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The cross section for back-to-back hadron pair production in e'e™ annihilation provides access to
the dihadron fragmentation functions (DiFF) needed to extract nucleon parton distribution functions
from the semi-inclusive deep inelastic scattering (SIDIS) experiments with two detected final state
hadrons. Particular attention is given to the so-called interference DiFF (IFF), which makes it possible
to extract the transversity parton distribution of the nucleon in the collinear framework. However,
previously unnoticed discrepancies were recently highlighted between the definitions of the IFFs
appearing in the collinear kinematics when reconstructed from DiFFs entering the unintegrated fully
differential cross sections of SIDIS and ete~ annihilation processes. In this work, to clarify this
problem we re-derive the fully differential cross section for e*e™ annihilation at the leading-twist
approximation. We find a mistake in the definition of the kinematics in the original expression that
systematically affects a subset of terms and that leads to two significant consequences. First, the
discrepancy between the IFF definitions in the cross sections for SIDIS and e*e™ annihilation is
resolved. Second, the previously derived azimuthal asymmetry for accessing the helicity dependent
DiFF G in e*e™ annihilation vanishes, which explains the nonobservation of this asymmetry in the
recent experimental searches by the BELLE collaboration. We discuss the recently proposed alternative
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option to extract Gi.
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I. INTRODUCTION

The understanding of the complete spin-dependent
structure of the nucleon has been at the forefront of studies
in nuclear physics in recent decades. Particular attention
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has been given to studying the so-called transversity parton
distribution function (PDF), which describes the correlation
of the transverse polarization of the nucleon with the
transverse polarization of its constituent partons (see e.g.
[1]). The chiral-odd nature of the transversity PDF makes it
much harder to measure compared to the unpolarized and
helicity dependent PDFs. Two approaches have been
recently employed in phenomenological extractions of
the transversity [2-5]. The first method uses the Collins
effect [6], that describes the correlation between the trans-
verse momentum of a produced hadron with the transverse
polarization of an initial quark in the hadronization process.
The convolution upon the transverse momenta of initial and
final partons of the transversity and the Collins fragmenta-
tion function (FF) can be measured in a SIDIS process
with a single measured final state hadron [7], while the
convolution of two Collins FFs are accessible from the

Published by the American Physical Society
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semi-inclusive production of two back-to-back hadrons in
e e annihilation [8]. The second method, based on DiFFs,
leverages the correlation between the relative transverse
momenta of two produced hadrons with the transverse
polarization of a quark in its hadronization, which is
quantified by the IFF H3'. Similarly to the previous method,
here again the SIDIS process with two final state hadrons
being measured is used to access a structure function
containing the transversity PDF and an IFF [9-12], while
the semi-inclusive production of two back-to-back hadron
pairs in e' e~ annihilation provides access to IFFs [13-15].
The advantage of the dihadron method compared to using
the Collins effect is that it is possible to work in the
collinear framework where the corresponding SIDIS
structure function factorizes in a simple product of the
transversity PDF and the IFF, while for the single hadron
case the transversity is convoluted with the Collins function
via an integral involving their transverse momentum
dependences. The same is true for the structure functions
containing the IFF and the Collins FF, respectively, in the
e*e~ annihilation cross section. Moreover, in the collinear
framework the same combination of transversity PDF and
IFF can be explored also in proton-proton collisions
leading to the semi-inclusive production of dihadron pairs
[16,17], while this possibility is in principle precluded
for the Collins effect due to factorization breaking
contributions. Finally, the evolution equations connecting
the IFF at different scales of the various processes
have a simple standard form [18], while the evolution of
a transverse-momentum dependent PDF is more compli-
cated and depends on non perturbative parameters [19].

A major experimental effort to measure the various
azimuthal asymmetries involved in extracting the trans-
versity PDF using the dihadron way has been made by
several collaborations, such as HERMES [20], COMPASS
[21,22], and BELLE [23,24]. The IFFs from e"e™ mea-
surements at BELLE were fitted in Refs. [15,25]. In turn
these were used in Refs. [4,25,26] to successfully extract
the transversity PDF using HERMES and COMPASS data.
Recently, the STAR collaboration released also dihadron
data for azimuthal asymmetries in proton-proton collisions
with a transversely polarized proton [27,28] which can be
included in an attempt of extracting the transversity PDF
from a global fit [29].

Recently, systematic model calculations of both FFs and
DiFFs for unpolarized hadrons have been performed
within the extended quark-jet model, which for the first
time provides a self-consistent description for the hadro-
nization of a quark with an arbitrary polarization [30-33].
The two DiFFs, Hf and Hll, describing the correlations
between the relative and the total transverse moment of the
hadron pair with the transverse polarization of the quark,
respectively, were studied in Ref. [33]. There, it was
observed that the integrated IFF built from the DiFFs
entering the unintegrated SIDIS cross section is different

from the one that is built from the corresponding unin-
tegrated cross section for e"e~ annihilation derived in
[13]. In particular, in SIDIS the integrated IFF contains
both the zeroth Fourier cosine moment of the fully
unintegrated H7, along with the first Fourier cosine
moment of Hi. This admixture of H; did not appear
in the original derivation in Ref. [11] but was Ilater
included in Ref. [34]. On the other hand, the integrated
H7 in e'e™ annihilation in Ref. [13] contains only the
zeroth Fourier cosine moment of the unintegrated H7*. The
model estimates of these two definitions of IFFs in
Ref. [33] produced almost a factor of two discrepancy
between them.

Another prediction of Ref. [13] concerned a particular
azimuthal modulation that provides access to the first
Fourier cosine moment of the quark helicity dependent
DiFF Gi. However, the recent preliminary results from the
BELLE collaboration showed no signal for this modula-
tion within the experimental uncertainties [35,36]. The
recent COMPASS studies [37] also yielded no significant
signal for SIDIS. Even though the model calculations of
Ref. [32] suggest that the integrated Gi appearing in
Ref. [13] is naturally smaller in magnitude than the H7,
this was still a surprise given the precision achieved in the
BELLE analysis.

In this work, we rederive the unintegrated cross section
for the semi-inclusive production of two back-to-back
hadron pairs in e'e™ annihilation, first performed in
Ref. [13]. We then recalculate the azimuthal asymmetries
used for extracting the IFFs and the helicity dependent
DiFF in order to resolve the above discrepancies.

This paper is organized in the following way. In the next
section we briefly review the formalism for DiFFs. In
Sec. III, we describe the kinematics of two hadron pair
production in e*e™ annihilation and rederive the corre-
sponding cross section. In Sec. IV, we rederive both
azimuthal asymmetries involving H{' and Gi. We present
our conclusions in Sec. V.

II. FIELD-THEORETICAL DEFINITIONS
OF THE DIFFS

The fragmentation of a quark ¢ of an arbitrary polari-
zation § into two unpolarized hadrons h;, h, is fully
described at the leading twist approximation by four
DiFFs, see Refs. [9-11,13,34]. The relevant kinematics
is described by the momentum k and mass m of the
quark ¢, and the corresponding momenta P;, P, and
masses M, M, of the h;, h, pair. In the definitions of
the DiFFs, the momenta P; and P, of the individual
hadrons are replaced by their total, P = P, and relative,
R, momenta

PEPh:P1+P2, (1)
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FIG. 1. The dihadron fragmentation coordinate system, where
the Z axis is taken along the total 3-momentum of the two
hadrons, P. The components of 3-momenta perpendicular to Z
axis are denoted with a subscript 7

R =2 (P —Py), (2)

N[ =

with P7 = M3 the squared invariant mass of the pair.

The 7 axis is defined along the spatial component of the
total momentum P, and the components of three-vectors
perpendicular to the Z direction are denoted by subscript 7,
as schematically shown in Fig. 1.

The light-cone momentum fractions of the hadrons are
defined as the ratios of the plus components1 of their
four vectors to the quark momentum, z; = P /k". The
following light-cone momentum fractions are used in the
definitions of the DiFFs

z2=21+ 2o, (3)

e=2-1-2 (4)

< Z

The two-hadron fragmentation of a quark is described by
a quark-quark correlator [9,11,13,38]

Al](k, Ph,R)
—E:/f&MMw@WMJNmRMWmmh
(5)

which, for the case of unpolarized hadron pair and at the
leading twist approximation, is parametrized via four

DiFFs
1
= A(Z’f’kT’RT)
11 oot 1 KRS
4 4{D ﬂ+—G‘L Cuvp M;— T T}/5
M, Mh

'"The light-cone components of a 4-vector a are defined as
a=(a",a ,ar), where a* = \/%(ao + a).

where D, is the unpolarized DiFF, Gi is the helicity
dependent DiFF, H}' is the IFF, and H{ is the analogue of
the Collins function for the dihadron case. The lightlike
vectors n_ and n, are defined as for any 4-vector a,
namely a* = a-ne,andn,n_ = 1,n% = n2 = 0. All four
s and kT . RT =
|k7||R7| cos(pr — @r), where @ and ¢, denote the azimu-
thal angles of the vectors Ry and k. Thus, the DiFFs only
depend on the cosine of the difference of the azimuthal
angles @, — @g, that we denote as @xr. The DiFFs can be
further expanded in an infinite series of Fourier moments
with respect to angle ¢gr, as done in Ref. [33] (see also
Ref. [39] for an alternative expansion). It is clear, that all the
sine terms vanish, as the DiFFs are even functions of ¢gp.
For D; we have

D, (z,& k2, R2., cos(gkr))

_ l Z cos(n - €0KR)
T

D & el IR, ()

n=0

and similarly for the other DiFFs.

The invariant mass of the hadron pair M), is used to
replace the magnitude of Ry

Ry =&(1 - &M - MY(1-&) - M3E. (8)

These Fourier decompositions will prove valuable when
examining the azimuthal dependence of various structure
functions of the e*e™ cross section which we rederive in
the next section.

III. THE e*e~ CROSS SECTION

In this section we rederive the e*e™ — hyhy + hyhy + X
cross section at the leading twist approximation, following
the framework set out in the original work of Boer et al.
[8,13,40]. First, we briefly lay out the kinematics in the next
subsection, followed by the evaluation of the cross section
itself in the subsequent subsection.

A. Kinematics

A schematic depiction of the kinematic setup is shown in
Fig. 2. Here, the electron with momentum / annihilates with

FIG. 2. The kinematics of e" e~ annihilation.
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a positron of momentum /', creating a quark-antiquark pair.
The time like momentum of the intermediate boson in this
hard process is denoted as g =7+ 1 and we define
g> = Q*. In this work we use Q as the hard scale and
will ignore all the contributions of order 1/Q. The quark
and antiquark hadronize, producing two back-to-back jets.
We choose a hadron pair 4, h, with momenta P, P, and
masses M, M, from one of the jets. From the other jet, we
choose the second hadron pair &, 1, with momenta P, P,
and masses M,, M,. Here again we define the total and
relative transverse momenta for each pair, as done in
Egs. (1), (2), and denote the corresponding momenta for
the h,, h, pair as P, and R. In the “leading hadron
approximation,” where we assume that a significant frac-
tion of the energy in each jet is carried by the two pairs, we
can write Pj, - P, ~ Q. Then we decompose the momenta
P, P, and ¢ in light-cone coordinates in a frame where
P,; = 0 and P,; = 0, to identify the corresponding dom-
inant terms

M2 2,0 2,0
= e~ 9
2,0V2 V2 2t ©)
= 2,0 M 72,0
P =""=pr 0 ph =g 10
"TV2T oV T V2 (10)
0 0
where
2P, - q
Zn th ~Z, (12)
2P, -
Z, = thqzz, (13)
and
—¢} = 0} < 0% (14)

We can project the components of 4-vectors transverse to
n, using the tensors

dr = g¢"* —n'n" —nint, (15)
e = e, (16)

where ¢ is the metric tensor.

The coordinate system in Fig. 2 is defined by taking the Z
axis opposite to the 3-momentum P;,, while the components
of the vectors perpendicular to Z are denoted with a
subscript | in a frame where ¢, = 0. It can be easily
shown, that P,, = —zqy, up to negligible correction of
order Q% /0% < 1. We can then define the two orthogonal
unit vectors in L direction

h=th_ 4T (17)
1P| lar|’
g = el = PR, (18)

where the following convention is used €°'?® = +1.

To keep consistency, we will define all the azimuthal
angles with respect to the lepton frame. Then, we can
parametrize these two vectors using the azimuthal angle ¢,

of h
h = (cos(¢,).sin(¢)). (19)

& = (sin(¢;), —cos(¢y)), (20)

so that the azimuthal angle of g is simply ¢, = 3/27 + ¢,.

The lepton plane in Fig. 2 is spanned by the Z axis and
the transverse component /| of the electron momentum /.
The unit vector [ | can be parametrized using the lepton
plane angle ¢; in the laboratory frame. However, all the
following results are independent of the orientation of the
scattering plane with respect to the laboratory frame, hence
the ¢; dependence will be ignored. Here we can also define
the associated normalized 4-vector

A
[, =—. 21
1 |lJ_| ( )

Similar to the light-cone frame, we can now define a set
of orthogonal normalized 4-vectors

. q
4 22
=0 (22)

@_25—5—2, (23)

A

where the spacelike vector # is denoted as Z in
Refs. [8,13,40]. Here we changed the notation to avoid
any possible confusion with the notation of the Z axis. The
orthogonal projections of the 4-vectors can be again
achieved using the tensors

e s T (24)
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el = —e"1,0,, (25)
The two perpendicular projection tensors can be related

n'qy + n' gy
Q
In this work we neglect all terms of order Q/Q, M,/ Q,

M,/ Q. Thus we also neglect the differences between the
and | components of vectors.

g =9r - (26)

B. Cross section

The cross section for this process is given by the
convolution of leptonic and hadronic tensors

2PDPRPRPds o

2 — L, W 27
&P, PP, PP, P, Q6 T 4k (27)

where

= Q? [—ZA(y)g’i"
+ 4B(y) 1" — 4B(y) (7’1?1 + % g’f)
_20(3)BVR(y) (T + Mi)] , (28)

Wﬂ: )(q’PhﬂR Pln

and
1 2
A(y)=§—y+y, (29)
B(y) = y(1-y). (30)
C(y) =1-2y, (31)
with
Ph-l l‘ 1+c0592
y = — 32
Piq q 2 (32)

The last equality holds in the center-of-mass frame, where
0, is the angle between the 3-momentum of the electron /
and the 2 axis.

The hadronic tensor is defined as

(4h

— G 102/ 22) 2P0 (27)*6(q — Py — P, — P,)

x (0]J#(0)|Px; P, R, Py, R)(Py; Py, R, Py, R|J¥(0)|0). (33)

Using the parton picture, we can decompose the hadronic tensor in terms of the quark-quark correlators A and A for the
production of the two hadron pairs in the fragmentation of the quark and the antiquark

Wiy, & 3(322)(322) Z / Pl d*k, 8 (qr

—ky k) Tr[A(Z.8. k

Rp)y*A(z, & kr, Ry)y*). (34)

where a denotes the flavor of the fragmenting quark and the prefactor is the number of active colors N = 3.
Following the transformation of the phase space factor detailed in Ref. [13], the cross section expression can be written as

do

2

o
= = = zzL,,
d*qrdzdédprdMidzidédprdMadyde, 12804

W, (35)

Up until this point we have followed the same formalism and definitions as in Ref. [13]. The next step is to evaluate the
trace in Eq. (34) and contract the resulting expression for the hadronic tensor with the leptonic tensor in Eq. (28). The

resulting expression follows
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do(ete™ = (hyhy)(hihy)X)
d*qrdzdédprdMidzdédprd M dy

3a” 2—2262{A(y)f[D‘1‘[)‘;1] + cos(pgr + @z)B(y)

M'RTl <a fy<a B(y) 7 DT
M, M, F[HTH; }+COS(2¢1)Mth-7:[(2(h kr)(h-kr)

~ (kp Ry HE ) £ sin(20) 2O) F (8 k) Rp) + (- kp)(@ o)) HEE

MM,
BOY)Rr| 1 r =\ camiar | o B(y)|R|
WF[(h kr)H“H; ]+Sm(¢1+(ﬂR)W

B(y)IRy| - & aF<E] | o B(y)IR7| . afy<a
WM:]:[(” ‘kT)H1L Hf( ] + sin(¢, +€01‘3)TMZ~7:[(g'kT)1LJ'1L Hf[ ]

+ cos(¢y + @g) Fl(@ - kr)H{H9)

+ cos(¢; + @r)

IR7| |R7|
—A(y)—% MR

— sin(¢; — @g) cos(¢p; — CDR)]:[((il kr)(§- ’_‘T))Gllacfa]
— cos(¢py — @g) sin(¢; — (PR)]:[(@"kT)(il ‘I_‘T))Gfaclm]

+ cos(¢h — o) cos(dh —(pR)f[((g-kﬁ(é-kr»cfaéfan}, (36)

(sin(¢h) — gg) sin(¢py — (PR)J:[((’; 'kT)(il "}T))Glm(_;lm]

where the convolution F is defined as
FlwDD] = / d’kyd’ky* (k7 + ky — qr)w(kr. kr, Ry, Ry)D* (2, &, k7, Ry kr - R)D(2, &, k7, R} kr - Ry).  (37)

There are several important differences between the expression in Eq. (36) and the original expression in Eq. (19) of
Ref. [13], apart from the different mass normalization. First, the terms multiplying & are multiplied by a factor of —1 in our
expression. Second, the factor A(y) in front of the G{-G7{-? terms is also multiplied by a factor of —1. Lastly, the dependence
on angle ¢; vanishes altogether, as in this work all the azimuthal angles are defined with respect to the lepton plane.

These differences allow us to rewrite the cross section in a much more compact form

do(ete” = (hyhy)(hihy)X)
d*qrdzdédprdMdzdEdprdMady

3a?
2oy a{ Ay + B0 >f[']‘;l"ﬂj'cos<<pk+¢k>HMHﬂ
+B(y)]_— |RTH T|COS((/)R+(/)R)H<“H<(& +B(y)]: |kT|| TlCOS((ﬂk+(ﬂR)HLaH<a
M, M, b M, M,
Ry | |kr| afyla Ry |lkr||Rr|lker| . 0ol
+B(y).7-"[Mh i, (pr +@r) H{Y“H{ | —A(y)F 7 i sin(gy — @) sin(gp — pr) GG | v (38)

We obtain the cross section in collinear kinematics by integrating upon d?q;. This integration trivially breaks up the
convolution between k; and k; in Eq. (37). In the last line, we have the product of two terms of the following form

/ dpy sin(pg) GL (2. &, Vgl IRy | cos(px)) = O, (39)

that trivially vanishes by changing the integration variable ¢, — @gz. By replacing in Eq. (38) the remaining DiFFs with
their Fourier cosine decompositions in Eq. (7), we have
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do(ete™ = (hyhy)(hihy)X)
dzdafdgoRsz dzdédprdM?dy

cos(nggg cos(mquR)
2?7 | &k / d*k ¢
Q2 / ’ T;; (1 + 80,0) (1 + So,m) aza:

a,\n| /a, m y a,n a,n
(AP DT 4+ ZCL cos(a -+ ok L L+ cost -+ ) R 7 Ry

Lalnl\p | g<a s
cose-+ okl R [T 4 costo + ) Ry 17 )

3a Ak [ die ol B0 . .
~ 2o [ 5 e A0 B o+ gn) et

+ |R |H<Ia 0]|RT|H<(L! + ‘leHJ_a[l |RT|H<(Ll + ‘R |H<(a 0]|k |HJ_a 1])}

_ R;| R =
i L ACIDH £ MRIDE(E &)+ D) el + o) I B 52 £ MDA )| )
where
2
Dy(z.6.M3) = 22 / kD (2., ) = 2122 / %D[{”( £, ). (41)
Hi (e }) =2 [ ke [HTO Gl R+ L e il )|
_ di [ <10 k| o
—27rz2/ 5 [Hl (z, )+ R, |H (z.¢ ; (42)

and similarly for the barred functions.

Following Ref. [12], we can expand the above DiFFs in the relative partial waves of the hadron pair system. In the center-
of-mass (c.m.) frame of the pair, we can change the £ dependence to { = 2 — 1 = a + b cos 6, where a, b are functions
only of M %l and @ is the angle between the direction of the back-to-back emission in the c.m. frame and the direction of P}, in
the target rest frame. The Jacobian of the transformation is d& = |R|/Md cos 6. Then, we have

R
21|VI—|D1(Z,§, Mj}) = D (z.cos0, M) = D p(z, M};) + c08 0D o (2, M) + - (43)
h

R
Z%Hf(z,é, Mj) = H{(z.c080. M}) = HY o7 (2. M}) + cos OH T (2. M) + - (44)

If we insert these expansions in Eq. (40) retaining only the first nonvanishing term after integrating in d cos @ (d cos 6), and
we further change the y variable as in Eq. (32), then the collinear cross section can be written as

do(ete™ = (hyhy)(h hy)X)
dzd cos OdgrdM?dzd cos 0dprdM?d cos 0,
1 3a® 1 + 1+ cos’6,

T4 87:Q2 Z aDf OO(Z Mh)DIOO(Z M)
: 29 R H<ia Z,M H<Ia z, MZ
X{1+COS(§0R+(0R) sin 3 ngsn9| || |Zaa j.OT( ]21)_;07"(_ _g)}
1 + cos“0, M, M, Za,aeaDl,OO(Z’Mh)Dl,OO(Z’ i)
1 _ _
= 4—2d60[1 + cos(pr + @g)A(cos 05, cos 0, cos 0, z, M3, 7, M?)], (45)
v’
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where R; = Rsin@ (and similarly for R;), do, is
the unpolarized cross section, and A is the so-called
Artru—Collins asymmetry.

The above expression is identical (up to a numerical
factor) to the one used in Ref. [15] to extract the IFF from
the BELLE experimental data for the Artru—Collins asym-
metry [23]. The same IFF occurs also in the SIDIS cross
section for the semi—inclusive production of hadron pairs
off transversely polarized targets [12], and it is used to
extract the transversity distribution from a suitable single-
spin asymmetry [4,25,26]. Without expanding the DiFFs in
relative partial waves and by directly computing the
cos(pgr + @r) moment of the cross section in Eq. (40),
the resulting Artru—Collins asymmetry is also formally
identical to that in Eq. (23) of Ref. [13] (see next section).
The crucial difference is in the definition of Eq. (42),
namely in how the integrated IFF entering the asymmetry is
built in terms of unintegrated DiFFs. Starting from the
correct cross section of Eq. (36), the expression in Eq. (42)
(multiplied by |R|) is now consistent with the definition of
IFF entering the azimuthal asymmetry in the SIDIS cross
section [33] (see also Ref. [34]). The same consistency
could not be achieved from the cross section in Eq. (19) of
Ref. [13]. Thus, the discrepancy is indeed resolved.

IV. THE AZIMUTHAL ASYMMETRIES

In this section, we will review and discuss the azimuthal
asymmetries that allow to extract the IFF and the helicity
dependent DiFF from the cross section listed in Eq. (38).
For this purpose, we define the average of an arbitrary
function 7 as

/dé/d:/drpR/drpR/quI

e e - (h hz)(l’l I’lz) )
szdéd(deM%ldzdéd(deMhdy

(40)

We first calculate the integral of the unweighted cross
section, that appears as denominator in all of the azimuthal
asymmetries. Following the same steps leading to Eq. (40),

we have
/dé/dé‘/dqoze/d(pze/dqr

fem = (hy hz)(h hz) X)

3a2 _
LAY D MDY AL).  (47)

= 0
where
Di(em) = [ deDg(z.em).  (48)

and D, (z, &, M32) is given in Eq. (41) (and similarly for D%).

A. Artru-Collins asymmetry
In Ref. [13], the Artru-Collins asymmetry is defined as

(cos(gg + @r))
(1)

Following the same steps leading to Eq. (40), we have

A(y,z,2. M}, M};) = (49)

3a?

(cos(pr +or)) :TQZB(

VS CRHT e M B (2.0,
(50)

where

R
HiGo) = [ai e e, 6
with Hi'(z,&, M3) given in Eq. (42) (and similarly
for H'%).
Finally, the Artru—Collins asymmetry results

:;[ Ze2H<“ (z, M) H (2, M )]

_ _ -1
x [A@)Zezbﬂz,M%)D?(Z,M,é)] ,
a,a

(52)

A(y,z,2, M2, M?)

which is identical to Eq. (23) of Ref. [13], but now
H{“(z,M?) is given by Eq. (51) consistently with the
definition entering the azimuthal asymmetry in the SIDIS
cross section [33] (and similarly for H}"%(z, M3)).

B. The asymmetry for the helicity dependent DiFF

Another important consequence of the new expression
for the cross section in Eq. (38) is that the so-called
longitudinal jet handedness azimuthal asymmetry, sug-
gested in Ref. [13] to address the helicity dependent
DiFF, identically vanishes. This asymmetry is defined as

(cos(2(px = o2)))

(1

The contributions to (cos(2(gg — @g)) from terms in
Eq. (38) involving B(y) vanish, which is easy to check
using similar steps to those used in the derivations of
Eq. (40), where we quickly end up with an expression
multiplied by

/d(PR/dfPR cos(2(pg

The only remaining contribution is by the last term in
Eq. (38), which we can again transform to a much simpler
form by redefining ¢, — @ggr, @i = @ik after integrating
upon dqy:

A= (y,2,2. M}, M}) =

(53)

—or))cos(pg + @) = 0. (54)
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(052000~ ) = - 2 03k [ az [ @ [ ave [ dogcostipe - on)

|kr||Rr|
M2

xzzzz/dkT/dl_cT sin(gy) sin(p;) —5—

| Jer[|Ry |
M2

GJ_a( 7, &,

(ox))
G1(z. &, lkr|, [Rr|, cos(g)) = 0. (55)

Thus, the asymmetry of Eq. (53) identically vanishes. In fact, any moment of the cross section that depends only on angles
@g and @ would get no contribution from the terms involving G, as can readily be seen from the derivation in Eq. (55)
since the integration upon dqy already yields a zero.

It is interesting to investigate if there is a specific moment that allows to single out the helicity dependent DiFF Gi-. If we
include in the weight information on |g7|, following the same steps as before for example we get

3a2 _
(g7 coslom = 0n) = o A ey, (2D . M) DY )
—<G%“”“< M3) = G e ) (GO @) - 6P (2 ) )y
3 _ _
Eﬂgz Ze2MhM,,{2D M2 a2) DD (2 i2) — Ge(z, M2)GRA(z, 12)}, (56)
where
n kz n
oy =2 [k (5" [ @zt . o)) (57)
n k2 P R n
61y =22 [ e (yr)" [ aelirl e il v (58)
h
G (zM3) = G (2, m3) - Gf'm‘“(z, M3), (59)

are k3—moments of order p of the Fourier cosine moments of order n of the involved DiFFs (and similarly for the
barred functions). Note, that this definition of Gi-(z, M3) is different than that in Ref. [13]. Therefore, weighing the

cross section with a function of @z, @z and g7 is not enough to isolate its contribution coming from the helicity
dependent DiFF.

Such new weight has been recently proposed in Ref. [41], that also involves the azimuthal angle ¢, = ¢ + = of g7 to
exactly cancel out the contributions from the unpolarized term in the cross section:

(g7 (3sin(p, — @g) sin(@, — @) + cos(p, — @r) c0s(p, — @r)))
= (g7(2cos(pr — @r) — cos(2p; — or — @r)))
1202

= o A0S S MG e MG 1), (60

where Gi(z, M?) is defined in Eq. (59) (and similarly for Gi-(z, M2)).

Finally, it is worth noticing that since (g% cos(pg —@g)) #0 and (cos(pg — @g)) =0, the latter moment can
contain terms that survive the integration upon ¢, but vanish because of the integration upon the modulus |g7|. If we
perform all the integrations indicated in Eq. (46) except for the one upon d|qr|, the only surviving contribution is (see
Appendix)
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(cosn = ) a3) = s W34 [ dn a2 R R)
3a? 5 .
= ”—QzA(y);eHZH}"l £0 (61)
where
Fi(q7.2.%.R7. R}) = /dsz/dzl_‘T(S(kT +ky — q7) cos(p — ;)
all] zrall s 3 1%
X déD\ (2., ) | dEDYT(Z.E, )
kr||R
-1 [ e EE Gkl R = 6% e 6 el )
| T||RT| GLalo J_a 2] A
X (Gy "Nz & lker |, [R7]) — (z. & lkr|. |Rr])) ¢ (62)
I
If (cos(@g — @g)) = O vanishes because of the integra- ~ Sec. IVA is that with the corrected cross section the

tion upon the modulus |g7|, it means that this moment,
when considered as a function of g%, must have a node.
Indeed, some preliminary measurements from the BELLE
collaboration indicate a non vanishing (cos(pr — @z))
which could be due to the limited coverage in g7 [42].
However, it is not evident which combination of moments
of DiFFs in Eq. (62) is responsible for a node in Eq. (61). In
principle, both terms could contribute in changing the sign

of (cos(¢r — @g)) because the Fourier cosine moment D[ll]
is not necessarily a positive definite function.

V. CONCLUSIONS

The DiFFs provide a very rich source of information
concerning the hadronization process. Moreover, in recent
years they have been used to explore the structure of the
nucleon using two-hadron semi-inclusive electroproduc-
tion. The information about the DiFFs extracted from the
two back-to-back hadron pair semi-inclusive production in
eTe™ annihilation plays an absolutely vital role in these
studies. The fully unintegrated cross section for this process
and the relevant azimuthal asymmetries for accessing the
different DiFFs were first derived in Ref. [13].

We recently observed in Ref. [33] that the integrated IFF
built from the DiFFs entering the unintegrated SIDIS cross
section is apparently different from the one that is built
from the corresponding unintegrated cross section for e e~
annihilation obtained in Ref. [13]. In this work we
rederived these quantities following the same kinematic
setup of Ref. [13]. In Sec. III B, we found a mistake in the
definition of the kinematics that impacts a subset of terms
in the cross section having significant implications for the
relevant asymmetries. The most important result derived in

apparent discrepancy between the definitions of the inte-
grated IFF in terms of unintegrated DiFFs occurring in the
SIDIS and e*e™ cross sections is resolved. Although the
procedure used in the extraction of the transversity PDF
using the dihadron method in Refs. [4,25,26] is formally
correct, it is nevertheless important to have a consistent
underlying formalism, which has been established here.

The second important result, derived in Sec. IV B, is
that azimuthal asymmetry previously proposed for access-
ing the helicity dependent DiFF Gi actually vanishes. The
reason is the complete decoupling of the quark and
antiquark transverse momenta in these asymmetries, as
a consequence of which the modulations of their respec-
tive hadron productions are lost. This naturally explains
the absence of the corresponding signal in the recent
analysis at BELLE [35,36]. Further, we discussed the
azimuthal asymmetry recently proposed in Ref. [41] that
allows to access Gi. We have also analyzed another
azimuthal asymmetry based on the relative azimuthal
orientation of the planes containing the two back-to-back
hadron pair momenta. Interestingly, this asymmetry van-
ishes independently of the various angular integrations,
because it displays a node as a function of the size of the
imbalance between the transverse momenta of the two
back-to-back jets. As a consequence, incomplete integra-
tion on the imbalance size would generate a nonvanishing
result, as well as including also the imbalance size as an
additional weight.

An important next step is to extend these calculations to
beyond the leading-twist contributions, both in the kin-
ematic factors and the DiFFs themselves. The need for this
is motivated by the upcoming and planned next generation
experiments.
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APPENDIX: COSINE MOMENT OF RELATIVE
ORIENTATION OF HADRON PAIRS PLANES

By performing all the integrations indicated in Eq. (46)
except for the one upon dqy, the (cos(¢pr — ¢z)) moment
becomes

3a? - - _
(cos(on = pa))ar) = o >3 [ dé [ d [k [ @hrotir +kr = ar)

— ¢g) cosm(pr — @r)

cosn(p
X/d¢Rd(PRCOS(§0R—¢R)Z ﬂ(1(+k50 )

n.m

x {A@)D?*["]D‘I"“"] + B(y) cos(gx + 1)

|RT| <Ia [n] ‘RT|
X H,
M, Mh

R a k| - La
X'vZ'Hf“*”-—T'HW

m 4 B(y) cos(py + @g)

— A(y) sin(ey

77.'(1 + 50m)
k n k a m
Wl o W rini s (y) costn + 0
|k | La n |R |
MTh 1 g MZ "4 B(y) cos(@; + @r)

R R
— @) sin(@; — @) —5— [k || Rz | GLeh |kT|| 7l - Glal m}

1 1
M2 M2

3a? - . a 2,
=25 [t [ st -+ - qr){A(y) cos(gi ~ ) [ ey [ deoi

ez

+B(y)005(<0k—¢k)COS(¢k+‘/’k)/d§| s Hy /dEM_th“’m

1 a, a,
+B(y)§[cos2(pk/d§| |Hf /dg' h'Hf 0

+cos2<pk/d§| |

lkr| . 1a]
déE—H
+/ th
+/

_A(Y)%COS((ﬂk_(ﬂic)/df

oo [ gl

h

|kT||RT|

a.[2]

/dg&@ (cos 2(pkﬁf&'[0] + cos 2(p,;1:1fa'[2])
M,

= l_( ~-la R a a
|MTh| HlL A /d§|T|(cos 2piHY 4 cos 2pHY ’[2])]
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h

3a? _ _
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where

F9(z.7.k3. k2. R3, R%) = / dep*!! / dzp*!

k Ril o s il o
h
= |kT||kT|[F1D(Z7k2’R%>F1D(Z7k2’R%> + F{(z. k. Ry FY (2. k7. RY)] (A2)
o k| e k o
FiCe 2R R R = [ aelt et [t ot < e 2 0 ) P G R (a3)
o Ryl R k kil e R
P2k K R = [agl o) [ (el o Sl o) [ gellrl o [ bl oo
) M, My, M,
(A4)
FX(Z,Z,k%,I_c%,R%,R%):/dcf'- il 4“[2/ de(Brl paaior | Wl ity +/ |kT| i 1]/d§| 1l pyealo]
h 1 Mh h
(AS)

The integral on dg,, of the (cos(¢g — @))(gr) moment in Eq. (A1) is nonzero. In fact, the first term of the last line gives

[ o [ ke [ @t -+ ke = ar) coston - 00 Fi . 2.0 BB

/ do, / &’k / dsz / dPbetarkikf, e (FPFP 4 FGFQ)
0 0 2p,_ J - 0 &G
d d?be 1 (—4b?) | —5 FP(2,b% R}) —5 F\ (2.b* R%) + — F§ (2, 0%, R} F{(z,b%,R:
= [ s [ e sr (v | P R s D0 4 s PR o F G0 R
- [ 0,722 5. B) = 2071 #0, (A6)

where FP, FG (FP, F¥) are the inverse Fourier transforms of FP, F G (FP, F§), respectively.
Following similar steps, it is easy to verify that

/ dg, / d’kr / d*krd(kr + kr — qr) cos(py — ¢z) cos(py + @) F5 (2. 2. k7. k7. R} R})
/ngq/dsz/Jsz /dzbe”’ (@rkr~k0f e cos(gp + @7\ FEFH
-2 [ a0 {(¢ qg%f (g3 2 R R
d(q7)

o3 ot _ _
S+t ) W] Fo e R ,R%>} o, (A7)

+8 [3( q))
/ do, / d*ky / dk6(ky + ki — qr) cos 29 F§(z, Z, k>, k3, R%, R%.)

& I
= 16/dgoq( qy)a(q%)zfg(q%,z,z,R%,R%) =0, (A8)

and similarly for F¢(z,z, k%, k%, R%, R2).
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