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In the driven/damped drift-wave plasma system a collision of the weak chaotic attractor with a saddle point
is demonstrated at the crisis that induces a transition from a spatially coherent state to spatiotemporal chaos
(STCO). The phenomenon of the collision is consistent with the previous observation of the ‘pattern resonance’
that triggers the crisis. Subsequent to the collision, before the system is ejected to the STC attractor, there is
evidence of another critical dynamic event involving state transition of a mode phase. The second event plays
a crucial role in the destruction of the spatial coherence.

DOI: 10.1103/PhysRevE.69.026207 PACS nuniher05.45-a

I. INTRODUCTION [9] we have shown that for a givei in certain regime there
exists a criticale= ¢, if e<e; the system dynamics is spa-
Turbulence is a very common phenomenon in fluids, plastially regular (SR) although temporally it can be chaotic,
mas, optics, etc. A fully developed turbulence is not onlywhile if €> €. a crisis occurs in the time evolution leading to
chaotic in time, but also erratic in space. The investigation oft transition to spatiotemporal cha@TC). For example, for
the mechanism for the onset of turbulence has attracted mudh=0.65 we havee;~0.20. _ .
attention for decades. As is well known, Landau’s picture of _In general, a crisis occurs when a chaotic attractor collides
turbulence is a sequence of stepwise increases in the numb&fth an unstable periodic orbit. For example, if the orbit
of frequencies. Later on, it was realized that three incom{0int “by chance” lands near a stable manifold segment of
mensurate frequencies directly lead to chaos. This Ruelled unstable orbit of the saddle point, the orbit then moves
Takens route has been observed theoretically in the modefgwards this fixed point, following the direction of its stable
of wave-wave interactiofil,2]. In a drift-wave experiment it manifold until being ejected to the unstable manifold and
was demonstrated that the Ruelle-Takens route leads to wedR0Ving to another attract@b]. Both crises observed in Refs.
turbulence[3,4]. In contrast to fully developed turbulence [8:9] are due to collision with the unstable orbit of a saddle
where a wave is broken, in weak turbulence the spatial beP0int, respectively. In particular in Reff8] a collision with
havior remains coherent. In these examples a sequence @te saddle point was demonstrated at the critical transition
local bifurcations is not sufficient to destroy the spatial co-Parameter by projecting the orbit to low-dimensional phase

herence; it cannot explain wavebreaking in fully developedSPace. It would then be interesting to see in systdm
turbulence. If wavebreaking is not a result of local bifurca-Whether and in what representation one can observe such a

tions, is it possible that a global bifurcation, i.e., a crisis, iscollision with the saddle point in the transition to the STC.
responsible for it? Besides, after the crisis, in R¢8] the wave remains smooth

Crisis is a sudden change of a chaotic attractor, includin@ut in Eq.(1) the wave is broken. The question is, then, in
the sudden creation and expansion of a chaotic attractor, &€ latter case, is there any further dynamic event, other than
merger of two chaotic attractors, and the inverse of thes@ & possible collision with the saddle point, that can destroy
processed5—7], which has been widely studied in time- the spa’glal ccoherence? These are the questions we try to
dependent systems. There are also examples of crisis in efnSwer in the present work. o _
tended systems. For instance, in a model derived from the In Sec. Il we demonstrate that a collision with the saddle
Kuramoto-Sivashinsky equation it is found that a high-Point occurs at the critical parameter point for the transition
dimensional interior crisis leads to an abrupt expansion off & weak chaotic attractor to the STC. In Sec. Iil the colli-
the chaotic attractor, which results in a sudden increase in th@on with the saddle point at the onset of STC is investigated.
system chaoticityf8]. In this model, the spatial coherence In Sec._ IV it is found that just after Fhe collision a subsequent
still persists after the crisis. In contrast, there is an exampléynamic event occurs, through which the phase of the master
that spatial coherence is destroyed by a cifigs described mode crosses a critical value and then experiences a transi-

tion: event in wavebreaking is addressed. Finally, Sec. V gives the

conclusion and a discussion.

i Po i ¢ .
T ia tc—+fp—=—yp—esinx—OQt); Il. COLLISION WITH THE SADDLE POINT AND
gt gtgx® X

J
2 TRANSITION TO SPATIOTEMPORAL CHAOS

()
In the first place, we need to find out what a saddle point
here ¢(x+2m) = ¢(x), anda<O0.,f are constants. In Ref. is like in Eq. (1), where the steady solutions are traveling
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FIG. 1. Asymptotic SR attractor in the phase spag&=0) vs d¢(£=0)/9¢ for (a) €=0.18, (b) €=0.19, (c) €=0.20, and(d) €
=0.2009, with)=0.65. “O” shows the respective saddle poi{@SW.

waves. Our investigation shows that it is a steady W&SW)

solution with a saddle instabiliy9]. For given parameters in
the driver frameé=x—Qt,r=t, in general a SWp,(£) can

be solved from d¢g(€)/dr=0 by expanding ¢q(§)

=3,_;Acoské+6). A SW ¢o(€) is a fixed point in the

Fourier space, for the mode amplitudés} and phase&d,}
are all constants, respectively. When free dimensions at i a simple phase space. In Fig. 1 we plot the asymptotic
fixed point are perturbed, if the complex conjugate eigenvalattractor in the phase spadevs d¢/dé at E=0 with (a) e
ues in one dimension are degenerated to become real with0.18, (b) e=0.19, (c) €=0.20, and(d) e=0.200%K ¢;
positive and negative values, the fixed point is unstable to thRere (&, 7) = S}, {Acoské+ ) +b(Dcogké+ ai (7]} and

saddle instability. A saddle steady way@SW) is a saddle
point in the Fourier space, denoted @§(&) henceforth. In
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Here, ¢o(&) plays the role of a potential that influences the
motion of 8¢. By expandingd¢(&,7)=2=,_,by(7)cogké
+a (7], after {A., 6} are obtained fromi¢,/dr=0, the
modes{b,(7),a(7)} can be solved from Ed2).

It is amazing that in this system with infinitely many di-
mensions the collision with the saddle point can be observed

aplag=3_ k{— Asinké+ 6)—b(DsinMké+ a (D). In the
plots (and in following Figs. 2, 4 as wellthe saddle point

the (§,7) frame one can expect to see the phenomenon of* (0) is denoted by a circle, respectively. Comparing Figs.
collision with the saddle point at crisis.

By substituting ¢(&,7) = ¢o(€) + 5 (&,7) into Eq. (1),

the perturbation wavé¢(¢, ) is governed by the following

equation:
32 0 J 32
E’ 1+a(97§2 5¢— &75 1+a(97§2 5(f)+C
f 7 f J =
+ &?[¢o(§)5¢]+ 5¢;§5¢—0-

1%

24

S+ ydd

)

1(a)—1(d) one can see that whenapproaches a criticad,
the attractor and the saddle point gradually approach each
other. Ate=0.2009, which is very close te., the attractor
orbit almost(but not yej touches the saddle point. In all
these cases no crisis occurs and the attractors are in the SR
state.

By increasinge a little bit further, e.g.e=0.2010 in Fig.
2, the asymptotic attractor shows a completely different pic-
ture. Due to a collision with the saddle point, a crisis occurs,
after which the basin of attraction of the attractor is greatly
enlarged; in the new attractor the variationc@s/ 9¢ with ¢
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do(€=0)/dt

FIG. 2. Asymptotic STC attractor in the phase spag€=0)
vs dp(£€=0)/9¢ for €=0.2010, withQ1=0.65. “O” shows the
saddle poin{SSW).

is much more irregular. Our previous investigation shows
that the new attractor is in the STC state for its spatial co-
herence has been destroyed. In this case, the saddle poi
gets embedded in the attractor. >

Figure 3 shows examples of asymptotic contour plots of
(@ a SR state fore=0.18<e¢; and (b) a STC state fore
=0.21> €., in (a) the space-time behavior is slightly chaotic
but a travelling wave can still be seen, (ib) the wave is
broken and the spatial coherence no longer holds. The spatic
spectrum in(@) shows an exponential law and (b) a power
law [9].

IIl. COLLISION WITH THE SADDLE POINT AT THE FIG. 3. Contour plot of¢(x,t) for (a) the SR attractor fork
ONSET OF STC =0.18, and(b) the STC attractor foe=0.21.

For a givene> €., it is important to find out what hap- . . 2 .
pens at the onset of transition to the STC. From the results of Figure §a) is a contour plot ofd“(x,t); here d(x)

f ko . .
Sec. Il it is reasonable to anticipate an occurrence of coIIi-_d’(X’t) ¢ (x— ), the difference between the realized

sion with the saddle point in the temporal evolution. Figure 4¥@ve and the SSW. In the plot an onset of crisis leading to
shows the transient attractor 88 (0,7)/9& vs ¢(0,7) for e transition from SR to STC occurs att,~31 as |n_d|cated
=0.22>¢.; (a)—(d) are for the same parameters but with by the arrowt;. Just around this moment one can find a zone
different initial distributions(&, 7=0), which are taken to With almost white color, indicating the waveforg(x) is
be adjacent to the saddle poig (£). To avoid confusion nearly the same as the virtual wavefots§ (x) att=ty, i.e.,
the orbit in the first few steps is not shown in the plot. Inthe pattern resonance takes place. With the same initial con-
fact, in all these four exampldand in all the test runsone  dition Fig. 5b) shows the variation ofA(t)=|¢(x,t)
can see the transient attractor colliding with the saddle point- ¢ (x—Qt)|. Before transiting to the STC with higher
before the orbit transits to a much larger STC attractor.  |evel fluctuations one can identify a sharp spiky valley with
The collision with the saddle point in Fig. 4 is consistentan extremely small value af att=t, marked by the arrow
with the phenomenon of “pattern resonance” reported int,, indicating the occurrence of the pattern resonance.
Ref. [10]. We have pointed out that a pattern resonance is |n the above plots, Figs. 3 and 5 are obtained by solving
responsible for triggering a crisis of transition to the STC. AsEq. (1) with the pseudospectral method, and Figs. 1, 2, and 4
demonstrated by snapshots in Ref0], at the pattern reso- by solving ¢o(£) and 5¢(£,7). Itis of no surprise that they
nance (=t;) the realized waveformp(x,t;) almost coin-  agree with each other qualitatively, since in deriving E).
cides with the virtual waveform of the SSW (x— Qt.). no approximation has been made. All these results support
Obviously in the phase spa@d &) vs d¢/dé a pattern reso- that the pattern resonance or collision with the saddle point is
nance should be manifested as a collision with the saddléhe origin for the onset of the STC. In RdfL0] we also
point. This is exactly what we observe in Fig. 4&t0. pointed out that the pattern resonance is essentially due to a
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do(0)/dg

do(0)/dg
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point in the phase spacg(£=0) vs d¢p(£=0)/9¢ which leads to
the crisis of transition to the STA2=0.65 ande=0.22. (a)—(d)
are for different initial conditions. ©” and “ V" denote the saddle
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point (SSW and the “ejecting point,” respectively.
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FIG. 5. (a) Contour plot of the squared distand&x,t) and(b)
distanceA(t) between the realized solutiofi(x,t) and the corre-
sponding SSWg§ (x—Qt): ) =0.65 ande=0.22. The initial con-
ditions in (a) and (b) are the same. The arrows andt, mark the
critical times corresponding to the sharp points of the two biggest

nonlinear frequency resonance, which also applies to the col-
lision with the saddle point discussed here.

026207-4

IV. A SUBSEQUENT CRITICAL DYNAMIC
EVENT AFTER THE COLLISION

There is evidence indicating that the collision with a
saddle point is not the only critical event at the onset to the
STC. As we noted in Ref.10] [also see Fig. #)], the big-
gest spike is always followed by a slightly smaller spike
before transiting to the STC. On the other hand, in Fig. 4
after the collision the orbit is not immediately ejected to the
new attractor; instead, it seems to continue moving smoothly
FIG. 4. Transient SR attractor and its collision with the saddlefOr one more circle surrounding the old attractor; only when
it once again approaches closer to the saddle poifit);(
does the orbit suddenly turn its direction and is ejected to the
new attractor. In all tested runs we observed such an “eject-
ing point,” which is denoted by V" in Fig. 4. By compar-
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FIG. 6. by—1(7) vs ax=1(7) in the transient statéa)—(d) correspond to the same cases as in Fig.¥; indicates the position of the
“gjecting point.”

ing the behaviors in Figs. 5 and 4 qualitatively, it is evidentto believe that near the ejecting point there exists a critical
that at the first big spikémarked by the arrow;) in Fig. 5  phaseaj, across whichy,_, experiences a state transition;
a collision to the saddle point takes plagsse the colliding i.e., before the point it is in vibration, beyonddt,_, can be
point O in Fig. 4), and near to the second big spitearked  whirling as well as vibrating. This point is presumably a
by the arrowt,) in Fig. 5 the orbit is ejected to the STC saddle, just as occurs when crossing the separatrix a vibrat-
attractor(see the ejecting poir¥ in Fig. 4). ing pendulum becomes rotating. Figure 7 displays the time

Investigating the behavior of the=1 master mode may series ofb; and a; for the same case as in Figdcpand
help us to understand what happens at the ejecting poing(c). In the plot one can see that after the crigisthe fluc-
Figure 6 shows the transient orbit &f_, vs ay_,[mod tuation level ofb,_,; suddenly becomes very large afi
(=, ) has been takdnhere(a)—(d) are for the same cases «,_; transits to a vibrating-whirling state. The arrow in Fig.
as in Figs. 4a)—4(d), respectively. The corresponding posi- 7(a) denotes the first critical dynamic event, i.e., the collision
tion to the ejecting point is also denoted by, respectively, to the SSW, whereas the arrow in Figbydenotes the sec-
in Fig. 6. One can notice that they are all located at the top obnd critical dynamic event, i.e., the state transition@f ;.
a hump respectively. Most importantly, right after crossingAfter the transition to the STC the master mode
over the hump, the variation of the mode phage, sur-  §¢,_,(&,7)=Db;(7)cogké+ay(7)] is no longer confined by
passes z, and the mode amplitudb, increases greatly, the “potential” ¢g(¢); its peak is allowed to move freely
leading to the STC attractor. Conversely, before the ejectingelative to it. This results in a wavebreaking ¢f{x,t) and
point the phasey,_, is confined within an angle less than the destruction of spatial coherence.
2.

A significant phenomenon is that thg_, values at the
ejecting pointsa? , in Figs. @a)—6(d) are nearly the same. V. CONCLUSION AND DISCUSSION

For 20 test runs with different initial conditions we get the |, ihe present work by using an appropriate representation
averaged value ofry ~—1.539 with the averaged relative in the driver frame it is demonstrated that a transition from
deviation(|ay — a7 |/ a7 )~0.039. Therefore it is reasonable weak chaos to the STC is induced by a collision with a
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08 @ that there are two critical dynamic events instead of one that
T l are involved in the crisis of transition to the STC. The first
044 event provides the possibility for the occurrence of the sec-
a ] ond one, but only after the second event is the wave broken.

021 In our case the collision with the saddle poifY in Fig.

4 does not occur in a strict sense. At the moment of collision

200 a0 e a0 490 ot all b, are very close to zero, in particular for high-
1 (b) modes the deviations from the saddle point can be apparent.
] This fact can also be seen in Figsaband 5b); at the
04 | pattern resonance marked by the arrdy the realized
3 1 ¢(x,t1) does not exactly coincide with the virtugf (x,t,).
A small but finite difference between them can be seen. This
is in contrast to the high-dimensional interior crisis observed
in Ref.[8], where an exact collision with the saddle point is

t seen in every dimension. Moreover, in RE8] the mode
FIG. 7. Temporal evolutions d8) b,_; and(b) a,_;. One can phase _does not appear in th_e_ model, and hence no subsequent

see a state transition taking place(B). The same case as in Figs. €VeNt involving state transition of the mode phase occurs
4(c) and ). following the collision. Presumably this is why its spatial
coherence is still retained after the crisis.

T T T T T T T v {
0 200 400 t 600 800 1000

saddle poin(SSW. The result on the collision in the tem-
poral evolution supports our previous observation that “pat-
tern resonance” is responsible for driving the onset of a crisis  This work is supported by the Special Funds for Major
to the STC. We also identify a dynamic event subsequent tState Basic Research Projects of China, the Natural Science
the collision, at which th&=1 mode phase of the perturba- Foundation of China, by RFDP No. 20010027005, and by
tion wave experiences a state transition. That is, we discoveLNPq of Brazil.
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