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We study soliton stability under the action of strong external perturbations. Limits on the weak perturbation
approach are established with the help of average Lagrangian methods and full simulations. We found that for
the same relative perturbation, larger amplitude solitons develop instability earlier than weaker amplitude
solitons.
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We investigate solitary wave stability under the action
strong time-dependent perturbations. Our localized wa
are loosely called ‘‘solitons’’ even though this is a termino
ogy reserved for integrable sets, which is not the case h
Schrödinger solitons generated by the nonlinear Schro¨dinger
equation~NLSE for short! are the focus of our study. The
are of relevance in modeling slow modulations of hig
frequency fields, such as in solid state waves, lasers, hy
dynamic waves, Langmuir turbulence in plasma phys
electromagnetic radiation in pulsars, and others@1–5#. If
solitons are perturbed they can emit radiation, as is the c
of Schrödinger solitons perturbed by density waves in Lan
muir turbulence. Solitons can actually emit a variety
waves, but one of the most persistent types results from
conversion of trappedquanta within the soliton into free
modes. Since in this case the radiated field is of the sa
nature as the field forming the soliton, the problem is be
analyzed with help of a perturbed NLSE. More compl
kinds of radiation occur in shorter time scales and do
interfere with the present process@6,7#. Weak instability has
been the subject of attention of a large number of works@1,8#
and the conclusions point to the fact that when solitons
weakly perturbed, they turn into quiescent sources emit
low-amplitude radiation. Calculations in this weak regim
take into account the slowness of the process. One supp
that the unperturbed problem is solvable by inverse sca
ing techniques, a soliton is given as a steady entity, and e
ted radiation is obtained perturbatively. In a final step, o
makes use of a quasilinear approximation to evaluate ra
tive reaction and obtain slowly varying solitonic character
tics. Given the soliton amplitudeh and, generically, the am
plitude of the perturbing termsA, the technique has bee
argued to be effective if the smallness conditionA!h2

holds. Our interest here is to examine how far can one t
this smallness condition and what happens beyond. Fa
of the method occurs if the process is so fast that the sol
cannot be seen as a quasistatic entity. Then, alternative
cedures are required to make proper estimates. What we
pose in this paper is to make use of average Lagran
techniques@7,8# to determine the accuracy of the quiesce
approach. Our procedure is quite direct. We model the s
1063-651X/2003/67~4!/047601~4!/$20.00 67 0476
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ton and the accompanying perturbing terms with a fin
number of degrees of freedom~DOFs!—the so called collec-
tive DOFs—and determine appropriate dynamical equati
for these DOFs based on averages of the governing Lagr
ian. The method is not afflicted by any constraints on the s
of the perturbing terms. We will see that strong instabiliti
with appreciable radiation emission result from resonant
teractions involving oscillation of the DOFs associated w
the soliton solution and oscillations of the time-depend
external drive. Alternative approaches overlooking the int
nal solitonic oscillations does not reveal regions of stro
instabilities@9#, so we may consider the Lagragian averag
as of considerable help here. Schro¨dinger solitons are ob-
tained from the perturbed NLSE which in turn approxima
the Zakharov equations@10#:

iEt1Exx12nE50, ntt2nxx52~ uEu2!xx . ~1!

The Zakharov set~1! generically describes the nonlinear in
teraction of the amplitudeE(x,t) of a high-frequency field
with a full low-frequency fieldn(x,t). We splitn(x,t) in the
form n(x,t)5nnh(x,t)1nh(x,t) with nh(x,t) as the homo-
geneous solution of the second Eq.~1! andnnh(x,t) as some
functional form of uE(x,t)u2 @3# that may be extended to
include a variety of additional nonlinear features such
electronic mass correction due to relativistic effects a
higher-harmonic density oscillations as discussed in the c
text of pulsar radiation@4,5#. In several cases of interest th
standing wavenh(x,t)5A cos(kx)cos(vt) is representative.
v5v(k)5k is the dispersion relation andA is the amplitude
of the perturbation colliding with the solitary structure.nh
could represent the action of an isotropic distribution of io
acoustic waves on electromagnetic solitons, for instance.
interest here would be on how robust is the solitary wa
Since solitons are characterized by a few DOFs, their
struction would be connected with the appearance of hi
dimensional spatiotemporal chaos. Alternatively, one co
argue that while solitons are present the quiescent appro
is validated. Solitary solutions of the Zakharov equations~1!
have their own characteristic or breathing frequencies,ve
andvn , which are, respectively, associated with shape fl
©2003 The American Physical Society01-1
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tuations of theE and n fields @2,7,8,11#. ve;O(uEu2) and
vn;O(uEu) @7#, so when the fields are sufficiently small th
uEu2!1, ve!vn as well. In this so-called subsonic ca
nnh(x,t)5uE(x,t)u2, but recent results show that even wh
uEu2;1 the previous expression fornnh as a function ofE is
approximately valid@7,12#. So the final system we will be
integrating is

iEt1Exx12uEu2E522A cos~kx!cos~vt !E, ~2!

for uEu2!1 up to uEu2;1. If A50 in Eq. ~2!, one finds a
stationary solitary solution in the formE5Es(x,t)

5h0sech(h0x)eih0
2t with h0 as an arbitrary positive ampli

tude parameter. When the perturbation is present but s
ciently small withA!1, the soliton can be seen as a qua
static structure. Its slowly time-varying amplitudeh5h(t) is
then controlled by an expression obtained via inverse s
tering methods, considering oppositely propagating pertu
ing waves with equal amplitudes,

ḣ52
1

8

~pAk!2

Ak2h2 Fsech2S p

2h
~Ak2h21k! D

1sech2S p

2h
~Ak2h22k! D12 sechS p

2h
~Ak2h2

1k! D sechS p

2h
~Ak2h22k! D G , ~3!

h(t50)5h0 @1#. Note that only solitons with vanishing ve
locities are considered. They are favored in Langmuir tur
lence @13# and this is consistent with the fact that the pe
turbing wave can be decomposed into right- and left-w
propagating modes with equal amplitudes. If this symme
were violated, solitons would acquire nonzero velocities t
should appear in quiescent formulas like Eq.~3! @9#. Another
point to be observed from Eq.~3! is that under quiescen
conditions, radiation is present only whenk.h2. Within the
range 0,k,h2 solitons can even vibrate, but do not radia
Let us now proceed to the numerical work. All simulatio
are based on a pseudospectral decomposition associated
a Bulirsch-Sto¨er method. Solitary waves are placed at t
center of the simulation box with peak atx50 and withEs at
t50 as the initial condition. The lengthL of the system is
much larger than that of solitons,L5603(1/h0), and the
temporal variablet[vt/2p used in the figures measures t
number of cycles of the perturbing drivenh ; j [N x/L is a
scaled distance. Small dissipation is added foruxu
.(3/4) (L/2) to emulate open boundaries; i.e., radiation do
not return to the soliton once it is emitted. Then, we fi
consider two contrasting situations for a small valueA
50.01h0

2 and a relatively smallh050.2: k50.5h0
2 and k

52.5h0
2. Both cases are discussed in the context of Fig. 1

panels~a! and ~b! of Fig. 1, we plot contours ofuE(x,t)u to
perform a preparatory comparative study on soliton positi
ing as function of time;k52.5h0

2. In panel~a!, we briefly
relax our standing wave assumptions and consider a ri
ward moving perturbing wavenh5A cos(kx2vt) and in
panel ~b! we return to our standing perturbationsnh
04760
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5Acos(kx)cos(vt). In agreement with our earlier comment
the soliton is stationary only in case~b!. In case~a! nonzero
velocities develop and should be taken into account in q
escent formulas. In Fig. 1~c!, we investigate the time evolu
tion of variablehs[uE(x50,t)u in the standing wave situa

FIG. 1. Panels~a! and ~b! contour plots of uE(x,t)u for k
52.5h0

2; lighter shades⇒ higher intensities. Panel~c! hs[uE(x
50,t)u vs t; k50.5h0

2 in curve ~a!, and k52.5h0
2 in curves~b!,

where dots represent simulations. In all panels,h050.2, A/h0
2

50.01, andt[vt/2p.
1-2
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tion. A series of curves are drawn. Curve~a!, where k
50.5h0

2, represents the results of full simulations, a
curves~b!, wherek52.5h0

2, display the results of a full run
recorded as dots, superposed with the results of nume
integration of Eq.~3! shown as a thick solid line. The soli
line is closely surrounded by dots, so it is indeed seen
agreement for such a smallA is excellent whenk.h0

2, and
that whenk,h0

2 no decay is observable as predicted by
quiescent approach. One goes further since the issue he
to determine up to what extent arbitrarily perturbed solito
are still quasistructures of the system. We focus on the s
system composed by solitons and the external drive. Per
the best way to analyze soliton stability under the action
strong perturbing fields is the average Lagrangian meth
One first considers the full Lagrangian for theE field from
which the exact equation~2! is to be obtained through Euler
Lagrange equations

FIG. 2. Poincare´ plots forh050.2 andk50.5h0
2. «50.1 in ~a!,

«51.0 in ~b!, «52.0 in ~c!, and«52.4 in ~d!.

FIG. 3. hs vs t for h050.2, k50.5h0
2, and various values

of «s .
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L5E
2`

1`

Ldx,

L[
i

2
~E* Et2EEt* !2uExu21uEu412nh~x,t !uEu2, ~4!

i 2521. Then one supposes an ansatz solitonic form foE
with a few time-dependent parameters and known spatial
pendence. The ansatz is inserted into Eq.~4!, spatial integra-
tions are performed, and the dynamics of the time-depend
parameters is obtained. If this reduced dynamics is sta
against the action ofnh solitons might be indeed quas
structures of the full system. Otherwise, one can expect
absence of solitons and the breakdown of the quiescent
proach. The following ansatz has been shown to be us
E5Ea(x,t)5AW/a(t)exp@2x2/2a(t)21if(t)1ik(t)x2#, since
it resembles the solitary solutionEs and is analytically treat-
able in view of the fact that the spatial dependence app
only in exponential functions@1,2#. a(t) is the soliton width,
W is a constant measuring the number of quanta involved
the dynamics, andk(t) is the chirp factor.W is obtained via
W5(1/Ap)*2`

1`uEa(x,t)u2dx and shall be similarly related
to the quanta of the full static solutionEs : W
5(1/Ap)*2`

1`uEs(x,t)u2dx52h0 /Ap. In other words, if
one defines a static solutionEs via h0 , W corresponding to
the ansatz is promptly determined. Then if one calculates
average Lagrangian from Eq.~4! and applies Euler-Lagrang
prescriptions to variablesa,f,k, the governing equations fo
the width variablea5a(t) is obtained

ä~ t !5
4

a~ t !3 2
2A2W

a~ t !2
24Ak2a~ t !cos~kt!e2(k2a(t)2/4).

~5!

a5A2/W is the stable equilibrium in the absence of pertu
bation. We launch a number of orbits around this unp
turbed equilibrium, withAÞ0, and analyze the correspond
ing surface of section„a(t),ȧ(t)… at kt50,mod(2p).

FIG. 4. Poincare´ plots for h051.0 andk50.5h0
2. «50.001 in

~a!, «50.01 in ~b!, «50.1 in ~c!, and«50.14 in ~d!.
1-3
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Solitons can be seen as stable structures if there is a ce
fixed point surrounded by invariant Kolmogorov-Arnold
Moser@14# curves. The absence of stable equilibria is read
an indication that solitary lumps decay. In this paper,
focus on the most dramatic case ofk,h0

25W2p/4. As men-
tioned, in this regime there is no radiative processes wha
ever whenA is small enough. Thus, this is the most ne
setting to diagnose breakdown of the quiescent approac
Fig. 2, we look at phase plots for a series of values of
ratio «[A/h0

2 with h050.2, which are listed in the respec
tive captions (« represents the ratioA/h0

2 in the surface-of-
section plots,«s is the corresponding ratio used in the fu
simulations!. At «52.4 the soliton has just became unstab
prior to chaos.hs versus time of Fig. 3 seems to agree w
the low-dimensional predictions: the peak keeps its integ
up to and probably past«s;1.0, displaying a slow decayin
profile at «52.0 and a much faster decay for larger valu
like «s53.0. The situation becomes even more appea
when larger values ofh0 are considered. To examine th
case, we takeh051.0 again fork50.5h0

2. What becomes
clear in Fig. 4 is that solitons loose stability for far small
values of«, if compared to those ofh050.2; at«;0.14 the
soliton is already unstable and the quiescent model, th
fore, should no longer be expected as accurate. We then
full simulations for h051.0 as represented in Fig. 5 an
indeed see that the solitonic peak exists only for mu
smaller values of«s than previously. The relevant point w
wish to make here is that for largerh0’s, the parametric

FIG. 5. hs vs t for h051.0, k50.5h0
2, and various values o

«s .
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region «s!1 which was thought to be safely described
the quiescent approach, is already endangered by non
grable features. As a final indication on how much mo
unstable are larger amplitude solitons, we display the spa
time history of the fielduE(x,t)u in Fig. 6. The parameters
are identical to those used in the case«s50.1 of Fig. 5.
Figure 6 shows that the fast decay observed in Fig. 5 re
corresponds to soliton destruction and radiation emiss
The figure also validates the use of our localized ansatz
lution, since prior to decay into radiationE(x,t) resembles a
solitary mode. Radiation is damped by dissipation bef
reaching the borders. To summarize, in the present work,
analyze the validity range of quiescent approximations in
dynamics of solitary waves perturbed by strong exter
agents; average Lagrangian and simulations are used.
find out that while the validity range of the quiescent a
proach is large for small soliton amplitudesh0!1, it be-
comes noticeably narrower as the amplitude raises up toh0

&1. If k is defined in the formk5consth0
2 with const

;O(1) as we did in this paper, the exponential in formu

~5! readse2consth0
2
. Therefore, whenh0→1, one may expect

that various resonances become active~one cannot approxi-

matee2consth0
2
;1 as in the caseh0!1) driving an earlier

transition to widespread chaos with destabilization of soli
nic fixed points. In qualitative terms, the above reason
may explain the shortening of the stability range ash0 raises.
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FIG. 6. Space-time history of the quantityuE(x,t)u for the case
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