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Abstract

Recent advances in culture-free microbiological techniques bring new understanding of the

role of intestinal microbiota in heath and performance. Intestinal microbial communities in

chickens assume a near-stable state within the week which leaves a very small window for

permanent microbiota remodelling. It is the first colonisers that determine the fate of micro-

bial community in humans and birds alike, and after the microbiota has matured there are

very small odds for permanent modification as stable community resists change. In this

study we inoculated broiler chicks immediately post hatch, with 3 species of Lactobacillus,

identified by sequencing of 16S rRNA and pheS genes as L. ingluviei, L. agilis and L. reuteri.

The strains were isolated from the gut of healthy chickens as reproducibly persistent Lacto-

bacillus strains among multiple flocks. Birds inoculated with the probiotic mix reached signifi-

cantly higher weight by 28 days of age. Although each strain was able to colonise when

administered alone, administering the probiotic mix at-hatch resulted in colonisation by only

L. ingluviei. High initial abundance of L. ingluviei was slowly reducing, however, the effects

of at-hatch administration of the Lactobacillus mix on modifying microbiota development

and structure remained persistent. There was a tendency of promotion of beneficial and

reduction in pathogenic taxa in the probiotic administered group.

Introduction

The gastrointestinal tract (GIT) of broilers plays an important role in their health and perfor-

mance [1]. GIT health is dependent upon complex interactions between diet, host bacterial

community (microbiota) and intestinal functioning [2]. When gut health is compromised

digestion and nutrient absorption are affected resulting in poor feed utilisation and suscepti-

bility to disease [3]. Studies of broilers fed probiotics have demonstrated improved weight

gain, and improved feed conversion ratios [4–8].
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Recent studies have powerfully linked GIT microbiota to health in animals including

chicken (reviewed in Stanley et al. [1]) and humans [9–11]. Other studies confirmed a link

between GIT microbiota and obesity [12], suggesting that the manipulation of intestinal

microbiota could be used to manipulate weight gain. Interactions between host and microbiota

are, however, complex, and can have a positive or negative effect [13].

Microbes that confer health and performance benefits are called probiotics [14]. The mech-

anisms of probiotic action include: scavenging free-radicals [15], producing bacteriocins [16],

influencing intestinal mucin gene expression [17], exclusion and inhibition of pathogens [18–

20], and virulence attenuation [21]. Fuller [22] summarized the benefits as improved feed con-

version rates, increased growth rates, greater disease resistance, improved digestion and

absorption of nutrients, improved carcass quality and reduction of zoonotic bacteria. Sanders

[23] reported a reduction in lactose intolerance and modulated immune system functions.

According to Conway [24] and Dunne et al. [25], probiotic strains should be of host origin,

non-pathogenic, suitable for manufacturing and delivery, capable of adhering to gut mucosa,

modulate immune function, improve intestinal function and growth and produce non-toxic

metabolites. The most reported health benefits of probiotics have been improvements in diges-

tive health and function [26]. The GIT microbiota aids in digestion and absorption of nutrients

by catabolizing substrates [27].

Probiotics are a promising alternative to antibiotics because they can control pathogens [28,

29]. Probiotics can competitively exclude pathogens in the intestine by successfully competing

for nutrients, adhering to the mucosa, modulating a favorable immune response, secreting

bacteriocins, creating a favorable environment (eg. lowering pH by secreting lactic and acetic

acid), and regulating colonocyte gene expression [30–32]. Bacteria that lower the pH of the gut

by secreting lactic acid (eg. Lactobacillus) are considered suitable candidate [33] for pathogen

control. Studies have shown the efficacy of certain Lactobacillus strains in suppressing or

excluding Salmonella spp., Escherichia coli, Enterococcus spp., Clostridium perfringens and

Campylobacter spp.[34, 35].

Here we present a study aimed at manipulating gut microbiota of chickens at-hatch, by pro-

viding an inoculum of carefully selected beneficial strains, isolated as able to persistently colo-

nise poultry. At hatch, the initial inoculum shapes the gut microbiota of chickens for life. The

first bacteria to enter their intestine, are able to adhere to epithelial cells without competition,

rapidly establish, proliferate and set the intestinal environment in terms of metabolite profiles

and pH, to best suit their own needs. The first bacterial settlers have the highest influence on

the development of intestinal microbiota and subsequent health and productivity of the bird

[1, 36]. The development of GIT microbiota in broilers begins immediately post-hatch and is

highly variable during early development [36–38]. The diversity and distribution of bacterial

species, that make up the GIT microbiota, fluctuates post-hatch and becomes well established

as fast as by day 3 [38] or, in a different study, by day 11 [39]. After establishment period,

microbiota continues to steadily mature at a slower rate [37]. Not only is the diversity and dis-

tribution of the microbiota age dependant, it is also host dependent [40]. Maturity assumes sta-

ble microbiota with the ability to resist change, even as severe as antibiotic administration

[41], thus we propose that probiotics administered after day 3 will find that the gut is already

colonized with near-established community and that only post-hatch administration of probi-

otics offers the most likely opportunity to achieve permanent colonisation in birds and influ-

ence the development of microbiota and thus influence bacterial profile throughout the bird’s

life. To test this hypothesis we performed a controlled experiment using culture-free sequenc-

ing methodology to observe total bacterial community and inspect the colonisation and suc-

cess of probiotic’s persistence between at hatch administered probiotic treatment and a sterile

PBS inoculated control.

Early administration of probiotics
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Materials and methods

Inoculum preparation

Lactobacillus strains were derived from caecal samples collected from birds used in three

experiments described by Stanley et al. [42]. Briefly, 3 identical broiler trials (each with n = 96)

were performed within 5 months in fully environmentally controlled animal facility. Birds

were placed in individual metabolic cages from day 15 to day 25 for reliable individual perfor-

mance indicators. The caecal samples had been stored at -80˚C to ensure freeze-thaw resis-

tance of cultured isolates. Samples from healthy birds with the best growth performance were

used. The caecal content samples were diluted in MRS broth and plated out onto MRS agar

plates. Visually distinct colonies were picked and screened using 16S rRNA gene sequencing.

The derived 16S sequences were compared to the NCBI 16S Microbial database to determine

the probable genus designation of each isolate and compare isolate to isolate similarity. After

this stage the ability to colonise was confirmed in vivo and successful colonisers were further

identified via Sanger sequencing of near full length 16S amplicons and the species assignment

confirmed by sequencing the pheS gene of each isolate. Complete and reliable species identifi-

cation requires a combination of techniques including DNA hybridisation, sequencing of

marker genes, restriction enzyme, sugar utilisation and metabolite profiling, we thus do not

claim definite but rather putative species assignment. We aimed to use 3 distinct Lactobacillus
species, isolated from chicken, which we found abundant and persistent in birds from flocks

with extremely different microbiota [36] to investigate whether very early colonising with

these chicken-derived Lactobacillus strains would provide permanent microbiota modifica-

tion. The number of bacterial cells of the 3 strains was equalised via pooling of 3 separate

inoculums of equal optical density (OD600) using freshly plate-grown cells resuspended in

PBS.

At-hatch administration of probiotic mix

Fertilised eggs (Ross 308) were obtained from Bonds hatchery in Toowoomba, Queensland.

The eggs were not cleaned or fumigated. The incubator (YBS-FD-440) was cleaned but not

fumigated. Hatchlings (n = 11 birds per treatment) were inoculated with either 1ml of sterile

PBS or 1ml of inoculum mixture in PBS at 2 hours post-hatch, allowing the birds to dry in the

incubator. All birds used in the study hatched within 36 hours. The inoculum mixture con-

tained equal amounts of freshly plate-grown strains provisionally identified as L. ingluviei, L.

agilis and L. reuteri. The two groups of birds were then placed in two separate pens on wood

shavings in a temperature controlled room. Each pen was 1.2m x 1.2m. The temperature in the

room was set as per breed recommendations and 14 hours light, 10 hours dark schedule was

used after removing brooding lamps at 5 days of age. Feed used was antibiotic and anticocci-

dials free chicken starter crumbles (Blue Ribbon Stockfeed, Rockhampton, Queensland). Indi-

vidual birds were weighed daily, and pen feed intake also measured daily, for 28 days. Excreta

samples were taken for microbiota analysis at 14 days, and before slaughtering of the birds at

28 days of age. The samples were collected by placing wide wire confining divider into the pen,

separating one bird from others without handling or removing the bird from the pen and wait-

ing for the bird to pass the fresh excreta. Care was taken that fresh excreta taken as a sample

was free of any caecal matter by visual observation. In addition, caecal contents and ileal

mucosa scrapings were collected at 28 days and prepared for microbiota analysis.

DNA was extracted using Bioline ISOLATE Faecal DNA Kit (#BIO-52038) according to the

manufacturer’s instructions and 16S variable regions V3-V4 were amplified. DNA was ampli-

fied using Q5 DNA polymerase (New England Biolabs). Sequencing was performed on an
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Illumina MiSeq system (2 x 300 bp) using the dual-indexing, variable spacer, method detailed

by Fadrosh et al. [43]. The quality filtered sequences were analysed in QIIME 1.9.1 software

[44] using QIIME default parameters unless stated otherwise. OTUs were picked using

UCLUST algorithm (Edgar 2010) at 97% sequence identity and inspected for chimeric

sequences using Pintail [45] and taxonomy assigned with GreenGenes database [46]. Addi-

tional taxonomic assignments were done using blastn against the NCBI 16S database. Data

were analysed and visualised using Calypso [47]. The OTU table was filtered to remove low

abundance OTUs (less than 0.01%), square root transformed and TSS normalised. Significance

of microbiota differences between probiotic and control was calculated using Wilcoxon test

via biomarker discovery function in Calypso [47]. Annotated sequencing dataset used in this

study is publically available on the MG-RAST database under the project number mgp83960

and the library accession number mgl639405.

Ethics statement

This study was approved by the Animal Ethics Committee of Central Queensland University

(A1409-318). The Lactobacillus isolation experiment, including in vivo testing of colonisation

success declared in this manuscript, was approved by the Animal Ethics Committees of RMIT

University (1508). All animal work was conducted in accordance with “The Australian code

for the use of animals for scientific purposes” document.

Results

Colonisation success

There were significant differences in weights of birds between probiotic treated and untreated

birds. The control birds grew faster at the start of the trial and were heavier during the first

week, significantly so between days 2 and 6 (Fig 1A). However, after day 6 there were no sig-

nificant differences between the treatments until day 24, when the probiotic treated birds

exceeded weights of the controls, remaining significantly heavier at 28 days of age, at the time

of the trial termination (Fig 1B).

OTUs corresponding to the three inoculated strains were identified in the sequenced inocu-

lum samples, however, only one of these OTUs, identical to L. ingluvei strain, was able to per-

sist until the end of the experiment while the other two were not detected at any stage of

sampling, including ileal mucosa and caecal samples (Fig 2). There was a contact of inoculum

strains to control birds due to the shared shed environment, despite the wire pens providing

physical separation. This allowed comparing at-hatch large dose inoculation to environmental

Fig 1. Weights of the birds at 4 (A) and 28 days (B). Control PBS inoculated birds were significantly heavier between

the days 2 and 6 post hatch. Between day 6 and 24 there were no significant differences, however, probiotic inoculated

group became significantly heavier starting from day 24 to the end of the trail.

https://doi.org/10.1371/journal.pone.0194825.g001
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colonisation between the two groups. There were significant differences in the abundance of L.

ingluvei OTU across the treatments, however, the only meaningful significant difference, com-

paring the control and probiotic at the same point of sampling, was at 14 days of age when the

inoculated strain was still at a higher level (P = 0.043) than in control in collected excreta sam-

ples. By 28 days, when we additionally sampled caecal content and ileal mucosa, the signifi-

cance between the treatments diminished and inoculated L. ingluvei OTU was noticeably

higher only in probiotic treated illeal mucosa, however, not significantly (P = 0.33). There

were no significant differences in Richness or Evenness index between the probiotic and con-

trol groups although there were differences between the excreta, caecal and mucosal samples

as anticipated.

Multivariate analysis additionally showed significant differences in microbiota structure

between the groups and by both redundancy analysis (RDA, Fig 3) and Adonis statistics on

Weighted Unifrac, P<0.001. We further used Weighted Unifrac and Adonis multivariate sta-

tistics to identify variables influencing the microbiota differences. Based on Adonis, bird sex

had no significance (P = 0.825), while probiotic administration significantly affected micro-

biota (P = 0.037). The different microbiota origins (caecal and ileal mucosa or excreta samples)

likewise had significantly different communities (P = 0.015). This analysis took into account

all sample origins and time points (all 76 sequenced samples as presented in Fig 2). However,

separate analysis was performed for each individual time-point/sample origin matched probi-

otic and control samples (for example excreta control vs excreta probiotic, both 14 days, n = 10

each) where no significant influence of probiotic was detected on individual weekly compari-

sons with smaller sample size.

Changes in excreta microbiota at 14 and 28 days post inoculum

Two weeks after the oral inoculation overall microbiota did not differ significantly between

control and inoculated group (Adonis on Weighted Unirac P = 0.203, n = 10), however

Fig 2. TSS normalised, square root transformed abundance of inoculated L. ingluviei. Out of the 3 OTUs detected

in inoculum, only one, identical to L. ingluviei was detected in birds using sequencing methodology and was present in

all birds across all sampling points. Legend: Pb = probiotic, Ctrl = PBS control.

https://doi.org/10.1371/journal.pone.0194825.g002
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significant changes were detected (Wilcoxon P<0.05) in individual taxa. At the genus level

(Table A in S1 File), the abundance of unclassified Planococcaceae and Clostridiales (Fig 4A)

was increased in the probiotic inoculated birds, while genera Pseudoclavibacter, Nocardiopsis,
Burkholderia and Brevundimonas were detected only in faeces of probiotic inoculated birds.

Lactococcus (Fig 4B) was significantly reduced in the probiotic treated birds. Among the OTUs

there were a number of significantly altered taxa, mostly OTUs belonging to species of the sig-

nificantly affected genera listed above with a high number of clostridia-related OTUs (Fig 5C)

increased in probiotic treated group. Clostridia related species that were most similar to the

clostridial OTUs increased by probiotic were not related to pathogenic “true” Clostridiaceae

clostridia, but aligned with more recently isolated species, some of which are considered bene-

ficial via high short chain acid (SCFA) production. Additionally Enterobacteriaceae OTU,

most similar to Escherichia fergusonii (Fig 4D) and Shigella sonnei (89%) was reduced in abun-

dance in probiotic treated group. The list of genera and OTUs altered at 14 days after at hatch

administration of probiotic with significance levels is given in Tables A and B in S1 File.

Two weeks later, at 28 days of bird’s age, the excreta microbiota was different from the one

at 14 days. This is expected due to microbiota maturation and development changes [37]. The

level of changes according to Weighted Unifrac and ADONIS statistics was comparable in

control (control, 14 vs 28 days; P = 0.002) and in probiotic treated birds (probiotic, 14 vs 28

days; P = 0.002). The differences between the probiotic and control microbial communities at

28 days of age were fewer (Adonis P = 0.841) in excreta samples with only Eubacterium and

Arthrobacter genera different between the treatments (Fig 5A and 5B, Table C in S1 File) and

OTUs with %ID closest to Blautia, Ruminococcus, Alistipes and Bacteroides species (Fig 5C–5F,

Table D in S1 File).

Fig 3. Redundancy analysis (RDA) plot showing group to group microbial community differences between the

treatments, timepoints and sampling origins. Legend: D14 = 14 days, D28 = 28 days, Pb = probiotic, Ctr = PBS

control, C = caecal, M = ileal mucosa.

https://doi.org/10.1371/journal.pone.0194825.g003
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In addition to these two genera also significant in caeca, the caecal community additionally

differed significantly in Brachybacterium, Coprobacillus and Alistipes (Figure A in S1 File,

Tables E and F in S1 File) and ileal mucosa had no overlap with excreta or caecal differences

with increased Weissella and Paracoccus and reduced unclassified Clostridiales in probiotic

treated birds (Figure A in S1 File, Tables G and H in S1 File). Both caecal (P = 0.461) and

ileum (P = 0.445) mucosal microbiotas were not significantly altered between treatments at 28

Fig 4. Phylotypes significantly altered by probiotic administration 14 days post hatch. Complete data with

significance values is provided in Tables A and B in S1 File. Blastn best hits against 16S Microbial database and % ID are

given as a guide.

https://doi.org/10.1371/journal.pone.0194825.g004
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days. However at the OTU level there were some consistent changes noticed. A number of Bac-
teroides uniformis assigned OTUs were significantly increased in probiotic treated birds across

the sampling origins contributing to Bacteroides genus, being highly significantly differential

between the groups (ANOVA P = 3E-12) (Fig 6A). Likewise, an OTU, most similar to Escheri-
chia fergusonii (97%), the most significantly differential OTU in ileum, showed consistency

across the time-points and sampling origins (ANOVA P = 5.8E-7, Fig 6B) as reduced in probi-

otic treated birds.

Discussion

Probiotic strains are highly host specific and often strains isolated from one animal species

cannot colonise other closely related animals [48]. However, strains isolated for human use

Fig 5. Boxplots showing some of the excreta phylotypes altered in abundance by at-hatch probiotic administration 28 days post

hatch. Complete data with significance values is provided in Tables C and D in S1 File. Blastn best hits against 16S Microbial database and

% ID are given as a guide.

https://doi.org/10.1371/journal.pone.0194825.g005
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were often marketed for agricultural animals until recent advances in total microbiota profil-

ing and sequencing technology revealed a wealth of knowledge on microbiota interactions

with the host. Although OTU identical to only one of the 3 inoculated strains 16S amplicon

sequence was detected in experimental birds, it needs to be noted that 16S sequencing based

microbiota profiling studies can detect OTUs present in excreta material higher than 106 cell

per g [49] and that based on changes observed in total microbiota profiles between the control

and probiotic administered group, it is also likely that the inoculated species remained to some

extent in the community, and that deeper sequencing could have determined the degree of

Fig 6. TSS normalised, square root transformed abundance of genus Bacteroides and an OTU most similar (blastn

on 16S Microbial database) to Escherichia fergusonii.

https://doi.org/10.1371/journal.pone.0194825.g006

Early administration of probiotics

PLOS ONE | https://doi.org/10.1371/journal.pone.0194825 March 23, 2018 9 / 14

https://doi.org/10.1371/journal.pone.0194825.g006
https://doi.org/10.1371/journal.pone.0194825


success in colonisation. Additionally, it was reported that some strains can help others colonise

without establishing strong presence themselves and also that multi-strain probiotics are gen-

erally more efficient than single strains they are comprised of [50] although strains could not

colonise with the same success.

Our data show that there are clear differences between probiotic-inoculated and control

birds with effects often reproducible even between physiologically different gut sampling ori-

gins (Fig 6). While the presence of the best colonising inoculated strain was higher in earlier

days reducing by day 28, the probiotic inoculation had lasting effects on the development of

the community rather than establishing dominance.

Comparable phylotypes were altered in the probiotic inoculated group in both excreta and

caecal samples as expected [51]. These changes in the probiotic group consisted of reduction

in Alistipes and Ruminococcus related species. Not much is known about the roles of Alistipes,
while Ruminococcus are generally considered as beneficial bacteria. However, most of the

Ruminococcus–annotated OTUs were also highly similar with Clostridium species from Rumi-
nococcaceae family, these are often difficult to resolve with 16S based taxonomy and may

require additional identification. Probiotic treatment also increased Bacteroides uniformis spe-

cies, (some OTUs were 100% identical in sequence across the amplified region), in both

excreta and caecal samples. Some of these OTUs were completely absent from control faeces

and caeca. Bacteroides uniformis is known to have the potential to degrade the isoflavones in

the gut [52], and significantly improve metabolic and immunological dysfunction in mice with

diet induced obesity [53]. However, some antibiotic resistant strains may have pathogenic

potential [54]. There was also an indication that at-hatch inoculation of L. ingluvei was able to

reduce Shigella / Escherichia related OTUs. These two genera cannot be resolved using partial

16S amplicons. It was previously reported that Lactobacillus acidophilus was able to inhibit

growth of Escherichia coli in chickens [55]. However, in our data, this inhibition was not

detected during classic ongoing probiotic administration but instead, it was confirmed 28 days

post single probiotic dose inoculation. Total removal or depletion of Escherichia or other

enterobacteria from intestinal mucosa may have clinical significance.

Another promising outcome was an increase of Weissella species in mucosal bacterial com-

munities. We have previously reported the depletion of Weissella confusa is associated with

necrotic enteritis in chicken [56]. Weissella confusa is a heterofermentative lactic acid bacteria,

previously classified as Lactobacillus [57], used in traditional fermentations [58], and is also

used as probiotic [59, 60]. More in vitro and in vivo investigations are needed to validate the

ability of these strains to stimulate Weissella and other mucosa protective species as probiotics

are often associated with repair of gut mucosal disruptions such as diarrhoea [61].

Conclusions

The results indicate that early inoculation of probiotic strains can influence intestinal micro-

biota and has the potential to improve weight gain via microbiota modifications. Our data con-

firm the clear difference between at-hatch administration of beneficial strain compared to the

natural acquisition of the same strain from the environment. The way of inoculum preparation

(fresh, exponentially growing vs freeze-dried cells for example), chicken breed and shed/farm

resident microbiota are all expected to play a role in the outcome of probiotic treatment and

should be further investigated.

Supporting information

S1 File. This file contains Figure A and Tables A-H.

(PDF)
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