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PHYSICAL REVIEW D, VOLUME 62, 085002
Does the weak coupling limit of the Burden-Tjiang deconstruction of the massless quenched
three-dimensional QED vertex agree with perturbation theory?
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We derive constraints on the non-perturbative 3-point fermion-boson transverse vertex in massless QED3
from its perturbative calculation to ordera. We also check the transversality condition to two loops and
evaluate the fermion propagator to the same order. We compare a conjecture of the non-perturbative vertex by
Burden and Tjiang against our results and comment on its drawbacks. Our calculation calls for the need to
construct a non-perturbative form for the fermion-boson vertex which agrees with its perturbative limit to
O(a).

PACS number~s!: 12.20.Ds, 11.15.Tk
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I. INTRODUCTION

QED in 3-dimensions~QED3! is a useful laboratory for
studying the strong coupling limit of a gauge theory. T
lack of ultraviolet divergences makes it easier to handle t
its 4-dimensional counterpart. Moreover, in the quenched
proximation, it exhibits confinement which makes it attra
tive for investigating strong physics. The study of stro
coupling gauge theories through the use of Schwinger-Dy
equations requires knowledge of the non-perturbative fo
of the fundamental fermion-boson interaction. The m
commonly used approximation is the bare vertex. Howev
among other deficiencies, the bare vertex fails to respe
key property of the underlying field theory, namely th
gauge invariance of physical observables. An obvious rea
is that it fails to respect the Ward-Green-Takahashi iden
~WGTI! @1#. Ball and Chiu@2# have proposed an ansatz f
what is conventionally called the longitudinal part of th
vertex which alone satisfies WGTI. The rest of the vert
the transverse part, remains undetermined. Problems,
that of dynamical fermion mass generation, have been s
ied in QED3, both quenched and unquenched, using the
vertex, as well as an ansatz based on a simple modifica
of the Ball-Chiu vertex@3,4#. More recently, Burden and
Tjiang have constructed a different ansatz for the full ver
to investigate the fermion and photon propagators simu
neously @5#, while including an explicit transverse piec
Burden and Tjiang base theirdeconstructionon the assump-
tion that a certain ‘‘transversality condition’’ for the fermio
propagator holds non-perturbatively for some covari
gaugej0. The bare fermion propagator is then a solution
that gauge. Accordingly, they go on to propose a transve
vertex and use it to study the photon propagator.

The only truncation of the complete set of Schwing
Dyson equations known so far that incorporates the
properties of a gauge theory at each level of approximatio
0556-2821/2000/62~8!/085002~8!/$15.00 62 0850
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perturbation theory. Moreover, it is natural to assume t
physically meaningful solutions of the Schwinger-Dys
equations must agree with perturbative results in the w
coupling regime. While in QED4 this realization has been
enormous help in constructing a physically acceptable fo
of the vertex@6–8#, need exists to exploit perturbation theo
in exploring the non-perturbative form of the vertex
QED3. Following@7#, we evaluate the transverse part of t
vertex toO(a). This result is then assumed to be the we
coupling limit for the non-perturbative form of the transver
vertex. We also check the Burden-Tjiang transversality c
dition to two loops and find that to this order, it is not rea
ized in perturbation theory. We evaluateF(p2) to O(a2)
analytically and compare our findings with the conjecture
the vertex proposed by Burden and Tjiang.

II. VERTEX

The full vertex, Fig. 1,Gm(k,p) can be expressed in term
of 12 spin amplitudes formed from the vectorsgm,km,pm and
the scalars 1,k” ,p” and k”p” . It satisfies the Ward-Green
Takahashi identity@1#

qmGm~k,p!5SF
21~k!2SF

21~p!, ~1!

whereq5k2p, and the Ward identity

Gm~p,p!5
]

]pm
SF

21~p! ~2!

FIG. 1. One loop correction to the vertex.
©2000 The American Physical Society02-1
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A. BASHIR, A. KIZILERSÜ, AND M. R. PENNINGTON PHYSICAL REVIEW D62 085002
as the non-singulark→p limit of Eq. ~1!. We follow Ball
and Chiu and define the longitudinal component of the ver
in terms of the fermion propagator as

GL
m~k,p!5

gm

2 S 1

F~k2!
1

1

F~p2!
D

1
1

2

~k”1p” !~k1p!m

~k22p2!
S 1

F~k2!
2

1

F~p2!
D . ~3!

This GL
m alone satisfies the Ward-Green-Takahashi ident

Eq. ~1!, and being free of kinematic singularities the Wa
identity, Eq.~2!, too. The full vertex can then be written a

Gm~k,p!5GL
m~k,p!1GT

m~k,p!, ~4!

where the transverse part satisfies

qmGT
m~k,p!50 and GT

m~p,p!50. ~5!

The Ward-Green-Takahashi identity fixes 4 coefficients
the 12 spin amplitudes in terms of the fermion functions. T
transverse componentGT

m(k,p) thus involves 8 vectors, o
which the following 4 are sufficient to describe it in th
chirally symmetric theory:

GT
m~k,p!5 (

i 52,3,6,8
t i~k2,p2,q2!Ti

m~k,p!, ~6!

where

T2
m~k,p!5@pm~k•q!2km~p•q!#~k”1p” !

T3
m~k,p!5q2gm2qmq”

T6
m~k,p!5gm~p22k2!1~p1k!mq”

T8
m~k,p!52gmknplsnl1kmp”2pmk”

with smn5
1

2
@gm ,gn#. ~7!

The coefficientst i are Lorentz scalar functions ofk and p,
i.e., functions ofk2,p2,q2. Solution of the Schwinger-Dyson
equations~SDEs! for the fermion and photon propagato
requires the knowledge oft i in Eq. ~6!.

Conjecture Proposed by Burden and Tjiang

Burden and Tjiang have recently proposed a n
perturbative deconstruction of the vertex@5# for massless
QED3. It involves certain assumptions about the ferm
propagator and the 3-point fermion-boson vertex.

Propagator and the transversality condition

In quenched QED, the SDE for the fermion propaga
reads~Fig. 2!
08500
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iSF
21~p!5 iSF

0 21~p!1e2E d3k

~2p!3
Gm~k,p!SF~k!gnDmn

0 ~q!.

~8!

The photon propagator can be split into the transverse
the longitudinal parts as

Dmn
0 ~q!5Dmn

0 T~q!2j
qmqn

q4
, ~9!

where

Dmn
0 T~q!52

1

q2
@gmn2qmqn /q2#. ~10!

Burden and Roberts@see Eq.~25! of @9## have noted that the
solution of Eq.~8! is gauge covariant@in the sense of the
Landau-Khalatnikov~LK ! transformations@10## if the condi-
tion

E d3k

~2p!3
Gm~k,p!SF~k!gnDmn

0 T~q!50 ~11!

is simply satisfied. This condition Burden and Tjiang@5#
have called thetransversality condition. It is easy to check
that at one loop order this condition is indeed fulfilled and
we are left with

iSF
21~p!5 iSF

0 21~p!1e2E d3k

~2p!3
gmSF

0~k!gnS 2j
qmqn

q4 D .

~12!

Writing SF(p)5F(p2)/p” , in its most general form, the solu
tion of the above equation is

F~p2!512
aj

4

p

A2p2
1O~a2!. ~13!

At this point, it may be useful to compare this result with t
implications of the LK transformations and the express
proposed by Burden and Tjiang. Assuming thatF(p2)51 in
the Landau gauge, LK transformations yield the followin
expression for it in an arbitrary gauge:

F~p2!512
aj

2A2p2
tan21F2A2p2

aj G . ~14!

Using the expansion tan21(1/x)5p/22x1x3/31••• for
uxu!1, we get

FIG. 2. Schwinger-Dyson equation for fermion propagator
quenched QED.
2-2
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DOES THE WEAK COUPLING LIMIT OF THE BURDEN- . . . PHYSICAL REVIEW D 62 085002
F~p2!512
paj

4A2p2
2

a2j2

4p2
1O~a3!, ~15!

which is in accordance with the perturbative result toO(a).
Therefore, the LK transformations accompanied by the
sumption thatF(p2)51 in the Landau gauge are in acco
dance with perturbation theory at the one loop level. A sim
lar comparison at the two loop level is discussed in Sec.

Burden and Tjiang @5# propose the following non-
perturbative expression forF(p2):

F~p2!512
a~j2j0!

2A2p2
tan21F 2A2p2

a~j2j0!
G , ~16!

and they comment that ‘‘Without knowing the transver

contribution toḠm
T ,1 we are unable to determine the consta

j0. The task of determiningḠm
T is a formidable task, and we

have nothing more to say about it in this paper.’’ However
is trivial to see that as the weak coupling limit must agr
with the perturbative expansion,j050.

Burden-Tjiang vertex

Burdenet al. propose the following deconstruction of th
vertex in the Euclidean space:

t i
BT~k2,p2!5

1

k22p2 F 1

F~k2!
2

1

F~p2!
G f i~k2,p2! ~17!

where

f 3~k2,p2!5b
I ~k,p!

J~k,p!
,

f 6~k2,p2!50, ~18!

f̄ ~k2,p2!522~11b!
I ~k,p!

J~k,p!
, ~19!

with

t̄~k2,p2!5t8~k2,p2!2~k21p2!t2~k2,p2!

then

f̄ ~k2,p2!5 f 8~k2,p2!2~k21p2! f 2~k2,p2!;

I ~k,p!5
~k21p2!2

8kp
lnUk1p

k2pU2 1

4
~k21p2!,

J~k,p!5
~k22p2!2

8kp
lnUk1p

k2pU2 1

4
~k21p2!.

1gm1Ḡm
T is the solution of the SDE for the vertex when the fe

mion propagator is the bare propagator
08500
s-

-
.

t

t
e

The superscriptBT in Eq. ~17! stands for Burden and Tjiang
Note a few sign changes which had to be incorporated
rewrite their ansatz in terms of the basisTi

m that we have
chosen in our paper. The form@1/F(k2)21/F(p2)# in Eq.
~17! has been chosen to ensure that the transverse ve
vanishes in the gaugej0 ~note that we have shown thatj0
50). Their vertex ansatz is also based upon the assump
that thet i have noj dependence other than a possible im
plicit dependence through F. In order to see the validity of
this ansatz, the following are some of the important qu
tions to be addressed:

~i! Does the real transverse vertex vanish in the Lan
gauge?

~ii ! Does perturbation theory allow us to taket650, a
coefficient which plays a vital role in constructing the vert
in QED4?

~iii ! Does one loop perturbation theory agree with t
non-perturbativet i proposed by Burdenet al.?

~iv! For the selected basisTi , do the corresponding coef
ficients have kinematic singularities at the one loop level a
beyond, as present in the ansatz of Burdenet al. when k
→p?

~v! Is b, which appears in the above ansatz independ
of the gauge parameter as claimed by Burdenet al.?

~vi! Does thetransversality condition, Eq. ~11!, hold true
beyond the one loop order?

We carry out the one loop calculation of the vertex and
two loop calculation of the fermion propagator to answ
these questions.

III. PERTURBATIVE CONSTRAINTS ON THE VERTEX

The vertex of Fig. 1 can be expressed as

Gm~k,p!5gm1Lm~k,p!. ~20!

Using the Feynman rules,Lm to O(a) is simply given by

2 ieLm~k,p!5E
M

d3w

~2 p!3
~2 iega!

3 iSF
0~p2w!~2 iegm!iSF

0~k2w!

3~2 iegb!iDab
0 ~w!, ~21!

where M denotes the loop integral is to be performed
Minkowski space. The bare quantities are

2 ieGm
0 52egm

iSF
0~p!5 ip” /p2

iDmn
0 ~p!52 i @p2gmn1~j21!pmpn#/p4,

where e is the usual QED coupling and the parameterj
specifies the covariant gauge. Following@7#, Lm can be re-
expressed as
2-3
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Lm~k,p!52
ia

2p2
$gap”gmk”gaJ(0)2ga~p”gmgn1gngmk” !

3gaJn
(1)1gagngmglgaJnl

(2)1~j21!

3@~2gnp”gm2gmk”gn!Jn
(1)1gmK (0)

1gnp”gmk”glI nl
(2)#%, ~22!

whereJ(0), Jm
(1) , Jmn

(2) , K (0) andI mn
(2) have been tabulated i

the Appendix using the notationk5A2k2, p5A2p2, q
q
se
o

da

y

se

08500
5A2q2. The only angular dependence is displayed inq
5Ak21p222kp cosu. The expression for the transvers
vertexGT

m can be obtained by subtracting from Eq.~22!, the
contribution from the longitudinal partGL

m at one loop. Equa-
tions ~3! and ~13! allow us to write

GL
m~k,p!5F11

aj

4
h1Ggm1

aj

4
h2@kmk”1pmp”1kmp”1pmk” #,

~23!
where
h15
p

2 Fk1p

kp G , h25
p

2 F 1

kp~k1p!G , ~24!

t2~k2,p2!5
ap

4

1

kp~k1p!~k1p1q!2 F11~j21!
2k12p1q

q G , ~25!

t3~k2,p2!5
ap

8

@4kp13kq13pq12q21~j21!~2k212p21kq1pq!#

kpq~k1p1q!2
, ~26!

t6~k2,p2!5
ap~22j!

8

k2p

kp~k1p1q!2
, ~27!

t8~k2,p2!5
ap~21j!

2

1

kp~k1p1q!
. ~28!
in-
w-
D3

l
by
Any non-perturbative vertex ansatz should reproduce E
~25!–~28! in the weak coupling regime. Therefore, the
equations should serve as a guide to constructing a n
perturbative vertex in QED3. Note that thet i have the re-
quired symmetry under the exchange of vectorsk and p.
Here t2 , t3 and t8 are symmetric, whereast6 is antisym-
metric. All the t i only depend on elementary functions ofk
and p. This is unlike QED4, where thet i involve Spence
functions.

Let us now try to answer some of the questions raised
the previous section:

~i! The transverse vertex does not vanish in the Lan
gauge.

~ii ! The coefficientt6Þ0. Moreover ~as we shall see
shortly!, in the asymptotic limitk@p, it contributes domi-
nantly to the transverse vertex along witht3.

~iii ! None of thet i agrees with the form proposed b
Burdenet al.The realt i are explicitly functions ofq2. How-
ever, we shall later make a comparison with the propo
vertex in the key limit for loop integrals whenk@p where
the realt i become independent ofq2, and a direct analogy
with the proposed vertex is possible.

~iv! Very importantly, none of thet i has kinematic sin-
gularity whenk2→p2. One should note thata priori there
was no guarantee that the set of basis vectorsTi which en-
s.

n-

in

u

d

sure their coefficients be independent of any kinematic s
gularities in QED4 would achieve the same for QED3. Ho
ever, we find that these are indeed a correct choice for QE
as well. As Burdenet al. realize the logarithmic kinematica
singularity in their vertex ansatz is, of course, ruled out
our perturbative calculation.

It is instructive to take the asymptotic limitk@p of the trans-
verse vertex:

t2~k2,p2! 5
k@p

2
a

16k4

p

p
~223j!1O~1/k5! ~29!

t3~k2,p2! 5
k@p a

32k2

p

p
~213j!1O~1/k3! ~30!

t6~k2,p2! 5
k@p a

32k2

p

p
~22j!1O~1/k3! ~31!

t8~k2,p2! 5
k@p a

4k2

p

p
~21j!1O~1/k3!. ~32!
2-4
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Note that taking into account the asymptotic limitk@p of
the corresponding basis vectors, one can easily see that3
andt6 provide the dominant contribution toGT in this limit
just as in QED4. We are now in a position to compare E
~17!–~19! with Eqs. ~29!–~32! in the limit k@p to try to
extract the value ofb. Comparingt3, we find

b5
1

2j
1

3

4
, ~33!

which has an explicit dependence onj contrary to the as-
sumption of Burdenet al. Moreover, one could also extrac
the value ofb by comparingt̄. Such an exercise leads us

b52
5

4 F11
2

j G , ~34!

which is inconsistent with the value found earlier. Therefo
he

-

th
h

08500
.

,

the parametrization of the transverse vertex proposed by B
den and Tjiang cannot be correct.

IV. F „p2
… TO TWO LOOPS AND TRANSVERSALITY

CONDITION

A. F „p2
… to two loops

We have seen that the transversality condition, i.e.
~11!, holds true to the one loop level. Burden and Tjiang@5#
have proposed their vertex ansatz assuming this conditio
be true non-perturbatively forj5j0, which we have shown
must equal zero. Therefore, a crucial test of the validity
their vertex ansatz is checking the transversality condition
two loop order. This is equivalent to calculatingF(p2) to the
same level. We carry out this exercise in this section.

The equation forF(p2) can be extracted from Eq.~8! by
multiplying the equation withp” and taking the trace. On
Wick rotating to the Euclidean space and simplifying, th
equation can be written as
1

F~p2!
512

a

2p2p2E d3k

k2

F~k2!

q2 Fa~k2,p2!
2

q2
$~k•p!22~k21p2!k•p1k2p2%1b~k2,p2!

3H ~k21p2!k•p12k2p22
1

q2
~k22p2!2k•pJ 2

j

F~p2!

1

q2
$p2~k22k•p!%1t2~k,p!$2~k21p2!D2%

1t3~k,p!2$2~k•p!21~k21p2!k•p2k2p2%2t6~k,p!2$~k22p2!k•p%2t8~k,p!$D2%G , ~35!

where

a~k2,p2!5
1

2 S 1

F~k2!
1

1

F~p2!
D , b~k2,p2!5

1

2

1

k22p2 S 1

F~k2!
2

1

F~p2!
D . ~36!

Now using the expressions fort i , Eqs.~25!–~28!, we arrive at

1

F~p2!
511

pj

4p
a2

a2

4p2E0

`

dk
1

2kp~k1p! F j

2
~k22p2!$2~k22p2!2I 41I 0%1

j

2
$~k22p2!2~k21p2!I 422~k21p2!2I 2

1~k21p2!I 0%2j2p2~k22p2!$~k22p2!I 41I 2%1$~k1p!~2kp~k2p!2I 323~k2p!2~k1p!I 2

1~3~k2p!222kp!I 113~k1p!I 023I 21!1j~2kp~k2p!2I 21~k1p!~k21p2!I 11kpI02~k1p!I 21!%G ,
where

~i! The first curly-bracket expression arises from t
a–term in Eq.~35!, the second one from theb–term, the
third from thej/F(p2)-term and the fourth from the trans
verse part of the vertex. On substitutingI 4 , a–term van-
ishes identically as it does at one loop level. Note that all
(k1p1q) factors in thet i neatly cancel out, leaving us wit
simpler integrals to be evaluated.

~ii ! The I n are defined as
e

I n5E
0

p

du
sinu

qn

with the evaluated expressions given in the Appendix.

Keeping in mind the form of the integralsI n , we divide the
integration region in two parts, 0→p andp→`. For the first
region, we make the change of variablesk5px and for the
2-5
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second region,k5p/x. On simplification, we arrive at

1

F~p2!
511

pj

4p
a1

a2j2

8p2

3E
0

1 dx

x
@22~12x!2L#2

a2

8p2

3E
0

1 dx

x2
~12x!@2~22x213x13!

23~12x!~11x!2L#2
a2j

24p2

3E
0

1 dx

x2
@2~2x315x213x13!

23~x22x11!~11x!2L#, ~37!

where

L5
1

x
ln

11x

12x
. ~38!

The above integrals can be evaluated in a straightforw
way. In order to make a direct comparison with Eq.~15!, we
prefer to write the final expression in Minkowski space
substitutingp→A2p2 andp2→2p2:

F~p2!512
p aj

4A2p2
2

a2j2

4p2
1

3a2

4p2 S 7

3
2

p2

4 D1O~a3!.

~39!

One can note various important features of this result:

~i! F(p2)Þ1 in the Landau gauge. In fact, there is n
value of the covariant gauge parameterj for which F(p2)
can be 1.

~ii ! The existence of constant term atO(a2) implies the
violation of the transversality condition. We shall elabora
more on this remark in Sec. IV B.

~iii ! Equation~14! is derived from the LK transformation
based upon the assumption thatF51 in the Landau gauge
As we have seen, this assumption is not correct toO(a2),
and therefore, Eq.~14! is not expected to hold true in gen
eral, as is confirmed on comparing Eq.~15! and Eq.~39!.
However, a comparison between the two results suggests
it contains the correctO(j2) term at the levelO(a2), though
it does not reproduce other term appearing in the exact
turbative calculation.

B. Burden-Tjiang transversality condition

The perturbative expression forF(p2) to the two loops
shows that the Burden-Tjiang transversality condition d
not hold true beyond one loop order. Now we explicitly ca
culate the left hand side of Eq.~11!. In the most genera
form, it can be expanded as
08500
rd

hat

r-

s

i E d3k

~2p!3
Gm~k,p!SF~k!gnDmn

0 T~q!5A~p2!1B~p2!p” ,

~40!

where the multiplication withi is only for mathematical con-
venience.A(p2) and B(p2) can be extracted by taking th
trace of the above equation, having multiplied by 1 andp”
respectively. With the bare fermion being massless, it is e
to see that on doing the trace algebra and contracting
indices,A(p2)50. Our evaluation ofF(p2) helps us identify
B(p2) from Eq. ~39! so that

i E d3k

~2p!3
gmSF~k!Gn~k,p!Dmn

0 T~q!

5F2
3a

16pp2 S 7

3
2

p2

4 D1O~a2!Gp” . ~41!

Obviously, forj50,

i E d3k

~2p!3
gmSF~k!Gn~k,p!Dmn

0 T~q!uj50

5F2
3a

16pp2 S 7

3
2

p2

4 D1O~a2!Gp” , ~42!

which is a violation of the transversality condition at the tw
loop level.

V. CONCLUSIONS

In this paper, we have presented the one loop calcula
of the fermion-boson vertex in QED3 in an arbitrary cova
ant gauge for massless fermions. In the most general fo
the vertex can be written in terms of 12 independent Lore
vectors. Following the procedure outlined by Ball and Ch
4 of the 12 vectors define the longitudinal vertex. It satisfi
the Ward-Green-Takahashi identity which relates it to
fermion propagator. The transverse vertex is written in ter
of the remaining 8 vectors. For massless fermions, only 4
these vectors contribute. Subtraction of the longitudinal v
tex from the full vertex yields the transverse vertex. W
evaluate the coefficients of the basis vectors for the tra
verse vectors toO(a). Moreover, using this result, we ca
culateF(p2) analytically toO(a2) and find that the trans
versality condition proposed by Burden and Tjiang does
hold true to this order. Therefore, any non-perturbative c
struction of the transverse vertex based upon this condi
cannot be correct.

Knowing the vertex in any covariant gauge may give
an understanding of how the essential gauge dependen
the vertex demanded by its Landau-Khalatnikov transform
tion @9,10# is satisfied non-perturbatively. Moreover, the pe
turbative knowledge of the coefficients of the transverse v
2-6
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tors provides a reference for the non-perturbat
construction of the vertex as every ansatz should reduc
this perturbative result in the weak coupling regime. In co
parison to the transverse vertex obtained by Kızılersu¨ et al.
@7# for QED4 ~which contained Spence functions!, an impor-
tant advantage of QED3 is that the corresponding res
contain only basic functions of momenta. This provides
with a realistic possibility of searching for the non
perturbative form of the transverse vertex. The evaluation
F(p2) to O(a2) in an arbitrary covariant gauge should al
serve as a useful tool in the hunt for the non-perturba
vertex which is connected to the former through Wa
Green-Takahashi identity nd the Schwinger-Dyson eq
tions. Any vertex ansatz must reproduce Eq.~39! for F(p2)
to O(a2) when the coupling is weak, leading to a mo
reliable non-perturbative truncation of Schwinger-Dys
equations: more reliable than the deconstruction of Bur
and Tjiang.
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APPENDIX

Adopting the simplifying notationk5A2k2, p5A2p2

andq5A2q2, the following are some of the integrals use
in the calculation presented in the paper:

K (0)5E
M

d3w
1

~k2w!2~p2w!2
5

ip3

q
~A1!

J(0)5E
M

d3w
1

w2~p2w!2~k2w!2
5

2 ip3

kpq
~A2!

Jm
(1)5E

M
d3w

wm

w2~p2w!2~k2w!2

5
2 ip3

kpq~k1p1q!
@pkm1kpm# ~A3!
.

08500
e
to
-

ts
s

f

e
-
-

n

i-

ic

.
e

Jmn
(2)5E

M
d3w

wmwn

w2~p2w!2~k2w!2

5
2 ip3

2kpq~k1p1q!2
@2gmnkpq~k1p1q!

1kmknp~k12p1q!1pmpnk~2k1p1q!

1~kmpn1pmkn!kp# ~A4!

I mn
(2)5E

M
d3w

wmwn

w4~p2w!2~k2w!2

5
ip3

2k3p3q~k1p1q!2
@2gmnk2p2q~k1p1q!

1kmknp3~2k1p1q!1pmpnk3~k12p1q!

1~kmpn1pmkn!k2p2# ~A5!

I 215
2

3kp
@p~3k21p2!u~k2p!

1k~k213p2!u~p2k!# ~A6!

I 052 ~A7!

I 15F2

k
u~k2p!1

2

p
u~p2k!G ~A8!

I 25
1

2kp
ln

~k1p!2

~k2p!2
~A9!

I 35
2

kp~k22p2!
@pu~k2p!2ku~p2k!# ~A10!

I 45
2

~k1p!2~k2p!2
. ~A11!
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