
Coiera et al. BMC Health Services Research 2014, 14:226
http://www.biomedcentral.com/1472-6963/14/226
RESEARCH ARTICLE Open Access
Predicting the cumulative risk of death during
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Abstract

Background: Current prognostic models factor in patient and disease specific variables but do not consider
cumulative risks of hospitalization over time. We developed risk models of the likelihood of death associated with
cumulative exposure to hospitalization, based on time-varying risks of hospitalization over any given day, as well as
day of the week. Model performance was evaluated alone, and in combination with simple disease-specific models.

Method: Patients admitted between 2000 and 2006 from 501 public and private hospitals in NSW, Australia were
used for training and 2007 data for evaluation. The impact of hospital care delivered over different days of the
week and or times of the day was modeled by separating hospitalization risk into 21 separate time periods
(morning, day, night across the days of the week). Three models were developed to predict death up to 7-days
post-discharge: 1/a simple background risk model using age, gender; 2/a time-varying risk model for exposure to
hospitalization (admission time, days in hospital); 3/disease specific models (Charlson co-morbidity index, DRG).
Combining these three generated a full model. Models were evaluated by accuracy, AUC, Akaike and Bayesian
information criteria.

Results: There was a clear diurnal rhythm to hospital mortality in the data set, peaking in the evening, as well as
the well-known ‘weekend-effect’ where mortality peaks with weekend admissions. Individual models had modest
performance on the test data set (AUC 0.71, 0.79 and 0.79 respectively). The combined model which included
time-varying risk however yielded an average AUC of 0.92. This model performed best for stays up to 7-days (93%
of admissions), peaking at days 3 to 5 (AUC 0.94).

Conclusions: Risks of hospitalization vary not just with the day of the week but also time of the day, and can be
used to make predictions about the cumulative risk of death associated with an individual’s hospitalization.
Combining disease specific models with such time varying- estimates appears to result in robust predictive
performance. Such risk exposure models should find utility both in enhancing standard prognostic models as well
as estimating the risk of continuation of hospitalization.
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Background
Prognostic models help clinicians identify those patients
most at risk of negative outcomes, and tailor therapy to
manage that risk [1,2]. Such models are typically devel-
oped for specific conditions or diseases, combining clinical
indicators (such as patient or disease characteristics) and
test results that stratify populations by risk [3]. Perform-
ance varies and even the best models often have good but
not high classification accuracy [2]. Models are most often
developed using data from specific periods of time, patient
cohorts or geographies, and when they are evaluated
against new populations, may not perform as well as in
the original population [3].
Variation in predictive accuracy of models in part must

be due to variations in disease patterns across populations,
but is also likely due to local variations in clinical service
and practice. If prognostic models specifically incorpo-
rated information about health service delivery the re-
sult might be more accurate, generalizable clinical tools.
There are for example well known risks associated with
hospitalization that can lead to patient harm or death
[4]. These risks vary with diagnosis [5,6], hospital [7,8]
and route of admission [9]. Risks also are known to vary
significantly with the time that hospitalization occurs,
with weekend admissions carrying greater risk than
other days [10-17].
Modeling the risk of exposure to hospitalization should

allow for more informed decisions around the decision to
admit or discharge. Indeed, whilst it is standard to develop
risk-benefit models for new interventions such as medi-
cines or procedures, we do not routinely apply the same
logic to the decision to admit to or discharge from hos-
pital, one of the most universal of all clinical interven-
tions. In the same way that radiation exposure models
help determine when a patient has exceeded a safe radi-
ation dose, it should be feasible to develop models that
determine when patients have exceeded a safe ‘dose’ of
hospitalization.
Some work has explored the risk of harm to a patient

following exposure to an average day in hospitalization
[10,18]. Combining models which predict time-varying
risks associated with hospitalization with traditional
disease-specific prediction rules should theoretically
result in much more accurate predictive tools which
can be used to update risk estimates as an admission
progresses over time. In this paper we report on the de-
velopment and evaluation of one such family of models,
using only standard administrative data.

Methods
Data
All admissions to 501 public and private hospitals in New
South Wales (NSW) Australia between 1 July 2000 and
30th June 2007 were extracted from the NSW Admitted
Patient Data Collection (APDC). Admissions were coded
using the International Classification of Diseases 10th revi-
sion Australian modification (ICD-10-AM) and Australian
refined diagnosis related groups (DRG) [19]. Records with
an invalid or missing admission date, date of death,
principal diagnosis, DRG, patient age or gender were
excluded. After exclusion, a total of 11,732,260 admis-
sions remained, with 201,647 deaths either during
hospitalization (177,828) or within 7 days of discharge
(23,819). A Charlson comorbidity index was calculated
for each admission using ICD-10-AM codes [20].
Hospital mortality rates are prone to “discharge bias”,

underestimating the true impact of hospitalization on
death rates because some deaths occur post-discharge
[21]. To capture such post-discharge deaths, admission
records were linked to the death registry [22,23].
Inspection of the data set revealed that the probability

of death up to seven days post discharge varied by day
of admission, with weekend admissions having a higher
risk of mortality [13-17]. The data also showed that the
risk of mortality varied by the time of day of admission,
peaking in the early evening and lowest in the morning.
Combining these two revealed a fine-grained sinusoidal
pattern to the risk of mortality with both daily and
weekly periodicities (Figure 1).

Logistic regression models
Logistic regression models were developed with the
dependent variable being the probability of dying up to
seven days post discharge from hospital [24]. Three
groups of models were developed using an array of in-
dependent variables: 1/a simple background risk model
using only age and gender, 2/a group of time-varying
risk models that estimated the risk associated with
exposure to hospitalization (time of admission and a
counter for number of days currently in hospital) and 3/
a group of disease specific models which characterize
specific risks associated with disease state (Charlson co-
morbidity index), and subgroup analyses for 5 DRGs
known to display significant day to day variation in risk of
mortality [25]) as well as route of admission (Emergency
Department (ED) or non-ED).
Within the time-varying risk model set, the differential

impact of admission at nights and weekends was explored
by developing three separate models that 1/treated all days
as having equal risk, 2/distinguished the risk of weekdays
from weekends, or 3/modeled both daily and weekly peri-
odicities in the risk of death following admission. When
sampling a sinusoidal function, to avoid aliasing or under
sampling, the rate of sampling must exceed the Nyquist
rate, and thus must be greater than double the frequency
of the function being sampled [26]. As our mortality data
has a daily periodicity of one cycle, our model would need
to sample the distribution more than twice a day. We thus



Figure 1 The probability of death up to seven days post-
admission varied by the day of admission and by the time of
the day of admission.
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developed a model that segmented each day of the week
into three sample periods: “daytime” (08:00 to 16:59 hours),
“evening” (17:00 to 23:59), and “night” (0:00 to 07:59), cre-
ating 21 unique sample periods every week.
Finally, a full logistic model was assembled using these

three separate models, which estimated the risk of expos-
ure during hospitalization as the sum of background, time
varying and disease specific factors:

Logit probability of deathð Þ ¼ β1Ageþ β2Gender

þβ3comorbidityindex
þβ4Time of admission

þβ5countMonDaytime

þ…þ βncountSunN ight

Model training and testing
APDC data from 2001 to 2006 were used to train the
logistic models (10,745,181 admissions), and 2007 data
were set aside to prospectively test model performance
(987,079 admissions). Models were developed using
admission data and tested against their ability to cor-
rectly identify whether a patient was alive or dead at 7
days post discharge.
Model performance was assessed by the area under

the receiver operating characteristic curve (AUC), also
known as the C-statistic. Models with an AUC greater
than 0.8 are considered to be good classifiers, with an
AUC of 1 indicating perfect performance. In addition,
we also estimated the ‘goodness’ of each model using the
Akaike information criterion (AIC), and Bayesian informa-
tion criterion (BIC) which are penalized model selection
criteria that track model performance as the number of
model parameters increase [27]. Both criteria help
minimize over-fitting of models to data and amongst
similarly performing models, the one with the smallest
value is preferred.
AUC requires calculation of model sensitivity and spe-

cificity at different values of the ratio of patients who die
to those who survive (the cut off value). We selected the
optimal cut-off as that point in the ROC curve where
the sum of sensitivity and specificity is maximal, and re-
port sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and accuracy at this
point. The study was approved by the NSW Population
and Health Services Research Ethics Committee and the
UNSW Human Research Ethics Committee.

Results
The demographic distribution of patients in the training
(July 2000 – December 2006) and test (2007) data sets is
summarized in Table 1. Age and comorbidity patterns
were similar in both groups. Mean length of stay dropped
from 3.21 days in the seven training years to 2.75 in the
final test year, and the death rate (the ratio of deaths dur-
ing hospitalization and deaths within 7 days of discharge
to all admissions) also dropped from 1.8% to 1.3%.

Model performance
When tested alone, individual model components for
background risk, time-varying risk, and disease-specific
risk had similar but modest power to identify risk of
death up to 7 days post-discharge, with AUCs of 0.71,
0.79 and 0.79 respectively (Table 2). Amongst the three
time- varying risk models, treating each day as if it has
the same risk produced an AUC of 0.71, distinguishing
weekdays from weekends 0.69, improving further to 0.79
with the fine-grained temporal model. This best temporal
exposure model had a greater accuracy (74.4) compared
to the background risk (66.2) and illness severity (66.6)
models alone.
When the individual models were combined to create

the full model, AUC rose to 0.92 for the whole population.



Table 1 Demographic characteristics of patients in model training and testing data sets

Training data
(10,745,181 admissions)

Test data
(987,079 admissions)

% of training data Death rates % of test data Death rates

Age distribution

[0–5] 10.2% 0.3% 8.3% 0.2%

[6-15] 4.4% 0.1% 3.6% 0.1%

[16–35] 21.9% 0.1% 18.6% 0.1%

[36–55] 25.2% 0.5% 23.3% 0.4%

[56–65] 13.5% 1.4% 14.8% 1.0%

[66–75] 12.8% 2.8% 14.8% 1.7%

[76–85] 9.9% 6.1% 13.0% 3.5%

> = 85 2.2% 19.6% 3.7% 9.5%

Charlson score of comorbidity

Zero to mild (0) 68.6% 0.2% 65.5% 0.2%

Mild [1,2] 20.0% 2.7% 20.2% 1.7%

Moderate [3,4] 6.8% 5.7% 8.5% 3.5%

Severe [> = 5] 4.5% 14.7% 5.8% 10.1%

Gender

Female 54.7% 1.5% 53.6% 1.1%

Male 45.3% 2.1% 46.4% 1.6%

Overall death rates 1.8% 1.3%

LOS

Mean/Std. deviation 3.21/11.42 2.75/5.134

Median 1.00 1.00

Range 599 171

Interquartile range 2 1
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When the model was trained and tested only on patients
admitted via the Emergency Department (ED) the AUC
was 0.91; training and testing on non-ED admissions
achieved an AUC of 0.92. Performance dropped to 0.62
when the population-trained model was tested only on
patients with a primary diagnosis of a major arrhythmia
or cardiac arrest, 0.75 for Lymphoma and Non-Acute
Leukaemia and 0.87 for laryngoscopic, mediastinal and
other chest procedures. When the full model was trained
using only the subgroup of patients from these DRGs, per-
formance improved, but variably. Patients with major
arrhythmia or cardiac arrest had minimal improvement
(AUC 0.76). Lymphoma and Non-Acute Leukaemia pa-
tients (AUC 0.90), and malignant breast disorders (AUC
0.90) improved substantially, and patients with laryngo-
scopic, mediastinal and other chest procedures surpassed
the general population benchmark (AUC 0.94).
The combined or full model’s performance varied with

length of stay (Figure 2). The model performed best with
patients of hospital stays of seven days or less, covering
some 93% of admissions, and peaking at days 3 to 5 with
an AUC of 0.94. After seven days, model sensitivity
remained surprisingly steady, but specificity dropped, indi-
cating that model performance was deteriorating because
of an increased number of false positives. Performance
also became increasingly erratic, possibly reflecting smaller
patient numbers both in training and tests sets, as well as
increasing influence of unmodelled disease and service
specific factors.
AIC and BIC measures closely tracked each other for all

models, and showed an increase with increasing model
complexity, as expected. Most models had AIC values in
the range 1.071-1.68e + 006 except for the more specia-
lised models based upon single DRG (e.g. R61: Lymphoma
and Non-Acute Leukemia, AIC = 4.7669e + 003).

Discussion
Modeling the time accumulated risk associated with
hospital stay has allowed the development of a class of
predictive models that, when combined with simple
disease data appears to substantially outperform many
disease specific models alone. This is despite the disease
specific information used in our model being represented
by relatively simple linear combination of administrative



Table 2 Model Performance in predicting death up to 7 days post-discharge, as measured by AUC, AIC and BIC

Model type Variables used Number of
variables

AUC AIC BIC Optimal cut-off
point (ratio of
deaths to survival)

Sensitivity Specificity PPV NPV Accuracy

Model 1: Background risk Age, Gender 2 .711 (.708 -.715) 1.0710e + 006 1.0710e + 006 0.196 71.29 66.14 2.78 99.41 66.21

Model 2: Time exposure
risk

2(a): Length of stay (LOS) 1 .710 (.705 - .714) 1.3155e + 006 1.3155e + 006 0.168 69.07 73.69 3.45 99.43 73.62

2(b): LOS (Weekday,
weekend), admission time

3 .692 (.687 - .697) 1.1960e + 006 1.1961e + 006 0.145 71.97 70.21 3.18 99.5 70.23

2(c): LOS (Morning, evening,
or night for each of seven
days), admission time

22 .786 (.782 - .79) 1.3464e + 006 1.3467e + 006 0.228 64.62 74.57 3.34 99.4 74.44

Model 3: Disease model Charlson comorbidity index 1 .786 (.783 - .79) 1.0826e + 006 1.0826e + 006 0.1 91.54 66.27 3.56 99.8 66.60

Model 4: Background plus
time exposure risk

4(a): 1 + 2(a) 3 .73 (.726 - .739) 0.9408e + 006 0.94097e + 006 0.196 76.14 61.25 2.6 99.5 61.5

4(b): 1 + 2(b) 5 .743 (.739 - .747) 1.1519e + 006 1.1520e + 006 0.227 79.95 68.72 3.36 99.6 68.87

4(c): 1 + 2(c) 24 .883 (.88 - .886) 1.4713e + 006 1.4716e + 006 0.32 82.41 77.41 4.73 99.7 77.47

Model 5: Full model 5(a): 1 + 2(a) + 3 4 .891 (.888 - .894) 1.5143e + 006 1.5143e + 006 0.197 87.09 78.32 5.18 99.8 78.43

5(b): 1 + 2(b) + 3 6 .893 (.89 - .896) 1.5118e + 006 1.5119e + 006 0.224 86.86 78.27 5.16 99.8 78.38

5(c): 1 + 2(c) + 3 25 .923 (.921 - .926) 1.6769e + 006 1.6772e + 006 0.271 88.18 81.61 6.13 99.8 81.71

Model 6: DRG-specific
models 5(c) trained and
tested only single DRG
subpopulation

R61: Lymphoma and
Non-Acute Leukemia

25 .90 (.878 - .922) 4.7669e + 003 4.9223e + 003 0.149 81.45 82.63 34.67 97.5 82.51

E02: Other Respiratory
System OR Procedures

25 .940 (.911 - .969) 2.6019e + 003 2.7281e + 003 0.398 80.0 95.25 21.05 99.6 94.99

F70: Major Arrhythmia
and Cardiac Arrest

25 .762 (.736 - .802) 982.0188 1.1044e + 003 0.412 75.86 65.79 68.75 73.3 70.81

E64: Pulmonary Oedema and
Respiratory Failure

25 .85 (.807 - .894) 466.95 476.32 0.616 71.34 88.41 87.5 73.05 79.32

J62: Malignant Breast
Disorders

25 .903 (.874 - .933) 704.03 713.95 0.438 77.69 86.49 74.26 88.54 83.55

Model 7: Emergency
Department admission
5(c) trained and tested
only on ED or non ED
subpopulations

ED admission 25 .909 (.905 - .912) 3.0017e + 005 3.0044e + 005 0.16 87.80 77.32 11.91 99.45 77.67

Non-ED admissions 25 .925 (.921 - .928) 1.4626e + 006 1.4629e + 006 0.218 87.70 84.38 4.47 99.9 84.41

An optimal cut-off value is selected as the point in the receiver operating characteristic curve where the sum of sensitivity and specificity is maximum. Sensitivity, specificity, model accuracy, positive predictive value
(PPV) and negative predictive value (NPV) are reported at the optimal ratio of patient deaths to survival.
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Figure 2 Performance of the ‘full model’ as a function of length of stay (LOS).
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information including the Charlson index and DRG cat-
egories. One would anticipate even better performance if
an exposure model was combined with a clinically-based
disease prognostic model, relying for example on patient
record or disease registry data, as well as better modeling
the relationship of variables to mortality (e.g. age and
death are better represented as a log linear rather than
linear relationship [28]).
A striking feature of our data set is the strong daily

rhythm to risk of death, which echoes the well-known
weekly variation of risk of death, which peaks with week-
end admission (Figure 1). Our data shows the risk of
mortality peaks in the early evening and is at its lowest
in the morning (Figure 3). Daycare did not appear to
increase risk of death but this attenuated at weekends –
the weekend effect. Compared to admission on Monday
day, the odds ratios for risk of death were worse for eve-
nings and nights, and Sunday daytime had a 1.7 times
greater risk than Monday daytime.
It is hard to impute causation to such observational

data and we can only speculate why the diurnal rhythm
exists. There are two main causal readings to be explored.
Firstly, it may be that such risks of death are a feature of
Figure 3 Coefficients for the contribution of different time periods to
death following admission at a different time of the week, compared
the health service, where patients experience increased
risk because of reduced availability or quality of clinical
services. The push for health services to provide uniform
“24/7” care is a response to this concern. The second
causal reading is equally plausible, and that is that some
patient groups are associated with greater risk of death at
different times. This may be due to a selection bias, where
sicker patients present to hospital at given times, or in
some instances may have a biological cause. Our recent
analysis of the weekend effect identified that both causal
readings are plausible, and that different patient groups
demonstrate either care or illness risk patterns [25].
We show that performance of models using patient

subgroups based upon DRGs is also variable. For ex-
ample, performance was not strong for patients with
major arrhythmia or cardiac arrest. As 8,254 admissions
with major arrhythmia or cardiac arrest were present in
the training data set, with an average LOS of 2.69, it
seems unlikely that sample size or LOS were factors in-
fluencing performance. In contrast model performance
was strong for DRGs associated with leukemia or lymph-
oma. In our recent analysis of weekend effects, increased
weekend deaths for acute cardiovascular events appear
the full model (left) and corresponding odds ratios for risk of
to Monday day as a reference (right).
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to be related to service quality (e.g. lack of availability of
imaging or stenting services out of hours). For onco-
logical patients however, the cause seems to be that a
sicker cohort of patients is presenting at the weekend
[25]. This suggests that the models developed here may
be better at modeling disease rather than service specific
factors in its exposure risk profile, and warrants further
investigation. Where there are time varying risks associ-
ated with a health service for a particular patient group,
specific modeling of that independent risk may be
needed.
Modeling the route of admission (Emergency vs. non-

Emergency Department) did not appear to confer any
advantage despite it being show by others to be a major
predictor of mortality [9]. One possible explanation is
that information about route of admission is already
captured implicitly in the exposure model. For ex-
ample, patients admitted out of hours may be most
likely to presenting via emergency, and so the out of
hours risk is already modeling route of admission as a
hidden covariate. Further work is needed to under-
stand the nexus between time-varying risk and route of
admission.
Adding new variables to the basic model helped improve

model accuracy at the expense of increasing AIC and BIC
values (Table 2). However AIC/BIC value increments were
modest and the improvement in model performance sub-
stantial. Further, interpreting AIC and BIC values is hard
with large data sets, and they typically are more valuable
when models are developed on small data sets. With large
data sets, AIC and BIC may end up preferring over-fitted
models [24].
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Most current clinical predictive tools provide snapshot
predictions of risk, independent of time. Yet clearly risks
should vary with time. In this study predictive perform-
ance was best in the first week of admission, and perform-
ance early in the first week was exceptionally strong. One
would expect as admission time lengthens that many add-
itional factors come into play to modify risk, and therefore
long run prediction becomes increasingly difficult – a
situation well known in forecasting. It is also the case
that patient mix changes with time, and those patients
with long stays represent a different cohort with differ-
ent risk profile, and may need to be modeled separately.
Sample sizes available for such model development also
diminish as length of stay increases, making it harder to
develop generalizable models.
Models such as those presented here could be used to

forecast risks such as death or specific clinical events,
and to update those forecasts as additional information
accumulates. Using the full model developed here, it is
clear that the risk profile for patients varies with both
time and day of admission (Figure 4). Given that predictive
accuracy changes with LOS, it would also be appropriate
to provide clinicians with estimates of the accuracy of each
prediction and emphasize for example that confidence is
stronger in the short rather than long run. The next stage
in developing the models presented here would be to
evaluate their capacity to forecast future risk of death for
patients given their current exposure to hospitalization.
One challenge for creators of clinical prediction models

is that they often fail to generalize to settings beyond those
from which they are created, because they model a point
in time, local disease patterns or service provision patterns
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[1]. The approach developed here is likely to be highly
generalizable as it relies on no location specific informa-
tion, except for the weightings associated with different
model variables. These weightings could be calibrated
using the best available data for a given location. Further,
the evaluation here was on patients from a large geog-
raphy encompassing urban, rural and remote settings,
and hospitals ranged from public to private, and small
to large teaching and specialist referral centers.
Addition of location specific variables and disease spe-
cific elements are likely to further enhance the general
model reported here.

Conclusions
Risks of death associated with hospitalization vary not just
with the day of the week but also time of the day, and can
be used to make predictions about the cumulative risk of
death associated with an individual’s hospitalization. En-
hancing disease specific prognostic models with estimates
of the cumulative risk of exposure to hospitalization ap-
pears to greatly enhance predictive performance. Risk
exposure models should find utility both in enhancing
standard prognostic models as well as estimating the
risk of continuation of hospitalization.
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