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We study direciCP violation in the hadronic decaB™— p°#*, including the effect op — w mixing. We
find that theCP violating asymmetry is strongly dependent on the CKM matrix elements, especially the
Wolfenstein parametey. For fixedN, (the effective parameter associated with factorizatidre C P violating
asymmetrya has a maximum of order 30%—50% when the invariant mass ofrthe ™ pair is in the vicinity
of the w resonance. The sensitivity of the asymmaetitp N, is small. Moreover, i\, is constrained using the
latest experimental branching ratios from the CLEO Collaboration, we find that the sign &issalways
positive. Thus, a measurement of dir@® violation in B*— p°#* would remove the modf) ambiguity in
ard —[VigVip/VudVip]-

DOI: 10.1103/PhysRevD.63.056012 PACS nuni®er11.30.Er, 12.39-x, 13.25.Hw

[. INTRODUCTION is the aim of the present work to analyze dir€d® violation
in B*—p%(w)7m*— "7 7=, including p— » mixing, us-

Even thougIC P violation has been known of since 1964, ing the latest data from the CLEO Collaboration to constrain
we still do not know the source o€ P violation clearly. In  the calculation. In order to extract the strong phaseve use
the standard model, a non-zero phase angle in the Cabibb#e factorization approach, in which the hadronic matrix el-
Kobayashi-MaskawdCKM) matrix is responsible folCP ements of operators are saturated by vacuum intermediate
violating phenomena. In the past few years, numerous the3!ates. , _ , ,
retical studies have been conducted® violation in the B In this paper, we investigate five phenomenological mod-
meson systerfiL,2]. However, we need a lot of data to check els with different weak form factors and determine tbe

H * 0 * + =t
these approaches because there are many theoretiddPlating (;:\slymmetry IforB Tﬁ (w)hq.T hﬂﬂ mom n it
uncertainties—e.g. CKM matrix elements, hadronic matrixt€S€ models. We select models which are consistent wit

elements and nonfactorizable effects. The future aim would® CLEO data and determine the allowed rangeNef

be to reduce all these uncertainties. (Q.98_(0.94)< N:<2.01(1.95). Then, we §tudy the sign of
Direct CP violating asymmetries inB decays occur sind in the range ON.C allowed by experimental data in all

through the interference of at least two amplitudes with dif-ese models. We discuss the model dependence of our re-

ferent weak phase and strong phasé. In order to extract Sults in detail. _ . .

the weak phaséwhich is determined by the CKM matrix The remainder of this paper is orgar_uzed as follpws. In

elementy, one must know the strong phase and this is Sec. Il, we present the form of the effective Hamiltonian and

usually not well determined. In addition, in order to have all€ values of Wilson coefficients. In Sec. lll, we give the

large signal, we have to appeal to some phenomenologicéﬂ’m(‘)al'Sm+ for the CP violating asymmetry in B

mechanism to obtain a large The charge symmetry violat- —P (w)” —a 7, for all the models which will be

ing mixing betweern® andw can be extremely important in checked. We also show numer.lcal results in this section

this regard. In particular, it can lead to a laig® violation ~ (3Symmetrya, and the value of si). In Sec. IV, we calcu-

in B decays such aB*—p%w)7*— "7 =, because late branching ratios foB™ —p“7" and B"—p™ 7~ and

the strong phase passes through 90° at ¢heesonance present numerical results over the rang®&gfllowed by the

[3-5]. Recently, CLEO reported new dd@] on B— p. It CLEO data. In the last section, we summarize our results and
' ' ' suggest further work.

. . ) Il. THE EFFECTIVE HAMILTONIAN
*Email address: xhguo@physics.adelaide.edu.au

"Email address: oleitner@physics.adelaide.edu.au In order to calculate the dire@P violating aymmetry in
*Email address: athomas@physics.adelaide.edu.au hadronic decays, one can use the following effective weak
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Hamiltonian, based on the operator product expangign c,=—1.050<10"°, cg=3.839x10 4,

Ge

Co=—0.0101, c;,=1.959<10 3.
Hag=1= 2

> VupVig(€107+¢207)

g=ds To be consistent, the matrix elements of the opera@rs

should also be renormalized to the one-loop order. This re-

+H.c., (1)  sults in the effective Wilson coefficients; , which satisfy
the constraint

10
—thquiZZB CiO

wherec;(i=1, . ..,10) are the Wilson coefficients. They are ci(my){O;(my))y=c/(O;)""ee, (4)
calculable in renormalization group improved perturbation

theory and are scale dependent. In the present case, we ugBere(O;)""*® is the matrix element at the tree level, which
their values at the renormalization scale-m,. The opera- Wil be evaluated in the factorization approach. From g,
tors O; have the following form: the relations betweeg andc; are[8,9]

— — c;=Cq,, CL=Co,
1= 0o ¥, (1= y5)Uglgy*“(1—ys)b,, 1o k22

04=07,(1- ys)Uuy (1 - ys)b, C3=Ca~Pd/3, Ca=CstPs,

Cs=Cs— P43, cg=cg+ Py,
05=07.(1=y5)b2 a'y*(1-5)q',

q C;=C7+Pe, Cg=Cg,
— — ) Co=Cg+Pe, C1p=Cyo, (5
04:qa7p.(1_')’5)bﬁ2 Ay (1= vs5)d,,
q where
— — Ps= (as/87)C,(10/9+ G(M¢, 1t,G%)),
05=0q7,(1-y5)b> q' y*(1+ys)0q',
a’ Pe=(@enf97)(3Cy+Cy) (10/9+ G(Mc, 1£,G?)),
_ — , with
O6=0a¥,(1— ¥5)bp > apy(1+¥5)dL,,
a’ 1 m2—x(1—x)g?
G(mc,,u,q2)=4J dxx(x—1)In—————
0

3— 7 ’ I
07=§qyﬁ(1—ys)b2 eqgd v (1+vs5)d’, , _
q’ Here q° is the typical momentum transfer of the gluon or
photon in the penguin diagram&(m,,u,q%) has the fol-

3— - , lowing explicit expressionl0]:
05=50u¥u(1- 79005 €qpy“(1+y5)d, g explicit expressiof10)
qV

3 _ 2 2 2
09:§qyﬂ(1_?’5)b2 €' Y*(1-vys)d’, iﬁG:E |nE_§_4E+ 1422
q 3 /_LZ 3 q2 q2
3— 7 ’
O10=50aVu(1= ¥5)bp 2 eqrUpy (1= y5)a;,, (2
q m(z:
where a and B are color indices, and’=u, d or s are m2 1+ 1_4?
quarks. In Eq.(2), O} and O} are the tree level operators, X\[1—4—in———— |,
03;—0¢ are QCD penguin operators, afg—0, arise from q° m§
electroweak penguin diagrams. 1-\/1-4-
The Wilson coefficientsg;, are known to the next-to- q
leading Iogarithmic order. At the scale=m,=5 GeV, they 5 2 ay
take the following value$8,9: IG= — 3 1+2_20 1_4_; 6)
c,=-0.3125, c,=1.1502, (3) a a
Based on simple arguments at the quark level, the value of
c3=0.0174, c,=—0.0373, g? is chosen in the range 6:31%/m3<0.5[3,4]. From Egs.
(5),(6) we can obtain numerical values fof .
cs=0.0104, cg=—0.0459, Wheng?/mZ=0.3,

056012-2
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c;=-0.3125, c¢,=1.1502,
c5=2.433<10 2+1.543x 10 3,
c,=—5.808<10 2—4.628< 10 3,

cL=1.733<10 2+ 1.543x 10" 3,

Cg=—6.668<102—4.628< 10 3,
ch=—1.435<10 %—2.963x 10 °i,
c4=3.839x 10 %,

cy=—1.023<1072—2.963x 10" %,

Cio=1.959¢ 103, (7
and wheng?/m2=0.5, one has

c;=-0.3125, c¢,=1.1502,
€5=2.120<1072+2.174x 10 3,
c,=—4.869x<10 2—1.552x 10 2,

cL=1.420<10 2+5.174x 10 3,

Cg=—5.729< 10 2—1.552x 10" 2,
c,=—8.340< 10 °—9.938< 10 °i,
c4=3.839x 1074,

cy=—1.017X10"2-9.938< 10" %,

c1o=1.959x 103, (8)

where we have takemg(mz)=0.112, ae (M) =1/132.2,
m,=5 GeV, andm;=1.35 GeV.

. CPVIOLATION IN BT—p%(@)nt—ata =t
A. Formalism

The formalism forCP violation in hadronidB meson de-
cays is the following: LetA be the amplitude for the decay
B —# 7 «", and then one has

A={(m 7 o |HTB")+(7" 7 =" |HP|B*),

9

with HT and HP being the Hamiltonians for the tree and
penguin operators, respectively. We can define the relativ

magnitude and phases between these two contributions
follows:
A=(m*m o |HTB")[1+re'%'?], (10)

A=(m" 7 o |[HTB7)[1+rel%e 1], (11)

PHYSICAL REVIEW D 63 056012

whered and ¢ are strong and weak phases, respectively. The
phase¢ arises from the appropriate combination of CKM
matrix elements, which igg=ard (Vy,Vig)/ (VupVig) 1 As a
result, sing is equal to sir with « defined in the standard
way [11]. The parameter is the absolute value of the ratio
of tree and penguin amplitudes:

_|(p%) 7 [HPIBY)

= . (12
(p°(w)m*[HT[B*))
The CP violating asymmetryg, can be written as
|A]2—|A|2 —2rsindsing
a= = (13

|AI2+|AJ? 1+2r cosscosg+r2’

It can be seen explicitly from Eq13) that both weak and
strong phase differences are needed to pro@Re&iolation.

In order to obtain a large signal for direCtP violation, we
need some mechanism to make bothésamd r large. We
stress thatpo—w mixing has the dual advantages that the
strong phase difference is largeassing through 90° at the
o resonanceand well known4,5]. With this mechanism, to
first order in isospin violation, we have the following results
when the invariant mass af * 7~ is near thew resonance

mass:
<w—w+w+|HT|B+>=iﬁ oot ey (14)
SpSw S, ”
<w*w+w+|HP|B+>=—gp I,,p +%p (15)
SpSw Y s,

Here, ty(V=p or w) is the tree amplitude angy is the
penguin amplitude for producing a vector mesdng,, is the

coupling forp®— =t 7", I1,,, is the effectivep— w mixing
amplitude, andy, is from the inverse propagator of the vec-
tor mesonV,

sy=s—mi+imyl'y, (16)

with /s being the invariant mass of the* =~ pair.
We stress that the direct coupling— 7" 7~ is effec-

tively absorbed intd~1pw [12], leading to the explicis de-
pendence of ﬁpw. Making the expansion ﬁpw(s)
=11, (m2)+(s—mZ)I1},(m2), the p—w mixing param-
eters were determined in the fit of Gardner and O’Connell
[13]:  MIT,,(m?)=-3500:300 Me\?, JII,,(m?)
=—300+=300 Me\? and ﬁ;w(mi)=0.03i0.04. In prac-

tice, the effect of the derivative term is negligible. From Egs.
S0),(14),(15) one has

prpwswpp_

re'fel¢=—_
prtw+swtp

17

Defining

056012-3
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p s d) t 5 P, 5 B. Calculational details

IO _rai + i i 0 — = iﬁ . . . . .

t, rer t, ae p per, (18 With the Hamiltonian given in Eq(l), we are ready to

evaluate the matrix elements fBr" — p°(w)7*. In the fac-

wheres,, 85 and 8, are strong phases, one finds the follow- torization approximation, either the’(w) or thew " is gen-

ing expression from Eq(18): erated by one current which has the appropriate quantum
numbers in the Hamiltonian. For this decay process, two
kinds of matrix element products are involved after

Il pot Be'%s,, factorization. Schematicallyi.e. omitting Dirac matrices
= 19 and color labels (p%(w)|(uu)|0)(=*|(db)|B*) and
(] (du)|0){p°(w)|(ub)|B™). We will calculate them in
some phenomenological quark models.

The matrix elements foB— X andB— X* (where X and
X* denote pseudoscalar and vector mesons, respedtiaaty
be decomposed 445]

w

refd=r’e%—°_ —
s, +1I,,a€ %

It will be shown that in the factorization approach, we
haveae'’==1 in our case. Letting

Be'’s=b+ci, r'e’a=d+ei, (20 .
_ —Mx 2
and using Eq(19), we obtain the following result whexis (X[9,1B)=| Pa+Ppx k) Fa(k%)
~m,: "
2 2
mz—m
———k,Fo(k?), (25
_ C+Di k
reld= — — . (2D
(s—m2+Mil,,)>+(311,,+m,I',)? )
X*|J,|BY= ————€,,,06 " Papa. V(K>
Where < | p.| > mB+mx* mvp pox ( )
+i{ € (mg+ Aq(k? €K
C=(s—m2+ Nl ) {d[RTl,, +b(s—m?)—cm,T,] ) €ulMe+ M) Aa(k) Mgt e
—e[J11,,,+bm,I',+c(s—m?)]} X (Pg+Pys) ,Ax(K?)
~ ~ 6*.k
+ (31, +m,I ){e[ R, +b(s—mZ)—cm,I,] _ ?mei K, Aq(k2)
~T 2
+d[JII,,+bm,I",+c(s—mj)]}, &k
+i 2my. -k, Ag(k?), (26)

k2
D=(s—m2+MRII,,){e[RII,,+d(s—m5)—cm,I',] -
_ B where J,, is the weak curren(J,=qy*(1—ys)b with g

+d[J1II,,+bm,I",+c(s— mi)]}—(jﬂpuﬂr m,I,) =u,d), k=pg—pxx+ ande, is the polarization vector of

X*. The form factors included in our calculations satisfy
X{d[#Il,,+b(s—m?)—cm,T',]—e[J11,,+bm,T, F1(0)=Fo(0),  A3(0)=Ao(0) and A3(k2):[(mB

+ Myx)/2My= JAL(K?) — [ (Mg — My ) 12my«]A(k?).  Using
+c(s—m2)]}. (22)  the decomposition in Eq$25), (26), one has

Be'% andr’e'% will be calculated later. Then, from Eq. R
(22), we can obtairrsind andrcoss. In order to get theCP t,=mg|p,|
violating asymmetry,a, in Eq. (13), sin¢ and cosp are
needed, where is determined by the CKM matrix elements.
In the Wolfenstein parametrizatidd 4], one has

’ 1 ’ 2
ci+ N_C2 prl(mp)
Cc

+ , (27)

’ 1 ’ 2
Cy+ —Cp | F2A(MY)
N¢

wheref , andf . are the decay constants @fand 7, respec-

in b= n (23) tively, and 5p is the three momentum of the In the same
Up(1=p)— 7212+ 2 way, we findt,=t,, so that
ag'da=1, (28)
_ _ .2
cos¢= p(l=p)—7 _ (24) After calculating the penguin operator contributions, one
VIp(1=p)—7°1°+ 7 has

056012-4
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iﬁ_mB|5P| ’ 1 ’ 2 2 3 ’ 1 ’ ’ 1 ’ 2
pe'B=——>=—11c,+ N_Cs [—prl(mp)JrfwAO(mw)]JrE c7t N_Cs +| Cot N C1o f Fa(my)
w C C Cc
L+ —cl|+| et e 2yt Ao(m?) +| it e 1f Fa(m?)+f Ay(m?
Cot N,%5) 1%t N7 || (my+ ma)(myrmy) | | 610% N Co) |2 FoFa(M) + Folmz)
) Vi, Vi
r'eidg= — Po th 7t ’ , (29
c’+ic’ f Fi(m?)+ c’+ic’ f . Ag(m2) VuVia
1 Nc 2/'ph 1 P 2 NC 1] '#70 ™
where
g ’ 1 ' 2 1 ' 2 1 2 1 2 ’ 1 ’ 2
P,=Mg|p,|| 2 C3+N—Cc4 + 05+N—C06 fPFl(mp)JrE c7+N—Cc8 + cngN—cc10 f,Fi(m?)
2 ’ 1 ’ ’ 1 ’ mf"f’TAO(mf") ’ 1 ’ f A 2 fE 2
- CS+ N_CC7 + C6+ N_CCS (mu+md)(mb+mu) + C4+N_CC3 [ T O(m'ﬂ')+ p l(mp)]
’ 1 ’ 2 1 2
+ C10+N_C09 FaAo(mz) = 5T Fa(my) |1,
I
and
1 hAo
Fik)=——=, Agk)=—>r, (33
thV:d V(1=p)°+n (1 )\2>l siny 1_k_ 1_k_
= =l1-— —. 2 2
VipVid  (1=N%12)yp?+ 72 2 sinB mj Ma,

(30)
whereh, =0.330(0.625) ,hs =0.28(0.34),m;=5.32 GeV,

C. Numerical results My, =5.27 GeV,

. . . for model 34) [15,18,19:
In our numerical calculations we have several parameters:

g%, N, and the CKM matrix elements in the Wolfenstein
parametrization. As mentioned in Sec. Il, the valugbdfis o hy o
conventionally chosen to be in the range 9@/m3<0.5. Fa(k%)= K2 Ao(k%) = (34)
The CKM matrix, which should be determined from experi-
mental data, has the following form in term of the Wolfen-

stein parameterd\,\,p, 7 [14]:

where h;=0.330(0.625) h, =0.28(0.34),m; =5.32 GeV,

1 .
1- 57\2 A AN3(p—in) ma,=5.27 GeV, for model 520,21
V= -\ — 22 AN? , hy
72 Fi(k?)= .
3 ) 5 k2 k2
AN (1—p—im) —AN 1 1—a1—2+b1 —
(32) Mg Mg
whereO(\*) corrections are neglected. We use: 0.2205, ) ha,
A=0.815 and the range fgrand 7 as the following16,17: Ao(k%) = 2 202 (35
1—8.0—2 +bg —2)
0.09<p<0.254, 0.323 5<0.442. (32) m2 m2

The form factorsF;(m?) and Ao(m?) depend on the inner whereh;=0.305,ha =0.372,2,=0.266,b,=—0.752, 3

structure of the hadrons. Under the nearest pole dominance1.4, by=0.437.

assumption, th&? dependence of the form factors is: The decay constants used in our calculations gye:f,,
for model X2) [15,18: =221 MeV andf ,=130.7 MeV.

056012-5
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TABLE I. Maximum CP violating asymmetrya,,., (%) for
B*— a7 7", for all models, limiting values of the CKM matrix
elementgupper and lower limj; and fork?/m2=0.3(0.5).

Nemin=0.98(0.94)  Ngmax=2.01(1.95)

a (%) model 1
B Pmax: Tmax —33(—27) —29(—23)
Pmins 7min —52(—43) —47(=37)
model 2
i ‘_,' | Pmaxs Tmax —36(—29) —37(-28)
o 1 Pomins min ~57(-48) —59(~46)
r 1 model 3
6o ' 7;0 ' 7é|<o l 7;0 l 800 Pmaxs Tmax —32(—26) —29(—23)
VS (MeV) Pmin s min —51(—43) —47(—37)
model 4
FIG. 1. Asymmetry,a, for k2/m§=0.3, N.=0.98(2.01) and  p. .« 7max —36(—29) —37(—28)
limiting values of the CKM matrix elements for model 1. Solid line , . » . —57(—48) —59(—46)
(dot line) stands forN.=0.98 and max(min) CKM matrix ele- model 5
ments. Dashed linédot dashed linestands folN.=2.01 and max
(min) CKM matrix gljements. " ‘ Pmax: Tmax —29(=24) —24(-19)
Pmin s 7min —48(—40) —39(—31)

In the numerical calculations, it is found that for a fixed
N., there is a maximum valu@,,,,, for the CP violating  metry, amax, around —27.3%(—21.6%) for the set
parametera, when the invariant mass of the" 7~ isinthe  (Pmax: 7max), and around—44.3%(—35.0%) for the set
vicinity of the w resonance. The results are shown in Figs. 1{pmin, 7min)- We find a ratio equal to 1.62(1.62) between the
and 2, fork2/m§:0_3(o,5) andN, in the range 0.98(0.94) asymmetries associated with the upper and lower limits of
<N.<2.01(1.95)—for reasons which will be explained later (. 7). The reason why the maximum asymme#iy,,, can
(Sec. IV). We investigate five models with different form have large variation, comes from the-d transition, where
factors to study the model dependenceaoft appears that Viq andV, appear. These are functions ¢f,{) and con-

this dependence is strori@able |). tribute to the asymmetrjEq. (31)] through the ratio between
The maximum asymmetry parametep,,,, varies from  the w penguin diagram and the tree diagram.
—24%(— 19%) to—59% (— 48%) forN, in both the chosen For models 2 and 4, one has a maximum asymmetry,

rangek?/m?=0.3(0.5) and the range of CKM matrix ele- @max, around—37%(—28%) for the set fmax, 7max) and
ments indicated earlier. If we look at the numerical resultsaround —59%(—46%) for the set §yin, 7min). We find a

for the asymmetriegTable ) for Ngya=2.01(1.95) and ratio between the asymmetries equal to 1.59(1.64) in this
k2/m§=0.3(0.5), we obtain for models 1, 3, and 5 an asym-Case. The difference between these two sets of models comes

from the magnitudes of the form factors, whefg(k?) is
larger for models 2 and 4 than for models 1, 3, and 5. Now,
if we look at the numerical results for the asymmetry for
Nemin=0.98(0.94), we find, for models 1, 3, and I&/m?
=0.3(0.5), and the set(yax: Tmax),» &N asymmetrya,ay,
around—31.3%(— 25.6%), and for the seto,in, 7min) We
find an asymmetrya, .y, around —50.3%(—42.0%). In
this case, one has a ratio equal to 11664). Finally, for
models 2 and 4, we get-36%(—29%) for the set
(Pmaxs Mmax) and —57%(—48%) for the set fmin, 7min)
with a ratio equal to 1.58.65.

. These results show explicitly the dependence of @

a @ |
-2

40 - violating asymmetry on form factors, CKM matrix elements
L - and the effective parametét.. For the CKM matrix ele-

5 . ! s | - | . ments, it appears that if we take their upper limit, we obtain
60 770 780 790 800

a smaller asymmetrya, and vice versa. The difference be-
tweenk?/m2=0.3(0.5) in our results comes from the renor-
FIG. 2. Asymmetry,a, for k&/m2=0.5, N,=0.94(1.95) and Malization of the matrix elements of the operators in the
limiting values of the CKM matrix elements for model 1. Solid line Weak Hamiltonian. Finally, the dependence Mg comes
(dot line stands forN,=0.94 and max(min) CKM matrix ele-  from the fact thalN, is related to hadronization effects, and

ments. Dashed linédot dashed lingstands folN,=1.95 and max consequently, we cannot exactly determigin our calcu-
(min) CKM matrix elements. lations. Therefore, we tre&. as a free effective parameter.

VS (MeV)

056012-6
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TABLE II. Values of the CKM unitarity triangle for limiting
values of the CKM matrix elements.

(P, 1) min (P, 7 max
a 86°02 89°23
B 19°50 30°64
b% 74°43 60°11

As regards the ratio between the asymmetries, we have foun o.os

aratio equal to 1.61.63. This is mainly determined by the
ratio sim/sing, and more precisely by. In Table I, we
show the values for the angles B,y. From all these nu-
merical results, we can conclude that we need to determin
the value ofN.; and the hadronic decay form factors more
precisely, if we want to use the asymmetay,to constrain
the CKM matrix elements.

In spite of the uncertainties just discussed, it is vital to
realize that the effect g — w mixing in theB— p decay is
to remove any ambiguity concerning the strong phaseg.sin
As the internal top quark dominates the-d transition, the
weak phase in the rate asymmetry is proportional toasin
(=sin¢), where a=ard — (VqVip/VudVi,) 1, and knowing
the sign of sid enables us to determine that of gifrom a
measurement of the asymmetgy, We show in Fig. 3 that
the sign of sind is always positive in our range, 0.98(0.94)
<N <2.01(1.95), for all the models studied. Indeed, at th
7"~ invariant mass, where the asymmetry paramedger,
reaches a maximum, the value of $ifis equal to one—
providedp— w mixing is included—over the entire range of
N, and for all the form factors studied. So, we can remove
with the help of asymmetrya, the uncertainty modt),
which appears imv from the usual indirect measuremefts$
which yield sin 2v. By contrast, in the case where we do not
take p— » mixing into account, we find a small value for
siné. In Figs. 3 and 4 we plot the role pf— w mixing in our

1

0.8

PR NI

0.6

0.4

1

0.2

PR I

sind 0

|

-0.2

-0.4
-0.6

-0.8

I T T A N

-1

0

w

FIG. 3. Determination of the strong phase differenceg,sior
k2/m§:0.3(0.5) and for model 1. Solid lin@lot line) at sind=+1

stands forﬁpw=(73500;7300) (i.e. with p—w mixing). Dot

dashed linddot dot dashed linestands forﬁpw=(0;0), (i.e. with
no p— w mMixing).

(S)

PHYSICAL REVIEW D 63 056012

0.25

0.2

0.15 1 0.8

0.6

&

FIG. 4. Evolution of the ratio of penguin to tree amplitudes,
for k2/m§:O.3(0.5), limiting values of the CKM matrix elements
(p.m) maxmin), II,,=(—3500;—300)(0,0), [i.e. with(without
p— o mixing] and for model 1. Figure(d) (left): for ﬁpm=(0;0),
solid line (dot line) stands fork2/m§:0.3 and p,7n) max (min).
Dot dashed lingdot dot dashed linestands forkZ/m§:0.5 and
(p,m) max (min). Figure 4b) (right): same caption but foﬁpw
=(—3500;—300).

calculations. We stress that, even though one has a large
value of siné aroundN.=1 with no p— w mixing, one still
has a very small value far(Fig. 4). Hence, theC P violating

asymmetrya, remains very small in that case.

IV. BRANCHING RATIOS FOR B*—p%z*
AND B—p*a™

A. Formalism

With the factorized decay amplitudes, we can compute

the decay rates by using the following expresdib8y:
Ip,|° [A(B—VP)|?

I'(B—=VP)=

(36)

8mmZ| € Pg

where

VIMZ— (my+my)2][m2— (my —m,)?]

2mg

Ip,l= 37)

is the c.m. momentum of the decay particleg(m,) is the
mass of the vectofpseudoscalarvV(P), andA(B—VP) is
the decay amplitude

Ge

V2

HereV! " is CKM factor

A(B—VP)= i:2110v}F’ai<VP|oi|B>. (39

Vi=|VpVid for i=1,2

and V{=|VVyl for i=3,...,10
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where the effective parameters are the following combina-
tions:

Ay =Chi+~—Chi_;, 0
172 TN, 2 g
<
1
A ’ F—
azj_l—czj_1+N—c2j, for j=1,...,5
C

and(VP|O;|B) is a matrix element which is evaluated in the
factorization approach. In the quark model, the diagram
coming from theB* — p°#* decay is the only contribution.

In our case, to be consistent, we should also take into ac
count thep— w mixing contribution when we calculate the
branching ratio since we are working to the first order of

BR(B'-

PHYSICAL REVIEW D63 056012
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FIG. 5. Branching ratio forB°—p*#~ for models 1(2),

isospin violation. Explicitly, we obtain, foB™ — p%z ™, k?m3=0.3 and limiting values of the CKM matrix elements. Solid
line (dot line) stands for model 1 and mafmin) CKM matrix

BR(B*—>p°17+) elements. Dot dashed lindot dot dashed linestands for model 2
R and max(min) CKM matrix elements.
Gl2=|pp|3 TAT PAP
= |[ViAo(ar,a) =V A o(az, - - -,a10)] 21713
32’7TFB+ 0 + - GF|pp| TAT
BR(B"—p™m )=—F|VuAp+(az)
+[ViAL(a1,82) ~ ViAL (a3, -+, a10)] 1omlee
1"‘_‘[ 2 _VEA5+(a3! t !aIO) 21 (40)
X I : (39)
(sp—mw)+|mwl“w‘ where
where the tree and penguin amplitudes are AL(az):aszFl(mi),
V2A o8y ,8z) =2y f F 1 (M2) + a5t Ag(m?), Ai(ag, - - a10 = (agt+ago) f,Fo(md).
V2ATo(ag, -+ ag0) = agl — f,F1(m2) +f ,Ag(m?)] Moreover, we can calculate the ratio between these two

branching ratios, in which the uncertainty caused by many

+ 1fF 2+ Ag(m?
1957, 1(m)+fAq(m?7)

3
+ 5(37"‘ ag)prl(m,Z))_z(ae"‘ ag)

systematic errors is removed. We define the r&ias

BR(B—p*7)

= 41
BR(B"—p%7™) (4

and, without taking into account the penguin contribution,

{ m2f,Ag(m?2) one has
(my+my)(my,+my) |’
u AT VY (a1+fon(me))
V2AL(a1,ap) =ayf F1(m?) +a,f ,Ag(m2), Tgo [\ 82 f,Fi(m?)
~ -2
IT
V2AP(as,- - a50=|2(az+a )+1(a +ag) |f,Fi(m?) x| 1+ - (42)
»\ 93 1A10 3 5 o\ &7 9) |1, (Sp_mi)+imwrw

2oyt 80) mZf Ao(m?) } & Numerical rest
—2(agta . Numerical results
& (my+mg) (my+m,) :
5 ) The latest experimental data from the CLEO Collabora-
+ay[fA(m2) +f,Fi(mp)] tion [6] are

2 1 2
Fay fAmE)— 5, Fa(md)|,

where(p®|uu|0)=1/y2f ,m,e, and({m " |ud|0)=if ,p,,.
ForB°—p* 7~ we obtain
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FIG. 6. Branching ratio forB*—p°z* for models 1(2),
k?/m23=0.3 and limiting values of the CKM matrix elements. Solid
line (dot line) stands for model 1 and magmin) CKM matrix
elements. Dot dashed lindot dot dashed linestands for model 2
and max(min) CKM matrix elements.

FIG. 7. Calculation of the ratio of the twesm branching ratios
versusN, for models1(2) and for limting values of the CKM
matrix elements. Solid linédot line) stands for model 1 with max
(min) CKM matrix elements. Dot dashed lirjdot dot dashed line
stands for model 2 with magmin) CKM matrix elements.

TABLE Ill. Summary of the range of values &f;, which is determined from the experimental data for
various models and input parametdraimbers outsiddinside brackets are fork2/m§=0.3(0.5)). The
notation: (number;numbgrmeans that there is an upper and lower limit fy. (number;*x) means that
there is no upper limit foN, in the rangeN, [0;10]. ( — ; —) means that there is no range Mf which is
consistent with experimental data.

B* BO R
model 1
Pmax: max 0.76;1.690.73;1.62 5.50;%* (—; -) 0.92;2.570.90;2.53
Pmin + Tmin 0.52,1.040.49;0.98 —i=(=i 0.97;2.880.94;2.76
Pmax: Tmin 0.61,1.250.59;1.20 —i=(=: 0.92;2.580.91;2.54
Pmin s Mmax 0.69;1.460.66;1.39 -i=(=39 0.95;2.7%0.90;2.66
model 2
Pmax: Tmax 1.44;3.061.40;2.95 0.54;1.330.54;1.38 0.86;1.890.84;1.86
Pmins Mmin 1.00;2.010.96;1.90 1.10; % (1.15; %) 0.92;2.090.89;2.01
Pmax: Tmin 1.15;2.321.12;2.22 0.70; x% (0.72;%%) 0.87;1.890.85;1.86
Pmins Tmax 1.32;2.781.25;2.60 0.63;2.770.62;3.12 0.90;2.000.84;1.94
model 3
Pmaxs Tmax 0.74;1.65%0.72;1.60 - (=9 0.92:2.6%0.92;2.60
Pmin s Tmin 0.51;1.020.49;0.98 - =(=;9 0.97;2.9%0.94;2.85
Pmaxs Mmin 0.60;1.220.57;1.19 - =(=:9 0.93:2.660.92;2.61
Pmin s Mmax 0.67;1.430.65;1.37 -i=(=39 0.92;2.790.92;2.71
model 4
Pmax: Tmax 1.41;3.041.36;2.92 0.56;1.440.57;1.52 0.86;1.910.85;1.87
Pmin Tmin 0.98;1.960.94;1.87 1.16; %% (1.23;xx) 0.90;2.100.89;2.03
Pmaxs Tmin 1.14;2.291.10;2.22 0.72; %% (0.74; % %) 0.86;1.920.85;1.88
Prmins Tmax 1.30;2.741.24;2.59 0.64;3.490.66;4.03 0.89;2.010.86;1.95
model 5
Pmaxs Tmax 0.75;2.180.73;2.10 —5=(=39 1.03; %% (1.02;%x)
Pmin» Tmin 0.50;1.080.47;1.03 - =(=:9 1.09; % * (1.06;%*)
Pmax: Tmin 0.58;1.380.55;1.34 - =(=;9 1.03; %% (1.02;%*)

Pmin: Tmax

0.66;1.710.64;1.62

1.04; %% (1.04; %)
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TABLE IV. Determination of the intersection of the values Nf which are consistent with various
subsets of the data for all models and all sets of CKM matrix elenjantabers outsidénside) brackets are
for k2/m§=0.3(0.5)]. The notation:  —) means that no common range f can be extracted from the

data.

{Nc}B+ ﬁ{NC}BO

{Nc}B*'m{Nc}R

{Nc}goN{Nc}r

model 1

Pmaxs Tmax
Pmin s Mmin
Pmax: Tmin
Pmin s Tmax
model 2

Pmaxs Tmax
Pmin s Tmin
Pmax:s Tmin
Pmin s Tmax
model 3

Pmax> Tmax
Pmin s Mmin
Pmaxs Mmin
Pmin s Tmax
model 4

Pmax:s Tmax
Pmin s Tmin
Pmaxs Tmin
Pmin s Tmax
model 5

Pmax> Tmax
Pmins Tmin
Pmaxs Mmin

Pmin s Tmax

1.10;2.011.15;1.90
1.15;2.321.12;2.22
1.32;2.781.25;2.60

-(-)
-(-)
-(-)
-(-)

1.41;1.441.36;1.52
1.16;1.961.23;1.87
1.14;2.291.10;2.21
1.30;2.741.24;2.59

0.92;1.690.90;1.62
0.97;1.040.94;0.98
0.92;1.2%0.91;1.20
0.95;1.460.90;1.39

1.44;1.891.40;1.86
1.00;2.010.96;1.90
1.15;1.891.12;1.86
1.32;2.001.25;1.94

0.92;1.6%0.92;1.60
0.97;1.020.94;0.98
0.93;1.220.92;1.19
0.92;1.430.92;1.37

1.41;1.911.36;1.87
0.98;1.960.94;1.87
1.14;1.921.10;1.88
1.30;2.011.24;1.95

1.03;2.181.02;2.10
-(-)

1.03;1.381.02;1.34

1.04;1.711.04;1.62

0.86;1.330.84;1.38
1.10;2.091.15;2.02
0.87;1.890.85;1.86
0.90;2.000.84;1.94

-(-)
-(-)
-(-)
-(-)

0.86;1.440.85;1.52
1.16;2.101.23;2.03
0.86;1.920.85;1.89
0.89;2.010.86;1.95

We have calculated the branching ratios B%—p* 7~ and  branching ratio is very sensitive to the magnitude of this
for B*— p%7* for all models as a function df.. In Figs. 5  form factor[F,(k?) is related tch;=0.330 or 0.625 in mod-
and 6, we show the results for models 1 and 2 in order tels (1,3) and (2,4), respectively. On the other hand, for the
make the dependence on form factors explicit. decayB" — p%7*, both F;(k?) and As(k?) are included in

The numerical results are very sensitive to uncertaintieshe tree and penguin amplitudes, and this branching ratio is
coming from the experimental data. For the branching ratidess sensitive to the magnitude of the form factors.
B°—p* 7~ (Fig. 5, we have a large range of values Nf If we look at the ratioR between these two branching
and CKM matrix elements over which the theoretical resultsatios, BR(B™ —p°#*) and BR(B°—p* 7~ )—shown in
are consistent with the experimental data from CLEO. How+ig. 7—the results indicate th& is very sensitive to the
ever, all models do not give the same result: models 2 and thagnitude of the form factors, and that there is a large dif-
are very close to the experimental data for a large range derence between models 1, 3, and 5 and models 2 and 4. We
N., whereas models 1, 3 and 5 are not. The reason is still thimvestigated the ratidRk for the limiting CKM matrix ele-
magnitude of the form factors. As a result, we have to eximents as a function dfl;, finding thatR is consistent with
clude models 1, 3 and 5 because their form factors are tothe experimental data over the range 0.98(09M)
small. <2.01(1.95)[the values outsidénside brackets correspond

If we consider numerical results for branching raBS  to the choiceg?/mZ=0.3(0.5)]. It should be noted th& in
—p°m" (Fig. 6), it appears that all models are consistentparticular, is not very sensitive to the CKM matrix elements.
with the experimental data for a large range f. The  The small difference which does appear comes from the pen-
effect of p— w mixing (included in our calculationson the  guin contributiongwhich may be neglectedif we just take
branching ratioB™ — p®7* is around 30%. Numerical re- into account the tree contributions in our calculatioRsis
sults for models 1, 3, and 5, as well as for models 2 and 4clearly independent of the CKM matrix elemehE. (42)].
are very close to each other. The difference between the two From a comparison of the numerical results and the ex-
branching ratios can be explained by the fact that for theperimental data, we can extract a rangdNgf within which
B°—p*m~ decay, the tree and penguin contributions areall results are consistent. In Table Ill, we have summarized
both proportional to only one form factdf, (k?). Thus, this  the allowed range ol for B — p°7 ", B—p "7~ andR,
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TABLE V. Best range ofN. determined from Table IV for try, a, is very sensitive to the CKM matrix elements and the
k?/mj=0.3(0.5). One takes the maximum interval Nf, from  magnitude of the form factors, and we have also determined
Table 1V, for each mode(2,4). To determine the maximurimini-  a range for the maximum asymmetgy, .4, as a function of
mum) range, one considers all modes4) and the largestsmall-  the parameteN,, the limits of CKM matrix elements and
es range ofN.. In comparison, we show the range Nf deter-  hg choice ok?/mZ=0.3(0.5). From all the models investi-
mined withoutp = » mixing. gated, we found thaE P violating asymmetrya,, varies
from —24%(—19%) to —59%(—48%). We stressed that
the ratio between the asymmetries associated with the limit-
model 2 1.00;2.00.96;1.94  0.85;1.740.85;1.74 ing values of CKM matrix elements would be mainly deter-
model 4 0.98;2.0D.94;1.95  0.84;1.760.84;1.75 mined by ». Moreover, we also stressed that withqut o
maximum range  0.98;2.00.94;1.95  0.84;1.760.84;1.75 mixing, we cannot have a largeP violating asymmetrya,

minimum range 1.00;2.00.96:1.94  0.85;1.740.85:1.74 sincea is proportional to both si@ andr. Even though sid
is large aroundN.=1, r is very small. As a result, we find a

very small value for theCP violation in the decayB*
for models 1, 2, 3, 4 and 5, according to various choices of-p%7= (of the order of a few percenhwithout mixing.
the CKM matrix elements. To determine the best range ofOnce mixing is included, the sign of séis positive for
N., we have to find some intersection of the valuedlgfor ~ N,:0.98(0.94xN.<2.01(1.95). Indeed, at the™ 7~ in-
each model and for each set of CKM matrix elements, foivariant mass, where the asymmetsy,is maximum, sins
which the theoretical and experimental results are consistent +1 independent of the parameters used. Thus, by measur-
This is possible and the results are shown in Table IV. In ouing a, we can erase the phase uncertainty mod{n the
study, it seems better to use the range intersectiogetermination of the CKM angle, which arises from the
{Ncta+N{Nc}g rather than{Nc}goN{Nc}g+, for fixing the  conventional determination of sim2
final interval N, since the experimental uncertainties are The theoretical results for the branching ratidd;
smaller in the former case, and since we are working to the- p%7* and B°—p* 7, were compared with the experi-
first order of isospin violationd— w mixing). Finally, after ~ mental data from the CLEO Collaborati6]. These calcu-
excluding models 1, 3 and 5, which are not consistent withations show that it is possible to have theoretical results
all the experimental data, we are able to fix the upper andonsistent with the experimental data without needing to in-
lower limit of the range olN., using the limiting values of voke contributions from other resonand@4,25. This data
the CKM matrix element¢Table V). We find thatN should  helped us to constrain the magnitude of the various form
be in the range 0.98(0.94N.<2.01(1.95), whereN i,  factors needed in the theoretical calculationsBoflecays:
and N¢max correspond to fmin s 7min) and @max: 7max), '€~ We determined a range of value of., 0.98(0.94X N,
spectively. <2.01(1.95), inside of which the experimental data and the
theoretical calculations are consistent for models 2 and 4.
V. SUMMARY AND DISCUSSION We will need more accurate data in the future to further
) ) decrease the uncertainties in the calculation. If we can use
The first aim of the present work was to compare OUrhai theCP violating asymmetry and the branching ratios,
theoretical results with the latest experimental data from theiin smaller uncertainties, we expect to be able to determine
CLEOO CoIJIrabE)ratlon for the branching rat|d.3*—>p°7'-r+ the CKM matrix elements more precisely. At the very least,
andB”—p* . Our n+ext aim was to s+tUd}/ d+|re(‘1.P VIO- it appears that one will be able to unambiguously determine
lation for the decayB” —p™(w)m" —a m m", with the  the sign of sinv and hence, remove the well known discrete
inclusion ofp—  mixing. The advantage gf—w Mixingis  ncertainties inx associated with the fact that indire€tP
that the strong phase difference is large and rapidly varyingjo|ation determines only sin® We expect that our predic-
near thew resonance. As a result i@ violating asymme-  tions should provide useful guidance for future investigations
try, a, has a maximuma,y, when the invariant mass of the anq urge our experimental colleagues to seriously plan to

7" 7 pair is in the vicinity of thew resonance and S®  measure the rather dramatic diré@P violation predicted
=+1 at this point. here.

In the calculation ofC P violating asymmetry parameters,
we need the Wilson coefficients for the tree and penguin
operators at the scafa,. We worked with the renormaliza- ACKNOWLEDGMENTS
tion scheme independent Wilson coefficients. One of the ma- ) ] ]
jor uncertainties is that the hadronic matrix elements for both This work was supporte_d in _part by the_ Australian Re-
tree and penguin operators involve nonperturbative QcpS€arch Council and the University of Adelaide.
We have worked in the factorization approximation, with
treated as an effective parameter. Although one must have
some doubts about factorization, it has been pointed out that'we note that BABAR reported preliminary branching ratios for
it may be quite reliable in energetic weak decf®2,23. this channel after this paper was prepaf2é]. These results are
We have explicitly shown that th€ P violating asymme-  consistent with the CLEO values.

{N¢} with mixing {N.} without mixing
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