
PUBLISHED VERSION  

Aitchison, I. J. R.; Dunne, Gerald Vincent  
Nontopological finite temperature induced fermion number Physical Review Letters, 2001; 
86(9):1690-1693  

 ©2001 American Physical Society 

http://link.aps.org/doi/10.1103/PhysRevLett.86.1690 
 
  
   

   
 

http://link.aps.org/doi/10.1103/PhysRevD.62.093023  
 
  
 

 
    
 

 
 

 
 

 

 
 
 

  

 
 

 
http://hdl.handle.net/2440/11202 

 
 

  
 

 
 

PERMISSIONS 

http://publish.aps.org/authors/transfer-of-copyright-agreement 

 

 

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S. 
Copyright Act, 17 U.S.C. 

§101, the employer named [below], shall have the following rights (the “Author Rights”): 

[...] 

3. The right to use all or part of the Article, including the APS-prepared version without 
revision or modification, on the author(s)’ web home page or employer’s website and to 
make copies of all or part of the Article, including the APS-prepared version without 
revision or modification, for the author(s)’ and/or the employer’s use for educational or 
research purposes.” 

 

 

 

7th May 2013 

 

http://hdl.handle.net/2440/11202�
http://link.aps.org/doi/10.1103/PhysRevLett.86.1690�
http://link.aps.org/doi/10.1103/PhysRevD.62.093023�
http://hdl.handle.net/2440/11202�
http://publish.aps.org/authors/transfer-of-copyright-agreement�


VOLUME 86, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 FEBRUARY 2001

1690
Nontopological Finite Temperature Induced Fermion Number

I. J. R. Aitchison1 and G. V. Dunne1,2

1Physics Department, Oxford University, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
2Research Centre for the Subatomic Structure of Matter, University of Adelaide, S.A. 5005, Australia

(Received 29 June 2000)

We show that while the zero temperature induced fermion number in a chiral sigma model background
depends only on the asymptotic values of the chiral field, at finite temperature the induced fermion num-
ber depends also on the detailed shape of the chiral background. We resum the leading low temperature
terms to all orders in the derivative expansion, producing a simple result that can be interpreted physi-
cally as the different effect of the chiral background on virtual pairs of the Dirac sea and on the real
particles of the thermal plasma. By contrast, for a kink background, not of sigma model form, the finite
T induced fermion number is temperature dependent but topological.
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The phenomenon of induced fermion number due to the
interaction of fermions with topological backgrounds (e.g.,
solitons, vortices, monopoles, Skyrmions) has many appli-
cations ranging from polymer physics to particle physics
[1–8]. The original fractional fermion number result of
Jackiw-Rebbi [1] has a deep connection with the exis-
tence of spinless charged excitations in polymers [2]. The
adiabatic analysis of Goldstone-Wilczek [3] in systems
without conjugation symmetry has important implications
for bag models [5], monopoles, and sigma models, which
provide effective field theory descriptions of systems rang-
ing from condensed matter, to AMO, to particle and nu-
clear physics [9]. The induced fermion number is related to
the spectral asymmetry of the relevant Dirac operator, and
mathematical results concerning index theorems [8] relate
the fermion number to asymptotic topological properties of
the background. At finite temperature, the situation is less
clear. In several examples [10–14], the fermion number is
known to be temperature dependent, but is still topological
in the sense that the only dependence on the background
field is through its asymptotic properties. In this Letter, we
present a simple physical case for which this is not true:
in a 1 1 1 dimensional chiral sigma model, the finite tem-
perature induced fermion number depends on the detailed
structure of the background. This contradicts a previous
analysis [15] and claim [16] that the finite T fermion num-
ber is in general a topological quantity. We give a simple
physical explanation of the origin of the nontopological de-
pendence. Our analysis has been motivated in part by the
results of [17] concerning the T dependence of anomalous
amplitudes in nuclear decays.

Consider an abelian model in 1 1 1 dimensions with
fermions interacting via scalar and pseudoscalar couplings
to two boson fields f1 and f2:

L � ic̄≠�c 2 c̄�f1 1 ig5f2�c . (1)

There are two important physical cases: (i) kink case [1]:

f1 � m and f2�6`� � 6f̂2 , (2)

(ii) sigma model case [3]:
0031-9007�01�86(9)�1690(4)$15.00
f2
1 1 f2

2 � m2. (3)

In the sigma model case (3), the interaction term in the
Lagrangian (1) can be expressed as

mc̄eig5uc � mc̄�cosu 1 ig5 sinu�c . (4)

At T � 0, both these cases have an induced topological
current Jm � �c̄gmc� given by [3]

Jm �
1

2p
emn≠nu 1 · · · , (5)

where the angular field u is defined by u �
arctan�f2�f1�. The dots in (5) refer to higher derivative
terms, which are all of the form of a total derivative of u

and its derivatives [4]. The induced fermion number N �R
dx J0 is

N �
1

2p

Z `

2`
dx u0 �

1
p

û , (6)

where 6û are the asymptotic values of u�x� at x � 6`.
The fermion number N is topological as it depends only
on û, not on the detailed shape of u�x�. The conjugation
symmetric case of Jackiw and Rebbi [1] is with m ! 0 in
the kink case (2), in which case N ! 6

1
2 .

At nonzero temperature, the induced fermion number
for a static background is [8,14]

N � 2
1
2

Z
C

dz
2pi

tr

µ
1

H 2 z

∂
tanh

µ
bz
2

∂
. (7)

Here b � 1�T is the inverse temperature, and tr� 1
H2z � is

the resolvent of the Dirac Hamiltonian H. The contour C
is �2` 1 ie, 1` 1 ie� and �1` 2 ie, 2` 2 ie�. The
technical part of the calculation of the induced fermion
number (7) is computing the resolvent of H. Then the
induced fermion number has an integral representation (7),
or a sum by deforming the contour in (7) around the simple
poles of the tanh function. For static backgrounds f1�x�
and f2�x� in (1), the Dirac Hamiltonian is

H � 2ig0g1 d
dx

1 g0f1�x� 1 ig0g5f2�x� . (8)
© 2001 The American Physical Society
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We use Dirac matrices g0 � s3, g1 � is2, g5 � 2s1.
Only the even part (in the argument z) of the resolvent
tr� 1

H2z � contributes to the fermion number N in (7).
Consider first the kink case in (2). The even part of the

resolvent can be computed exactly using an index theorem
trace identity [8,10,18]:∑
tr

µ
1

H 2 z

∂∏
even

�
2mf̂2

�m2 2 z2�
q

m2 1 f̂
2
2 2 z2

. (9)

Then the fermion number (7) for the kink case (2) is
N �
X̀
n�0

2
p � mb

p �2 sin û

��2n 1 1�2 1 � mb

p �2�
q

�2n 1 1�2 cos2û 1 � mb

p �2
, (10)
where û � arctan�f̂2�m�. The fermion number (10) is
plotted in Fig. 1 as a function of û for various values of
T . As T ! 0, this result reduces smoothly to the zero
T result (6). Despite its complicated form, the nonzero
T result (10) is still topological, as it refers only to the
background through û.

In the sigma model case (3), the trace identity formula
(9) does not apply. Another approach is needed to evaluate
the resolvent. One such approach is the derivative expan-
sion [19], in which (at T � 0) we assume that the spatial
derivatives of the background fields are small compared to
the fermion mass scale m. At finite T , however, there is
an additional scale, namely T , and one might expect a new
condition that the derivatives of the background fields are
small compared to T . But in that case, a smooth T ! 0
limit would be precluded. As we shall see, this condition
does not in fact arise, and we recover a smooth T ! 0
limit by making an exact resummation of the leading low
temperature term at each order in the derivative expansion.

Returning to the general Hamiltonian (8), the derivative
expansion can be obtained by separating H2 as

H2 � �2=2 1 f2
1 1 f2

2�
µ

1 0
0 1

∂
1

µ
f

0
2 if0

1
2if0

1 2f
0
2

∂
(11)

and expanding in powers of derivatives. To first order:∑
tr

µ
1

H 2 z

∂∏
even

� 2
1
2

Z `

2`
dx

�f1f
0
2 2 f2f

0
1�

�f2
1 1 f

2
2 2 z2�3�2

1 . . . ,
where dots refer to terms with three or more derivatives.
In the kink case (2), where f1 � m is constant, this first

order calculation actually reproduces the exact trace iden-
tity result (9). But in the sigma model case (3), (4), where
f

2
1 1 f

2
2 � m2 is a constant, this first order derivative ex-

pansion result leads to

N �1� �

"X̀
n�0

1
p �mb

p �2

��2n 1 1�2 1 �mb

p �2�3�2

# Z `

2`
dx u0, (12)

which is simply the zero temperature answer (6) multiplied
by a smooth function of T . As T ! 0, this prefactor
reduces to 1

2p , so the full T � 0 result (6) is regained
unproblematically. But at finite temperature, the first order
(in the derivative expansion) formula (12) for the sigma
model case differs from the kink case formula (10), even
though each of (12) and (10) reduces to (6) at T � 0.

What about higher order corrections to the derivative
expansion? In the kink case (2), there are no higher order
corrections to the even part of the resolvent. This is due to
the special form of the Hamiltonian in the kink background
[8,18]. There can, of course, be higher order corrections to
the fermion number density, but these are all total (spatial)
derivatives, and do not contribute to the integrated fermion
number, even at T . 0.

In the sigma model case (3), (4), where the trace identity
does not apply, the situation is very different. Going to the
next order in the derivative expansion, we find
∑

tr

µ
1

H 2 z

∂∏
even

� 2
m2

2�m2 2 z2�3�2

Z
u0 2

m2

8�m2 2 z2�5�2

Z
u000 2

m2�4z2 1 m2�
16�m2 2 z2�7�2

Z
�u0�3 1 · · · , (13)
where the dots refer to terms with five or more derivatives.
For a chiral background with u�x� approaching its asymp-
totic values exponentially fast,

R
dx u000 vanishes. ButR

dx �u0�3 does not vanish. Thus, the first order fermion
number (12) acquires a third order correction:

N �3� �
m2b4

8p5

X̀
n�0

�24�2n 1 1�2 1 � mb

p �2�

��2n 1 1�2 1 � mb

p �2�7�2

Z
�u0�3.

(14)

This is not just a function of the asymptotic value û of
the chiral field u�x�; it also depends on the actual shape
of u�x�. Thus, the induced fermion number is no longer
topological. This contradicts [15], where it is stated that
the first order derivative expansion contribution (12) is the
full answer. However, the energy trace prefactor in (14)
vanishes at T � 0, so the nontopological third order con-
tribution (14) vanishes at T � 0. Thus, the nontopological
nature of the finite temperature induced fermion number is
still consistent (at this order) with the topological nature of
the T � 0 induced fermion number (6).

We now turn to a physical explanation of why, in the
sigma model case, the finite temperature induced charge
is more sensitive to the background field than at zero tem-
perature. Note first of all that the chiral background acts
like a static but spatially inhomogeneous electric field, as
1691
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FIG. 1. Plots of pN , where N is the finite temperature fermion
number (10) for the kink case (2), as a function of û. These
plots are for mb�p taking values 0.5, 1, and 10, as labeled. As
T ! 0, note that pN ! û, as in (6).

can be seen by making a local chiral rotation [4]: c !
c̃ � eiug5�2c. In terms of these chirally rotated fields the
Lagrangian (1), with interaction (4), becomes

L � i ¯̃c≠�c̃ 2 m ¯̃cc̃ 2 ¯̃cg0 u0

2
c̃ . (15)

Thus, the chiral field leads to an inhomogeneous electric
field E�x� � 2

1
2u00�x�. Given that u�x� itself has a kink-

like spatial profile, the electric field is such that it changes
sign as a function of x, as shown in Fig. 2 (we choose
u0 . 0). This electric field acts on the Dirac sea to polar-
ize the vacuum by aligning the virtual vacuum dipoles of
the Dirac sea, producing a localized buildup of charge near
the kink center. But at nonzero T , the electric field also
has an effect on the thermal plasma, as we show below.

First, consider the full derivative expansion (13) of the
even part of the resolvent, at low but nonzero temperature.
At fifth order, there are three independent terms involving
u00000, u000�u0�2, and �u0�5. The u00000 term vanishes when
integrated over x, but the other two terms are generally
nonzero. However, as T ! 0 the �u0�5 term dominates the
u000�u0�2 term. Indeed, for low temperature, the dominant
term with �2l 2 1� derivatives in the derivative expansion
(13) involves �u0�2l21. Using the chirally rotated form (15),
the dominant term at �2l 2 1�th order is simply

N
�2l21�
dom � 2T

X̀
n�0

Z dk
2p

tr��g0�p� 1 m��2l�
�p2 1 m2�2l

3
Z

dx

µ
u0

2

∂2l21

(16)

with Euclidean p � ����2n 1 1�pT , k���.
At zero temperature, all these terms N �2l21� vanish, ex-

cept for l � 1. This fact is not obvious; it involves highly
nontrivial cancellations between terms in the expansion of
the trace. But at nonzero temperature, all the terms in
(16) are nonvanishing. Moreover, they have a remarkably
simple low temperature �T ø m� limit:
1692
FIG. 2. For a kinklike chiral field u�x�, the electric field E �
2u00�2 has the form shown in the solid line, producing a vacuum
polarization charge distribution localized near the kink center,
roughly following the dotted line u0�2.

N �2l21� � dl,1

Z
dx

u0

2p

2

s
2mT

p
e2m�T

Z � u0

2T �2l21

�2l 2 1�!
1 · · · . (17)

Thus, in the low temperature limit, we can resum the entire
derivative expansion, to obtain the induced fermion num-
ber in the sigma model case (3), (4):

N �
Z

dx
u0

2p
2

s
2mT

p

Z
dx e2m�T sinh

µ
u0

2T

∂
1 · · ·

(18)

(the dots are power-law subleading terms for T ø m).
Several features of this result (18) deserve comment.

First, at zero temperature, only the first term survives,
producing the familiar result (6) that the induced fermion
number depends on the chiral field u�x� only through its
asymptotic value û � u�`�. Second, although (17) con-
tains powers of the “dangerous” ratio u0�T , the resummed
expression (18) has a smooth T ! 0 limit: the resummed
exponential factors e2�m7u0�2��T in (18) require only the
derivative expansion condition u0 ø m, precisely as at
T � 0. This is consistent with the fact that for a static
background, T does not enter the computation of the single
particle fermion spectrum. Third, at zero temperature,
one can invoke Lorentz invariance to constrain the form
of higher order corrections to (5) to be total derivatives
[4], but these arguments do not apply at finite temperature.
We see this in (18): the temperature dependent correc-
tions are not total derivatives of terms made from u and
its derivatives. At nonzero temperature this shows clearly
that the induced fermion number is nontopological — it de-
pends also on the detailed shape of u�x�. Finally, the form
of the exponential factors in (18) suggests an interpretation
of this result as an adiabatic change of the local Fermi level
with a local chemical potential m�x� � 2u0�2, which once
again is sensible only in the derivative expansion regime
where u0 ø m.
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To make this physical picture more precise, we can in-
terpret the result (18) as follows. The first, topological,
term refers to the induced charge coming from the po-
larization of the Dirac sea. This is temperature indepen-
dent as the short-lived virtual “electron-positron dipoles”
of the Dirac sea do not come to thermal equilibrium. The
next term in (18) corresponds to the induced charge aris-
ing from the response of the real charges in the thermal
plasma to the spatially inhomogeneous electric field. In-
deed, the linear response [20] of the plasma at low tem-
perature to such an electric field yields an induced fermion
number density r�x� �

R dk
2p f�x, k� where the static dis-

tribution function f�x, k� satisfies the Boltzmann equation:
y

≠

≠x f�x, k� � 2E�x� ≠

≠k f�x, k�, with y � k�
p

k2 1 m2.
Regarding m�x� � 2u0�2 as a local chemical potential,
this is satisfied by local Fermi particle and antiparticle dis-
tribution functions

f6�x, k� �
1

eb�
p

k21m27m�x�� 1 1
. (19)

Taking f � f1 2 f2, we obtain precisely the second,
nontopological, term in (18) in the low temperature limit.

At T � 0, the fermion number may be defined as a
sharp observable [21]; but at T . 0, thermal fluctuations
introduce an rms deviation. Thus, the finite T fermion
number in (7) and (18) is a thermal expectation value �N�,
as in the monopole cases [12–14]. We have estimated
�N2� 2 �N�2, in the derivative expansion regime, in an
analogous manner to the computation presented here for
�N�. We find that the rms deviation vanishes at T � 0, but
at nonzero T can be significant compared to the thermal
shift in (18). Details of this will be reported elsewhere.

We comment briefly on possible implications of these
results for models in other dimensions. In 2 1 1 dim,
fermions in a static magnetic background acquire an
induced charge that is T dependent but topological [11].
In 3 1 1 dim, fermions in a static Dirac monopole back-
ground acquire an induced charge that is T dependent, but
still depends only on the background through the total
magnetic charge and the self-adjoint extension parameter
[12–14]. For a static SU�2� ’t Hooft-Polyakov monopole
background �Am, f�, with coupling Lint � c̄�A� 1

f 1 ig5m�c, with c an isodoublet fermion, we have
computed the finite T induced fermion number, using the
3 1 1 trace identity used in the T � 0 case [22], and we
find precisely the same expression (10) as in the 1 1 1
kink case, with the identification û � arctan�f̂�m�,
where f̂ is the asymptotic value of the magnitude
jfj �

p
fafa of the Higgs field. Given that (10) reduces

to 1
p û at T � 0, this monopole result is consistent with

the familiar T � 0 result [3,22,23]. The 3 1 1 dim
analog of the 1 1 1 sigma model case (3), (4) is the sigma
model with coupling Lint � mc̄�p0 1 ig5 �p ? �t�c ,
where �t are SU�2� generators, the fields p0 and �p are
constrained by p

2
0 1 �p2 � 1. At T � 0 [3,4,6–8],

there is an induced topological charge density J0 �
1

24p2 eijktr�g21≠igg21≠jgg21≠kg�, where g is defined by
g � p0 1 i �p ? �t. The corresponding T � 0 integrated
charge is given by the winding number of the background
field g at zero temperature. We conjecture that at finite
temperature this induced charge will acquire additional
nontopological contributions similar to those found here
for the 1 1 1 sigma model case.
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