PUBLISHED VERSION

Bashir, Adnan; Kizilersu, Ayse; Pennington, M. R.

Does the weak coupling limit of the Burden-Tjiang deconstruction of the massless
guenched three-dimensional QED vertex agree with perturbation theory? Physical Review
D, 2000; 62(8):085002

© 2000 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevD.62.085002

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S.
Copyright Act, 17 U.S.C.

8101, the employer named [below], shall have the following rights (the “Author Rights”):
[...]

3. The right to use all or part of the Article, including the APS-prepared version without
revision or modification, on the author(s)’ web home page or employer’s website and to
make copies of all or part of the Article, including the APS-prepared version without
revision or modification, for the author(s)’ and/or the employer’s use for educational or
research purposes.”

27" March 2013

http://hdl.handle.net/2440/11185



http://hdl.handle.net/2440/11185�
http://hdl.handle.net/2440/11185�
http://link.aps.org/doi/10.1103/PhysRevD.62.085002�
http://hdl.handle.net/2440/11185�
http://publish.aps.org/authors/transfer-of-copyright-agreement�

PHYSICAL REVIEW D, VOLUME 62, 085002

Does the weak coupling limit of the Burden-Tjiang deconstruction of the massless quenched
three-dimensional QED vertex agree with perturbation theory?
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We derive constraints on the non-perturbative 3-point fermion-boson transverse vertex in massless QED3
from its perturbative calculation to order. We also check the transversality condition to two loops and
evaluate the fermion propagator to the same order. We compare a conjecture of the non-perturbative vertex by
Burden and Tjiang against our results and comment on its drawbacks. Our calculation calls for the need to
construct a non-perturbative form for the fermion-boson vertex which agrees with its perturbative limit to
O(a).

PACS numbegps): 12.20.Ds, 11.15.Tk

[. INTRODUCTION perturbation theory. Moreover, it is natural to assume that
physically meaningful solutions of the Schwinger-Dyson
QED in 3-dimension§QED3J) is a useful laboratory for equations must agree with perturbative results in the weak
studying the strong coupling limit of a gauge theory. Thecoupling regime. While in QEDA4 this realization has been of
lack of ultraviolet divergences makes it easier to handle thaenormous help in constructing a physically acceptable form
its 4-dimensional counterpart. Moreover, in the quenched apaf the verteX6—8], need exists to exploit perturbation theory
proximation, it exhibits confinement which makes it attrac-in exploring the non-perturbative form of the vertex in
tive for investigating strong physics. The study of strongQEDS3. Following[7], we evaluate the transverse part of the
coupling gauge theories through the use of Schwinger-Dysowertex toO(«). This result is then assumed to be the weak
equations requires knowledge of the non-perturbative forncoupling limit for the non-perturbative form of the transverse
of the fundamental fermion-boson interaction. The mostvertex. We also check the Burden-Tjiang transversality con-
commonly used approximation is the bare vertex. Howeverdition to two loops and find that to this order, it is not real-
among other deficiencies, the bare vertex fails to respect ied in perturbation theory. We evalualp?) to O(a?)
key property of the underlying field theory, namely the analytically and compare our findings with the conjecture of
gauge invariance of physical observables. An obvious reasadte vertex proposed by Burden and Tjiang.
is that it fails to respect the Ward-Green-Takahashi identity
(WGTI) [1]. Ball and Chiu[2] have proposed an ansatz for Il. VERTEX
what is conventionally called the longitudinal part of the ] .
vertex which alone satisfies WGTI. The rest of the vertex, 1he full vertex, Fig. 1I'(k,p) can be expressed in terms
the transverse part, remains undetermined. Problems, likef 12 spin amplitudes formed from the vectar k*,p* and
that of dynamical fermion mass generation, have been studhe scalars X,p and kp. It satisfies the Ward-Green-
ied in QED3, both quenched and unquenched, using the bareakahashi identity1]
vertex, as well as an ansatz based on a simple modification 1 1
of the Ball-Chiu vertex[3,4]. More recently, Burden and 9,.I"(k,p) =S¢ "(k) =S¢ *(p), @)
Tjigng he_lve constructe(_j a different ansatz for the full ,Verte)ﬂ/vhereqz k—p, and the Ward identity
to investigate the fermion and photon propagators simulta-
neously [5], while including an explicit transverse piece. P
Burden and Tjiang base thedeconstructioron the assump- I'“(p,p)=—5S1(p) 2
tion that a certain “transversality condition” for the fermion apt
propagator holds non-perturbatively for some covariant
gaugeé,. The bare fermion propagator is then a solution in

- - p-w
that gauge. Accordingly, they go on to propose a transverse q K B a K . a
vertex and use it to study the photon propagator. B tw
The only truncation of the complete set of Schwinger- P p w

Dyson equations known so far that incorporates the key
properties of a gauge theory at each level of approximation is FIG. 1. One loop correction to the vertex.
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as the non-singulak—p limit of Eq. (1). We follow Ball
and Chiu and define the longitudinal component of the vertex -1 -1
in terms of the fermion propagator as 4 = -

w;i}?.ﬁ

p P
T(k,p)= 7_# 1 + 1 FIG. 2. Schwinger-Dyson equation for fermion propagator in
L 2 \F(k®) F(p? quenched QED.
JLkepkept ) 1 1 ) . T ok 0
= - . iQT —ic0-1 2 o v
2 (kZ_pZ) F(kZ) F(p2) ISF (p) ISF (p)+e f(277)3r (k,p)SF(k)’)’A,w(CI)

. - o 8
This I'{* alone satisfies the Ward-Green-Takahashi identity,
Eqg. (1), and being free of kinematic singularities the Ward The photon propagator can be split into the transverse and
identity, Eq.(2), too. The full vertex can then be written as the longitudinal parts as

I#(k,p)=T{(k,p) +I'F(k,p), (4) 4.9,
A% (@)=A%,T(q)— 47, (9)
where the transverse part satisfies q
where
a,0'%(k,p)=0 and I'#(p,p)=0. (5
The Ward-Green-Takahashi identity fixes 4 coefficients of AOVT(q):— i[g ,—0,d,/9%]. (10)
the 12 spin amplitudes in terms of the fermion functions. The a Q> a

transverse componeiitf(k,p) thus involves 8 vectors, of
which the following 4 are sufficient to describe it in the Burden and Robertsee Eq(25) of [9]] have noted that the

chirally symmetric theory: solution of Eq.(8) is gauge covarianfin the sense of the
Landau-Khalatniko¥LK) transformation$10]] if the condi-
tion
Tékp)= 2, 7i(k2,p%a) Tk P), 6
i=2,3,6,8 3
f X Pk 072%, T@=0 (D
where (2m)3 it
T5(k,p)=[p*(k-q)—k*(p-q)]1(k+p) is simply satisfied. This condition Burden and Tjiafg]
have called théransversality conditionlt is easy to check
TE(k,p)=q2y*—qtd that at one loop order this condition is indeed fulfilled and so
S we are left with
TE(k,p)=y*(p*—K*)+ (p+k)“d 3
a—1 a0 -1 2 d°k 0 q,uqv
iSeHp)=isY )+ [ ik y| —e .
TE(k,p)=—y*K'p 0\ + K*p— pHk (2m) a
(12)
with o = E[y v,]. (7) Writing Se(p) =F(p?)/p, in its most general form, the solu-
A tion of the above equation is
The coefficientsr; are Lorentz scalar functions &fand p, aé w
i.e., functions ok?,p?,q2. Solution of the Schwinger-Dyson F(p?)=1- 4 \/?p2 +Ola). 13

equations(SDES for the fermion and photon propagators

requires the knowledge af; in Eq. (6). At this point, it may be useful to compare this result with the

_ ) implications of the LK transformations and the expression
Conjecture Proposed by Burden and Tjiang proposed by Burden and Tjiang. Assuming tAgp?) =1 in
Burden and Tijiang have recently proposed a nonihe Landau gauge, LK transformations yield the following
perturbative deconstruction of the vertg%] for massless expression for it in an arbitrary gauge:
QED3. It involves certain assumptions about the fermion
propagator and the 3-point fermion-boson vertex. 2\-p?

F(p?)=1— at tan !

t : (14
[ A2
Propagator and the transversality condition 2 P at
In quenched QED, the SDE for the fermion propagatorUsing the expansion taf(1/x)=m/2—x+x3/3+--- for

reads(Fig. 2 |x|<1, we get
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raé azgz The superscripBT in Eq. (17) stands for Burden and Tjiang.
F(p?)=1- ————+0(a, (15  Note a few sign changes which had to be incorporated to
4y—p°  4p rewrite their ansatz in terms of the badié that we have

L . . chosen in our paper. The forfrl/F(k?) —1/F(p?)] in Eq.
which is in accordance with th? perturbative rgsulﬁ@a). (17) has been chosen to ensure that the transverse vertex
Therefore, the LK transformations accompanied by the aSyanishes in the gaugé, (note that we have shown thag

i 2 = i i - . - B
Zumptlont;haﬂ:t(pb)?l '?hthe innt(:]au gaulge alre 'T icc_or. =0). Their vertex ansatz is also based upon the assumption
ance with perturbation theory at tn€ one 100p IEVEL. A SIMi-y, ., ther; have no¢ dependence other than a possible im-

lar comparison at the two loop level is discussed in Sec. leIicit dependence through.Fin order to see the validity of

B“rgef? and Tjiapg[?(;lﬁ przopose the following non- this ansatz, the following are some of the important ques-
perturbative expression fér(p<): tions to be addressed:

F(p)=1- a(§—&o) an 1 2y—p? } 16 (i) Does the real transverse vertex vanish in the Landau
2\/-p? a(§=&o))’ gauge?

(i) Does perturbation theory allow us to takg=0, a
and they comment that “Without knowing the transverseCoefficient which plays a vital role in constructing the vertex
in QED4?

(i) Does one loop perturbation theory agree with the
&o- The task of determlnln@ is a formidable task and we non-perturbativer, proposed by Burdeet al?
have nothing more to say about itin this paper.” However, it (iv) For the selected basi, do the corresponding coef-
is trivial to see that as the weak coupling limit must agreeficients have kinematic singularities at the one loop level and

contribution tol“T ! we are unable to determine the constant

with the perturbative expansiogy=0. beyond, as present in the ansatz of Buragral. when k
. —p?
Burden-Tjiang vertex (v) Is B, which appears in the above ansatz independent
Burdenet al. propose the following deconstruction of the Of the gauge parameter as claimed by Burdeal.?
vertex in the Euclidean space: (vi) Does thetransversality conditionEqg. (11), hold true

beyond the one loop order?

2T(k?,p?) = s 12 -—— 1]:.( 2p?) (179  We carry out the one loop calculation of the vertex and the
ke—p“|F(k%) F(p°) two loop calculation of the fermion propagator to answer
these questions.
where
(K,p) Il. PERTURBATIVE CONSTRAINTS ON THE VERTEX
f3(k2,p2)=,8‘](k:p) : The vertex of Fig. 1 can be expressed as
fe(kz,p2)=0, (18) Fﬂ(krp): ’y;U«_|_A,U«(k,p) (20)
I (k.p) Using the Feynman ruled,* to O(«) is simply given by
(k2 pY)=—2(1+ 19
(K2,pH)==2(1+B) 355 (19 -
—ieA“(k,p)=f (—iey®)
with M (2)°
7(K,p?) = 75(k?, p) = (K2+ p?) 7(K?, p?) Se(p—w)(—iey")iSe(k—w)
then X(—ieyﬁ)iAaﬁ(W), (21)
T2 12— 2 02\ _ (121 12 2 12). where M denotes the loop integral is to be performed in
F(k%p7) = Ta(k%,p%) = (K4 PO To(K% P Minkowski space. The bare quantities are
(k2+p ) k+p 1,2, 2 iel%=—e
-= —lel’,=—ey
iSE(p)=ip/p?
(kK—p?? lk+p| 1 S
J(k,p)= 8kp = 0 _Z(k2+p2)' . - )
iA,,(p)=—i[p°g,,+(§=1)p,p,1/pP°%

where e is the usual QED coupling and the paramefer

y#+FT is the solution of the SDE for the vertex when the fer- specifies the covariant gauge. Followifig, A* can be re-
mion propagator is the bare propagator expressed as
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== The only angular dependence is displayedqin

(e
A*(k,p)=— ﬁ{)’“lﬁy#knﬁ(o)— YOy Y+ v K = Jk?+p?—2kpcosh. The expression for the transverse
vertexI'f can be obtained by subtracting from Eg2), the

Xy B4y Pyt y 3@t (g-1) contribution from the longitudinal paft* at one loop. Equa-

1 0 tions (3) and (13) allow us to write

X[(=y"by* = y*ky") I+ y#KO)

v A (2)

RASAN AN 2 rekp)= 1+T§771 7“+a7§nz[k“k+ pUp-+k p+prk],
whereJ©, J(V, 3@ K andl ) have been tabulated in (23)
the Appendlx using the notatlokl J=K%, p=v-p? q where

|
_m k+p o 1 o4
=3 ke |1 22 kplkip) | (24)
aT 1 2k+2p+q
Tz(kz,p2)=T S| 1+ (=) —], (29
kp(k+p)(k+p+a) q
am [4kp+3kg+3pg+29%+ (€—1)(2k>+ 2p? +kq+pq)]
m3(k?,p%) = -5~ 2 (26)
kpa(k+p+q)
am(2—¢) k—p
76(k%,p?) = 8 5 (27)
kp(k+p+q)
) 5 _a'ir(2+ &) 1

Any non-perturbative vertex ansatz should reproduce Eqgssure their coefficients be independent of any kinematic sin-
(25-(28) in the weak coupling regime. Therefore, thesegularities in QED4 would achieve the same for QED3. How-
equations should serve as a guide to constructing a norever, we find that these are indeed a correct choice for QED3

perturbative vertex in QED3. Note that the have the re-
quired symmetry under the exchange of vecthrand p.
Here r,, 73 and 7g are symmetric, whereag; is antisym-
metric. All the 7; only depend on elementary functions lof
and p. This is unlike QED4, where the; involve Spence
functions.

as well. As Burderet al. realize the logarithmic kinematical
singularity in their vertex ansatz is, of course, ruled out by
our perturbative calculation.

It is instructive to take the asymptotic limkt> p of the trans-
verse vertex:

Let us now try to answer some of the questions raised in

the previous section:

(i) The transverse vertex does not vanish in the Landau

gauge.
(i) The coefficient7g#0. Moreover (as we shall see
shortly), in the asymptotic limitk>p, it contributes domi-
nantly to the transverse vertex along with
(i) None of ther, agrees with the form proposed by
Burdenet al. The realr; are explicitly functions ofj?. How-

ever, we shall later make a comparison with the proposed

vertex in the key limit for loop integrals whelk>p where
the realr; become independent of, and a direct analogy
with the proposed vertex is possible.

(iv) Very importantly, none of the; has kinematic sin-
gularity whenk?®— p?. One should note thai priori there
was no guarantee that the set of basis vector&hich en-

k>p a

m(k?,p?) = —@5(2 38)+O(1k) (29
2 2 P a w 3

3(k%,p°) = ?—(2+3§)+(’)(1/k ) (30
2 2 P a w 3

76(K*,p%) = ?—(2 &)+ 0(1k>) (31
2 2 k=P 7T 3

Tg(k%,p%) = k2 p(2+§)+(9(1/k ). (32

085002-4
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Note that taking into account the asymptotic lirki-p of  the parametrization of the transverse vertex proposed by Bur-
the corresponding basis vectors, one can easily seerthat den and Tjiang cannot be correct.

and 7¢ provide the dominant contribution 6 in this limit

just as in QED4. We are now in a position to compare Egs.
(17-(19 with Egs. (29—(32) in the limit k>p to try to
extract the value of8. Comparingr;, we find A. F(p?) to two loops

We have seen that the transversality condition, i.e. Eq.
(33  (11), holds true to the one loop level. Burden and Tjiabg
have proposed their vertex ansatz assuming this condition to
be true non-perturbatively faf= &, which we have shown
which has an explicit dependence gncontrary to the as- must equal zero. Therefore, a crucial test of the validity of
sumption of Burderet al. Moreover, one could also extract their vertex ansatz is checking the transversality condition to
the value ofg by comparingr. Such an exercise leads us to two loop order. This is equivalent to calculatifgp?) to the
same level. We carry out this exercise in this section.
2 The equation foF (p?) can be extracted from E@8) by
1+ g ' (34) multiplying the equation withp and taking the trace. On
Wick rotating to the Euclidean space and simplifying, this
which is inconsistent with the value found earlier. Therefore,equation can be written as

IV. F(p?) TO TWO LOOPS AND TRANSVERSALITY
CONDITION

1 3

'8:2_§+Z’

3
F=73

F(taz) =1- chzpzf dk—j( F;k;) [a(kz,pz)%{(kp)z—(k% p?)k-p+k?p?}+b(k?,p?)
X{(k2+ p?)k-p+2k?p?— %(kz—pz)zk-p] - F(iz) é{pz(kz—k-p)}+rz(k,p){—(k2+ p?)A%)
+75(K,p)2{ = (k- p)?+ (K*+ p?)k- p—k?p?} — 74(k, p) 2{(k?— p?)k- p} — 75(k,p){A%} |, (35)
where
“wp%:%(HWYW%&J' mwp%:%WEpJFiﬁ_F$%> %9

Now using the expressions faf, Egs.(25—(28), we arrive at

¢
2

_147¢ —a—szdk—
Fp2) — 4p“ ap2lo 2kp(k+p)
+ (K24 p?)l o} = £2p%(K2 = pA){ (K> = p?) I 4+ 1 3} +{(k+ p)(2kp(k—p)?I 3~ 3(k—p)(k+p)l,

(K2=pH{=(K*=p*)?l4+1o}+ g{(kz—loz)z(khr P?)14—2(K*+p?)?l;

+(3(k—p)2=2kp)l 1+ 3(k+p)l =31 _1) + &(—kp(k—p)2l o+ (k+ p) (K> + p?) 11+ kplg— (K+p) 1 _ 1)},

where = sing
ly= f 0—

(i) The first curly-bracket expression arises from the 0 q

a—term in Eq.(35), the second one from thie—term, the

third from the £/F(p?)-term and the fourth from the trans- yjith the evaluated expressions given in the Appendix.

verse part of the vertex. On substitutihg, a—term van-

ishes identically as it does at one loop level. Note that all the

(k+p+q) factors in ther; neatly cancel out, leaving us with Keeping in mind the form of the integralg, we divide the

simpler integrals to be evaluated. integration region in two parts,8 p andp—o. For the first
(ii) Thel, are defined as region, we make the change of variables px and for the
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second regionk=p/x. On simplification, we arrive at
a2§2

8p?

&
> =1+4—a+
F(p?) P

Xfldx[z (1-x2c]- &
E— f— _X —_——
0o X 8p?

1dx
xf —(1—x)[2(—2x%+3x+3)
0 X2

a’¢
24p?

—3(1-x)(1+x)2L]—

1dx
xf —[2(2x3+5x%+ 3x+3)
0 X2

—3(x2—x+1)(1+x)%L], (37

where
o= 1I 1+Xx 38
“xMox (38)

The above integrals can be evaluated in a straightforward

way. In order to make a direct comparison with Etp), we

prefer to write the final expression in Minkowski space by

substitutingp— /— p? and p?— — p%

T aé a?&?

— _+ —_—
4\—p? 4p? 4p?

F(p?) =1 3% (7 a?

(39

One can note various important features of this result:

(i) F(p?)#1 in the Landau gauge. In fact, there is no

value of the covariant gauge paramegefor which F(p?)
can be 1.
(i) The existence of constant term @ «?) implies the

violation of the transversality condition. We shall elaborate

more on this remark in Sec. IV B.

(iii ) Equation(14) is derived from the LK transformations
based upon the assumption tiat 1 in the Landau gauge.

As we have seen, this assumption is not correa®{a?),

and therefore, Eq(14) is not expected to hold true in gen-

eral, as is confirmed on comparing Ed5) and Eq.(39).

However, a comparison between the two results suggests th

it contains the corread(£?) term at the leveD(«?), though

it does not reproduce other term appearing in the exact pep_ulateF(p

turbative calculation.

B. Burden-Tjiang transversality condition

The perturbative expression fé(p?) to the two loops

PHYSICAL REVIEW D62 085002

d3k 0T 2 2
| TS0 0L, T = AP+ B,
(2m)
(40

where the multiplication withi is only for mathematical con-
venience A(p?) and B(p?) can be extracted by taking the
trace of the above equation, having multiplied by 1 and
respectively. With the bare fermion being massless, it is easy
to see that on doing the trace algebra and contracting the
indices,A(p?)=0. Our evaluation oF (p?) helps us identify
B(p?) from Eq.(39) so that

o ,,
| o7 SRk, (@)

- +0O(a?) |p. (41)

Obviously, foré=0,

[ d3 )
'f (277)37'MSF(k)F (k,p)AS,T(@)] =0

3a m?
T

which is a violation of the transversality condition at the two
loop level.

V. CONCLUSIONS

In this paper, we have presented the one loop calculation
of the fermion-boson vertex in QED3 in an arbitrary covari-
ant gauge for massless fermions. In the most general form,
the vertex can be written in terms of 12 independent Lorentz
vectors. Following the procedure outlined by Ball and Chiu,
4 of the 12 vectors define the longitudinal vertex. It satisfies
the Ward-Green-Takahashi identity which relates it to the
fermion propagator. The transverse vertex is written in terms
of the remaining 8 vectors. For massless fermions, only 4 of
these vectors contribute. Subtraction of the longitudinal ver-
tex from the full vertex yields the transverse vertex. We
gyaluate the coefficients of the basis vectors for the trans-
verse vectors t@(«). Moreover, using this result, we cal-

2) analytically to O(«?) and find that the trans-
versality condition proposed by Burden and Tjiang does not
hold true to this order. Therefore, any non-perturbative con-
struction of the transverse vertex based upon this condition
cannot be correct.

Knowing the vertex in any covariant gauge may give us

shows that the Burden-Tjiang transversality condition doegn understanding of how the essential gauge dependence of
not hold true beyond one loop order. Now we explicitly cal- the vertex demanded by its Landau-Khalatnikov transforma-
culate the left hand side of Eql1l). In the most general tion[9,10] is satisfied non-perturbatively. Moreover, the per-
form, it can be expanded as turbative knowledge of the coefficients of the transverse vec-

085002-6
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3, WuWy

TW2(p—w)?(k—w)?

tors provides a reference for the non-perturbative
construction of the vertex as every ansatz should reduce to Jify):j
this perturbative result in the weak coupling regime. In com- M
parison to the transverse vertex obtained by Kizilesal.

[7] for QED4 (which contained Spence functionan impor- _ i’ [—g”’kpg(k+p+Qq)
tant advantage of QED3 is that the corresponding results 2kpg(k+p+Qq)? g7 kP PTd
contain only basic functions of momenta. This provides us

with a realistic possibility of searching for the non- +k*k"p(k+2p+q) +p“p’k(2k+p+q)

perturbative form of the transverse vertex. The evaluation of
F(p?) to O(a?) in an arbitrary covariant gauge should also
serve as a useful tool in the hunt for the non-perturbative
vertex which is connected to the former through Ward-
Green-Takahashi identity nd the Schwinger-Dyson equa- @)
tions. Any vertex ansatz must reproduce E29) for F(p?) L= fM
to O(a?) when the coupling is weak, leading to a more
reliable non-perturbative truncation of Schwinger-Dyson
equations: more reliable than the deconstruction of Burden =
and Tjiang. 2k*pq(k+p+q)?

+kPk"p3(2k+p+q) + p#p k3(k+2p+q)

+(k#p”+ p“k”)kp] (A4)

wW,W,,
3y H

WA(p—w)?(k—w)>2

i

[—g*"k*p?q(k+p+q)
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APPENDIX
Adopting the simplifying notatiork=\—k?, p=—p? 2 2
andq=\/—q?, the following are some of the integrals used l,= Ea(k_pH —0(p—k) (A8)
in the calculation presented in the paper: P
1 i
K(°)=f d3w =— (A1) 1 (k+p)?
o (k—w)2(p—w)? G NS (A9)
kP (k=p)?
1 —im
0= f dw -7 (A2)
Mo wi(p—w)i(k—w)2  Kpq
3= ————[pO(k—p)—kO(p—k A10
e M 2= o g PO P kAP k)] (A10)
J zf d w
Bodm wq(p—w)?(k—w)?
il | 2 (A1l
= " [pkf+kp* A3 4 o)A k—D)2
kpq(k+p+q)[p p“] (A3) (k+p)2(k—p)
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