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Corrections of order big (Q=Db or c) to the Bethe-SalpeteiBS) equation forAq are analyzed on the
assumption that the heavy barydrp, is composed of a heavy quark and a scalar, light diquark. It is found that
in addition to the one BS scalar function in the limti— o0, two more scalar functions are needed at the order
1/mg. These can be related to the BS scalar function in the leading order in our model. The six form factors
for the weak transitiom\ ,— A are expressed in terms of these wave functions and the results are consistent
with HQET to order Iihg . Assuming the kernel for the BS equation in the limig— c to consist of a scalar
confinement term and a one-gluon-exchange term we obtain numerical solutions for the BS wave functions,
and hence for thé ,— A . form factors to order Mg . Predictions are given for the differential and total decay
widths forAbHACI; and also for the nonleptonic decay widths fog— A . plus a pseudoscalar or vector
meson, with QCD corrections being also included.

PACS numbes): 11.10.St, 12.39.Hg, 14.20.Lq, 14.20.Mr

[. INTRODUCTION function was calculatedi8,10] and 1mg corrections were
also considered8]. In previous work[11-13, we estab-
Heavy flavor physics provides an important area withinlished the BS equations in the heavy quark lintitd— o)
which to study many important physical phenomena in parfor the heavy baryond 5 and wg‘) (wherew=52, > or Q
ticle physics, such as the structure and interactions insidend Q=b or c). These were assumed to be composed of a
heavy hadrons, the heavy hadron decay mechanism, and theavy quarkQ, and a light scalar and axial-vector diquark,
plausibility of present nonperturbative QCD models. Heavyrespectively. We found that in the liming— -, the BS
baryons have been studied much less than heavy mesongjuations for these heavy baryons are greatly simplified. For
both experimentally and theoretically. However, more ex-example, only one BS scalar function is needed fgy in
perimental data for heavy baryons is being accumulateghis limit. By assuming that the BS equation’s kernel consists
[1-6] and we expect that the experimental situation for themyf g scalar confinement term and a one-gluon-exchange term
will continue to improve in the near future. On the theoreti-we gave numerical solutions for the BS wave functions in
cal side, heavy quark effective thedifQET) [7] provides @  the covariant instantaneous approximation, and consequently
systematic way to study physical processes involving heavgpplied these solutions to calculate the Isgur-Wise functions
hadrons. With the aid of HQET heavy hadron physics isfor the weak transitions,— A . anng*)_}Q(c*).
simplified whenmg>Aqcp. In order to get the complete | reality, the heavy quark mass is not infinite. Therefore,
physics, HQET is usually combined with some nonperturbain order to give more exact phenomenological predictions we
tive QCD models which deal with dynamics inside heavyhave to include Ih, corrections, especially i, correc-
hadrons. tions. It is the purpose of the present paper to analyze the
As a formally exact equation to describe the hadronici/m, corrections to the BS equation far, and to give some
bound state, the Bethe-Salpe(BS) equation is an effective phenomenological predictions for its weak decays. As in the
method to deal with nonperturbative QCD effects. In fact, inprevious work{11-14, we will still assume that\  is com-
combination with HQET, the BS equation has already beemosed of a heavy quark and a light, scalar diquark. In this
applied to the heavy meson syst¢&+-10. The Isgur-Wise picture, the three body system is simplified to a two body

system.
In the framework of HQET, the eigenstate of HQET La-
*Email address: xhguo@physics.adelaide.edu.au grangian|Aq)net has 0" light degrees of freedom. This
"Email address: athomas@physics.adelaide.edu.au leads to only one Isgur-Wise functidifw) (o is the velocity
*Email address: awilliam@physics.adelaide.edu.au transfej for A,— A in the leading order of the i, expan-
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4

d'p .
me'pXXP(p), (2

whereX=\1X;+ \,X, is the coordinate of the center of mass
and x=X;—X,. The momentum of the heavy quark 5

sion[15-20. When 1iq corrections are included, another _
form factor in HQET and an unknown flavor-independent X(xl,xz,P)ze'Pxf
parameter which is defined as the mass differem;gQ
—mMg in the heavy quark limit are involvefdl9]. This pro-
vides some relations among the six form factors fof

— A to order 1ing. Consequently, if one form factor is —\.P+ - _—
; : ) =\.P+p and that of the diquark ip,=—A,P+p. xp(p)
determined, the other five form factors can be obtained. satisfies the following BS equatid@1];

Here we extend our previous work to solve the BS equa-

tion for A to order 1img, in combination with the results of dq
HQET. It can be shown_ that Fv_vo BS scalar functions are xp(P)=Sc(\ P+ p)f 4K(P,p,q))(p(q)
needed at the orderrh4, in addition to the one scalar func- (2m)
tion in the limit mg—cc. The relationship among these three
o p among X Sp(—\oP+p), 3)

scalar functions can be found. Therefore, our numerical re-
sults for the BS wave function in the ordeig—o can be

whereK(P,p,q) is the kernel, which is defined as the sum of
applied directly to obtain the i, corrections to the form (P.p.a)

all the two particle irreducible diagrams with respect to the

factors for the weak transitioh,— A .. It can be shown that heavy quark and the light diquark. For convenience, in the
the relations among all the six form factors fag— A in following we use the variables

the BS approach are consistent with those from HQET to
order 1mg. We also give phenomenological prEdictions for pI=v- p_)\zmAQ, pi=p—(v-p)v. (4)
the differential and total decay widths far,— A .| v, and for

the nonleptonic decay widths fok,— A plus a pseudo- It should be noted that, andp, are of the order\ ocp. The
scalar or vector meson. Since the QCD corrections are conmass ofA o can be written in the following form with respect
parable with the Ing corrections, we also include QCD to the 1y expansionfrom HQET):

corrections in our predictions. Furthermore, we discuss the
dependence of our results on the various input parameters in
our model, and present the comparison of our results with
those of other models.

The remainder of this paper is organized as follows. InwhereE, andE; /mq are binding energies at the leading and
Sec. Il we discuss the BS equation for the heavy quark anlrst order in the Ithy expansion, respectivelyn, , Eq and
light scalar diquark system to ordemig and introduce the E; are independent afy, .
two BS scalar functions appearing at this order. We also Since we are considering 4 corrections to the BS
discuss the constraint on the form of the kernel. In Sec. lllequation, we expand the heavy quark propag&e,P
we express the six form factors fdr,— A in terms of the  +p) to order 1Mmg. We find
BS wave function. The consistency of our model with HQET
is discussed. We also present numerical solutions for these 1
form factors. In Sec. VI we apply the solutions for thg Sp=Sort+ m_lev (6)

— A form factors, with QCD corrections being included, to N
the semileptonic decag,— Al v, and the nonleptonic de- whereSye is the propagator in the liming—ce [11]
caysAp— A, plus a pseudoscalar or vector meson. Finally,
Sec. VI contains a summary and discussion. . 1+3¥
Sor =1 2(p+Egt+mp+ie)’

1
mAQ:mQ+mD+E0+ m_QE1+O(1/mé)i (5)

)

[l. THE BS EQUATION FOR Ag TO 1/mg and
Based on the picture thatg is a bound state of a heavy )
quark and a light, scalar diquark, its BS wave function is S =i (—E1+pi/2)(1+9)
defined ag11] o 2(p+ Eg+ mp i)
X(%1.%2,P)=(0[Toho(x1) ¢(Xa)[Ag(P)), (1) P 1=d)

T (Pt Egtmptic) 4 ®)

whereyo(X;) ande(x,) are the field operators for the heavy ) )
quark Q and the light, scalar diquark, respectivelf, It can be shown that the light diquark propagator g/
=m, v is the total momentum af o andu is its velocity. still keeps its form in the limimg—-<,

Let mg andmp be the masses of the heavy quark and the i

light diquark inAq, p be the relative momentum of the two So=———, (9)
constituents, and defink,=mgq/(Mg+mp),A,=mp /(Mg pr—Witie

+mp). The BS wave function in momentum space is defined

as whereW,= \pZ+m3 (we have definegh?=—p,-py).

116015-2
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Similarly to Eq.(6), we write yp(p) andK(P,p,q) inthe  (1—%)/2 and using Egs.7),(8),(9),(11) and (14), we obtain

following form (to order 1mg): the following integral equations foy;5(p) and x1p(p):
1 1
xp(P) = Xop(P) + m_le(p)’ Xio(p)=—
Q 10 (P +Eg+mp+ie)(pf—Wa+ie)
1
K(P,p,q)=Ko(P,p,a)+ —K4(P,p,q), dq
DA RAT P AT g R P XJ (ZW)4KO<P,p,q>xIp<q>
where x1p(p) andK,(P,p,q) arise from I, corrections.
As in our previous work, we assume the kernel contains a B 1
scalar confinement term and a one-gluon-exchange term. (pi+Eo+mp+ie)(pP—W2+ie)
Hence we have e Te ! P
iKo=1®1V,+0,® (Pt pyHV f d'q K.(P,p,q) pi/2—E,
_l = U y >< il 1 + = L -
0 1T 0,Q (P21 P2) Va2 an (2m) 1(F,p.q P+ Egtmptie
—iK =1®1V3+y,®(pat+ps)*Vy,
X Ko(P,p, , 16
wherev , in K, appears because of the heavy quark symme- o PP q)})(op(q) (18
try.
Substituting Egs(6) and(10) into the BS equatioii3) we - b,
have the integral equations fae(p) and x,1p(pP) X1p(P)= 2(p,+Eo+mD+i€)(p|2_W;23+i€)
(p)=Soe(\ 1P+ )j d'a Ko(P,p,q) d*q
Xop(P)=SortMa T R) | D a ol PP xf (ZW)AKO(P,p,q)xOp(q)- (17)
X Xor(@)Sp(— AP +p), (12)

After writing down all the possible terms forgp(p) and
and x1p(P), and considering the constraints on them, Edd)
and(15), we obtain that

d*q
le(p)zs"F(MPer)f 2myt AP0 Xop(P) = dop(P)Ux(v.5),
*Xop(A)Sp( =22+ P)+ Sie(hP+P) Xin(P)= d1p(P)UA(0.9), (18
d*q _
X f (277)4Ko(P'p*Q)XOP(Q)SD(—M”p> X1p(P) = ¢2p(P)Bilis (v.5),
d*q where ¢op(p), ¢1p(P) and¢,p(p) are Lorentz scalar func-
+Sor(A P+ P)J 2 Ko(P.p,a) tions.
(2) Substituting Eq.(18) into Egs.(12),(16),(17) and using
X x1p(0)Sp( — \,P+p). (13) Egs.(7),(8),(9),(11) and(14) we have
Equation (12) is what we obtained in the limitng— o, bon(p) = — 1
which together with Eq(7) gives o (P +Eg+mp+ie)(pf—Wy+ie)
¥ xop(P) = Xop(P), (14) d'q
—K Pl 1 1 19
since ¥ =v?=1 and so0bSy==Sor. Therefore,Syr(\,P f(ZW)4 o P..a) fop(Q) (19
+P) ¥uXor(d) =Sor(N 1P+ p)v . x0p(q) in the first term of
Eqg. (13). So to order Ihy, the Dirac matrixy, from the 1
one-gluon-exchange term kK, (P,p,q) can still be replaced d1p(P)=— _ 5 S
by v, . (pi+Egtmp+ie)(pi—Wp+ie)

We divide y1p(p) into two parts by defining ¢

q
X1p(P) =X1p(P) + X2p(P), BXip(P) = Xin(P), < (2t PP ae()

(15
. _ 1
i.e., x1p(P) =3[ x1p(P) + ¥ x1p(P)] and x1p(P)=z[ x1r(P) - , 7 o
— ¥ x1p(p)]. Multiplying Eq. (13) with either (1+#)/2 or (Pi+Eotmp+ie)(pi—Wytie)

116015-3
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pt2/2_ E, Equation(23) constraints the form oK,(P,p,q). The sim-
plestK,(P,p,q) which satisfies Eq(23) is [(a—pZ/2)/(p
+Eqg+mp+ie)]Ko(P,p,q), where a is a parameter in
K1(P,p,q) which should be equal t&;. However, as will
xKO(P,p,q)}cpop(q), (200  be seen later, once E(R3) is satisfied, the physical results
do not depend on the explicit form &, (P,p,q).
We would like to stress that E(R3) is just one possibility

4
Xf ‘ A {Kl(P!pvq)—i_

(277-)4 p|+E0+mD+i6

and we have found which guarantees that we have solutions for
$1p(p). There may be other possible forms #5(P,p,q)
bop(p)=— 1 which can also lead to solutions far;p(p), and whether or
2(p+Ept+ mD+ie)(p|2—W§+ie) not Eq.(23) is a reasonable hypothesis should be tested by
, experiments.
d*q With Eq.(23), ¢1p(p) satisfies the same eigenvalue equa-
Xf (277)4K0(P,p,q)¢0p(q). @) ton as¢op(p). Therefore, we have
Equations(19) and(21) lead to b1p(P) = 0 Pop(P), (24)
_- whereo is a constant of proportionality, with mass dimen-
$2p(P)= 5 Por(P)- 22 sion, which can be determined by Luke’s theori@8] at the

zero-recoil point in HQET. We will discuss it in the next
dop(p) is the BS scalar function in the leading order of section.

the 1ing expansion, which was calculated[ibl]. From Eqg. Since bothegp(p) and ¢,p(p) can be related tgop(p),
(22) $op(p) can be given in terms abop(p). The numerical  we can calculate the i, corrections without explicitly
solutions for ¢op(p) and ¢1p(p) can be obtained by dis- solving the integral equations faf;p(p) and¢,p(p). In the
cretizing the integration region into pieces(with n suffi- previous work{11] ¢op(p) was solved by assuming thet
ciently large. In this way, the integral equations become andV, in Eq. (11) arise from linear confinement and one-
matrix equations and the BS scalar functiopig=(p) and  gluon-exchange terms, respectively. In the covariant instan-

¢>1p(p) becomer_1 dimensional v_ectors. Thuggp(p) is the taneous approximatioﬁ(izvi|p g i=1,2, we find
solution of the eigenvalue equatioA{ 1) ¢y=0, whereA is e

annxn matrix corresponding to the right hand side of Eq.

(19). In order to have a unique solution for the ground state, - 8k 3
the rank of @—1) should ben—1. From EQq.(20), ¢1p(p) is Vi= m—(%ﬂ 8 (pe—a)
the solution of A—1)¢,=B, whereB is ann dimensional P Q) T

vector corresponding to the second integral term on the right Bk 87k

hand side of Eq(20). In order to have solutions fap,p(p), f — T a3

the rank of the augmented matriA ¢ |,B) should be equal (2m)” (K*+ )

to that of (A—1), i.e., B can be expressed as linear combi- (25)
nation of then—1 linearly independent columns iAG1). 5 161 ageff)ZQg

This is difficult to guarantee B+ 0, since the way to divide Vy=— 3 S TP
(A—1) into n columns is arbitrary. Therefore, we demand [(Pt—a0) "+ ][ (pr—d)“+ Q3]

the following condition in order to have solutions fék(p)
wherex and a(sem are coupling parameters related to scalar
4 pf/Z— E, confinement and the one-gluon-exchange diagram, respec-
f 4 Ki(Pipa)t e ——— tively. They can be related to each other when we solve the
(2m) Pi+Eotmptie . . L
eigenvalue equation fopyp(p). The parametey is intro-
duced to avoid the infrared divergence in numerical calcula-
$op(q)=0. (23)  tions, and the limitu—0 is taken in the end. It should be
noted that inV, we introduced an effective form factor,
Equation(23) is a constraint we impose on ti@(1) and  F(Q?)=a™Q¥/(Q?+Qj), to describe the internal struc-
O(1/mg) parts of the BS equation kernef;(P,p,q) and ture of the light diquark23].
Ko(P,p,q), under which we have solutions f@¥,p(p). In Defining ?ﬁop(pt)zf(dp|/27-r) dop(p) the BS equation
fact, Ko(P,p,q) andK,(P,p,q) are the sum of two particle ¢y, Pop(py) is [11]
irreducible diagrams and both of them are determined by the
complicated nonperturbative interactions between the heavy

X KO(P!prq)

quark and the light diquark. As we cannot solve these kernels Dop(py) = — 1 J d*q,

from the first principles of QCD we have to make a phenom- OPLFt 2(Eq=Wp+mp)WyJ (277)3
enological model. The form assumed f&(P,p,q) was _ o

given in[11] in the covariant instantaneous approximation. X(V1—2WpV5) dop(dy), (26)

116015-4
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in the covariant instantaneous approximation. The numerical 1 A
results forgop(k,) can be obtained from Eq26), with the Fa=Go=-Ci 77~ (29
overall normalization constant being fixed by the normaliza- ¢
tion of the Isgur-Wise function at the zero-recoil pojititl]. N
Furthermoregqp(p) is expressed in terms ﬁop(qt): Fa=—Ga=— Gli i
mb 1+w
i
$op(P) = (Pr+ Eo Mo +ie)(p— W2t ie) where A is an unknown parameter which is defined as the
mass dlfferencenAQ—mQ in the limit mg— co.
d®q, -~ ~ ~ On the other hand, the transition matrix elementAgf
j (Zw)g(V1+2p|V2)¢op(Ch)- (27) A, is related to the BS wave functions af, and A by
the following equation:
. A,—A. FORM FACTORS TO 1/mq <Ac(0')|JM|Ab(U)>
In this section we will express the six form factors for the an
Ap— A weak transition in terms of the BS wave function :f 4XP'(p')7’M(1— 75)Xp(p)551(p2),
and show the consistency between our model and HQET. (2)

On the grounds of Lorentz invariance, the matrix element

30
for A,— A, can be expressed as (30

where P(P’) is the momentum ofA, (A.) andp’ is the

(A0 Ap(v))=up (0)[Fi(@) y,+Fa(@)v, relative momentum defined in the BS wave function of

+Fg(w)v,'L—(Gl(w)yﬂJer(w)vﬂ Ac(v"), ;p,(p’), which can also be expressed in terms of
the three BS scalar functiomsp(p), ¢1p(p) andg,p(p) in
+G3(w)v,)ysluy, (v), (28)  Eg.(19
whereJ , is theV—A weak currentp andv’ are the veloci- — — 1
ties OfAb andAC , respecti\/e|y' and=v'-v. XP(p): uAQ(U1S) ¢OP( p) + m_Q[¢1P(p)+ ¢2P(p)¢t]]
The form factorsd=; andG;(i=1,2,3) are related to each (32)
other by the following equations, to ordernif, when
HQET is applied 19]: Substituting Eqs(18) and(31) into Eq.(30) and using the

relations in Eq.(29) we find the following results by com-

S 1 L i A paring they,,, ¥,¥s, v,(1—ys) andv,(1+ ys) terms, re-
1 . 1+w spectively:
1 1) A [ dk )
Gy 1+ E‘F_ 1tal~ I(Z v dopr (K") op(K) (K Wk)"‘_[(f’lpf(k )= (K +mp) dop: (k') ]

X ¢pop(K) |<2—w2)+i —fi+f+2m F)+i(f —f )+i k")
¢0P( ( | k mc( 1 2 D mb 1 2 mb d’OP’(
X[ 1p(K) = (kj+mMp) dop(K) 1(KF—WE) | +O(1/md), (32
[ dk ) 1
G1:_|f(2 v {d’op'(k ) bop(K) (K; Wk)+_( 1+f2)+_[¢1p'(k)
2 ’ 2 2 1 1 ’
= (ki + mp) dop/(K")]pop(k) (ki —Wi) + m—(fl“‘fz)"‘H(ﬁop/(k W d1p(K)
b b
— (kj+mp) dap(K) 1(KF —WE)

1
m|

+0(1mp), (33

+2(f;—mpF) | =0(1/mf), (34)

1+w

116015-5
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Lo, 2f,|=0(1/mg
m—b IGlm‘F 2 —O(lmQ), (35)

where we have definef}, f, andF by the following equations, on the grounds of Lorentz invariance:

d*k ) )
f —(zw)4¢2P’(k,)¢0P(k)(kl_Wk):F! (36)
d*k ) )
J (2 ———b2p(K') op(K)K* (ki = W) = fro#+fu"#. (37)
Equation(37) leads to
1 d*k by
f1+f2:1+wf (2n )4¢2P'(k ) dop(K) (ki = W) (v-k+v"-K). (38)

Equations(32) and(33) give the expression fdB, to order 1ing. From Egs(34) and(35) we can see that E¢32) is the
same as Eq33). Therefore, we can calcula@, to 1/mg from either of these two equations. This indicates that our model is
consistent with HQET to order i, .

Substituting Eq(38) into Eqg. (33) and using Eq(22) we have

H d4k 2 ’ ’ 2 2 1 ’
GF"I 21 o (K') dop(K) (Ki Wk)+ ¢1P’(k )= 3 (k| +mMp) dopr (K') [ op(K) (KF = W) + — opr (K')
(2m) m,

1 1 1
X ¢>1p(k>—§(k|+mo>¢0p(k>}(k.2—w§)+ — FJ mcﬁopr(k'wop(k)(kﬁ—wa(v-k+v'~k> . (39
|
The first term in Eq.(39) gives the Isgur-Wise function k| = kjow—kJw?—1cos6,

which was calculated in our earlier wofi1]. In order to
obtain the Iihg corrections, we have to fix,p(k). Fortu- k{?=kZ+k*(w?—1)cog 6+ ki (w?—1)
nately, this can be done by applying Luke’s theorg2d].
The conservation of vector current in the case of equal — 2k kiww?—1cosb, (43

masses for the initial and final heavy quarks leads to
where 6 is defined as the angle betweknandv .
Gl(m=1)=1+0(1/mé). (40) Substituting the relation betweegyp(p) and ¢op(p;)
[Eq. (27)] into Eq. (39), using the BS equatioli26), and
integrating thek, component by selecting the proper contour
we have

Now we consider Eq(39) at the zero-recoil pointp=1,
at whichP’ =P andk’=k. Since the first term in Eq39) is
the Isgur-Wise function, this term is 1 when=1. From Eq.
(40) the 1m; and 1m, terms in Eq.(39) should be zero at 1
the zero-recoil point. Substituting E€R4) into Eq. (39) and Gi(w)= §(w)+ c(w)+ —Ab(w) (44)
noticing thatv-k+v'-k=2(k+mp)+O(1/mgy) when w
=1 [see Eq.4)], we can show that where

o=0. (42)

K,
{(w)= —f Floky), (45)

Therefore,¢,p(k) does not contribute t&;. (2m)3

Now we calculates; through Eq.(39). Since in the weak
transition the diquark acts as a spectator, its momentum in Bk, (02— 1)Wy+ wkJw?—1coss
the initial and final baryons should be the sarpe=p;. c(w):_f PYRY: 2wt 1)

Then we can show that to ordemig (2m)

XF(w,k), 46
kv +k{ =k +k. (42) (k) (49
3 2
From Eq.(42) we can obtain relations betweds, k/ and _ [ 9k kiyo —1cosd
. t Ap(w) Flw,ky) (47)
k , k, straightforwardly: 2m)? 2(o0+1)
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andF(w,k;) is defined as 1.4 . T T T T T T

bop(ky)

F(w,kt):
Eo+ Mp— oW,— k{Vw?—1cosé

dcry -
XJ (2W)3¢0P,(rt)[V1(kt_rt)

— 2(wWy+ ke Vw?—1cosh) V,(k/ _rt)]|k|=f

0 :—" -------------------------- N
(48 05 T S I' . | . .
The three dimensional integrations in E¢45)—(47) can roo12 e 16 18 2 220 24 26
be reduced to one dimensional integrations by using the fol- “
lowing identities: FIG. 1. The numerical results foF;(i=1,2,3) for k=0.02
. 5 Ge\® (solid lines and k=0.10 GeV? (dotted lineg, with mp=0.7
f d*qq p(dy) GeV. From top to bottom we have,, F3, andF,, respectively.
(2m)3 [(py— ) ?+ pu?]?

for some values ofny and 8 we can determiné&,. Using

qqut gp(qtz) Egs.(44)—(50) and Eq.(29) we obtain numerical results for
> T3 55, (49 the weak decay form factor§;, G;(i=1,2,3) to order
4m (pr+ai+u®) = 4pid; 1/mg . It turns out that the numerical results are very insen-
and sitive to the value of3, so we ignore this dependence. We
also find that the dependence Bf, G; (i=1,2,3) on the
&9, p(92) diguark massnp is not strong. In Fig. 1 we plot the numeri-
f cal results forF;(i=1,2,3) for k=0.02 Ge\? and x=0.10
(2m)° (p—ap)?+6° Ge\P, respectively, withmp=0.7 GeV.
2 2
Gida. _p(d) (|pt|+|Qt|) o , (50 IV. APPLICATIONS TO Ap—A.l7 AND A,—AP(V)
222 2lpdlal e —lad)2+ 82
With the numerical results fof;, G;(i=1,2,3) to 1ing
wherep(qf) is some arbitrary function oditz. obtained in Sec. lll, we can predict thhg,— A . semileptonic
In our model we have several parametefgﬁ), x, Q%,  and nonleptonic weak decay widths to ordend/ Since the

mp, Eo andE;. The parameteQO can be chosen as 3.2 QCD corrections to these form factors are comparable with
Ge\? from the data for the electromagnetic form factor of the 1ing effects, we will include both of them to give phe-
the proton[23]. As discussed in Ref11], we let« vary in ~ homenological predictions. _

the region between 0.02 G&\and 0.1 GeV. In HQET, the Neubert[25] has shown that the QCD corrections to the
binding energies should satisfy the constraint Exj. Note weak decay form factors can be written in the following form
that mp+E, and E; are independent of the flavor of the (up to corrections of the orderSA/mQ)

heavy quark. From the BS equation solutions in the meson

case, it has been found that the values=5.02 GeV and as(m) as(m)
m.=1.58 GeV give predictions which are in good agreement AF,;=¢ v, AG;=¢ p ap,
with experiments[8]. Since in the b-baryon case the (52)
O(1/m§) corrections are very small, we use the following — —
; ; ; ag(m) ag(m) .
equation to discuss the relations amang, E, andE,, AF=—¢ vi, AG=-¢ a, (i=293),
aa an
1
mp+Ep+ - El—O 62 GeV, (51)  wherev;=v,(») anda;=a;(»)(i=1,2,3) are the QCD cor-

rections calculated from the next-to-leading order renormal-
where we have usemA =5.64 GeV. The parameteng ization group improved perturbation theory. The saalés
cannot be determined, although there are suggestions froghosen such that higher-order termagl(m,/mc))"(n
the analysis of valence structure functions that it should be>1) do not contribute. Consequently, it is not necessary to
around 0.7 GeV for non-strange scalar diqug24]. Hence  apply a renormalization group summation as far as only nu-
we let it vary within some reasonable range, 0.65-0.75 GeVimerical evaluations are concerned. It is shown thatan be
In the expansion with respect to the heavy quark mass, wehosen as &,m./(m,+m.)=2.3 GeV. The detailed formu-
roughly expect] (1/my,)E;]/Eq~Agcp/M,. Therefore, Eq las forv; anda; can be found if25], which also includes a
should be of the ordeA ocpEp. In our numerical calcula-  discussion on the infrared cutoff employed in the calculation
tions, we letB(=E,/Eg) change between 0.2 and 1.0. Then of the vertex corrections. As if25], we choose this cutoff to
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120 v .. T T T T TABLE I. Predictions for the decay rates fot,—Alv, in

B i units 13° s 1B(A.—ab).

.....
.,

100 |-

80 - mp(GeV) Iy Fl/mQ F1/mQ+ QCD

AT (GeV®) 60 i 0.65 4.77(7.20 4.26(6.62 3.10(4.76
0.70 5.12(7.12 4.60(6.56 3.34(4.72

10 7 0.75 5.40(7.02 4.89(6.50 3.54(4.67)

1/mq corrections, and with both iy and QCD corrections,
respectively. We have usad.,= 0.045 in the numerical cal-
culations.

FIG. 2. The numerical results foA™1(dl'/dw) for x=0.02 We can see from Fig. 2 and Table | that botmg/and

Ge\? (solid lineg and x=0.10 GeV? (dotted lines, with mp=0.7 QCD corrections reduce the decay width fog— A | v, and
GeV. From top to bottom we have the predictions withoutdand the QCD effects are even bigger. From Table | we can also

ggg ggg:gﬂgg:’ ;’;';2 elg?vglc})/rrectlons, and with both i and see that the dependence of our predictionsngf is not

1 106 11 115 12 126 13 135 14 145

strong®
be 200 MeV which is a fictitious gluon mass. Furthermore, _
we useA gcp=200 MeV in our numerical calculations. B. Nonleptonic decaysA,—AP(V)
In this subsection we will apply the numerical solutions
A. Semileptonic decaysA ,—A v for the form factorsF;, G;(i=1,2,3) to the nonleptonic de-

caysA,— A P(V)(P andV stand for pseudoscalar and vec-
tor mesons respectivelyThe Hamiltonian describing such
decays reads

Making use of the general kinematical formulas byniéo
and Kramer[26], we find for the differential decay width of

Ap—A v [14]

Gk
H eff: _VCth]D(alol'f' azoz), (54)

V2

B as with O,=(DU)(cb) and O,=(cU)(Db), whereU and D
[3(n+ 7 ) —4=20]+ —vi(0=1)  are the fields for light quarks involved in the decay, and
(d192) =d1v,.(1— vs)d; is understood. The parameteas
anda, are treated as free parameters since they involve had-
ronization effects. Sincd , decays are energetic, the factor-
ization assumption is applied so that one of the currents in

Y. 5 -1 the Hamiltonian(54) is factorized out and generates a meson
—2- ——(w°— + )+ +
2-40] T (0"~ Dlva(1t7) tvs(ltn ) [27,28. Thus the decay amplitude of the two body nonlep-
tonic decay becomes the product of two matrix elements, one
+a,(1— ) +as(n - 1)]] , (53 Isrelated to the decay constant of the factorized me&oar(
V) and the other is the weak transition matrix element be-
tweenAy and A,

da 2
%: §micmAbAF§\/wz—l[3w(7]+ 7771)—2—4(1)2

_( 1 1
Al —+ —
Mme My

X[3(n+ 7 )+ 2— o]+ %Sal(m D[3(y+ 7Y

wheren=m, /m, andA=[GE/(2m)%]|V ,|*B(A.—ab),

with |V,,| being the Kobayashi-Maskawa matrix element. Ge
[Ve| being y MIE(A y— A P(V)) = —EVeVipar(P(V)IAL(V,)|0)

B(A.—ab) is the branching ratio for the decaw, 2
—a(3")+b(07) through whichA, is detected, since the N
structure for such decays is already well known. It should be X(A(P)I*[Ap(P)), (55

noted that in Eq.(53) O(asA/mg) corrections have been where (0|A
ignored and the lepton mass is set to zero. The plot fof
A~Y(dI'/dw) is shown in Fig. 2 formp=700 MeV, where
we also show explicitly the effects of bothni$ and QCD <0|AM|P>:iquM’
corrections. For other values of, the results change only a (56)
little.  —

After integratingw in Eq. (53) we have the total decay

width for Ab—>ACI; The numerical results are shown in
Table | for mp=650 MeV, 700 MeV, 750 MeV and for about 18%. This is because we employed a cutoff in the numerical

x=0.02 GeV’ (0.10 GeV). I, I'yimg @nd lym,+ qep @M€ ntegrations in Ref[11], while the integrations are carried out to
the decay widths without frl, and QCD corrections, with infinity in the present work.

M(Vﬂ)lP(V)> are related to the decay constants
f the pseudoscalar meson or vector meson by

We note that the results without eithemty and QCD correc-
tions in Table | are bigger than those presented in REf] by
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1/mg CORRECTIONS TO THE BETHE-SALPETER ...

<O|VM|V>: fVmVGM '

whereq, is the momentum of the meson emitted from the
W-boson ande,, is the polarization vector of the emitted
vector meson. It is noted that in the two-body nonleptonic
weak decays\,— A P(V) there is no contribution from the
a, term since such a term corresponds to the transitiohof
to a light baryon instead of ..

On the other hand, the general form for the amplitudes of
Ap— A P(V) are

M(Ap—AcP)=iuy (P')(A+Bys)uy, (P),

_ (57)
M(Ap—AcV)=uy (P") € #“(Ary,ys+ AP, vs

+Bl’ylu+ BZP;’«)uAb(P)'

Alternatively, the matrix element fok ,— A, can be ex-
pressed as the following on the ground of Lorentz invari-
ance:

(A(PHI,IAL(P))=U, (P)[f1(0?) v, +if2(a%) 0,0
+f3(0%)0,—(92(0%) 7,
+i92(0%) 0,9
+03(9%),) yslus,(P), (58)

wheref;, g;(i=1,2,3) are the Lorentz scalars. The relations
betweenf;, g; andF;, G, are

PHYSICAL REVIEW 61 116015

f=Fy+ = (my + Fa , Fs
1=Fat 5 (my +my ) m,, Tmy )

1/F, F
fo= o =+ 2,
My, M,

1/ F, Fs
fa=5| = —|,

my, My
(59
s 1 G, N G3
9:1=061— E(mAb_mAC) m—Ab m—AC )
1/ G, G;
== —+ — ,
% z(mAb mAc)

1({6G, G
9= 35 my, M)

The decay widths and the up-down asymmetries/Agr
—A.P(V) are available in Ref429,30:

B[] (Ma,+my )?—mp , (Ma =My )= P 5
F'Ap—AP)=5— Al“+ |B|¢],
8 m2 2
Ay Ay
(60)
a(Ap—AP)= 2P’ |RAAE)
b - 1
’ (Ea,F My )IAP+(Ey —my )[BI?
whereA andB are related to the form factors by
Ge * 2 2 2
A= EvcbVUDalfP[(mAb_ my ) fa(mp) +mpfs(mp)],
Ge * 2 2 2
B= Evcbvuoalfp[(mAb"‘ My )91(Mp) —Mpgs(mp) ], (61)
and
|F_;’| EAC+mAC 2 2 E\2/ 2 2
lﬂ(l\tﬁ/\cV)—8—Wm—Ab 2(]8%+ [Pl + m_\z,(|S+D| +[P1%) |,
4Am2Re(S*P,) +2E2Re(S+D)* P
a(Ap—AV) VREISTP,)+ 2B L (62
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TABLE Il. Predictions for the decay ratd units 13° s™*a3, which is defined in Eq(54)], and the
asymmetry parameters far,— A .P(V).

Ty Fl/mQ Fl/mQ+QCD 43 1imgy+QCD
A A7 0.30 (0.56 0.36 (0.67) 0.29 (0.59 -1.00
AS—ASp™ 0.44 (0.78 0.51 (0.94 0.42 (0.77) -0.89
A—ASDS 1.03 (1.57) 1.16 (1.80) 1.02 (1.59 -0.98
AJ—ADE 0.78 (1.17 0.89 (1.3 0.76 (1.15 -0.38
Ag—>A§K‘ 0.022 (0.039 0.026 (0.048 0.021 (0.039 —1.00
ASHA:K* - 0.023 (0.04) 0.027 (0.049 0.022 (0.040 —0.85
A8—>A§D‘ 0.037 (0.057 0.042 (0.066 0.036 (0.057 —0.98
AS—AID* 0.027 (0.041) 0.031 (0.048 0.026 (0.040 —0.42
where fo="fpx, fDS=fD:.
S= Since the changes for the up-down asymmetries caused by
1/mg and QCD corrections are very small, in Table Il we
only listed @1jmg+QCD- Furthermore, since to order
D=~ Ev(Ex,+My) (Ar=my Ag), O(asA/mg) all the six form factors;, G;(i=1,2,3) can be
expressed by one form factor, sky, which is canceled in
||3,| my, +my, «a, the up-down asymmetries are model independent. There-

P,=— = msﬁ- my B2 |, fore, « does not depend or. It can pe seen from Table Il
v Ag T A that the predictions for the decay widths show a strong de-

pendence on the parametarén our model. In the future the
experimental data will be used to fix this parameter and test

Py= E, +m, our model.

¢ ¢ In our previous worl{13,14], the A,— A, semileptonic

with and nonleptonic decay widths were calculated using a had-

Ge

Ar=-— Evcbvﬁoalfvmv[gl(m\z/) +ga(mg)(my, —my )],

Ge

Ar=— ZEVCbVEDalfVngZ(m\Z,),
= CE Vo fymy[ () — (12
B1 \/EvcbVUDal vmy[ Fa(m) = fo(my)(my +my )],
Ge

By=2—=VeVipas fumyfo(mf).

V2

ronic wave function model in the infinite momentum frame
by combining the Drell-Yan type overlap integrals and the
results from HQET to order fidy . Comparing the results in
our present BS model with those in Ref43,14, we find
that there is overlap between these two model predictions.
The results withk=0.02 Ge\? in the present model are close
to those in Refd.13,14 if the average transverse momentum
of the heavy quark is chosen as 400 MeV.

The Cabibbo-allowed nonleptonic decay widths have also
been calculated in the nonrelativistic quark model approach
[29], where the form factors are calculated at the zero-recoil
point and then extrapolated to othervalues under the as-
sumption of a dipole behavior. It seems that the predictions
in this model are close to those in our present work if we
choosex=0.02 Ge\?.

Then from Eqs.(59)—(64), we obtain the numerical re-
sults for the decay widths and asymmetry parameters. In
Table Il we list the results fomy=0.70 GeV. For other

values ofmp, the results change only a little. The humbers
without (with) brackets correspond t&=0.02 GeV? (k
=0.10 GeV?). Again, the subscripts “0”, “1fg”, and
“1/mg+ QCD” stand for the results without iy and QCD
corrections, with Ihg corrections, and with both t, and

V. SUMMARY AND DISCUSSION

In the present work, we assume that a heavy barygris
composed of a heavy quarld, and a scalar light diquark.

Based on this picture, we analyze theng/corrections to the
BS equation forA 5 which was established in the limihg
—oo in previous work[11]. We find that in addition to the

QCD corrections, respectively. In the calculations we haveone BS scalar function wheng— <, two more scalar func-
taken the following decay constants:

f,=132 MeV,

fu =156 MeV,

fp,=241 MeV, f,=216 MeV, fex=f,,

f5=200 MeV,

tions, ¢1p(p) and ¢,p(p), are needed at order ny .
dop(p) is related toggp(p) directly[Eq. (22)]. Furthermore,
with the aid of the reasonable constraint on the BS kernel at
order 1mq, Eq.(23), and Luke’s theoremg,p(p) can also

be related to the BS scalar function in the leading order.
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Hence we do not need to solve explicitly fgrp(p) and  model and the norelativistic quark model, wherend/cor-
¢-p(p) anymore. The BS wave function in the leading orderrections are also included. Generally predictions from these
of 1/mg expansion was obtained numerically by assumingmodels are consistent with each other if we take into account
the kernel for the BS equation in the lintit,— < to consist  the range of model parameters. Data from the future experi-
of a scalar confinement term and a one-gluon-exchange termients will help to fix the parameters and allow one to test
On the other hand, all the six form factors fap— A, are  these models.

related to each other to ordernid, as indicated from Besides the uncertainties from the parameters in our
HQET. We determine these form factors by expressing thergggel, higher order corrections such ﬁl/mé) and

in terms of the BS wave functions. We also show explicitlyo(a A/m ) will modify our results. However, we expect
S Q . ’

that the results from our model are consistent with HQET to . ", =< o Furthermore, we take a phenomenologi-

gg?fésltmg 6x\{[?]ealvsecl)rigljscuzsr;g\ee?eerz?:%irr](;ﬁo(ge(l)ulrt insufrgjrr]" ally inspired form for the kernel of the BS equation and use
P ) e covariant instantaneous approximation while solving the

;r:a:)::(jiér?_;ﬁ(ql - 15113163)th2rire éréspee?\Sc;té\:]ietootr??hzlnd(?(lqnugarelpfnrgz,sBS equation. In addition, when we consider the BS equation
mp, is mild QI—’|owever the numerical solutions are very sen-at order 1ing, in prder_ to have sol_ut|ons fop1p(p), we
D> ' ’ assume Eq.23) which gives the relation between the kernels

sitive to the parametet. S
. K1(P,p,q) and Ky(P,p,q). All these Ansaze should be
Furthermore, we apply our solutions for the weak deca ested by the forthcoming experiments.

form factors to calculate the differential and total decay
widths for the semileptonic decays,— A .l v, and the non-
leptonic decay widths foA,— A.P(V). The QCD correc-
tions are also included, and found to be comparable with the

1/mq corrections. Again the numerical results for the decay This work was supported in part by the Australian Re-
widths mostly depend om. We also compare our results search Council and the National Science Foundation of
with other models, including the hadronic wave function China.
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