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The Landau gauge quark propagator in momentum space is investigated usir@(aheémproved
Sheikholeslami-Wohlert quark action with a tree-level mean-field improved coefficightWe study the
unimproved definition of the quark propagator, as well as two different tree-t2fel-improved propagators.

The ultraviolet behavior of the free lattice propagator is studied for each of these in order to establish which of
them provides the most reliable description of the quark propagator up to the medium momentum regime. A
general method of tree-level correction is introduced. This exploits asymptotic freedom and removes much of
the trivial lattice artifacts at medium to high momenta. We obtain results for the quark propagator which are

qualitatively similar to those typically used in quark models. A simple extrapolation of the infrared quark mass

M (p?=0) to the chiral limit gives 29& 8 +30 MeV, which is consistent with phenomenological expectations.
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[. INTRODUCTION Gaussian average over the auxiliary fielgk) in the gauge
fixing condition 4,A ,(x)=c(x). The choice of Landau
The quark propagator is one of the fundamental quantitiegauge, i.e..£=0, corresponds to the zero width case, i.e.,
in QCD. By studying the momentum-dependent quark mass?,A,(X)=0, which is the Lorentz gauge-fixing condition.
obtained from the scalar part of the inverse quark propagatohience “covariant gauges” are actually Gaussian weighted
we can gain valuable insight into the mechanism of chiralaverages over generalizations of the Lorentz gauge fixing
symmetry breaking and its momentum dependence. Theondition. On the lattice, Landau gauge means that we have
quark propagator is also used extensively as an input ifmposed the Lorentz gauge condition by finding a local mini-
Dyson-Schwingef1] based model calculations of hadronic mum of the appropriate gauge-fixing functiond]. As for
matrix elements[2,3]. Hence a lattice calculation of the the previously cited studies of the gluon propagator, the
quark propagator would enable us to check the validity of thevork reported here is done in the quenched approximation
models used in these calculations. There have been sevegild without attempting to avoid Gribov copies, e.g., without
recent studies of the quark propagator on a finer lattice witittempting to project onto the fundamental modular region.
the aim of obtaining the light quark masses and renormalizaOf course, in our finite ensemble of gauge field configura-
tion constant§4]. Here we will focus more on the infrared tions no two Landau-gauge configurations will ever be Gri-
and medium-momentum regime and extend some earlier préov copies of each other. However, the Landau gauge con-
liminary work [5]. For comparison with the present studies, figurations will not be samples from a single connected
some results for the quark mass function using Kogutinanifold such as the fundamental modular region. This is an
Susskind fermions have recently been repof&d interesting area for future study.
The study of the quark propagator on the lattice is com- In a covariant gauge in the continuum the renormalized
plicated by the explicit chiral symmetry breaking in the Wil- Euclidean space quark propagator must have the form
son fermion action, and also by finite lattice spacing effects, 5
which are large compared to those in the pure gauge sector L Z(p;p%) B 1
[7]_. For the gluon sector, on the contrary, one can achi.eve S(uip)= ip+M(p? i BA(w:p?) +B(pm:p?)’ @
reliable results even with very coarse lattices using
O(a?)-improved actions together with mean-field improve-where we see thatZ(u;p?)=1/A(x;p? and M(p?
ment. These studies have shown, for example, that in Landas B( 4; p?)/A(u;p?). The renormalization point is denoted
gauge the gluon propagator is enhanced at intermediate mgy ,, and since we are interested in definimgnperturbative
menta and suppressed in the infrared to the point where it igenormalization we use the standard momentum subtraction

almost certainly infrared finitgg]. schemegMOM), which has the renormalization point bound-
Perturbation theory in a covariant gauge has a gaugegry conditions

fixing parameteré, which corresponds to the width of the

Z(p,p?)=1 and M(p®)=m(u). )
*Email address: jonivar@mail.desy.de; URL:  http:// At sufficiently largeu in an asymptotically free theory like
www.bigfoot.com/~jonivar/ QCD the effects of dynamical chiral symmetry breaking be-
"Email address: awilliam@physics.adelaide.edu.au come small andn( ) becomes the usual explicit chiral sym-
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metry breaking running quark mass. At large Euclidean moSo we see that in thecaling region(i.e., for sufficiently
mentum scalesi.e., largew) the procedure for relating the smalla) the measure of nonperturbative physics is the devia-
parameters of the momentum subtractiOM) scheme to  tion of Z(u;p?) from 1 and the difference df1(p?) from

the populamperturbativerenormalization schemgse., mini-  the renormalized quark mass(x). As already mentioned,
mal subtractionMS) or modified MS MS)] is well known.  for sufficiently largew, m(u) becomes the running mass at
The renormalizability of QCD implies that the bare propaga-the renormalization poingk, which is the basis of the studies
tor is related to the renormalized one through the quarkperformed in Ref[4].

wave-function renormalization constanj: The purpose of the work reported here is to extract the
full Z(u;p?) andM (p?) directly from a lattice calculation of
SPaqa;p)=Z,(wm;a)S(u:p), (3) the bare quark propagato8”®qa;p). It is of course

SPaqa;p) that is calculated on the lattice. In reality we do
wherea denotes the regularization parameter in some regurot have the convenience of having an arbitrarily snaall
larization schemésuch as the lattice or dimensional regular- rather we are faced with a lattice spacing which introduces
ization). In a renormalizable theory the renormalized quanti-lattice artifacts at medium to high momenta. In order to sim-
ties become independent of the regularization parameter iplify the presentation of the data we will not explicitly intro-
the limit that it is removedi.e., a—0 on the lattice ore ~ duce a renormalization point. Rather we will introduce for
—0 in a dimensional regularization schemehile holding  convenience the renormalization-point-independent combi-
the renomalization point boundary conditions fixed in Eg.nation
(2). It immediately follows from the renormalization point
independence of the left-hand side of E8) that for suffi- Z(p?)=Zy(pm;a)Z(u;p?). (8
ciently smalla (i.e., in thescaling region we have

The regularization parameter dependefiee, thea depen-

Z(w;a)  Z(u',p?) dencg of Z(p?) is not indicated for brevity, but is to be
Z(na)  Z(m.pd) and understood. We will develop a procedure for tree-level cor-
rection of the lattice artifacts in order to minimize their ef-
M(P)=M(mp?)=M(u':p?) (4 et

The structure of the remainder of this paper is as follows.

for all p2. Hence the mass function must be renormalizationIn Sec. |l we describe the variouS(a) improved quark

point independent and a change of renormalization point i%ﬁiggjc:nguer%%?gsézrsfgri}]ge ‘r’(\;'”aSt;g);' i': rsn%%]e”ritnvri
just an overall rescaling oZ(u;p?) by a momentum- propag

independent constant, i.e., the left-hand side of the firs pace and derive the tree-level expressions appropriate for

equalty in Eq.(4). Hence once the momentum-dependent, 2, Ze ™ T B8 RETER R, 2o L vl
renormalized propagator is known at oandor all p, then it ! 9

is immediately known for all.. We can evaluate the con- Icorrectlo\?:cheme. Sectlcr)ln \écon;tamshour numerical rgiults.
stant needed to rescal u;p?) to Z(u';p?) by evaluating E Sec. I vlve present _t ﬁ a]Efa or'; e;]propagljatorl without
Eq. (4) at p>= u'2 and usingZ(x2': u'?) 1 [i.e., Eq.(2)] to the tree-level correction; .t- e effect of the tree-level correc-
give tion is shown in Sec. VB; in Secs. VC and VD we present
the results of fits to a model function for the mass functibn

Z,('a) and extract the dynamically generated infrared quark mass;
VN (55 and in Sec. VE we discuss the possibility of finite volume
Zy(p;a) effects onz(p?). Finally, in Sec. VI we present our conclu-

_ o sions and suggestions for further work.
Perturbative QCD chooses a renormalization spadéose to

the momentum scale characterizing the particular process of
interest, e.g.,u?~Q? in deep inelastic scattering. This
choice is made to ensure that perturbation theory will con- A systematic program of improvemef®] proceeds by
verge as rapidly as possible for the process of interest. Thadding all possible higher-dimensional local operators to the
quark propagator used in such calculations is tBén;p) Lagrangian. When applied to the fermionic part of the QCD
for p? nearu?, i.e., PR u;p)=11ip+m(u)]. action, adding all possible gauge invariant local dimension-
The tree-level quark propagator is the béte., regular-  five operators yields the following Lagrangifih0,11]:
ized) quark propagatoin the absence of interactionse.,

II. IMPROVED QUARK PROPAGATORS

i — bgam
‘C(X) = EW_ ZCSWalr/la-/LvFMVl//—i_ ?tr(F,qu/u)
S9aip) =g, 6) %
ip+mi(a) _ _ _
—bram?y+ ciayD?y+ coamyd . 9
wherem®(a) is the bare quark mass. When the interactions

with the gluon field are turned on then Here for notational brevity we introduce the simple notation
m for the lattice bare mass, i.en=m°(a). In this equation
S9(p)—SPa;p)=Z(uw;a)S(;p). (7)  we have used" for the standard Wilson Lagrangian density
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and (/4)csaya,,F ¥ is the so-called “clover” improve- value of k. to determine the lattice bare massn terms of
ment term. The sum of these two terms is often referred to as. Although we will use tree-level improvement formulas for
the Sheikholeslami-WohlerSW) action. That the action our quark actions and propagators, it is more appropriate to
given by Eq.(9) is sufficient to remove al¥(a) errors has usemthanmy in these. Although there is an apparent incon-
only been rigorously demonstrated for on-shell quantitiessistency in using tree-level values fb, and c, and the
For gauge dependent quantities, it is an open questiomean-field improved value focg,, we have numerically
whether further, gauge noninvariafibut Becchi-Rouet-  verified that using mean-field improved values figrandc;,
Stora-Tyutin (BRST) invariang terms must be added. We makes no significant difference in practice. The tree-level
will assume that any such terms will be small. We Sha”O(a)_improved propagator can then be defined as
follow the procedure used in studies of the gluon propagator
[7,8], where it was seen that a combination of improved ac- S(x,y)z(¢’(x)$’(y))=<(1+ bqam)z
tions and tree-level correction gave reliable outcomes even at i
med'lum to h|gh' momenta. N . X[1=cqab(x)]1So(x,y;U)[1+cqab(y)]),

Since the Wilson action explicitly breaks chiral symme- (13)
try, the lattice bare mass should be taken as the so-called

subtracted bare ma$s0] Wherequcq:%1 and whereSy(x,y;U) for a given configu-

1/ 1 1 ) ration U is simply defined as the inverse of the fermion ma-

m=m°(a)=my—m,=—=

trix,
a (10

2k 2k,
wheremy=(1/2«xa) —4/a is the bare quark mass appearing MOGU)=Dw(U) + (1/8)Conrunf i (X)
in the Wilson action. At tree level, where interactions are =D(x;U)+m+0O(a), (14
absent, the quark condensate will vanish when the bare mass

appearing in the action vanishes, i.e., wingp=0 or equiva- where D,,(x;U) is the lattice Wilson-Dirac operator and
lently whenx= 3. In the interacting theoryk, is defined as D (x;U) is the usual continuum covariant derivative. There-
the value ofkx at which the pion mass vanishes any  fore Sy(x,y;U) will always satisfy the relations

=1/(2x.a) —4/a is a nonperturbative fine-tuning correction

needed to ensure that the bare massanishes when the [D(x;U) +m]Sp(x,y;U)=d(x—y)+O(a),

pion mass vanishes. THg, and b, terms correspond to a )

(mass-dependentescaling of the coupling constant and the So(x,y;U)[—=D(y;U)+m]=8(x—y)+O(a). (15
mass respectively. Since we will work in the quenched ap-

proximation we can seby=0. The parameteb,, will be  The “unimproved” quark propagatds, will be defined here
absorbed into a redefinition of the bare maskere and we to be that arising from the SW action consisting of the Wil-
will comment on this later. At tree level, thg andc, terms  son term and the clover term, but with no other corrections.
can be eliminated by the following transformation of the Hence, S, is then given by the ensemble average of

fermion field[12], So(x,y;U):
Y=’ =(1+bgam)(1-cqab)y, So(X,Y)=(So(x,y;U)). (16)
Y—¢' =(1+bam)y(1+cqab). (1)  We will denote the tree-leveD(a)-improved quark propa-

gator obtained from Eq(13) as the improved ‘“rotated”
In general, beyond tree level, the improvement in the actiorpropagatorSy(x,y), which is
must be combined with a corresponding improvement in the

fermion field[11], am a
SROXY)=(Sr(x Y U)=| | 14— || 1= 7 D(X)
¢'=(1+bgam)(1—cqab)y+c,di, (12
a .
where the gauge dependent coefficients needed when we X Sp(x,y;U) 1+ 2 D(y) > : 17

compute gauge dependent quantities, like the quark propaga-
tor. By choosing the correct improvement coefficients for th
field, thec, andc, terms may again be eliminated. We not
in passing that the coefficients, andc, were recently cal-
culated at one-loop levdll3], while ¢, is still unknown. S(x,y)=[1+2(by+Ccq)am]Sy(x,y)

However, here we will be restricting ourselves to tree-level

O(a) improvement throughout for the coefficiertt§, cq, —2acys(x—y)+0(a%

andc;. In that case, th&(a) improved action and fields a

after the transformation in Eq11) have by—b,=17, ¢, =(1+am)SO(x—y)—Ea‘(x—y)+(9(a2),
—>cq=%, andc,=0. We will use the tree-level mean-field

improved value foc, and the nonperturbatively determined (18

®We can use Eq(15) to obtain another, simpler expression
€ for the improved propagator from E¢L3):
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where we have used the fact thgt= cqz% here. We define  will be functions ofp,, rather tharp?. Hence we have for the
the corresponding version of the tree-le¥&{a)-improved dimensionless lattice bare quark propagator the form
propagator as

S(p)= _ Z4p)
a =z == T
S(x—y)=(1+amSyx—y) = 5 8x=y). (19 lakA(p)+B(p) - iak+M=(p)
L —iak+M"(p)
If we are only interested in on-shell improvement, e.g., had- =Z:(p) a’k’>+(MYH2(p)- (26)

ronic matrix elements, thé function can be ignored. How-
ever, it is essential if we are considering off-shell propertiedn the limita— 0 the continuum form will be recovered. The
such as the quark propagator in momentum space. (dimensionless lattice functionsA(p) and B(p) can then

In summary, we see that botB; and S, are tree-level easily be extracted from the inverse dimensionless lattice
improved definitions of the SW-clovefi.e., the “Wilson  quark propagator,
plus clover”) propagatolS,. However,S; andS; will have .
different O(a?) errors in general. This will become an im- 1 — |

= — —1
portant consideration when we later attempt to minimize lat- Alp)= Z (p)  4Nk%a? utks >(p)1, (27)
tice artifacts.
B(p)= P _ st 28
ll. MOMENTUM SPACE PROPAGATOR (P)= 05y = an, 'S (P (28)

The momentum space quark propagator is given by In practice, however, it is easier to extract these functions

without inverting the propagator. It is easily verified that

S(p)=2 e ™S(x,0). (20 Ap)
AP)= 1222 2 (29
As is appropriate for fermions we will be using periodic k"a”A%(p) + B(p)
boundary conditions in the spatial directions and antiperiodic
boundary conditions in the time direction. Hence the avail- B(p) 30

B(p)= )
able momentum values for aN>Xx N, lattice (with N;,N, (P) k*a®A%(p) + B%(p)

even numbers and=Xx,y,z) are .
y:2) where we have defined

27T NI) .
p=g=|N——5, nm=12,...N;, (21) | 1
N;a 2 =— _ =
i A(p) AN K2 trfkS(p)]  B(p) 4thr5(p). (31)
27T Nt .
pt:N_ta M=% n=12,... Ni. (22) Tree-level expressions

As was done in the introduction in Sec. | we will use the
superscript0) to denote the tree-level versions of each of the
quark propagator definitions and actions considered. These
1 are simply the propagators that would be obtained from the
k,=—sin(p,a) (23)  various definitions when the interaction with the gluons is

a turned off, i.e., when all the gluon links are taken to be the
identity. We will also be writingm rather thanm, through-
m (24) out, since at tree level the two are identica_l. _The d_imension—
m less SW fermion propagator at tree level is identical to the
pure Wilson propagator and is given pi4,15

We will also for notational convenience define the following
“lattice momenta”:

. 2 V2
K,= asm( p.al2)= "

which differ by
—ika+ma+ tk%a?

a® (0)( 1) —
A L2 2 12— 4 4 S (p)= - : (32
a*Ak =k —k ) EM p,+0O(@"). (25 k2a?+ (ma+ Lk?a?)?

In the continuum, the quark propagator has the general fronihe tree-level form of the tree-levéld(a)-improved propa-
given by Eq.(1). On the lattice it is convenient to work with gatorS, is given by

the dimensionless quark propagaSgp) =S"¥¥a;p)/a. We

expect the lattice bare quark propagator to have a similar S%(p)=(1+ma)Sy(p)—3. (33
form to its continuum equivalent, but with the lattice mo-

mentumk replacingp, which can be appreciated by referring If we write

to the tree level lattice propagators to be given later. Because ©) . © ©

of hypercubic lattice artifactZ" and the dimensionledd " (S7(p)) "=ikaA™(p)+B;"(p), (34

054508-4
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1.2 L A 1.2 L I
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1.0 te- 0 —| 1.0 (90 Cag, —
L o L ey J
L g8 | L ]
a r b a r 1
5 08 — S osl— —
0.6 -— —- 0.6 -— )
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0'40 L N 5 0'40 ' ) . N functions 2(© (top) and aAM©
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for S;(p) (left) and Sg(p) (right).
o S IR A e L I E The results shown here are ob-
- S, ma=0.0603 - S, ma=0.0603 1 tained from the analytical expres-
i | i | sions in Eqs(A8)—(A15).
0 [5-0 ooy — 05— —
C L ] C i ]
=-1— — = 0.0 [e-0 ommm —
< L < L 4
[ L © | |
e - 05— -
[ o ] [ ]
L ® | L ]
S PR IR - -} P S R A
0 1 2 3 4] 1 2 3
pa pa
we find =\pZ+p2+ py2+ p2, where the possible values of the mo-
. menta are those given in E2). SinceZ(®)(p) deviates
AO(p)=— ! tTka(S\”(p))~1]/k%a2=1+O(a?), from 1 andAM(©)(p) deviates from zero at medium to high
4N momenta, it is immediately obvious that the finieeffects

(B9  are very large and we will need some method for taking care
of them if we are to obtain physically meaningful results.
The tree-level behavior is particularly pathological 8¢p),
with finite-a effects of several hundred percent appearing in
(36 7 andAM© being many times larger than, and nega-
tive. The spread in the points is due to hypercubic artifacts,
since on the lattic&® and AM(® are functions ofp, and
not p2. The finitea effects inSg are much more mild and
offer the hope that they might be partially compensated for.
Clearly in the limita—0 we recover the continuum result
whereZ®(p)=1 andAM©(p)=0 for all p.

1 ma
B{”(p)= 4—Ncu<SE°)(p>>—1=ma(1— — +0(@)

We see that the quark mass gets@¢a) correction. The
purpose of the improvement terog, in the action(9) was to
cancel this change in the bare massHowever, by omitting
this correction we have have simply absorbed it into a redefi
nition of m. A©(p) is equal to unity up tad(a?), as ex-
pected. The details of the derivation are given in the Appen
dix.

It is also useful to write the propagator in the following IV. ANALYSIS
way: .

A. Tree-level correction

Recall that the quark propagators calculated on the lattice
are actually the bare quark propagators, which become the
tree-level propagators when the interactions are switched off.
The analytic expressions f@?(p) andAM©(p) for both  We know that QCD is asymptotically free, which means that
the improved propagatof§ andSg are given in the Appen- at sufficiently high momentum values the bare quark propa-
dix. To illustrate the behavior of these tree-level functionsgator should approach the tree-level quark propagator up to
we show in Fig. 1 the forms a(® and AM(© for both of  logarithmic corrections, i.e., on the lattice for large momenta
our improved actions§, and Sz. The horizontal axis ipa  we should findS(p)— S(®(p) up to logarithms. The devia-

[SO>p)]~t [ika+ma+aAM©@(p)]. (37

1
~Z9(p)
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tion of these from each other is a direct measure of the non- p-

perturbative effects due to the interactions felt by the quarks. coso(p) = ol (42

Hence, we are here primarily interested in studying die P

viation of the quark propagator from its tree-level form. andfi=1(1,1,1,1) is the unit vector along the diagonal. We
We will attempt to separate out the tree-level behavior bycoiact momentum values such thep< /8a, i.e., within

writing one unit of spatial momentum from the diagonal. We refer to
this selection as the “cylinder cut,” since the momenta se-

1
S Ypa)=s—Sp = [iak+aM(pa)+aAM©(pa)].  lected lie within a cylinder around the diagonal in momen-
Z(pa)2™(pa) tum space.
p
(39
If asymptotic freedom holds for the momentum range we are V. RESULTS

considering, we should expect tha{pa)—1 andM(pa)
—m (up to logarithmic correctiongor largep.

Equation(38) can be rewritten to yield expressions for
Z(pa) andM(pa) in terms of the functionZ- andM*" (or,
equivalently,A and B) defined in Eq.(26),

The quark propagator is calculated 6.0 on a 18
X 48 lattice, using the tree-level mean-fidldadpole”) im-
proved valuecg,=1.479. For this action with these param-
eter valuesk, is found to bex.=0.1392[16]. Two values
for k were used:x=0.137, corresponding tma=0.0603,
and «=0.1381, corresponding tona=0.031. The lattice

Z(pa)= M (39) spacing as determined from string tension measurements in
Z9(pa)’ the gluon sector g8=6.0 isa=0.106+0.002 fm or equiva-
lently 1/a=1.855+38 GeV and so the values for the quark
aM(pa)=Mt(pa)—aAM P (pa). (40)  masses aren=112 MeV andm=57.5MeV, respectively.

The configurations were fixed to Landau gauge with an

We refer to the functionZ andM obtained in this way as the accuracy of¢=3, ,[d,A,(x)[><107 ' At «=0.137, we
tree-level correctedorms of the lattice quantitieg- and  have generated both, andSz. At k=0.1381, onlyS, was
ML generatedS, is easily constructed frorg,. We have used

It is important that one not be confused by the differentthe tree-level values for the coefficiertig andc, as previ-
uses of the expression “tree-level.” First, there is @) ously stated, rather than the mean-field improved values, as
improvement which was only implemented at tree levelthe difference between the two is negligible compared to the
rather than having the improvement coefficients determined(a?) and higher effects which the tree-level correction
in some nonperturbative way. Second, there are tree-leveicheme attempts to minimize. We have explicitly verified
propagators which are the bare propagators when there atkat replacing the tree-level values fby andc, with the
no interactions. Third, we have just now introduced ourmean-field improved values makes only negligible differ-
method of tree-level correction, which will hopefully mini- ence. However, in any future study it would clearly be pref-
mize the finitea errors in our extraction of the quark propa- erable to make consistent use of mean-field improved or non-
gator from the lattice. Because the tree-level behavid®, of  perturbatively determinedas far as they are available
i.e., S, is much worse at medium and high momenta tharimprovement coefficients throughout. All the results shown
that of Sz, we anticipate that our tree-level correction may for Sg are for 20 configurations, while the results f§rare
not be adequate in that case. We therefore expect the trefar 499 configurations, unless otherwise specified.

level correction method to work significantly better 18 As a further check on our results, we have also analyzed
than forS, . 60 configurations ai3=5.7 on a 18x24 lattice, for x

=0.13843 and«=0.14077, corresponding tma=0.128

and 0.068, respectively. Here.=0.1432. In this case, all

three propagators were generated for all configurations. We
Even after the tree-level correction has been performedyill not explicitly show these results here but will comment

there will still be anisotropies in the data, resulting from on their relevance in our later discussion.

finite a effects beyond tree level. To remove these, we select

momenta lying close to the diagonal in momentum space.

We choose the diagonal because firgiteypercubic artifacts ] )

will be minimized at a giverpa when the momentum is Let us first see what happens when we use the naive for-

approximate'y equa“y Spread among the four momenturﬁnulas fOI’Z andM Wlthout implementing the tree-level cor-

components. Ideally, one should attemptean 0 extrapola- ~ rection, i.e., we first considez" and M". Since Eq.(15)

tion, but given the available data we will see that this cut onholds precisely configuration by configuration, E@.8)

the data removes most of these artifacts. We define the dighould be satisfied nonperturbatively. However, &%)

B. Cuts

A. Uncorrected data

tance of a point from the diagonal by term can be quite large. In Fig. 2 we sh@h(p) = 1/A(p) as
a function ofpa using S;(p) andSg(p), respectively, while
Ap=|p|siné(p), (41)  in Fig. 3 we presenM'(p) for the same two cases. Com-
paring these figures with the tree-level behavior shown in
where the angl®(p) is given by Fig. 1 we see that finite-errors completely dominate these
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R B B 1.2 — —
i S;, ma=0.0603 ] i Sg, Ma=0.0603 ]
10— o] 1ol -
L . - 1 FIG. 2. Z-(p)=1/A(p) as a
[ 1 i function of momentump for
= L 1 = - S(p) (left) and for Sg(p) (right)
X 08— 1 oL o8 with the bare quark mass corre-
A . H sponding toxk=0.137. No tree-
i ] - level correction has been made
0.6 — — 0.6% and no data cuts have been ap-
i | C 1 plied.
0'4 L 1 1 1 1 I 1 1 1 1 | 1 1 1 1 ] 0.4 L 1 1 1 ‘ 1 1 1 1 | 1 1 1 i
0 1 2 3 0 1 2 3

pa pa

(uncorrectegl quark propagators at medium and high mo-something which lies close to the continuum asymptotic
menta. Only in the infrared, belowa=<0.8, might we be form. In the low and intermediate momentum region we may
able to extract physically significant information. then be able to extract the physical, nonperturbative behavior
A comparison with the “unimproved” SW propagat8g of the functionsZ(p) andM (p).
shows that bothS(p) and Sg(p) are considerably better  when applying this correction, we find that there is a
behaved in the infrared than the “naive” propagaB(p).  dramatic improvement in the behavior wiia of all three of
In particular, the mass function is a decreasing functiopeof gy forms of the propagator, i.e., {8, S, andSg. How-
up to pa~1, which is what one would expect from gyer the pathological behavior & (p) at high momenta
Ssympt?t'c. freedom. Th's,; IS noHt thetﬁas_e fﬁb'(p)' th')cz gives rise to a cancellation of large terms in the subtracted
eg:jns 0 .|tncrteasel moln? onlcaA?/ in the N r?reqo?g : mass, leading to a behavior for the mass function which is
as cdoes 1ts “Ee' evel form. AlSo, the values (P) clearly at odds with the expectation from asymptotic free-
=1A(p) aanM (p) agree forSR_ ands; within errors up t_o dom. Thus, as expected, the findesrrors inS; are simply
E:rilo'gliﬁyg ?ellr?t tffrlgn\]/azlhu:?mot)rtgl\llgzdvgﬁj ?5( %)\/:r:eatgl%r\]/\lfl;no-too large to be corrected by our simple tree-level correction
mentél P procedure. As previously noted, our unimproved propagator
’ _ 2.2 . Sy behaves poorly even at very low momenta and cannot
At momenta abov@a~—1 the O(p*a’) and higher terms therefore be trusted. It is therefore desirable to use the defi-

dominate and it is impossible to extract any meaningful in-_. " .
formation from these uncorrected data. This can be appre(;f't'on Sr for the improved propagat¢d.9] and to apply our

ated most dramatically by the way the lattice data diverg ree-level CfOITE((IthOh to thatt. The resultshﬂb(rp) .ang.M(f)
with increasing momentum for the two improvéalt uncor- or our preterred propaga dBx(p) are shown in '9. 4 as
rected propagators. functions of pa for k=0.137. We see that the medium to

large momentum behavior has been dramatically improved
by our tree-level correction procedure as expected, i.e., it
behaves in a way reasonably consistent with the expectations

Since, as we saw in the previous section, the tree-levadf asymptotic freedom. The spread of the lattice data due to
form completely dominates the high-momentum data, wehypercubic artifacts is somewhat reduced but has not been
may hope that by factoring out this behavior we will get eliminated.

B. Tree-level corrected data

1 [ T T T | T T T | T T T ] 1.0 T — | — T | ]
L S;, ma=0.0603 4 L Sk, ma=0.0603 4
-O O oaay " : : :

0— — 05— —

i 1 oo FIG. 3. MY(p) for S;(p) (left)
= r 1 0= F : and forSg(p) (right) with the bare
T 1 T °°r ] quark mass corresponding te

- 4 F 1 =0.137. No tree-level correction

i ] L ] has been made and no data cuts

-2 5 — 05— — have been applied.

i o [ ]

i & ] L ]

i &) ] I |

-3 ! ! | 1 1 ! | 1 1 |®_ -1.0 1 1 1 | 1 1 1 1 | 1 1 1 L

0 1 2 3 0 1 2 3

pa pa
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R 0.3 ————7 —
I Sg. ma=0.0603 ] I Sg, ma=0.0603 ]
1ol ] 0.2 72@ _
i ) S ] FIG. 4. Z(p) (left) andaM(p)
i - 1 T3 ] (right) for our preferred form of
B osl & _| \;/ 01— — the improved propagatd@g(p) at
R 1 T i x=0.137. The lattice data shown
L § i L _ are obtained using the tree-level
% i r . ] correction defined in Eq.38) but
0.6 — 0.0 A X
= J L Bhi without any cuts.
0.4 L L 1 1 L | L 1 L 1 | L 1 L L i _0.1 L 1 1 1 1 | 1 1 1 | 1 1 1 1 1
0 1 2 3 0 1 2 3
pa pa

In Fig. 5 we show the lattice results f@randM for all ~ from this plot the poor high-momentum behavior Mf(p)
three definitions of our quark propagator, after implementingarising from the inexact cancellation of large fin#eerrors
both the tree-level correction and the cylinder cuts describeth S, .
in Sec. IV B. The tree-level correction is clearly failing f§r Figure 6 showsvi(p) calculated fronS, for the two val-
as is evident from the behavior of the mass functié(p). ues of the quark mass. In the infrared region, the mass
Although the behavior of the unimproved propagagthas  changes only slightly as the bare quark mass is halved, point-
been considerably improved, as we previously observed ing to a dynamically generated “constituent” quark mass in
cannot be trusted even at relatively low momenta and so ithe chiral limit, which we will later estimate. The function
must be discarded. The apparent difference in the behavior &(p) was found to be insensitive to the quark mass.

Z between the two improved definitions of the propag&or

and Sg, even at relatively low momenta, is at first sight C. Model fits

puzzling. However, it must be recalled thaZ(p)
=Z5(p;a)Z(w;p) and that it is actuallyZ(w;p) that we
should be comparing for the different actions. Different ac-
tions will in general have different values of the renormal-
ization constanZ,(w;a). If we renormalize at some “safe” aM(pa)=
momentum scale where we would expect both improved

propagators to be reliable, e.gqta~0.4, then the apparent

difference is much reduced except at medium to high mowherek was defined in Eq(24). We have fitted to data in the
menta wher&, can no longer be trusted. Analysis of the datawindow O<ka=<P, with P varying between 0.7 and 1.4, in

at 8=5.7, which corresponds to a coarser lattice, and hencerder to verify that the parameters are insensitive to the fit-
larger finitea effects, is also consistent with this interpreta- ting window P. Since Sy is far better behaved tha§, at

tion. Below pa~0.6, the values foM(p) agree within er- higher momenta, all the fits have been performed to the mass
rors for the two versions of the improved propagator. In parfunction M (p) extracted from our preferred propagaty.
ticular, the value for the infrared mabts(p—0) agrees well. The parameter values far=0.137 are shown in Table I.

In contrast, and not surprisingly, the unimproved propagatoAll the fits give a value formy, which is consistent with 0.

Sy yields a mass which is 3-edhigher. We again clearly see This is due to the fact that we have not completely removed

In order to try to parametrize its behavior, the mass func-
tion M(p) was fitted to the simple model analytical form

c
(ka)2+ A2 +Myy (43

e I e O3 )
- ma=0.0603 T re ma=0.0603 1 FIG. 5. The tree-level cor-
i ] :§ ¢ Z:“((;’)) ] rected functionsZ(p) (left) and
10— 02= ¢ %@ ° SL(p) ; aM(p) (right) for all three propa-
F o g 20000004 L %g@% 20" - gat0r§, aftgr performing the cuts
e 1 i ‘g%% @?’G’@@ 1 described in Sec. IV B. The values
B o8l -4 & o1l X‘m&% @poe®®® _ for Sy are obtained from 20 con-
m - ek xSp) 1 @ - XX§°°® o T figurations; for the two other
[ o 8(p) ] i **X*ﬁ&gu % 1 propagators the data are from 300
06% © Solp) B 0.0 **E configurations. Note that th&(p)
Tk 4 L _ functions need to be scaled to
i i r ] agree at some “safe” momentum
L J L scale(e.g.,ua=0.4) before being
oal e Lo L T compared
0 1 2 3 0.0 0.5 1.0 1.5 2.0 '
pa pa
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FIG. 6. The tree-level corrected mass functidr{p) from S,
for k=0.137(circles and k=0.381(crossey after performing the
cuts described in Sec. IV B. The increaseMr{p) for pa>1 is an
indication of the difficulty of accurately subtracting off the tree-

level mass function for this definition of the improved propagator.
S, has been used in this case because we lack data for more th

one quark mass for our preferred definitiBp; however, the mass

functions agree well in the infrared. The data shown are from 30

configurations.

these lattice artifacts fronM(p) at intermediate and large
momenta. This indicates that @=6.0 with our preferred

improved action and propagator we still do not have suffi-
cient control of ultraviolet lattice artefacts that would allow

us to extract the ultraviolet running magg. Combining the

PHYSICAL REVIEW D63 054508

uncertainties. We find a value fov1(O;m=0) of 298+8

+30MeV, where the second set of errors is an estimate of
the systematic uncertainty coming from the difference be-
tweenSg and S;. This is reasonably consistent with com-
monly used values for the constituent quark mass.

E. Finite volume effects

To determine whether the infrared suppressioZ @f) is
real or a finite volume effect, we can look for anisotropy in
the infrared. Since the temporal extension of the lattice is
three times the spatial extension, the finite volume will affect
spatial momenta differently from timelike momenta, giving
an indication of the size ofanisotropi¢ finite volume ef-
fects.

Figure 9 shows the infrared behavior &fp), with mo-
menta in different directions plotted separately. We see that
the finite volume anisotropy, although not negligible, is not
sufficient to explain the infrared suppression. This indicates
that the suppression is either due to isotropic finite volume
effects, or is a real physical phenomenon. In model Dyson-
Ythwinger equation studidd] the dynamically generated

uark mass is typically associated with a dipZifp) similar

0 what is seen here. There is no discernible anisotropy in the
data for the mass functiod (p) at low momenta. We there-
fore conclude that finite volume effects fbt(p) are almost
certainly negligible.

VI. CONCLUSION AND FURTHER WORK

We have presented initial lattice results for the momen-

fit parameters for all the fits gives a value for the infl’aI'Edtum dependence of the quark propagator after imp|ementing

guark mass o&M;=0.211+0.008.

D. Infrared quark mass

A quantity of intrinsic interest is the mass functidh(p)
at zero momentum in the “chiral” limitn— 0. This gives a
measure of the dynamical chiral symmetry breaking in th

a tree-level correction procedure. At high momenta, quarks
are asymptotically free and so the quark propagator ap-
proaches its tree-level behavior. We make use of this fact to
subtract off and factor out the tree-level behavior, replacing
it with what should be a more continuumlike medium and

high momentum behavior of the quark propagator. This ap-

Sroach can only work reliably when the tree-level firite-

system, and is related to the order parameter of dynamicgfects are not too large, i.e., when the tree-level propagator

chiral symmetry breaking, the chiral condensétey), as

corresponding to the action of interest is reasonably behaved

well as to the concept of the “constituent quark mass” usedat medium and high momenta. The tree-level correction was

as input in various quark models.

Since we have only computesk for one value of the
guark mass, we must use the data fr@nto perform the
extrapolation tom=0. Recall that at low momenta the two
actions give consistent results ft(p?) within errors. The
results are shown in Fig. 8. The data point fr@p at «

seen to dramatically improve the data for the preferred defi-
nition of the improved quark propagat8g. The relatively
poor behavior of the tree-level correct&l is due to the
large tree-level finitex effects which require fine tuning to
subtract off correctly. The unimproved propagator was seen
to be unreliable even at low momentag~0.4) and so can-

=0.137 is also shown, giving an indication of systematicnot be trusted even after tree-level correction.

TABLE |. Parameter values for best fits to the form of E43) in the window O<ka<appnay, for

different values ofp ., at k=0.137.

aPrmax Myy c A Mg X% Ngt
0.8 0.0017 13 0.086' %} 0.64'% 0.210°%, 0.330
1.0 —0.0008 192 0.089' 13 0.65"3 0.210°8 0.270
1.2 0.0056 33 0.081" &° 0.633 0.211°3 0.253
1.4 0.0086 {5 0.077°% 0.61"2 0.212°% 0.195
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FIG. 7. The lattice results faZ(p)=Z,(u;a)Z(«;p) andM(p) for our preferred form of the quark propaga®s(p), after both the
tree-level correction and the cylinder cut. The vertical scaleZig;p) is determined from the above by dividing it by the necessary
renormalization constafite., Z,(u;a)] to ensure thaZ (u; u?) = 1. These are the central results of the studies reported here. The bare quark
mass used here was=112 MeV and hence we conclude tHd{p) is not reliable at momenta above approximately 1.5 GeV.

Although the ultraviolet behavior of the quark propagatorstudied for a slightly different action to ours, and verified for
is clearly improved, it remains an open question whethemomenta up tpa<1.
there exists a momentum window where the lattice data are The central results of this work are summarized in Figs.
reliable and perturbation theory is valid. One way of check-7—9. Figure 7 represents the best estimate from our currently
ing this would be to calculate the propagator at three or moravailable data of the nonperturbative behavior of the quark
different quark masses and attempt a chiral extrapolation gfropagator and is based on our preferred quark action corre-
the mass function in the intermediate momentum region. Isponding to theSg propagator. Figure 8 is our extraction of
perturbation theory is valid in this region, the mass functionthe dynamically generated infrared or “constituentlike”
should extrapolate to zero. qguark mass. Finally, Fig. 9 gives an indication of the magni-

Residual lattice artifacts may also be investigated bytude of finite volume effects iZ(p) compared to the non-
studying the chiral Ward identity17,18, which should be perturbative effects.
valid at all momenta. This involves computing the pseudo- Forpa<1, we see tha (p) falls off with p as expected.
scalar vertex, and while it falls outside the scope of thisThe values obtained fronSz and from S, are consistent,
initial study, it should be included in future studies of the while those for the unimproved propagay differ signifi-
quark propagator. In Refl18] the Ward identity has been cantly. The infrared masis!(0), which can be thought of as

450 i | — T | — T | S m——— ] 1.1 [ UL LA L AL AL BB
L Infrared mass y r S, ma=0.0603

I Z ] 1o @ng’ @

400 (— — C i% *% i
~ [ | 09 ]
g | - T t :
2350 — — N ]
= r -1 = - -
= L y 0.8 — i —
300 [— . C ]

[ 1 0.7 _—§ ? -]

osol Ll v v ] ol o b by by
0 50 100 150 0.0 0.2 0.4 0.6 0.8 1.0

m (MeV) pa
FIG. 8. The infrared value of the quark mass functibh, FIG. 9. Z(p) from the propagatog, (p), from 70 configurations

=M(p=0), obtained by extrapolatingi(p) to pa=0 for two at«=0.137, i.,e.m=112 MeV. The squares denote purely timelike
different bare quark masses1=57.5 and 112 MeV. The crosses momenta, while the diamonds denote points with one unit of spatial
denote the two values obtained fr@nfrom 300 configurations and momentum. The fancy squares are points with half a unit of time-
two bare quark masses, while the square is the value obtained frofike momentum(i.e., nearly purely spatial momentynThese data

S for a single quark mass. The burst indicates the chirally extrapoappear to indicate that the infrared suppressiorZ@s) is not a
lated value ofM;, obtained by a simple straight line interpolation. finite volume effect.
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paring them. The finite volume anisotropy is much smaller
than the appa_lrent in_fra_re_d suppression. We cannot explicitly APPENDIX: TREE-LEVEL EXPRESSIONS—DETAILS
rule out largeisotropic finite volume errors, although based
on experience with earlier gluon propagator studies this The dimensionless Wilson fermion propagator at tree
seems unlikely. However, a larger volume is needed to comlevel is
pletely resolve this issue. 1

Since in this initial study, we have used the mean-field —ika+ma+ —k?a?
improved value for the clover coefficient,,, and tree-level (0)( 1) 2
improvement for the fermion fields, the quark propagator o (P
still has some residuaD(a) errors as well ag?(a?) and k?a®+
higher order errors. To remove the residdla) errors it
would be necessary to compute the nonperturbative values 1 1.
for the coefficientsh,, ¢, andc,. Repeating these calcula- = —( —ika+ma+ —kzaz) . (A1)
tions at a different lattice spacing and with other improved D 2
guark actions is also essential to get reliable results for th&ince the SW term is proportional to the gauge field tensor, it
quark propagator and in particular for the quark mass funcvanishes at tree level, so this expression also holds true for
tion at medium to high momenta. These studies are currentljhe SW action. The tree-level “improved” propagat§y is
underway. given by

2
1.
ma+—k2a2>
2

1 1. 1
—i(1+ma)ka+ma+ Emzaz— §k4a4+ —a*Ak?

Sfo)(p)=(1+ma)sé°)(p)—%= :%[—i(l+ma)ka+B|’]

k?a’+

2
1.
ma+ — k2a2>
2
(A2)

and the inverse propagator is

2
1 1 . 1 1.
, ika(1+ma)+mal 1+ —ma| — —a*k*+ —a*Ak?|| k?a?+ | ma+ —k?a?
) . D[ika(1+ma)+B] 2 8 2 2
S = o (1rmar+ B2 1 1 1 \2
' k?a?(1+ma)2+| ma+ —m2a2+ —a*Ak?— —a%*
2 2 8
(A3)
If we write
(SV(p))t=ikaA®(p)+B(p), (Ad)
we find
i 2 A m?
Oy (0 - 17/k2a2— 1 1+ & 4
A~(p) 4thr[ka(S| (p) “lke@a“=1+ 2 k2+m2+o(a)’ (A5)
BO)( )= 1 SO p)) 1o L maer2a22k2+m2+R4/m2 T oad A6
| (IO)—4—NCW( - (P)) " "=ma 5t 2 2T 2 (a”). (A6)

If we write the propagator according to E@®9),
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(S7(P) ™= Zroy 5 Lika+ ma+aAM®(p)], (A7)
|
we find
1 k?a?(1+ma)?+B/?
((p)= = ' (A8)
! A%(p) (1+ma)D
AAMO(p)=ZO(p)BO(p) - ma= — 1 m?a?—a*Ak®+a*k*/4 (A9)
: ! ! 2 1+ma ’
where
m?a? a*Ak? a’k*
B/=ma+ + . (A10)

2 2 8
We have defined the rotated propaga®a(x,y) as

SR(va):

1+%If)(y)). (AL1)

ma ( 1 )
1+7 1—Z|D(X) So(X,Y)

At tree level, the Fourier transform of this is

SOy — (14 ma 1 iak ) 1 iak ~ (1+ma2) iak ks me ka1 iak
_(1+ma/2) ] ma 3 ., 1, , 1, T ST
=—5 | ~iak| 1+ -+ gk’a’+ 7a'Ak? | + ma- rza mk2—3—2akk+§a Ak

1+mal2 . , ,
=——p [~iakAg(p)+Bg(pP)]. (A12)
|
We can then write . DB,
BR (D) =TT ma2D-

(O 1 D KA+ BL) (1+ma2)Dg
=————(ia :

Sr(P) (1+ma/2)DR( RTER a(l ma m?a? k?+4m?— 3k*/m?

=ma l——- P,

+0(a%). (A15)
From this we find the expressions f@=1/A and
aAM©O=7OBO)—ma, via
Comparing these expressions with those of H@&) and
(AB), we clearly see that the tree-lew®(a?) errors inSg are
much smaller than fo§, .

DAL k?a? 5
(1+ma/2)DR—1+ 5 H0@) (A19)
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