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We study soliton stability under the action of strong external perturbations. Limits on the weak perturbation
approach are established with the help of average Lagrangian methods and full simulations. We found that for
the same relative perturbation, larger amplitude solitons develop instability earlier than weaker amplitude
solitons.
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We investigate solitary wave stability under the action ofton and the accompanying perturbing terms with a finite
strong time-dependent perturbations. Our localized wavesumber of degrees of freedof@OF9—the so called collec-
are loosely called “solitons” even though this is a terminol- tive DOFs—and determine appropriate dynamical equations
ogy reserved for integrable sets, which is not the case herér these DOFs based on averages of the governing Lagrang-
Schralinger solitons generated by the nonlinear Sdimger ~ ian. The method is not afflicted by any constraints on the size
equation(NLSE for shorj are the focus of our study. They Of the perturbing terms. We will see that strong instabilities
are of relevance in modeling slow modulations of high-with appreciable radiation emission result from resonant in-
frequency fields, such as in solid state waves, lasers, hydréeractions involving oscillation of the DOFs associated with
dynamic waves, Langmuir turbulence in plasma physicsthe soliton solution and oscillations of the time-dependent
electromagnetic radiation in pulsars, and othgts5]. If external drive. Alternative approaches overlooking the inter-
solitons are perturbed they can emit radiation, as is the cadt@l solitonic oscillations does not reveal regions of strong
of Schralinger solitons perturbed by density waves in Lang-instabilities[9], so we may consider the Lagragian averages
muir turbulence. Solitons can actually emit a variety of@s of considerable help here. Sdfiirger solitons are ob-
waves, but one of the most persistent types results from thiined from the perturbed NLSE which in turn approximates
conversion of trappedjuanta within the soliton into free the Zakharov equatior{40]:
modes. Since in this case the radiated field is of the same
nature as the field forming the soliton, the problem is better I+ Exut2NE=0, nyg—Nyy=—(|E[*) 4. (1)
analyzed with help of a perturbed NLSE. More complex
kinds of radiation occur in shorter time scales and do noifhe Zakharov setl) generically describes the nonlinear in-
interfere with the present procel®7]. Weak instability has ~teraction of the amplitud&(x,t) of a high-frequency field
been the subject of attention of a large number of wik8] with a full low-frequency fieldh(x,t). We splitn(x,t) in the
and the conclusions point to the fact that when solitons aréorm n(x,t) =n,(x,t) + ny(x,t) with ny(x,t) as the homo-
weakly perturbed, they turn into quiescent sources emittinggeneous solution of the second Et) andn,,(x,t) as some
low-amplitude radiation. Calculations in this weak regimefunctional form of |[E(x,t)|? [3] that may be extended to
take into account the slowness of the process. One supposisiude a variety of additional nonlinear features such as
that the unperturbed problem is solvable by inverse scatteelectronic mass correction due to relativistic effects and
ing technigues, a soliton is given as a steady entity, and emitigher-harmonic density oscillations as discussed in the con-
ted radiation is obtained perturbatively. In a final step, ondext of pulsar radiatioi4,5]. In several cases of interest the
makes use of a quasilinear approximation to evaluate radisstanding waven,(X,t) =A coskX)cost) is representative.
tive reaction and obtain slowly varying solitonic characteris-w = w(k) =Kk is the dispersion relation arflis the amplitude
tics. Given the soliton amplitude and, generically, the am- of the perturbation colliding with the solitary structuna,
plitude of the perturbing term4, the technique has been could represent the action of an isotropic distribution of ion-
argued to be effective if the smallness conditiésc »°  acoustic waves on electromagnetic solitons, for instance. The
holds. Our interest here is to examine how far can one trushterest here would be on how robust is the solitary wave.
this smallness condition and what happens beyond. Failur§ince solitons are characterized by a few DOFs, their de-
of the method occurs if the process is so fast that the solitostruction would be connected with the appearance of high-
cannot be seen as a quasistatic entity. Then, alternative prdimensional spatiotemporal chaos. Alternatively, one could
cedures are required to make proper estimates. What we prargue that while solitons are present the quiescent approach
pose in this paper is to make use of average Lagrangiais validated. Solitary solutions of the Zakharov equatiths
techniqued7,8] to determine the accuracy of the quiescenthave their own characteristic or breathing frequencies,
approach. Our procedure is quite direct. We model the soliand w,,, which are, respectively, associated with shape fluc-
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tuations of theE and n fields [2,7,8,11. w.~O(|E|?) and

o,~O(|E|) [7], so when the fields are sufficiently small that 250
|E|?<1, w.<w, as well. In this so-called subsonic case

nnn(X,t) =|E(x,t)|?, but recent results show that even when

|E|?~1 the previous expression fay,, as a function of is

approximately valid7,12]. So the final system we will be

integrating is

T
iE,+ E ot 2|E|2E= — 2A cogkx)cog wt)E,  (2) =

for |E|?><1 up to|E|?>~1. If A=0 in Eq.(2), one finds a
stationary solitary solution in the formE=E(x,t)

.2
= ppsech@pox)e' 7o' with 7, as an arbitrary positive ampli-

tude parameter. When the perturbation is present but suffi- 0

ciently small withA<1, the soliton can be seen as a quasi- =512 0 512
static structure. Its slowly time-varying amplituge= 7(t) is .

then controlled by an expression obtained via inverse scat- ]

tering methods, considering oppositely propagating perturb-
ing waves with equal amplitudes,

1 (wAK)2

BN =
+secﬁ( (Vk—79*—k)

se CH((\/k " +k))

+2 sec)ﬁ(\/k 7’
T 125

+k))secl{(¢k 7 — k)} 3)

7(t=0)= 7, [1]. Note that only solitons with vanishing ve-

locities are considered. They are favored in Langmuir turbu-

lence[13] and this is consistent with the fact that the per- 0
turbing wave can be decomposed into right- and left-ward =212
propagating modes with equal amplitudes. If this symmetry .
were violated, solitons would acquire nonzero velocities that i
should appear in quiescent formulas like E3).[9]. Another

point to be observed from Ed3) is that under quiescent 0.20001
conditions, radiation is present only whier 2. Within the

range O<k< 7? solitons can even vibrate, but do not radiate.

Let us now proceed to the numerical work. All simulations

are based on a pseudospectral decomposition associated with ,
a Bulirsch-Ster method. Solitary waves are placed at the & o.19901
center of the simulation box with peakyat 0 and withEg at

t=0 as the initial condition. The length of the system is —
much larger than that of soliton,=60x (1/7y), and the

temporal variable= wt/27r used in the figures measures the

number of cycles of the perturbing drivg,; j=N x/L is a 019980 200 300 w00 500
scaled distance. Small dissipation is added foq T

>(3/4) (L/2) to emulate open boundaries; i.e., radiation does
not return to the soliton once it is emitted. Then, we first
consider two Contragtlng situations for a small valde —01)| vs 7 k=0.572 in curve (a), andk=2.572 in curves(b)

=0. 01770 and a relatively smaltyo=0.2: k=0. 5770 andk where dots represent simulations. In all panejg=0.2, A/770
=2.57. Both cases are discussed in the context of Fig. 1. In_ 01, andr= wt/27.

panels(a) and (b) of Fig. 1, we plot contours ofE(x,t)| to

perform a preparatory comparaﬂve study on soliton position=A coskx)cos(t). In agreement with our earlier comments,
ing as function of timek=2.573. In panel(a), we briefly  the soliton is stationary only in cagb). In case(a@) nonzero
relax our standing wave assumptions and consider a righirelocities develop and should be taken into account in qui-
ward moving perturbing waven,=A coskx—wt) and in  escent formulas. In Fig.(t), we investigate the time evolu-
panel (b) we return to our standing perturbations, tion of variablen,=|E(x=0})| in the standing wave situa-

0.19996

FIG. 1. Panels(@ and (b) contour plots of|E(x,t)| for k
=2.572; lighter shades= higher intensities. Paneéb) ns=|E(X
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FIG. 4. Poincareplots for 7,=1.0 andk=0.577§. €=0.001 in

FIG. 2. Poincarlots for 7o=0.2 andk=0.573. £=0.1 in (a), (@, £=0.01 in(b), =0.1 in (c), ande=0.14 in (d).

e=1.0in(b), e=2.0in(c), ande=2.4 in (d).

+oo
tion. A series of curves are drawn. Curya), where k L—J Ldx,
=0.573, represents the results of full simulations, and -
curves(b), wherek=2.572, display the results of a full run r '_
recorded as dots, superposed with the results of numerical 2(
integration of Eq.(3) shown as a thick solid line. The solid
line is closely surrounded by dots, so it is indeed seen thaf’=—1. Then one supposes an ansatz solitonic formEor
agreement for such a smallis excellent wherk> 77%, and  With a few time-dependent parameters and known spatial de-

that whenk< 72 no decay is observable as predicted by theP€ndence. TPe an(sjatz ij iﬂse(;ted into @@]’: shpat_ial inotlegra-d
quiescent approach. One goes further since the issue here!igns are performed, and the dynamics of the time-dependent

. L . SDarameters is obtained. If this reduced dynamics is stable
to determine up to what extent arbitrarily perturbed soliton . : . . . ;
against the action oh,, solitons might be indeed quasi-

are still quasistructures Qf the system. We focus on the su structures of the full system. Otherwise, one can expect the
system composed by solitons and the external drive. Perha

he b | i bil der th . sence of solitons and the breakdown of the quiescent ap-
the best way to analyze soliton stability under the action oty ., The following ansatz has been shown to be useful

strong perturb!ng fields is the average Lagrangian metho = E,(x,)= Wia(t) exd —x3/2a(t)?+ih() +ik(t)x2], since
One first considers the full Lagrangian for tBefield from i \osemples the solitary solutid®, and is analytically treat-
which the exact equatiof2) is to be obtained through Euler- gpje in view of the fact that the spatial dependence appears
Lagrange equations only in exponential functiongl,2]. a(t) is the soliton width,
W s a constant measuring the number of quanta involved in
the dynamics, an#(t) is the chirp factorW is obtained via
W= (1) [ TZ|EL(x,t)|?dx and shall be similarly related
to the quanta of the full static solutionEg: W
=(1/J7) [ TZ|Ey(x,t)|?dx=27/\m. In other words, if
one defines a static solutidfy via 7y, W corresponding to
o | 10 the ansatz is promptly determined. Then if one calculates the

8:;2‘0 average Lagrangian from Ef) and applies Euler-Lagrange
n, £=3.0 prescriptions to variables, ¢,k, the governing equations for

¢ the width variablea=a(t) is obtained

E*E— EE!) — |Ex/?+|E|*+2np(x,)[E[?, (4)

0.21

0.07 q
) 4 22w 2,12
a(t)= — ——— —4AK?a(t)cog kt)e~ (Kalb4)
(t) a0®  a? (t)cogkt)
®)
0.00 1‘ 2 . il s .
0 00 00 a=2/W is the stable equilibrium in the absence of pertur-
T bation. We launch a number of orbits around this unper-
FIG. 3. 55 Vs 7 for 7,=0.2, k=0.572, and various values turbed equilibrium, withA#0, and analyze the correspond-
of eg. ing surface of section(a(t),a(t)) at kt=0,mod(2r).
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00 % a0 %00 FIG. 6. S_pace-tlme history of the quant|(x,t)| for the case
T es=0.1 of Fig. 5.7¢=1.0.
_ — 2 i . . .
FIG. 5. 75 vs 7 for 77,=1.0, k=0.575, and various values of  region ¢ <1 which was thought to be safely described by
Es- the quiescent approach, is already endangered by noninte-

Solitons can be seen as stable structures if there is a cent@@ble features. As a final indication on how much more
fixed point surrounded by invariant Kolmogorov-Arnold- Unstable are larger amplitude solitons, we display the space-
Moser[14] curves. The absence of stable equilibria is read a§me history of the field E(x,t)| in Fig. 6. The parameters

an indication that solitary lumps decay. In this paper, weare identical to those used in the casg=0.1 of Fig. 5.
focus on the most dramatic caselof 72=W?27/4. As men- Figure 6 shows that the fast decay observed in Fig. 5 really

tioned, in this regime there is no radiative processes whats&0"mesponds to soliton destruction and radiation emission.
ever whenA is small enough. Thus, this is the most neat 1Ne figure also validates the use of our localized ansatz so-

setting to diagnose breakdown of the quiescent approach. IHiON, since prior to decay into radiatide(x,t) resembles a

Fig. 2, we look at phase plots for a series of values of thes0litary mode. Radiation is damped by dissipation before
ratio e =A/ 72 with 7,=0.2, which are listed in the respec- reaching the borders. To summarize, in the present work, we
tive captions ¢ represents the ratié/ 53 in the surface-of- analyzg the vahd!ty range of quiescent approximations in the
section plotsg, is the corresponding ratio used in the full gyzfrs]lgl.csavgfrasoelltigy r\;vr?vizi gigu;?neqﬂl;t?/o:str%?g Sgézrn?/\lle
simulationg. At £ =2.4 the soliton has just became unstable g ' g grang .

. . . - find out that while the validity range of the quiescent ap-
prior to chaos.yg versus time of Fig. 3 seems to agree with roach is large for small soliton amplitudeg<1, it be-
the low-dimensional predictions: the peak keeps its integrit)P . ) -

. ) : comes noticeably narrower as the amplitude raises up,to
up to and probably past,~1.0, displaying a slow decaying <1. If k is defined in the formk=const;3 with const
profile ate=2.0 and a much faster decay for larger valueswo'(l) as we did in this paper. the ex ongntial in formula
like £s=3.0. The situation becomes even more appealing B 2 Paper, P
when larger values ofy, are considered. To examine the (5) readse™ “"". Therefore, whem,— 1, one may expect

case, we takepo=1.0 again fork:0_57]g. What becomes that various 2resonances become actimee cannot approxi-
clear in Fig. 4 is that solitons loose stability for far smaller matee "o~ 1 as in the casej,<1) driving an earlier
values ofe, if compared to those ofj;=0.2; ate~0.14 the transition to widespread chaos with destabilization of solito-
soliton is already unstable and the quiescent model, theredic fixed points. In qualitative terms, the above reasoning
fore, should no longer be expected as accurate. We then runay explain the shortening of the stability rangerggaises.
full simulations for ,=1.0 as represented in Fig. 5 and F.B.R. and A.C.-L.C. wish to express their gratitude to
indeed see that the solitonic peak exists only for muchProfessor A.W. Thomas and Professor A.G. Williams of the
smaller values ot than previously. The relevant point we NITP/CSSM—University of Adelaide, Australia, for their
wish to make here is that for largefy’s, the parametric hospitality. This work was supported by CNPq and AFOSR.
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