - dsJ(1+ 9 dt
collective variables does not depend on the infekXs the v o Jo 19?2
contour of the Wilson loop is in thexg,X,)-plane, the only ) 2 , ,
nonzero components df,, are Xsm{BL [2¢—sing+s(2y—siny)]}
BLY[2¢—sing+s(2y—siny)]
Js4=—J43(Z)=f dxzdx,0(1—(x—2)%/R?), (24 8m2LR3
S, ~—

3v

and . . . . .
with corrections coming aP(R*). Thus only the first term in

_ _ _ U(L), going likeL?, displays an area dependence. The final
B, J,..(2)=2B 2)=2E3J,4(2)=2BJ,4(z)C0S0, . )
prd(2) 4sa(2) 3)4d2) 4d2) (25)  result for the string constant f@U(2) is

— O 2
where# is the angle between the chromoelectric fiElénd W(L)=e o™ +0M) 5=Bf(7BR?),
the third coordinate axis. Now we can calculate the integral
over the spatial orientations of the vacuum field 2 2z dx
f(z)= > 1—2 Tsmx .

B0 V(z-):ifzw j” in 9. a2iBJ0s0
j doj€uur 47 Jo dé odal sing;e : For the case 08U(3), asshown in Appendix C, the function

. f(z) turns out to be
_ sin2BJy3(z))

T 2Bl(z) \/_ 223dx 23 (z@dx
f(z)— —smx—— —sinx|.
] 3z\° 2z Z Jo X
and the Wilson loop takes the form (27)
WL = i 1 sin2BJg2)|" It is positive forz>0 and has a maximum fa= 1.557. We
( )_N v VIV 2BI2) choose this maximum to estimate the model parameters by
’ fitting the string constant to the lattice result,
Calculating the integral over we obtain finall
uiating the integral overw n finatly JB=947 MeV, R"1=760 MeV, 28)
N
W(L)= lim [1_ EU(L) -u(L) with unit chargeq=0.15, densityy "'=42.3 fm * and the
N “observable” gluonic parameters of the vacuum
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\/;: 420 MeV, y=(197 Mev)A D. Quark condensate density at domain center

A complete consideration of the fermionic eigen-problem

for the background field and boundary conditions under con-

(as/q-,)<|:2>:o_081 GeVf. (29 sideration will be given in a separate work. However to com-
plete the picture of vacuum properties in the model, we es-
timate here the quark condensate density at the domain

The high density ensures area law dominance already at di§€nter. . _
tances 2 ~1.5-2 fm. A complete calculation of the quark condensate in the

The result for the gluon condensate is larger than the modpwest nonvanishing order over fluctuations requires solution
recent estimate within QCD sum rulg28]. As already men- of the equations

tioned, our value is not directly comparable to sum-rule re- (D —m)S(X,y) = — 8(X,y), (30)
sults due to differences in the content@f«) corrections.

What appears to be important is that all these quantities are j#(x)e'*"sS(x,y)=—S(x,y), (x—z)>=R? (31
nonzero, and their values can be fit to the expected numbers ‘

simultaneously. S(x,y)ih(y)e '¥s=5(x,y), (y—2)°=R? (32

Obviously, if B goes to zero then the string constant van- . )
ishes. This underscores the role of the gluon condensate #nere 7,(X)=(x=2),,/[x=2, andD,, is the covariant de-
the confinement of static charges. On the other hand we cdivative in the fundamental representation,
also see that if the number of domains is fixed and the ther-
modynamic limit is defined asV,R— o~ ,N=consk», Dﬂzaﬂ—iéﬂzafr
namely if the clusters are macroscopically large, tiéfi) 2
=1, which indicates the absence of a linear potential be-S —

e . ubstituting

tween statig(infinitely heavy charges in a purely homoge-
neous field. However this does not mean that heavy quarks s (ip +m)[P.H,+ PO, H.1+P-0_H_,], (33
(mg>B) are not confined if domains are macroscopically
large. As is shown in Ref29], the nonrelativistic potential is into Eq. (30) where
guadratic in the distance between heavy quarks with the co-

nB,.X, .

efficient proportional tang*. O.=N 3. +N_Z,
Since we have integrated over background fields exactly
the role of a finite range of correlation functions is hidden in _ } T
, ! e N.=(1=n/[n]),
the above calculation. In order to see this role explicitly one 2

would need to decompose the integrand into an infinite series
and integrate term by term. At this step all correlation func-
tions of the background field up to infinite order would be .=
manifest. The arguments of Ref80] about the crucial im-
portance of a fast decay of correlators for confinement ognd B=|n|B, shows that the scalar functiontg,, with ¢
static charges would be seen to apply here via this represen- + 1, should satisfy the equations:
tation.

A comment on the values of the parametBrand B ap- (—D2+m2+ 25@)7{5: S(X,Y). (34)
pearing in our estimation is in order. We observe that there is
no separation of the two scales characterizing the vacuunWe note that if solutions vanishing at infinity were sought,
The average strength of vacuum fielBsand the average then the Green functio{_; would be divergent in the
domain sizeR, are comparable to each othglBR~1. Nei-  massless limit due to the contribution of zero modes of the
ther large domains nor stochasticity of background fields ar®irac operator in the presence of tfenti-)self-dual homo-
seen here which posteriorijustifies the mean field averag- geneous field. The present bag-like boundary conditions re-
ing prescription in the partition function. This prescription move zero eigen-values from the spectrum, and the massless
corresponds to a system less ordered than, for instance,limit is regular. Due to averaging over self- and anti-self-dual
spin glass. Nor does the partition function represent a hetconfigurations and all possible values of anglén the par-
erophase mixture[31], since the condition for quasi- tition function, chiral symmetry is not broken explicitly.
equilibrium is not satisfied: one may not think of these clus-However, as we show below, a nonzero quark condensate
ters as droplets of different thermodynamic phases as thegrises in the massless limit due to an interplay of random
are too small and too transient compared to the basic scale distribution of the domains with self- and anti-self-dual field
interactions determined in this picture by the gluon condenand the boundary conditions with the random value of the
sate value. The mean field in the clusters is singled out nathirality violating anglec.
due to a hierarchy of scales, but due to certain specific prop- In order to avoid cumbersome calculations and expose the
erties: the(anti-)self-duality, and the Abelian character if dis- role of the former zero modes in a transparent way we turn to
locations at the boundaries are neglected. Homogeneity dhe particular choices=z=0 and calculate the value of the
the background field appears as an approximation. guark condensate at the center of the domain. In this case the

>

(1=3B/B),

N[ =
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functions H, can depend only orx,, B,,x, and 7,
=x,,//x?, and hence are functions af only, and the gen-
eral solutions for scalar Green’s functions take the form

PHYSICAL REVIEW D64 114025

whereq is the topological charge associated with a domain,
and thus af-term is generated effectively by the quark de-
terminant. After averaging ovet we get a finite value for

the condensate at the center of the domain
He=A0C )+ C (O ),
2 N q A R2
whereu,=m®/2B+¢{, and () R ) % F(BR?/2).
(x| ) =e BIAM(1+ 1,2 BX2/2). _
Numerically this is equal tq¢y)=—(228 MeV)® for B
Here A(x?| ) is the vanishing at infinity scalar propagator andR fixed by the string constant as in E@8).
with mass By in the homogeneousanti-)self-dual field and
® is a solution to the homogeneous equation regular®at
=0, expressed in terms of the confluent hypergeometric i i ) _
function. The constant€, can be used to fit the boundary In order to study in more detail the influence of domain
condition. Terms with, and 4, , are regular in the mass- structure and the mean field on the properties of the dynami-

less limit and cannot contribute to the trace of the quarkc@ duarks and gluons we have to find their propagators.

IV. PROPAGATORS IN THE PRESENCE OF DOMAINS

propagator. Thus we concentrate on the téffn,. Using
identities

¥,B X, P:3 . =iBXP.3

'y’uB X P;E_z_iBXPIE_,

mp”p

They can be analytically calculated by reduction to the scalar
problem, essentially that of a four-dimensional harmonic os-
cillator with total angular momentum coupled to the external
field. The general solution is given by decomposition over
hyperspherical harmonics. In the following section we
present the exact solution for the scalar propagator, though
with most derivations relegated to Appendixes D and E. With

one can show that the boundary condition is satisfied if the scalar result we derive propagators for ghost and g|u0n

the boundary
2e"*mH_,=—2H' ,—BR*H_,,
which implies that in the massless lin@t_; takes the form

éZ eiia

C_,= F(BR%2)+0(1),

- +
47°m?  27°R°m

mdteth z(cotht—1)/2

Z2
F(z)=e*-—z—1+ Zf (cotht—1).

0 sinkft

Moreover the singular terms cancel i+ _; and

*ia

lim mH_,(x,0)= F(BRY2)e B (35
lim 1(x,0) 2772R3( ) (39
and thus,
*ia .
TrS(0,0= —— >, F(BR?/2). (36)
S 2772R3% (

fluctuations in an externdhnti-)self-dual field with Dirichlet
boundary conditions imposed on the fluctuations on a hyper-
spherical surface.

A. Scalar propagator

The problem to be solved is given by the scalar Green’s
function equation

[(9,— B )%= M2IG(x,X' | ) = = 8 (x—x),

1

BM=—§

B, X

Y72 %400 )

B,.B.,=B?%5,,, (37

with the homogeneous Dirichlet boundary condition
G(X, X' | ) y2=r2=G(X,X' | ) xr2=g2=0,

whereR is the radius of a hypersphere centered at the origin
and u= M 2/2B.

We present first the solution to the corresponding eigen-
value problem:

—[(9,=1BL)?= M1y =\, .

It should be noted that the part of the propagator responsible
for the nonzero trace, Eq35), is proportional to the zero One may choos8,,, such that

mode of the Dirac operator
iDP.O_e 8=,

Now we have to average E(36) over domain configu-

rations taking into account the quark determinant. Accordin

to [32] the a-dependence of the quark determinant is

el ~ .
exp{sZsz dXBM,,BM,,a(l—XZ/RZ) =exp{=iqa}

834:E, B]_z:B, —B$E$B

A representation of the eigenfunctions in terms of a complete
orthonormalized set of eigenfunctions of the four-

qc:imensional Laplace operator is achieved in the following

yperspherical coordinate systdsee for examplg,33])
X1=T sin 7 cos¢

Xo=T sin7n sing

114025-9
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X3=T COS7 COSY stance[35], exploiting the above hyperspherical representa-

tion. The derivation is given in Appendix E but it consists of

X4=T COS7 Siny. (39 essentially two steps. First we exploit completeness of the

angular eigenfunctions in order to reduce the four dimen-

The angular eigenfunctions are sional problem to a one-dimensional Sturm-Liouville prob-
B - L My — MMy Mg 1T lem with a known exact solution for the radial dependence.
Cumm, (7, ¢, x)=(—1)MT2(2m)~"0, (7) Second we add a solution to the homogeneous equation with
a coefficient selected to implement the above boundary con-

X expi[ (my—my,) x+(my+m,)¢] dition.

Using the solution to the eigenvalue equation with O,
one gets independent solutions for the homogeneous equa-
(—1)7Ncod~ TSt iy s, tion. In the notatllo'n of34], t.he. two solutiongrespectively
regular at the origin and at infinityare

Ok S ()=2(k+1)(k—r)! (k—5)!r!s!

>

i=o (k=r=s+n)Inl(r=n)!(s—n)!’

_ ka—Br?a ‘Ry2
(r.s=01, .. K. Ri(rlk,nyq,u)=r"e M(ny 1+ p,k+2;Br?/2)
wherek,m;,m, are respectively the orbital angular momen- Rz(r|k,n2'l,,u):rke’BrZMU(nzyl—k w,k+2:Br?/2).
tum and the two azimuthal quantum numbers, relevant for a (42
four-dimensional hyperspherical symmetry. That @&, m,
are eigenfunctions with the said eigenvalues is proven id he Sturm-Liouville equation is satisfied by
Appendix D.

The eigenfunctions for the complete problem are a prod- R KU PR ) ,
uct of radial and angular parts, Xicny (121" [w) =B 4T (k+2) Riny (11" [w) - (42)
¢(X):f(r)ckmlm2( 7,0,%)- with

The radial equation has a solution expressed in terms of the

confluent hypergeometric function, in the notation[ 84|, Ren, (1,1 )= Ra(rlking,1, m)Ro(r
21

Ri(r'[k,np 1, m)Ra(r|K,Np g, ), r>r".

K,npq,m), r<r’

f(r)=(Br?/2)"% 8" (43
k 2\ L , o
<M §+1—m2,1+ = k+2:Br22|. In terms of these quantities, the Green'’s function is
B INGPER?))
(39) ' - _ , Pt
G(X1X |M) 4 k,mzl,mz F(k+2) Ckm1m2(77 1¢ 1X )
where the function regular at=0 is chosen for normaliz-
ability. Herem, ; should be put equal tm, for the self-dual X Cymym, (7, &, x)
field, andm, for the anti-self-dual field. It is convenient to

U(ng 1+ u,k+2;BR?/2)

denote ooy
X| Ricn, (11| ) M(n, 1+ u,k+2;BR?/2)

k
n2’1:—+1_m2,1. (40)
2 ><R1(r|k,n211,,ud)R1(r’|k,n2,1,,u) . (44)

Another independent solutigimot normalizable in our prob-
lem), which is regular at infinity and singular at the origin, The first term inside square brackets guarant®e® be a
would be obtained by replacing the functidh with the  Green’s function through the solution to the Sturm-Liouville
function U. Imposition of the Dirichlet condition at=R  equation. The coefficient in the second term is determined by
forces eigenvalues to take discrete values defined by the the boundary condition. The only singularity i@ is the
zeros ofM(a,b,z) as a function ofa at fixedb andz The  usual ultraviolet one at=x'. For more details we refer the
eigenvalues\ are strictly positive. As we will see below, the reader to Appendix D.

case ofM 2= — 2B will be met in the problem for the gluon
propagator. In this case the lowest eigenvalyes defined

B. Ghost and gluon propagators
by (k=m;=m,=0)

We work in the background gauge
M(—X\g,2;BR?/2)=0, bb
- N . Di A, =0,
and is a positive function dBR?, as can be checked.
The propagator can be found by the standard method aind use conventions for the adjoint representation of color
decomposition over hyperspherical harmonics, see for inSU(3):
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DM:aM_|ﬁBM, F]:Tana, gC:_ifabC. GVp(XlX,):(D25Vp+2inBVp)A(X|X,)' (49)
Substitution of Eq.(49) into the original Green’s function

- 6 B
n=T>cos+T°singy, &= (2k+1)7/6, equation gives

(45)
k=0,1,...,5. [—(D?)2+4n?B2]A(x,x")=8(x—X'),
B,,=NnB,,, B= \/EB. with the solution given formally by
I~ . . . 1
The color matrixn can be diagonalized by the unitary trans- 5 (x )= S(x—x'
formation (x,x") —(D?)2+4n?B? ( )
n=UnU"=diag {,,~ 1,045, ~ {5,853~ £5.0) 1 1 1

~4n[B|=D%+2[n[B° —D?—2|nB

{1=siné,  {p=(sin¢+\3cost)/2, X O(x=x"). 0

{3=(—siné+\3cosé)/2,

The two terms above are nothing but scalar propagators with

whereU = diag(W,0,W,W,0) with “mass term” M 2=+ 2|n|B. Substituting Eq(50) into Eq.
e (49) and using notation of the previous subsection for the
1 /(1 —i scalar propagator witB— |n|B and u==*1 one gets after
W= E( 1 ) (46)  simple manipulations

1
For the values of the anglé, as in Eq.(45) the {; take Gﬂv(x,x’)zan[G(x,x’ll)%-G(X,X’l—1)]
values from the setX1,+1/2). Namely, fork=0,1,2,3,4,5
respectively, the threg; are (1/2,1,1/2), (1,1/2,1/2), inB,,
(1/2-1/2-1), (-1,—1/2,1/2), (-1/2,1/2,1). The diago- +W[G(x,X’Il)—G(x,X’I—l)], (51)
nalized covariant derivative takes the form
. where only nonzero elements of the diagonal maitriare
D,=UD,U'=g,-inB,,. (47 involved. With this representation it is clear that the bound-
) . . ary condition for the gluon propagator is satisfied if the sca-
In the Feynman gauge, diagonalized equations for the ghogl; green’s functionsS(x,x’| + 1) are subject to the homo-
and gluon propagators take the form geneous Dirichlet condition independently of each other. An
explicit form is obtained via Eq(44) by substitutionB

N2 Y — !
DG(x,x") = a(x=x"), —|n|B andu=*1. This can be done straightforwardly for

(48 S e : ;
A2 . 1 — SHPS(x— %' e terms withk—m, ;>0 in the expansion over hyper-
(D78, +2InB,,,) G, (X,X") = 7 5(x=x), spherical harmonics, as is obvious from the integral repre-
with the diagonalized boundary conditions sentations of the confluent hypergeometric functi¢84]

(b>a>0)
nG,,(x,x')=0, nG(x,x")=0, for xX*=R? or x'?=R? I'(b) .
— a—1 b-a-1
wheren and the propagators are diagonal matrices in color M(a,b,z)= I'a)'(b—a) fo dteft*(1-1) '
indices. As evident above, the matrixhas two zero eigen- (52)
values and the corresponding gluon components are not re-
stricted by the above boundary condition so the equations for U(a,b,z)=
these modes are simply the free ones. These modes are thus
not confined in the model under consideration. with a=1+ 2+ k/2— my; andb=k+2, in our case. Special
The 'scalar equ_atlon for' the ghost propagator has beeE‘omment is required for the terms with=k/2—m, ;=0 in
solved in the previous section, where one should simply "®he decomposition o6 (x,x'|—1) ’
lace B—nB and put M=0. The equation for the gluon : P ! S i :
P P °q giue Using the representations E@S2) it immediately follows
propagator and the boundary condition can be further diag hat
nalized with respect to Lorentz indices and is thus reduced to
four scalar equations, each of which has a well defined solu-  |im Mm(a,b,z)=1+0(a), limU(a,b,z)=1+0(a).
tion since, as discussed above, dangerous zero modes, SO 40 a0
called chromon$19,20, do not satisfy Dirichlet conditions
and do not contribute to the Green’s function. The originalWith this and Eqs(41)—(44) one can be convinced that the
propagators are restored by the inverse transformations. singularity in the gamma-function in E¢44) ata=n,;—1
In the case of the gluon propagator one can avoid the=k/2—m; ;=0 is cancelled by the contribution coming from
second diagonalization by looking for a solution of the formthe expression in the square brackets. Thus we conclude that

l ©
= | dte#tia+nPatth
&), (0
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the gluon propagator exists. This confirms the absence of thEhis propagator is an entire function with the properties
zero modes under the imposed Dirichlet boundary condi-
tions. ~ 0y, = lo(Rp)—1
D(0)=R%4, B(ip)=——7—,

C. A comment on analytical properties

The scalar propagator EG4) which determines the ana- .1 [ 2
lytic properties of the off-diagonal components of the ghost lim D(p)_E 1= WRpcos{Rp— 4|,

and gluon propagators has compact support in the hyper-

(55

p~>oo

spherical region of radiuR in Euclidean space-time with the RD
usual ultraviolet integrable singularity at' =x. Thus the lim D(ip)=
Fourier transform of the propagator averaged over domain 2_ p \/277Rp

position, given by the integral
which indicate the standani 2 behavior for asymptotically
large Euclidean momenta, and an exponential rising in the
physical region(large energy. We intend to consider else-
(53) where detailed analytic properties of the Green'’s functions in
the present approadincluding that for fermions

G(p?)= fv d*x€P*G(x),
R

G(x—y)=v‘1j dzGx—z,y-2),
v V. CONCLUSIONS AND OPEN PROBLEMS

leads to &(p?) which is an entire analytical function inthe ~ The idea of domains in the vacuum is not a new one and
complexp? plane. Entire propagators are typical for nonlocalvarious hints and attempts at implementation of such an idea
field theories and have been interpreted as confinement @@an be found19,38—4Q. These approaches assume explic-
dynamical charged fieldgl9,36,37. Thus the presence of itly or implicitly that the boundaries of domains are popu-
domains maintains confinement of off-diagonal gluons andated by the (chromgelectric and/or (chromgmagnetic
ghosts. “charges and/or currents” which produce nonzero field
An instructive example is given by a toy calculation strength inside domains. Thus the source for the mean field
which illustrates the qualitative behavior of the Fourier trans-inside is assumed to be present on the boundary. Specific
form of propagators with compact support in a finite regionconfigurations suitable in principle for a description of such
of R*. We calculate the Fourier transform of the function ~domains are knowrisee for instanc¢38,41—44). In this
picture domains are assumed to be stable and in this sense
6(1—x%/R?) are somewhat similar to the usual domains in ferromagnets.
D(x)= T a2 The model presented in this work differs cardinally from
X this picture. The central idea that enables us to introduce and
consider domains is the observation made in REff%,1§

The calculation proceeds via the following steipehere p that the presence of singular pure gauge background fields

=IpD) imposes specific conditions on quark, ghost and gluon fluc-
B 1 (1 R _ tuations. The boundaries correspond to the locations of sin-
D(p)= —f dt\/l—tzf drre'P't gularities in the pure gauge vector potentials which by them-

T) -1 0

selves do not generate any field strength. Such boundaries
2 (1 R make their presence felt only via their impact on quantum
:_J dt~/1—t2f drr cogprt) fluctuations. The mean field inside domains appears as a col-
m™Jo 0 lective effect of quantum fluctuations, which themselves re-
main subject to certain boundary conditions. The domains
1 (R 1 (Rp are not stable in this picture, but describe a specific class of
:Bfo erl(pr):_zfo dxJy(x) field fluctuations in the system. Within this model all the
P fundamental features of the QCD vacuum—gluon condensa-
2 tion, topological susceptibility, confinement of static and dy-
= _2 E Jows2(RP) namical charges and a non-zero quark condensate—emerge
k=0 in a transparent and simple way.
So far we have discussed this mechanism in a purely

1—-Jo(Rp) qualitative manner and the relationship of the model with
= (54)  real QCD has to be clarified. It should be recalled that our
P motivation skipped over two points, both requiring more for-

mal justification. In the first step we prescribed a particular
way of dealing with singular pure gauges and thus the QCD
functional integral incorporated densely packed interacting
_ domains. In the second step we replaced this integral by a

Jo(2)+2 Jo(z)=1.
o(2) E 2(2) model partition function describing decoupled hyperspheri-

where we have used the identity

114025-12



CONFINEMENT AND CHIRAL SYMMETRY BREAKING . .. PHYSICAL REVIEW D64 114025
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problem of verification of both steps remains open. In pargrateful to Frieder Lenz for fruitful discussions, critical com-
ticular, a possible relationship between this kind of domainments and suggestions. Garii Efimov, Andreas Schreiber,
formation via singular pure gauges and the Gribov problenGerald Dunne, Jan Pawlowskii and Lorentz von Smekal are
has yet to be understood. also thanked for numerous constructive discussions, as well

Concerning phenomenological applications, a completas Max Lohe for tips in dealing with the hyperspherical
solution to the fermionic eigenvalue problem would imme-eigenfunctions.
diately enable clarification of the connection between the
picture of spontaneous chiral symmetry breaking in this  AppENDIX A: QUANTUM ELECTRODYNAMICS
model and the Banks-Casher relatid].

With quark and gluon propagators in the mean field de- The purpose of the following is to illustrate how the ef-
tailed applications to hadron physics are accessible. The méective action as a functional of the mean field and charac-
son spectrum, for example, can be computed via a bosonizégeristic functions can be defined formally in the Abelian case.
tion procedure as applied 87,45 or via Bethe-Salpeter Consider QED
equations. Entire quark and gluon propagators are expected
to give rise to the Regge character of the spectrum of rela-
tivistic bound state$45,46.

In this context theJ ,(1) problem can be also addressed.
Preliminary estimations show that due to nonzero topological
susceptibility the pseudoscalar correlators in the isovectdin the presence of an external pure gauge singular field of the
and isoscalar channels are different in the massless limit arf@rm
strong splitting between the masses of fleand = mesons
is expected. Alternately, the anomalous Ward identitj/23} N
could be studied order by order in the decomposition over
fluctuation fields. The fact that for the pure glue theory a SM:; Iufi(x),
reasonable value for the topological susceptibility is obtained
simultaneous with a non-zero quark condensate is encouragrere the functions; have topologically trivial singularities
ing in this respect. on hypersurfacegV; and are assumed to be not Fourier

It would be tempting to look for the present picture in transformable. Gauge transformations which would remove
lattice simulations. However, domains of constant field cansuch a pure gauge field are then not defined. Here
only be taken seriously in a statistical sense, so one should 9,Q,—a,Q, is the field strength for the photon fields.
compare results not configuration by configuratisay, after  Thus S appears only in the interaction term coupling to the
moderate coolingbut for correlators and condensates Calcu'fermion field. The fluctuation field®, i andEare assumed

lated within the model and on th_e lattice, where a full statis, pe regular differentiable functions everywhere in Euclid-
tical ense_mble has bgen takenllnto accou_nt. . ean space. It should be stressed that unlike non-Abelian
Returning to quomp quptuaﬂons, the' picture of “dynam'j,theory there is no internal necessity for considering singular
cal confinement remains incomplete. Diagonal or “neutral” gio|4¢in electrodynamics, and the example below is artificial
gluons remain freely propagating modes in the pre-meak} s sense.
field framework. Intuitively it is clear that this problem is The fieldSin the vicinity of thej-th singular surface can
ultimately related to the topological triviality of the class of be represented as
singular field we have considered here. Incorporating a wider
hierarchy of singular fields can resolve this problem.
Finally, a set of open problems relate to the general prop- S,~7 (79,)f:(x) (A2)
erties of quantum field theory with domain-like structures wo e R
and Dirichlet boundary conditions on fluctuation fields. En-\yhere 5! is a unit vector normal to the surfad®; . Finite-
tire propagators, which appear as a result, indicate that thgagg ofl'lfhe action density thus requires that .
theory is nonlocal. The ramifications of non-locality need to
be investigated, particularly in light of recent work by Efi-
mov [47]. Although the choice of boundary conditions is not T 4 _ _
expected to generally influence short-distance singularities in YO (X)Y(x)=0, X 9V} (A3)
Green's functions, the explicit structure of ultraviolet diver- This condition is satisfied if, fok on the boundary
gencies and the question of renormalizability of a quantum
field model with Dirichlet boundary conditions imposed on
fields in regions of space should be investigated explicitly. y=—ihie sy, Z:% Hleiairs, (A4)

1 — —
L=~ 7QuQut #id—m-eQy-eysy (AL

ACKNOWLEDGMENTS which is the well-known bag-like boundary conditip82].
A.C.K. is supported under a grant from the AustralianNote that we are working in Euclidean space-time and the
Research Council and in the initial phase of this work undefields s and ¢ are independent variables. The anglgis
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arbitrary and need not be the same for differerit should __N o
be stressed that the boundary condition violates chiral sym- Zk[x|a]=f szszpkH DDy,
metry. No conditions on the photon fluctuation fi€darise File) 17k J Fj(a))

since it is decoupled frons. Now we can write down the o
functional integral straightforwardly X exp‘ f d*X (i d—m) iy
Vk
_ - e’
Z[S]=f DQ&(aQ)f DyDyre SISV (A5) +§fv d4Xd4ka(X)D(X_y)Jk(Y)]
Fs k

4 ; 2 4

where now the spacés contains only those fields which X exp{ ijd Xi(ib—m)yg;+e JZK de X
satisfy the boundary conditions EGA4). We stress that the
field Sin Eq. (A5) is considered as a fixed background field. . e?
Gauge fixing for the fieldQ can be achieved by regular XJV_d yI)D(x=y)Jj(y)+ =
gauge transformations. We see from E&5) that due to the :
presence of the singular field the integral over fermionic 4 4
fluctuations is separated into integrations over fields inside X 2 V_d va,d yJ()D(x=y)Jj(y) ¢,
subregions/; bounded by the surface®/; where the back- Tk J
ground field is singular, and these fluctuations are subject to .
the boundary condition§A4). wherg Jj(x) denotes the electromagnetic currer_lt an(;bg

Now we define a procedure for averaging over singular_Y) iS the standard photon propagator. Inserting “unity”
configurations. This is done by identifying the set of different™®Presented as
singular configurations with a set of characteristic functions
di\{iding Euplidean space into subregions,_ Whos_e bound_aries 1= H DBkE[Bk_eE d"'yD(x—y)Jj(y)},
coincide with the singular surfaces of a given singular field XeVy i#k Jv;

we arrive at the representation

N
(Sebu b S [ dogoo-v,
| Zxll- | DBlexp(- Sl B x.al)

where the requirement of conservation of the total volume is — s "
imposed. Integration oves is defined as an averaging over o il )Dkal//kex v d"xya(id—m+eB")
an ensemble of characteristic functions and angjesoming KoK “

through the fermionic boundary conditions,

e2
><¢k+?f dxd*y J(x)D(x—=y)J(y){, (A8)
Vi

N N
j DSZ[S]HH fDXJda] 5(1_V_1% fd4X)(k(X) e*Seﬁ[BkIX,a]
J
N
XZ[X]_, ...,)(N|a1,...,a'N], (AG) :H f Dw],DEJ
i#k J Fi(a))
N k 4
- Do 8| B*— d*yD(x—V)J;
Zxla)=T] [ pasio fﬁ(aj)w,m, xo8-e3, | a'ypicy ,<y>}
1 A (i h— .
XeXp‘_fvjdAX ZQ’2’“V X exp{ fvjd Xthi(id—m) i,
_ e?
—¢,—(i/}—m—e@)¢,—“. (A7) to > d“Xf,d“yJ;(X)D(x—y)J,-r(y) :
ji#k JY Vi

(A9)
In this representation translation invariance as well as chiral
symmetry(for m=0) are restored because of the averagingn this representation the partition functicf{ x|«] is de-
over all ¢; and characteristic functiong; . fined by the fluctuations of the fermion field in an arbitrarily
Let us integrate out the photon field and factorize the parehosen subregiol, in the presence of the electromagnetic
of the fermionic integral corresponding to theth region.  field B'}‘L, the dynamics of which are governed by the effec-
We obtain tive actionSy.
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As is seen from Eq(A8), this effective action has ap-
peared as an integrabr collective effeck of field fluctua-
tions in the rest of the infinite system, outside thth do-
main. This action functionally depends on a division
provided by a particular set of characteristic functions.

PHYSICAL REVIEW D64 114025

eter B then there is a set of twelve discrete minima corre-
sponding to an(anti-)self-dual field and six values of the
angleé.

The odd powers of andB do not appear in the potential,
since this would mean violation of Weyl symmetry and par-

Physically different situations would arise depending onity respectively. The Weyl group is a discrete subgroup of
the properties of the effective action. This becomes obviou§|oba| SU(3) and in this case can be seen as the group of

if we write down the partition function averaged over an
ensemble of the characteristic functions and boundary corj-

ditions (angles;),

N N
z=]1 fDdeajé(l—V_lz fd“xxi(x)
J i

Xf DBXexp{ — Serl BY x, a1}
X f lelkDEkEX[{ f d4XEk(iﬁ_ m+ eBk) Py
Frlay) Vi

eZ
+ ?fv d4xd4ka(x)D(x—y)Jk(y)}. (A10)
k

Two qualitatively different pictures are possible. If the func-
tional Sgi has an absolute minimum B{=0 and infinitely
small volumes of all region¥; (j #k), then we recover the
standard QED partition function in the infinite volume. If,

however, the minimum is at nonzero mean field and som

nonvanishing averaged size of subregions is supportable,

depart from standard electrodynamics. In principle the effec

tive action can be calculatetht least within perturbation
theory). As mentioned in the Introduction, there is no reaso

namics.

APPENDIX B: EFFECTIVE POTENTIAL FOR THE
CONSTANT FIELD

Consider a covariantly constant Abelian field with the
field strength parametrized as
B%,=n°B

wvr NET2=T3cosé+Tosing,

Ei=Ba, Hi=3

6ijkBjkl E2+ HZZZBZ,

EH=|E||H|cosw, (EH)?=H?(2B%—H?)codw,

n
to expect that the second scenario is realized in electrody-

ermutations of the eigenvalues of the matmixSuch per-
utations can be arranged by a shift of the angle parametriz-
ing the Abelian field configurationé— &+ 7n/3. In other
words, the effective potential is periodic §with a period
/3, the angle ofSU(3). It is also periodic inw with the
period 7 due to invariance under parity. This can be checked
using formulas

Trn?=3, Trn*=(9/4), Trn®=(3/16)[10+cog6¢)],

TrB?=—2(E*+H?)=—4B?,
TrB*=2[(E*+ H2)2—2(EH)2]=8[B4— %(EH)Z},
TrBS= —2(E2+ H)[(E?+H?)2-3(EH)?]

—16B2

B4—§(EH)2}

v\?\ nontrivial dependence ofiappears fok=3. Higher terms

c?epend or¢ via functions cos& (I=1). Taking into acount

the first three terms in the decomposition and calculating the
traces as above one gets

1
B4 §(E|—|)2

2 Co Cs 2
Ues=—CqB +F +FB (10+cos &)

X

BA—Z(EH)Z}.

The coefficientsC, and C; are assumed to be positive to
provide for the boundedness of the potential from below, and
A is a scale. The sign of the constat is of particular
importance. IfC; is negative the minimum is trivigB=0.

For C, positive, the potential has a minimum at nonz&to
Using the identity

(EH)?=H?%(2B?—H?)coSw,

it is easy to check that there are degenerate absolute minima

and let the gauge invariant effective potential be given by the.orresponding to field configurations with the parameters

series
Uer(B,w,€)= 2, ATrB,
k=1

(B*),,=n*B,,, ...B

A1V

(B1)

H?=B?, w,=wn (n=0,1),
&=(2k+1)7/6 (k=0,1,....5,

B?=2A%/C5+3C,C3— C,)/3C3>0.

These twelve discrete degenerate minima correspond to self-
with Ay constants. One can show thatifs is bounded from dual and anti-self-dual field configurations and six values of
below and has a nontrivial minimum as a function of param-angle £, and there is a continuous degeneracy relating to

114025-15



ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025

orientations of the chromomagnetic fiettl With the sim-  for all different values of the vacuum angle
plest polynomial form fortU.; as above we havé,= /6.

This value depends on the form of the effective potential, §el(21+1)m/3] =, ...,
ngg\r/seazl the periodr/3 related to the Weyl symmetry is This leads to the following result for the trace averaged over

the vacuum angle
APPENDIX C: THE WILSON LOOP FOR SU(3)

d*z; 1
. . W(L)=lim f_JJ dor; = (e1138B),3,,(2)
For SU3) the eigenvalues of the color matrix (L) v,NHJ vV 7i 6( .
ﬁj =t3cos§j +t85in§j 4 e (13)B),,3,,2) 4 2a(i23)B),,3,,(z)

take values from the set N

I Ze—(i/zﬁ)BLvaw(zj))

1 1 1 1
3 B 23 23 Then the Wilson loop takes the form
N
W(L)= lim 1——U(L) —um)
N— oo
oL TR ijBRZ/ BdX . 243 [ereadx +772(4R3L+1R4)
= —SINX— —SINX —\| = =
3v 27BR? 7BR%Jo X v \3 2
m2(1—cos 27BR%/\3) 2m2(1—cosmBR?/4/3)
v(27B/3)? v(mBI3)2
47L md sslnx+ m smx)
X
v (2w5/f)3’2 X (WB/\/—)3/2 X

mLY (RULZ | [(1+.5)2 sin{BL[2¢—sing+s(2y—siny)]/\/3}
f dsf dt| V3 : :
v o Jo (1-9)? BL[2¢—sing+s(2y—siny)]

4\/;Sin{BL2[2(p— sinp+s(2¢y— sin¢)]/2\/§})
T BLY2¢—sine+s(2¢—sing)] '

This leads to the string constant as given through the funcGiven that
tion as in Eq.(27).

APPENDIX D: SCALAR FIELD EIGENVALUE PROBLEM Buidu==5BuXdu=5; (EM3_ BLs)

We introduce théD(4) generators

we see that it is better to go over to tlE3)xO(3) gen-
Li=1i Xk erators,

M;=i(X40;—Xid4), K1=§(|—+M)

respectively for spatial rotations and Euclidean “boosts.”
These satisfy the usual commutation relations.

Now in the scalar field eigenvalue problem we encounter K,= E(L —M).
the structure

(9,~iB,)?=9*-2iB,d,~B,B,. So with the field self-dual/anti-self-dud= +B we obtain,
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iBKy,,
iBKy,,

E=B,

Biudu= E=-B.

Then the four dimensional Laplace operator can be written

1 4
a2=r—gar(r3a,)—r—zK"{.

The usual considerations show then that the eigenvalues of )
h(7)=cos™ ™M 5)sin M M2( 5),

the complete set of mutually commuting operatd@1
=K2, Ky, andK,, are

k(k " kK k
E §+1 ( —0,1,...), ml,mz—z,z—l,...,—i.
(DY)

Eigenfunctions corresponding to these values can be found
4K1Ckm1m2( 7, QS’X)

such that
K 1zckm1m2 = mlckmlmzv

KZzCkmlmzz mZCkmlmzi (D2)

k-‘rl
2

Kickmlmzz > Clemym,
In the hyperspherical coordinates
X1=T Sin 7 cOS¢
Xo=T Sinn sin¢g
X3=TI COS7 COSY
X4=Tr COS7Siny
4K? takes the form,
7 9? 7
4K3=— p cose&nm— se@naz

d
+ (tann—cot -—.
(tann 7) Py

Thus

4K Ciim,m, (7,6, ) = €XPi[(My— M) x + (Mg +my) ]
(92

— —+(m; +m,)2coseéy

X
an

+(m;—m,)%seéy+(tany
(9 ml—mz,ml+m2
—cotn)% 0, (n).

Up to normalization, the angular eigenfunctioBscan be
better written in terms of the hypergeometric function,

k
u(n)=2F1(——+m1,———m2; m;—m,+1; —cofy

PHYSICAL REVIEW D64 114025

@kml—mz,m1+m2( 7)

o cos™ ™ M2( 79)sin M M2( ) ,F;

k k
——+my,—=—my; m-—-my+1; —coty]|.

X
2 2

For compactness of notation we denote

k

2 2

Then, after some tedious calculation, one gets

=expi[(my—my)x+(my+my)¢lh(7)

d?u du(Z(ml—m2)+1

__+ —_—
COtndn cotzy

X a7

—[2(k—m;+my)+ 17| +u[(2m;—k)(2m,+ k)

X cotp+2k(m;—m,+1) +4m1m2]}.

Rewriting in terms of the variable= — co®» one eventually
brings this to the form

4Kickmlm2( 7, ¢!X)

=expi[(my—my)x+(m+my) ¢ ]4h(7)(1-2)

L d?u du L
X | z( —z)d—22+5[(m1—m2+ )
k k

—(1-k+my—my)z]— > M| 5+m;u

(D3)

But u satisfies the hypergeometric equation. Thus the first
three sets of terms in the square brackets of(Bg) vanish,
leaving

k1
5+

x @l [(M=M)x+(my+mo) Sl () y( ),

k
4Kickm1m2( 7, ¢1X) = 45

namely, Eq.(D2), which completes the proof.
Putting all this together we arrive at the following repre-
sentation for the square of the covariant derivative
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. 2 1 3 4 2 1 2,2 ’ ’ ’
((9,u_|B,u) :r_§‘7r(r &r)_r_ZK1+ZBK22_ZB r<, E=B E Vkmlmz(n X )Ckmlmz(ﬂ,¢,x)
k,mqy,my
k(k+2) B2r?
1 4 1 il 39y a2
(3,~1B,)?= Z50(1%) ~ K3+ 2BKy,— 7B XA =z am B = M

Xkalmz(r’r’|M)1

_or=r")é(g—n")o(¢—¢")s(x—x")
r3sin cosy '

E=-B.

Using the eigenfunction@kmlmz we can reduce the original =

eigenvalue problem to that corresponding to a radial operator
We can now separate the angular from the radial dependence

k(k+2 B%r? in tw ti
3 r—gﬂr(f3(9r)— (r )+2mzle— . EVEIP in two equations,
—\F(r), k,n%mz Viemmy(7',®":X") Cimym,( 7,6, %)

wherem, , is defined in the main text. S(n—n")o(dp—d")S(x—x')

So the complete eigenfunctions will be a product of radial = sin7 cos7 ; (EY)
and angular parts,

1 k(k+2 B2r?
P00 =1(1) Chamymy( 7,8, X)- Laroa) -T2 omy -2 w2

The radial function can be solved, as described in the main  x x, (v r’|u)
body of the paper, leading to the solution given in E2f). e ,

A comment is necessary at this point on the half-integer _  0(r—r’) E2)

values of the azimuthal quantum numbers. The angular r$

eigenfunctions depend only on the sum and differences of

ms, which will be whole integers. Also the combination Equation(E1) we recognize as the completeness relation for
the angular eigenfunctions, th%=C. Using Eq.(E2), we

k k k read off thatX does not depend on both quantum numbers
N =5 -Mytl=s+s+15+5,...5-5+1 m,,m, but on one of them, depending on whether the field
was self-dual or anti-self-dual. In fact we shall indicate this

=k+1k, ....1. dependence om,; via the quantum number, ; so thatX

=Xin, (1,11
2,1
This combination, and thus the eigenvalue spectrum, will We can solve the radial problem by solving for the radial

always involve integral values. Green’s function in the infinite volume and then adding a
solution to the homogeneous equation with an arbitrary co-
APPENDIX E: DERIVATION OF THE SCALAR FIELD efficient. The coefficient is fixed by imposing the finite
PROPAGATOR bOUndary condition at=R.

Using our solution to the eigenvalue equation we can eas-
We represent the delta function in the hyperspherical coily extract homogeneous solutions, namely to the equation:
ordinates,
5 k(k+2) B?r? )
(r=r"8(n=n")8(¢=¢")8(x—x') 730700 =7+ 2mp B === = MTIR(r) =0,

S (x—x’ .
( ) r3sin» cosy '

In the notation of 34], the two solutiongrespectively regu-
where the primed variables correspond to the hypersphericédr at infinity and the origihare
coordinates ok’. We use the ansatz,
Ry(r|ki,ny 1, ) =rke B M (ny + pu,k+2;Br2/2)

G(X,x'|u)= V "o x' (E3)
(x| ) k,r%mz mymy (7187 X") Ro(r|K,Np.1, ) = e B4U (ny 1+ p K+ 2;Br2/2)

X Cmymy (7, @2 X) Xicmym, (11" 11). with n, ; defined in Eq/(40).
We next solve for the Green’s function in tiRe= case
Inserting this into the original Green’s function equation, ex-by recasting the problem in the form of a Sturm-Liouville
ploiting the delta-function representation and the fact that thequation,
functions C are eigenfunctions of the covariant derivative
squared operator, yields [d,p(r)d,+q(r)]X(r,r')=—=8(r—r"),
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so that
GOOX' )= 2 Crmm,(7',8":x")Crmm, (7,6, X)
p(r)=r3 k,mq ,m,
BZrZ k(k+ 2) X[anzyl(r7rl|/l/)+Akn211( RlB,,LL)
N=—|——+—7——2Bmy;+ M?|r°. ,
o« e 2. X Ry(rKaN 1 )Ry (1K1, )],

The Sturm-Liouville equation is known to have the SO'“tion’ImposingG(R r'|£)=0 with r’<r=R we have

X(r,r')=~ (rr) Xiny (R 1)

prw(r)
Aun, (Rlp)=—
i, Rl = = R Ry 1 R TR 10p0)

with w(r) the Wronskian of the homogeneous solutions,

w=R;R,—RyR] . Rin, (R,1")
W(R)P(R)Ry(R[K, N1, )Ry (r'[K,np 1, 1)
and
, Ri(r)Ry(r"), r<r’, _ Ry(r'[k,ng 1, 1) Ro(RIK, N1, 1)
R(r,r’)= Ry(r")Ry(r), r>r1". W(R)D(R)Rl(R|k,nz,laM)Rl(r |k,n2,1,,U«)
The Wronskian for the two solutions is evaluated to be 3 Ra(RIK, Ny 1, )
~ wW(R)p(R)R,(R[k '
( ) I‘(k+2) 2B W( )p( ) l( | 1n2,lalu’)
r p—
(g 1+ p) (Bré/2)% Thus finally,
so that g (Maat ) Una ks 2:BRE)
4T (k+2) kny )= AT (k+2) M(ng,+u,k+2;BR/2)
PO = B (g ) (E4)
We now construct the full Green’s function and imposelt is straightforward to see that imposir@(r,R|ux)=0, r
the boundary condition at finite R: <R will give the same result foA.
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